JP2010111526A - Lightweight heat insulating molded body and method for producing the same - Google Patents

Lightweight heat insulating molded body and method for producing the same Download PDF

Info

Publication number
JP2010111526A
JP2010111526A JP2008284266A JP2008284266A JP2010111526A JP 2010111526 A JP2010111526 A JP 2010111526A JP 2008284266 A JP2008284266 A JP 2008284266A JP 2008284266 A JP2008284266 A JP 2008284266A JP 2010111526 A JP2010111526 A JP 2010111526A
Authority
JP
Japan
Prior art keywords
molded body
heat insulating
weight
lightweight heat
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008284266A
Other languages
Japanese (ja)
Inventor
Teruzo Murai
輝造 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUTEI GIJUTSU KAIHATSU KENKYU
ASUTEI GIJUTSU KAIHATSU KENKYUSHO KK
Original Assignee
ASUTEI GIJUTSU KAIHATSU KENKYU
ASUTEI GIJUTSU KAIHATSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUTEI GIJUTSU KAIHATSU KENKYU, ASUTEI GIJUTSU KAIHATSU KENKYUSHO KK filed Critical ASUTEI GIJUTSU KAIHATSU KENKYU
Priority to JP2008284266A priority Critical patent/JP2010111526A/en
Publication of JP2010111526A publication Critical patent/JP2010111526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight heat insulating molded body excellent in heat insulating property, and to provide a method of manufacturing the lightweight heat insulating molded body. <P>SOLUTION: The lightweight heat insulating molded body comprises: (1) fumed silica; (2) silicon carbide; and (3) a fibrous reinforcing material. The lightweight heat insulating molded body has a skeleton composed of the components and many fine gaps formed from the skeleton, and is characterized in that the temperature of the back surface of the molded body formed into a plate of 2 cm thickness is kept to ≤67°C when the surface of the molded body is heated at 300°C for 3 hr. In the method of manufacturing the lightweight heat insulating molded body, a mixture including (1) the fumed silica, (2) the silicon carbide, (3) the fibrous reinforcing material, and (4) an organic liquid medium or a mixed liquid of the organic liquid medium with water in the quantity half or below of the weight of the total solid portion is compression-molded and then is dried and hardened. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軽量断熱成型体及びその製造方法に関する。   The present invention relates to a lightweight heat insulating molded body and a method for producing the same.

近年、エネルギーの有効利用及び環境への配慮の観点から、燃料の化学エネルギーを熱に変えることなく、直接電気エネルギーに変換することができる燃料電池の研究が盛んに行われている。例えば、車載型燃料電池、家庭用コージェネレーションなどへの適用を目指して、近年優れた性能を有する燃料電池が数多く報告されてきている。   In recent years, from the viewpoint of effective use of energy and consideration for the environment, research on fuel cells that can be directly converted into electric energy without changing the chemical energy of the fuel into heat has been actively conducted. For example, many fuel cells having excellent performance have been reported in recent years with the aim of application to in-vehicle fuel cells, household cogeneration, and the like.

一方で、この様な燃料電池を効率的に作動させるに当たり、燃料電池を被覆する断熱材の高性能化が必要となる。このような断熱材として、例えば、特許文献1及び2には、セラミック系無機繊維、無機粉体、必要に応じ無機結合剤及び有機断熱性物質を所定割合で含有し、嵩密度0.35〜0.45g/cm3を有する柔軟性に優れた断熱材が報告されている。 On the other hand, in order to efficiently operate such a fuel cell, it is necessary to improve the performance of a heat insulating material covering the fuel cell. As such a heat insulating material, for example, Patent Documents 1 and 2 include ceramic inorganic fibers, inorganic powder, and an inorganic binder and an organic heat insulating material at a predetermined ratio as necessary, and a bulk density of 0.35 to 0.45 g. A highly flexible heat insulating material having / cm 3 has been reported.

しかし、これらの断熱材は、一定の軽量性、断熱性、強度等を有するものであるが、軽量性、断熱性等の点でさらなる改善の余地があった。また、大量生産が可能な簡便に製造できる断熱材が望まれている。   However, these heat insulating materials have certain light weight, heat insulating properties, strength, and the like, but there is room for further improvement in terms of light weight, heat insulating properties, and the like. Moreover, the heat insulating material which can be mass-produced and can be manufactured simply is desired.

本発明者は、先に、より優れた断熱材を得るべく研究を行った結果、特許文献3記載の断熱成型体に係る発明を完成した。この発明は、ヒュームドシリカ、チタン酸カリウム繊維、酸化ジルコニウム及び/又はシリコンカーバイト、並びに繊維質補強材を含んでなるものであり、嵩密度は0.35g/cm未満である。当該断熱成形体は、全固形分重量に対し2〜3倍量の大量の水をバインダーとして加えて圧縮成形して、乾燥固化することにより製造されている。 As a result of conducting research to obtain a more excellent heat insulating material, the present inventor has completed the invention relating to the heat insulating molded body described in Patent Document 3. The present invention comprises fumed silica, potassium titanate fibers, zirconium oxide and / or silicon carbide, and fibrous reinforcement, and has a bulk density of less than 0.35 g / cm 3 . The said heat insulation molded object is manufactured by adding a large amount of water 2 to 3 times the total solid weight as a binder, compression molding, and drying and solidifying.

