JP2010110931A - Metal alloy laminated material - Google Patents

Metal alloy laminated material Download PDF

Info

Publication number
JP2010110931A
JP2010110931A JP2008283692A JP2008283692A JP2010110931A JP 2010110931 A JP2010110931 A JP 2010110931A JP 2008283692 A JP2008283692 A JP 2008283692A JP 2008283692 A JP2008283692 A JP 2008283692A JP 2010110931 A JP2010110931 A JP 2010110931A
Authority
JP
Japan
Prior art keywords
roughness
metal alloy
metal
adhesive
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008283692A
Other languages
Japanese (ja)
Other versions
JP5372469B2 (en
Inventor
Masanori Narutomi
正徳 成富
Naoki Ando
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2008283692A priority Critical patent/JP5372469B2/en
Publication of JP2010110931A publication Critical patent/JP2010110931A/en
Application granted granted Critical
Publication of JP5372469B2 publication Critical patent/JP5372469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal alloy laminated material exhibiting the original adhesive strength of the type of a metal alloy. <P>SOLUTION: A KFC copper alloy piece 20 with a thickness of 0.7 mm is etched to form a surface into superfine rugged shape with crest-trough average spacing (RSm) of 1-3 μm and a maximum height roughness (Rz) of 0.3-0.5 