しかしながら、特許文献3に記載の断熱成型体は、公知断熱材に比し、軽量性及び断熱性に優れているが、燃料電池用断熱材としてはより一層の断熱性が要求される。しかも、その製造に当たっては、大量の水を要する為に、乾燥時間が長くかかるのみでなく、ヒュームドシリカ及び酸化ジルコニウムが粘性を帯び、その結果、固形分の接合面積が大きくなり、熱伝導率が高くなるという欠点があった。
特開平7−237957号公報 特開2003−202099号公報 特開2007−161561号公報
However, the heat insulating molded body described in Patent Document 3 is superior in light weight and heat insulating properties as compared with known heat insulating materials, but further heat insulating properties are required as heat insulating materials for fuel cells. In addition, the production requires not only a long amount of time due to the need for a large amount of water, but also fumed silica and zirconium oxide are viscous, resulting in a large solid area bonding area and thermal conductivity. There was a disadvantage that it became high.
JP 7-237957 A Japanese Patent Laid-Open No. 2003-202099 JP 2007-161561 A

本発明は、特許文献3記載の断熱材に比し、断熱性が更に改善された軽量断熱成型体、及び該軽量断熱成型体の製造方法を提供することを目的とする。   An object of the present invention is to provide a lightweight heat-insulated molded body in which the heat insulating property is further improved as compared with the heat insulating material described in Patent Document 3, and a method for producing the lightweight heat-insulated molded body.

本発明者は、(1)ヒュームドシリカ、(2)シリコンカーバイド、及び(3)繊維質補強材を含む固形分を全固形分の重量に対し半量以下の少量の有機液媒又は有機液媒と水との混合液をバインダーとして用いて圧縮成型し乾燥硬化させることにより、燃料電池用断熱材に要求される断熱性を充足する断熱材が得られることを見出した。即ち本発明の断熱材は、厚さ2 cmの板状に成型された該成型体の表面を300℃で3時間加熱した時の背面温度が67℃以下、好ましくは65℃以下に保持できるという優れた断熱性を発揮することを見出した。このような優れた断熱性能は特許文献3記載の方法では得ることができなかったものである。しかも本発明による断熱成型体は特許文献3記載のものと比較して嵩密度を低くすることができる。本発明によってこのように軽量化及び断熱性に優れた断熱成型体が得られるのは、バインダーとして有機液媒又は有機液媒と水との混合液を固形分に対し半量以下という少量用いることによって、特許文献3のように大量の水をバインダーとする場合に比してヒュームドシリカの粘性が適度に抑制されることに依ると考えられる。しかも、本発明によれば、バインダーとして使用される有機液媒又はこれと水との混合液の量が、全固形分重量に対し半量以下と少量であるから圧縮成型及び乾燥硬化を短時間内で行うことができる。本発明は、これら知見に基づき完成されたものであり、次の軽量断熱成型体及び製造方法を提供するものである。
項1.(1)ヒュームドシリカ、(2)シリコンカーバイド、及び(3)繊維質補強材を含んでなる軽量断熱成形体であって、該成形体は上記成分からなる骨格と該骨格により形成される多数の微細な間隙を有し、厚さ2 cmの板状に成形された該成形体の表面を300℃で3時間加熱した時その背面温度が67℃以下に保持されることを特徴とする軽量断熱成形体。
項2.(1)ヒュームドシリカ、(2)シリコンカーバイド、(3)繊維質補強材、及び(4)バインダーとして全固形分重量に対し半量以下の有機液媒又は有機液媒と水との混合液を含む混合物を圧縮成型して乾燥硬化させることを特徴とする軽量断熱成型体の製造方法。
The present inventor has obtained a small amount of organic liquid medium or organic liquid medium in which the solid content including (1) fumed silica, (2) silicon carbide, and (3) fibrous reinforcing material is less than half the weight of the total solid content. It has been found that a heat insulating material satisfying the heat insulating properties required for a fuel cell heat insulating material can be obtained by compression molding using a mixed solution of water and water as a binder, followed by drying and curing. That is, the heat insulating material of the present invention can maintain a back surface temperature of 67 ° C. or lower, preferably 65 ° C. or lower when the surface of the molded body formed into a plate shape having a thickness of 2 cm is heated at 300 ° C. for 3 hours. It has been found that it exhibits excellent heat insulation. Such excellent heat insulation performance could not be obtained by the method described in Patent Document 3. Moreover, the heat insulating molded body according to the present invention can have a lower bulk density than that described in Patent Document 3. The heat insulation molded body excellent in weight reduction and heat insulation can be obtained by the present invention by using an organic liquid medium or a mixed liquid of an organic liquid medium and water as a binder in a small amount of less than half the solid content. It is considered that the viscosity of fumed silica is moderately suppressed as compared with the case where a large amount of water is used as a binder as in Patent Document 3. Moreover, according to the present invention, the amount of the organic liquid medium used as the binder or the mixture of this and water is less than half of the total solid weight, so that compression molding and dry curing can be performed within a short time. Can be done. The present invention has been completed based on these findings, and provides the following lightweight heat-insulated molded body and manufacturing method.
Item 1. (1) A lightweight heat-insulating molded body comprising fumed silica, (2) silicon carbide, and (3) a fibrous reinforcing material, wherein the molded body is formed of a skeleton composed of the above components and the skeleton. Lightweight, characterized in that the back surface temperature is maintained at 67 ° C. or lower when the surface of the molded body formed into a 2 cm thick plate is heated at 300 ° C. for 3 hours. Insulated molded body.
Item 2. (1) fumed silica, (2) silicon carbide, (3) fibrous reinforcing material, and (4) less than half amount of organic liquid medium or mixed liquid of organic liquid medium and water with respect to the total solid weight as binder. A method for producing a lightweight heat-insulating molded article, comprising compression-molding a mixture comprising drying and curing.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

軽量断熱成型体
本発明の軽量断熱成型体は、(1)ヒュームドシリカ、(2)シリコンカーバイド、及び(3)繊維質補強材を含んでなる軽量断熱成形体であって、該成形体は上記成分からなる骨格と該骨格により形成される多数の微細な間隙を有し、厚さ2 cmの板状に成形された該成形体の表面を300℃で加熱した時その背面温度が67℃以下に保持されることを特徴とする。
Lightweight heat-insulated molded body The light-weight heat-insulated molded body of the present invention is a lightweight heat-insulated molded body comprising (1) fumed silica, (2) silicon carbide, and (3) a fibrous reinforcing material. When the surface of the molded body formed into a plate shape having a thickness of 2 cm is heated at 300 ° C, the back surface temperature is 67 ° C. The following is maintained.

尚、特許文献3の発明の断熱成形体に含まれているチタン酸カリウム繊維については、含まなくても断熱効果が高いことが分かったため、本発明の断熱成型体の必須の成分とはしていないが、これを併用することを妨げるものではない。   In addition, about the potassium titanate fiber contained in the heat insulation molded object of patent document 3, since it turned out that the heat insulation effect is high even if it does not contain, it is considered as the essential component of the heat insulation molded object of this invention. There is no, but it does not prevent using this together.

本発明の軽量断熱成型体において使用されるヒュームドシリカとは、四塩化ケイ素、クロロシランなどを水素と酸素の存在の下で高温燃焼させて得られるシリカ微粒子である。ヒュームドシリカは一般に、疎水性、親水性の2つのものが有るが、疎水性、親水性タイプの何れのものでも良い。本発明に使用されるヒュームドシリカは、シリカの中でも小さい粒子径を持つもの(微粒子)であり、粒子径が20 nm程度以下、特に5〜15 nm程度であることが望ましい。当該粒子径は、電子顕微鏡(SEM、TEM)で観察し、測定したものである。   The fumed silica used in the lightweight heat-insulated molded article of the present invention is silica fine particles obtained by high-temperature combustion of silicon tetrachloride, chlorosilane, etc. in the presence of hydrogen and oxygen. Fumed silica generally has two types of hydrophobic and hydrophilic types, but may be either hydrophobic or hydrophilic type. The fumed silica used in the present invention is a silica having a small particle size (fine particles), and the particle size is preferably about 20 nm or less, particularly about 5 to 15 nm. The particle diameter is observed and measured with an electron microscope (SEM, TEM).

また、BET比表面積が170〜230 m2/g程度のものが好ましい。ヒュームドシリカの具体例としては、例えばワッカーシリコン社製のWACKER HDK(登録商標、以下同じ) N-20などが挙げられる。 A BET specific surface area of about 170 to 230 m 2 / g is preferable. Specific examples of fumed silica include WACKER HDK (registered trademark, the same shall apply hereinafter) N-20 manufactured by Wacker Silicon.

本発明の軽量断熱成型体において使用されるシリコンカーバイド(SiC)は、耐熱性に優れ、輻射熱の透過を阻止する役割をしていると考えられる。シリコンカーバイドの見かけ比重は限定的でないが、好ましくは0.4〜0.6 g/cm3程度とすればよい。シリコンカーバイドは黒色炭化ケイ素及び緑色炭化ケイ素の2種類に大別できるが、いずれを用いても良い。また、α-SiC及びβ-Sicのいずれの結晶構造であってもよい。シリコンカーバイドは、例えばヒュームドシリカとの混合物の形態でポレックスサ−ム社からWDS Granulate(登録商標、以下同じ)として市販されており、本発明においては、これを有利に使用できる。 Silicon carbide (SiC) used in the lightweight heat-insulated molded article of the present invention is considered to have excellent heat resistance and prevent radiant heat from passing therethrough. The apparent specific gravity of silicon carbide is not limited, but is preferably about 0.4 to 0.6 g / cm 3 . Silicon carbide can be roughly classified into two types, black silicon carbide and green silicon carbide, and any of them may be used. Moreover, any crystal structure of α-SiC and β-Sic may be used. Silicon carbide is commercially available as WDS Granulate (registered trademark, the same applies hereinafter) from Polex Therm in the form of a mixture with fumed silica, for example, and can be advantageously used in the present invention.

シリコンカーバイドの配合量は限定的でないが、ヒュームドシリカ100重量部に対して好ましくは40〜60重量部程度、より好ましくは45〜55重量部程度である。   Although the compounding quantity of a silicon carbide is not limited, Preferably it is about 40-60 weight part with respect to 100 weight part of fumed silica, More preferably, it is about 45-55 weight part.

本発明の軽量断熱成型体において使用される繊維質補強材は、成型体の曲げ強度、圧縮強度、引っ張り強度を高めるために用いられ、主に補強材としての役割を果たす。繊維質補強材の繊維径や繊維長が大きくなると、成型体の嵩比重は大きくなり曲げ強度は大きくなるが、断熱効果が低下する傾向にある。従って、繊維質補強材の繊維径は0.2〜20 μm程度(好ましくは0.3〜10 μm程度)であり、その繊維長は1〜25 mm程度(好ましくは2〜20 mm程度)が推奨される。   The fibrous reinforcing material used in the lightweight heat-insulated molded body of the present invention is used to increase the bending strength, compressive strength, and tensile strength of the molded body, and mainly serves as a reinforcing material. When the fiber diameter and fiber length of the fibrous reinforcing material are increased, the bulk specific gravity of the molded body is increased and the bending strength is increased, but the heat insulating effect tends to be lowered. Therefore, it is recommended that the fiber diameter of the fibrous reinforcing material is about 0.2 to 20 μm (preferably about 0.3 to 10 μm) and the fiber length is about 1 to 25 mm (preferably about 2 to 20 mm).

繊維質補強材の使用量は特に制限されず、その材質、形状、大きさなどに応じて選択できるが、成型体の強度、断熱性、軽量性の観点より、ヒュームドシリカ100重量部に対し、好ましくは15〜25重量部程度、より好ましくは18〜23重量部程度である。   The amount of fibrous reinforcement used is not particularly limited and can be selected according to the material, shape, size, etc., but from the viewpoint of the strength, heat insulation, and light weight of the molded body, 100 parts by weight of fumed silica. The amount is preferably about 15 to 25 parts by weight, more preferably about 18 to 23 parts by weight.

繊維質補強材の材質は、無機繊維でも有機繊維でも良い。無機繊維質補強材としては、炭素繊維、ガラス繊維(ガラスウール、ガラス長繊維等)、セピオライト、ロックウール、チタン酸カリウム繊維等が例示される。この無機繊維質補強材は、上記の繊維径及び繊維長のものが好ましい。具体的には、例えばオーウェンスコ−ニング社製ファイバ(チョップドストランド)などが例示される。また、有機繊維質補強材としては、アラミド繊維、活性炭素繊維、難燃性アクリル繊維などが例示される。この有機繊維質補強材も、上記の繊維径及び繊維長のものが好ましい。なお、不燃効果を有する点から、無機繊維質補強材が推奨される。   The material of the fibrous reinforcing material may be inorganic fiber or organic fiber. Examples of the inorganic fiber reinforcing material include carbon fiber, glass fiber (glass wool, long glass fiber, etc.), sepiolite, rock wool, potassium titanate fiber and the like. The inorganic fibrous reinforcing material is preferably one having the above fiber diameter and fiber length. Specifically, for example, a fiber (chopped strand) manufactured by Owens Corning is exemplified. Examples of the organic fiber reinforcing material include aramid fibers, activated carbon fibers, and flame retardant acrylic fibers. This organic fiber reinforcing material is also preferably one having the above fiber diameter and fiber length. In addition, an inorganic fibrous reinforcing material is recommended because it has a non-combustible effect.

本発明の軽量断熱成型体は、上記(1)ヒュームドシリカ、(2)シリコンカーバイド、及び(3)繊維質補強材により形成される骨格と、該骨格により形成される多数の微細な間隙(又は空隙)とからなる構造を有している。該骨格は上記の成分の一次粒子又は二次粒子から形成されていてもよく、形成される間隙の大きさは、微細であると考えられる。この無数の微細な間隙には断熱性の高い空気が存在し、空気の移動が阻止された状態で存在していると考えられる。その結果、本発明の成型体では軽量かつ高い断熱性、耐火性が実現される。   The lightweight heat-insulated molded article of the present invention comprises a skeleton formed by the above (1) fumed silica, (2) silicon carbide, and (3) a fibrous reinforcing material, and a number of fine gaps ( Or a void). The skeleton may be formed from primary particles or secondary particles of the above components, and the size of the gap formed is considered to be fine. It is considered that air with high heat insulation exists in the infinite number of minute gaps and is present in a state in which the movement of air is blocked. As a result, the molded article of the present invention achieves light weight and high heat insulation and fire resistance.

本発明の軽量断熱成型体は、厚さ2 cmの板状に成型された成型体の表面を300℃で3時間加熱した時、その背面温度が67℃以下、好ましくは65℃以下に保持できる。   The lightweight heat-insulated molded body of the present invention can maintain the back surface temperature at 67 ° C. or lower, preferably 65 ° C. or lower when the surface of the molded body molded into a plate shape having a thickness of 2 cm is heated at 300 ° C. for 3 hours. .

また、本発明の軽量断熱成型体は、嵩密度を0.27 g/cm3以下にすることができる。 In addition, the lightweight heat-insulated molded product of the present invention can have a bulk density of 0.27 g / cm 3 or less.

さらに、該成型体には繊維質補強材が配合されているため、高い曲げ強度も有する。   Furthermore, since the fibrous reinforcing material is blended in the molded body, it has high bending strength.

軽量断熱成型体の製造方法
本発明の軽量断熱成型体は、以下のように簡便に製造することができる。
Manufacturing method of lightweight heat-insulated molded body The lightweight heat-insulated molded body of the present invention can be easily manufactured as follows.

(1)ヒュームドシリカ、(2)シリコンカーバイド、及び(3)繊維質補強材を含む固形混合物を均一に混合する。これに、徐々に有機液媒又は有機液媒と水との混合液を加えて撹拌してゲル状の混合物を得る。有機液媒又は有機液媒と水との混合液の添加量は、全固形分100重量部に対し、50重量部以下、好ましくは10〜50重量部、より好ましくは15〜45重量部程度とすればよい。この範囲であると、有機液媒又は有機液媒と水との混合液は各成分の部分的結着剤として有効に働くとともに、断熱効果を損なわないため好ましい。前記ゲル状混合物を所定の型枠に流し込み、5〜30 kg/cm2程度で圧縮成型する。得られた圧縮成型体を型枠から取り外し、乾燥させて、本発明の軽量断熱成型体を得る。 A solid mixture containing (1) fumed silica, (2) silicon carbide, and (3) a fibrous reinforcing material is uniformly mixed. To this, an organic liquid medium or a mixed liquid of an organic liquid medium and water is gradually added and stirred to obtain a gel-like mixture. The addition amount of the organic liquid medium or the mixed liquid of the organic liquid medium and water is 50 parts by weight or less, preferably 10 to 50 parts by weight, more preferably about 15 to 45 parts by weight with respect to 100 parts by weight of the total solid content. do it. Within this range, an organic liquid medium or a mixed liquid of an organic liquid medium and water works effectively as a partial binder for each component and is preferable because it does not impair the heat insulating effect. The gel mixture is poured into a predetermined form and compression molded at about 5 to 30 kg / cm 2 . The obtained compression molded body is removed from the mold and dried to obtain the lightweight heat-insulated molded body of the present invention.

上記有機液媒又は有機液媒と水との混合液は、固形分を分散させ成型を容易にするだけでなく、固形分相互を結着させるバインダーとして機能するものである。有機液媒としては、アルコール類、ケトン類、炭化水素類、エステル類等が挙げられる。アルコール類としてはエタノール、メタノール、プロピルアルコール等が、ケトン類としてはアセトン等が、炭化水素類としてはヘキサン等が、エステル類としては酢酸エチル等が挙げられ、アルコール類が好ましい。   The organic liquid medium or the mixed liquid of the organic liquid medium and water not only disperses the solid content and facilitates molding, but also functions as a binder that binds the solid contents to each other. Examples of the organic liquid medium include alcohols, ketones, hydrocarbons, esters and the like. Examples of alcohols include ethanol, methanol, propyl alcohol, etc., examples of ketones include acetone, etc., examples of hydrocarbons include hexane, and examples of esters include ethyl acetate. Alcohols are preferred.

アルコール類は、好ましくは炭素数が1〜3のアルコールのエタノール、メタノール、及びプロピルアルコールであり、これらは水より蒸発性が高いため、乾燥時間が短くなる。アルコール類の中でも、粘性、蒸発温度、作業適性、乾燥時間、及びシリカ及び水との相溶性からメタノールが最も好ましい。   The alcohols are preferably alcohols having 1 to 3 carbon atoms, such as ethanol, methanol, and propyl alcohol, which are more evaporable than water and therefore have a shorter drying time. Among alcohols, methanol is most preferable from the viewpoint of viscosity, evaporation temperature, workability, drying time, and compatibility with silica and water.

有機液媒と水との混合液を用いる場合、水は有機液媒との重量比で好ましくは3倍まで、より好ましくは2倍まで含まれていてもよい。水の量が多くなると、シリカとの相溶性が良くなる結果、シリカの接着性がよくなり断熱効果が悪くなる。   When a mixed liquid of an organic liquid medium and water is used, water may be contained in a weight ratio with the organic liquid medium, preferably up to 3 times, more preferably up to 2 times. When the amount of water increases, the compatibility with silica is improved. As a result, the adhesion of silica is improved and the heat insulating effect is deteriorated.

有機液媒又は有機液媒と水との混合液を用いることにより次のような効果がある、(a)SiO2の粒子の凝集物は40μm以下と小さいため加工時には飛散し易く作業が困難であるが、飛散せず加工成型し易い、(b)成型体の製造工程で金型に材料を入れ成型する際、摩擦抵抗が少なくなり成型体の表面が綺麗に仕上がる、(c)材料内の間隙内にバインダーが充填し、プレス時の加重圧力が少なくて済む、(d) 曲げ強度が強くなる。 By using an organic liquid medium or a mixed liquid of organic liquid medium and water, the following effects can be obtained. (A) Since the aggregate of SiO 2 particles is as small as 40 μm or less, it is easily scattered during processing and difficult to work. However, it does not scatter and is easy to process and mold. (B) When the material is molded into the mold during molding, the frictional resistance is reduced and the surface of the molded body is finished cleanly. Binder is filled in the gap, and the pressure applied during pressing can be reduced. (D) Bending strength is increased.

上記有機液媒に加えて、コロイダルシリカを添加してもよい。コロイダルシリカを添加することにより成型体は硬くなり曲げ強度が増す。コロイダルシリカは、粒子径が8〜11μm程度、好ましくは9〜10μm程度であることが望ましい。当該粒子径は、レーザー回折式粒度分布測定装置を用いて測定したものである。コロイダルシリカとしては、例えばスノーテックスN(日産化学製)などが例示される。コロイダルシリカの添加量(SiO2を20重量%含む水分散体の重量)としては、全固形分100重量部に対し、好ましくは5〜30重量部程度、より好ましくは10〜25重量部程度である。コロイドシリカをこの範囲より多く使用すれば、嵩比重が大きくなり熱伝導率が高くなるため、断熱効果が損なわれる。この範囲より少なく使用すれば、必要な曲げ強度が得られない。尚、コロイダルシリカの水分散体を用いた場合、バインダーとして水が含まれることになる。 In addition to the organic liquid medium, colloidal silica may be added. By adding colloidal silica, the molded body becomes hard and the bending strength increases. The colloidal silica has a particle size of about 8 to 11 μm, preferably about 9 to 10 μm. The said particle diameter is measured using the laser diffraction type particle size distribution measuring apparatus. Examples of colloidal silica include Snowtex N (manufactured by Nissan Chemical). The addition amount of colloidal silica as the (weight of aqueous dispersion containing SiO 2 20 wt%), based on the total solid content 100 parts by weight, preferably about 5 to 30 parts by weight, more preferably about 10 to 25 parts by weight is there. If more colloidal silica is used than this range, the bulk specific gravity increases and the thermal conductivity increases, so the heat insulation effect is impaired. If it is used less than this range, the required bending strength cannot be obtained. When an aqueous dispersion of colloidal silica is used, water is contained as a binder.

この製造方法は、複雑な製造工程は必要では無く極めて簡便である。そのため、大量生産に向いている。   This manufacturing method is very simple without requiring a complicated manufacturing process. Therefore, it is suitable for mass production.

かくして得られる本発明の軽量断熱成型体は、(1)ヒュームドシリカ、(2)シリコンカーバイド、及び(3)繊維質補強材を含んでなる。そして、厚さ2 cmの板状に成型された該成型体の表面を300℃で3時間加熱した時にその背面温度が65℃以下に保持される。即ち、実用的観点から優れた断熱性を有している。具体的な測定条件は、試験例1に示す通りである。   The lightweight heat-insulated molded article of the present invention thus obtained comprises (1) fumed silica, (2) silicon carbide, and (3) a fibrous reinforcing material. Then, when the surface of the molded body molded into a plate shape having a thickness of 2 cm is heated at 300 ° C. for 3 hours, the back surface temperature is maintained at 65 ° C. or lower. That is, it has excellent heat insulation from a practical viewpoint. Specific measurement conditions are as shown in Test Example 1.

また、その嵩密度を0.27 g/cm3以下にできるという軽量性能を有している。 Further, it has a lightweight performance that the bulk density can be 0.27 g / cm 3 or less.

本発明の軽量断熱成型体は、燃料電池、家電用断熱装置(冷暖房器具など)、断熱建材、防音装置等の断熱材として好適に用いることができる。特に、高温に対し断熱効果が高いことから、燃料電池用断熱材として好適に用いられる。   The lightweight heat insulating molded body of the present invention can be suitably used as a heat insulating material for a fuel cell, a heat insulating device for home appliances (such as an air conditioner), a heat insulating building material, and a soundproof device. In particular, since it has a high heat insulating effect against high temperatures, it is suitably used as a heat insulating material for fuel cells.

さらに、本発明の軽量断熱成型体は、断熱材として使用した後は適当な大きさに粉砕して軽量断熱成型体の製造における骨材としても再利用出来る。   Furthermore, the lightweight heat-insulated molded body of the present invention can be reused as an aggregate in the production of a lightweight heat-insulated molded body after being used as a heat-insulating material and pulverized to an appropriate size.

本発明の軽量断熱成型体は、特許文献3の特徴を保持しつつ、断熱性が更に改善されている。具体的には、厚さ2 cmの板状に成型された成型体の表面を300℃で3時間加熱した時、その背面温度が67℃以下に保持でき、非常に実用的である。このような断熱性は、従来の断熱材では得ることができず、本発明により初めて得ることができた。   The lightweight heat-insulated molded body of the present invention has further improved heat insulating properties while maintaining the characteristics of Patent Document 3. Specifically, when the surface of a molded body molded into a plate shape having a thickness of 2 cm is heated at 300 ° C. for 3 hours, the back surface temperature can be maintained at 67 ° C. or less, which is very practical. Such a heat insulating property cannot be obtained by a conventional heat insulating material, and can be obtained for the first time by the present invention.

また、本発明の断熱成型体の嵩密度が、0.27 g/cm3以下を達成することができるという軽量性能を有している。 The bulk density of the heat-insulating molded body of the present invention has a light weight performance that can be achieved 0.27 g / cm 3 or less.

しかも、この軽量断熱成型体は、(1)ヒュームドシリカ、(2)シリコンカーバイド、(3)繊維質補強材、及び(4)有機液媒又は有機液媒と水との混合液の混合物を圧縮成型して常温乾燥させる、極めて簡便な方法により製造することができる。そのため、大量生産に好適である。   Moreover, this lightweight heat-insulated molded body comprises (1) fumed silica, (2) silicon carbide, (3) fibrous reinforcement, and (4) an organic liquid medium or a mixture of an organic liquid medium and water. It can be produced by a very simple method of compression molding and drying at room temperature. Therefore, it is suitable for mass production.

次に本発明を、以下の実施例によって更に詳述する。   The invention will now be further illustrated by the following examples.

実施例1
ヒュームドシリカ(商品名:WACKER HDK N-20、ワッカ−シリコン社製)5.1重量部、シリコンカーバイド(商品名:WDS Granulate、ポレックスサ−ム社製、ヒュームドシリカ約55重量%、SiC 約40重量%含有)19.6重量部、及びガラス繊維(オーウェンスコーニング社製、チョップドストランド:長さ10 mm、径6μm)3.4重量部を容器に入れて均一に撹拌した。N-20、チョプドストランド、及びWDS Granulateを攪拌し、徐々にメタノ−ル2.0重量部と水3.0重量部の混合液を加えて、更に攪拌すると嵩のあるゲル状の混合となった。この嵩のあるゲル状混合物を所定の型枠に流し込み、形を整えて20 kg/cm2で加圧成型し、成型体を作成した。断熱成型体の嵩密度は、0.27 g/cm3であった。撹拌時のメタノールは幾分蒸発が有るが、水が残留しているため、ヒュームドシリカの接着性がよく、成型体は綺麗に仕上がった。
Example 1
Fumed silica (product name: WACKER HDK N-20, manufactured by Wakka Silicon) 5.1 parts by weight, silicon carbide (product name: WDS Granulate, manufactured by Polex Therm, fumed silica approximately 55% by weight, SiC approximately 40% by weight 19.6 parts by weight) and 3.4 parts by weight of glass fiber (Owens Corning, chopped strand: length 10 mm, diameter 6 μm) were placed in a container and stirred uniformly. N-20, chopped strands, and WDS Granulate were stirred, a mixture of 2.0 parts by weight of methanol and 3.0 parts by weight of water was gradually added, and further stirred to obtain a bulky gel-like mixture. This bulky gel-like mixture was poured into a predetermined mold, and the shape was adjusted and pressure-molded at 20 kg / cm 2 to prepare a molded body. The bulk density of the heat insulating molded body was 0.27 g / cm 3 . Methanol at the time of stirring is somewhat evaporated, but water remains, so the fumed silica has good adhesion, and the molded product is finished beautifully.

実施例2
実施例1のメタノール2.0重量部及び水3.0重量部に代えてメタノール5.0重量部を使用した以外は、実施例1と同様に処理した。得られた断熱成型体の嵩密度は、0.26 g/cm3であった。
Example 2
The same treatment as in Example 1 was carried out except that 5.0 parts by weight of methanol was used instead of 2.0 parts by weight of methanol and 3.0 parts by weight of water. The bulk density of the obtained heat insulating molded body was 0.26 g / cm 3 .

比較例1
実施例1のメタノール2.0重量部及び水3.0重量部に代えて水70.0重量部を使用した以外は、実施例1と同様に処理した。得られた断熱成型体の嵩密度は、0.34 g/cm3であった。
Comparative Example 1
The same treatment as in Example 1 was conducted except that 70.0 parts by weight of water was used instead of 2.0 parts by weight of methanol and 3.0 parts by weight of water in Example 1. The bulk density of the obtained heat insulating molded body was 0.34 g / cm 3 .

実施例1−2及び比較例1の各成分の配合量(重量部)、得られた成形体の嵩密度を表1に示す。   Table 1 shows the blending amount (parts by weight) of each component of Example 1-2 and Comparative Example 1 and the bulk density of the obtained molded body.

Figure 2010111526
Figure 2010111526

試験例1
実施例1−2及び比較例1の製法に従い、10×10×2cmの成型体を製造した。これらの成型体について、次のようにして断熱性を評価した。
Test example 1
According to the manufacturing method of Example 1-2 and Comparative Example 1, a 10 × 10 × 2 cm molded body was manufactured. About these molded objects, the heat insulation was evaluated as follows.

成型体の一面(表面)を、300℃に加熱した加熱機(アズワン(株)製、MAX550℃)上に置いて加熱を開始し、加熱開始から3時間の該成型体の加熱面と反対面(背面)温度を測定した。温度の測定は、温度計(CD700K、CHINO製)を用いて、成型体の背面上の10点で行い、その平均値を背面温度とした。その結果を下記の表2に示す。   Place one side (surface) of the molded body on a heating machine (manufactured by As One Co., Ltd., MAX550 ° C) heated to 300 ° C and start heating. The surface opposite to the heated surface of the molded body for 3 hours from the start of heating (Back) Temperature was measured. The temperature was measured using a thermometer (CD700K, manufactured by CHINO) at 10 points on the back surface of the molded body, and the average value was defined as the back surface temperature. The results are shown in Table 2 below.

Figure 2010111526
Figure 2010111526

表2より、実施例1−2では、3時間経過後の成型体の背面温度は67℃以下に維持されており、非常に高い断熱効果を有していることが分かった。これに対し、特許文献3に従い水を大量に加えて成型した比較例1では、背面温度は3時間後には70℃にまで上昇しており、断熱性能が劣ることが確認された。   From Table 2, in Example 1-2, it turned out that the back surface temperature of the molded object after 3 hours is maintained at 67 degrees C or less, and has a very high heat insulation effect. On the other hand, in Comparative Example 1 in which a large amount of water was added according to Patent Document 3, the back surface temperature rose to 70 ° C. after 3 hours, and it was confirmed that the heat insulating performance was inferior.

実施例3
ヒュ−ムドシリカ(商品名:WACKER HDK N-20、ワッカ−シリコン社製)5.1重量部、ガラス繊維(オーウェンスコ−ニング製、チョップドストランド:長さ10 mm径6 μm)3.4重量部、及びシリコンカ−バイト(ポレックスサ−ム製:WDS Glanulate:ヒュームドシリカ約55重量%、SiC約40重量%含有)19.6重量部を混合攪拌し、コロイダルシリカ(日産化学製、スノ−テックスN、SiO2約20重量%)3.0重量部、水2.0重量部、及びメタノ−ル4.8重量部を混合攪拌した材料に注入して、更に攪拌を行ないウェット状の攪拌組成物を作った。この材料を所定の金型に注入し、上部から20 kg/cm2で圧縮加圧して、成型体を作った。得られた断熱成型体の嵩密度は、0.26 g/cm3であった。
Example 3
Fumed silica (trade name: WACKER HDK N-20, manufactured by Wakka Silicon) 5.1 parts by weight, glass fiber (made by Owens Corning, chopped strand: length 10 mm diameter 6 μm) 3.4 parts by weight, and silicon carbide byte (Porekkususa - manufactured arm: WDS Glanulate: fumed silica from about 55 wt%, SiC about 40 wt% content) 19.6 parts by weight were mixed and stirred, colloidal silica (manufactured by Nissan chemical Industries, Ltd., Sno - Tex N, SiO 2 about 20 wt %) 3.0 parts by weight, 2.0 parts by weight of water, and 4.8 parts by weight of methanol were poured into the mixed and stirred material, and further stirred to prepare a wet stirring composition. The material was poured into a predetermined mold, by applying compressive pressure at the top of 20 kg / cm 2, made molded. The bulk density of the obtained heat insulating molded body was 0.26 g / cm 3 .

実施例4
実施例1のコロイドシリカ3.0重量部、水2.0重量部、メタノ−ル4.8重量部に代えてコロイドシリカ6.0重量部、メタノール3.8重量部を使用した以外は、実施例3と同様に処理した。得られた断熱成型体の嵩密度は、0.25 g/cm3であった。
Example 4
The same treatment as in Example 3 was carried out except that 3.0 parts by weight of colloidal silica, 2.0 parts by weight of water and 4.8 parts by weight of methanol were used instead of 6.0 parts by weight of colloidal silica and 3.8 parts by weight of methanol. The bulk density of the obtained heat insulating molded body was 0.25 g / cm 3 .

実施例3−4の各成分の配合量(重量部)、得られた成形体の嵩密度を表3に示す。   Table 3 shows the blending amount (parts by weight) of each component of Example 3-4 and the bulk density of the obtained molded body.

Figure 2010111526
Figure 2010111526

括弧内の値はSiO2の重量部
実施例3−4について試験例1と同じ試験を行い、その結果を下記の表4に示す。
Values in parentheses are parts by weight of SiO 2 Example 3-4 was subjected to the same test as in Test Example 1, and the results are shown in Table 4 below.

Figure 2010111526
Figure 2010111526

表4から実施例1−2の成分に加えコロイダルシリカを加えた実施例3−4の成型体でも、3時間経過後の成型体の背面温度は67℃以下に維持されており、特許文献3に従い水を大量に加えて成型した比較例1と比べて非常に高い断熱効果を有していることが分かった。     From Table 4, even in the molded product of Example 3-4 in which colloidal silica was added in addition to the components of Example 1-2, the back surface temperature of the molded product after 3 hours was maintained at 67 ° C. or lower. It was found that the heat insulation effect was very high as compared with Comparative Example 1 in which a large amount of water was added according to the above.

Claims (2)

(1)ヒュームドシリカ、(2)シリコンカーバイド、及び(3)繊維質補強材を含んでなる軽量断熱成形体であって、該成形体は上記成分からなる骨格と該骨格により形成される多数の微細な間隙を有し、厚さ2 cmの板状に成形された該成形体の表面を300℃で3時間加熱した時その背面温度が67℃以下に保持されることを特徴とする軽量断熱成形体。 (1) A lightweight heat-insulating molded body comprising fumed silica, (2) silicon carbide, and (3) a fibrous reinforcing material, wherein the molded body is formed of a skeleton composed of the above components and the skeleton. Lightweight, characterized in that the back surface temperature is maintained at 67 ° C. or lower when the surface of the molded body formed into a 2 cm thick plate is heated at 300 ° C. for 3 hours. Insulated molded body. (1)ヒュームドシリカ、(2)シリコンカーバイド、(3)繊維質補強材、及び(4)バインダーとして全固形分重量に対し半量以下の有機液媒又は有機液媒と水との混合液を含む混合物を圧縮成型して乾燥硬化させることを特徴とする軽量断熱成型体の製造方法。 (1) fumed silica, (2) silicon carbide, (3) fibrous reinforcing material, and (4) less than half amount of organic liquid medium or mixed liquid of organic liquid medium and water with respect to the total solid weight as binder. A method for producing a lightweight heat-insulating molded article, comprising compression-molding a mixture comprising drying and curing.
JP2008284266A 2008-11-05 2008-11-05 Lightweight heat insulating molded body and method for producing the same Pending JP2010111526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284266A JP2010111526A (en) 2008-11-05 2008-11-05 Lightweight heat insulating molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284266A JP2010111526A (en) 2008-11-05 2008-11-05 Lightweight heat insulating molded body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010111526A true JP2010111526A (en) 2010-05-20

Family

ID=42300401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284266A Pending JP2010111526A (en) 2008-11-05 2008-11-05 Lightweight heat insulating molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010111526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015182768A1 (en) * 2014-05-30 2017-05-25 旭硝子株式会社 Vacuum insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015182768A1 (en) * 2014-05-30 2017-05-25 旭硝子株式会社 Vacuum insulation

Similar Documents

Publication Publication Date Title
Pan et al. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites
Wang et al. Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites
JP3859705B2 (en) Composition comprising aerogel, process for its production and use thereof
JP4860005B1 (en) Insulating material and manufacturing method thereof
EP2829527A1 (en) Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
JP2011085216A (en) Thermal insulation and method of producing the same
CN106415107B (en) Vacuum heat insulation material
KR20130116632A (en) Composite insulation board comprising opacifier and method for producing it
Anyszka et al. Effect of mineral filler additives on flammability, processing and use of silicone-based ceramifiable composites
CN110194649A (en) Aluminium oxide nano heat-barrier material and preparation method thereof
JP2021143733A (en) Heat insulating material and manufacturing method therefor
CN104559184A (en) CNT (Carbon nanotube)-reinforced organic silicon heat-conducting material and preparation method thereof
JP2007161561A (en) Lightweight heat insulating molded body and method for producing the same
Janjaroen et al. The mechanical and thermal properties of cement CAST mortar/graphene oxide composites materials
WO2014091665A1 (en) Insulation material and method of manufacturing same
Vasquez‐Zacarias et al. Hybrid Cellulose–Silica Materials from Renewable Secondary Raw Resources: An Eco‐friendly Method
JP5871685B2 (en) Calcium silicate molded body and method for producing the same
Zhang et al. Influence of rigid particles on thermal conductivity enhancement of polydimethylsiloxane composite during spatial confining forced network assembly
CN102807326B (en) Polymer-modified low temperature foaming glass thermal insulation material and preparation method thereof
Hu et al. Preparation of needled nonwoven enhanced silica aerogel for thermal insulation
CN110216932A (en) The preparation method and flexible nano heat-insulation and heat-preservation felt of flexible nano heat-insulation and heat-preservation felt
JP2010111526A (en) Lightweight heat insulating molded body and method for producing the same
JP7377498B2 (en) Heat insulating filling material, heat insulating material, heat insulating structure
JP4679324B2 (en) Insulation
CN112707697A (en) Cement-based composite mortar doped with carbon-based material and preparation method thereof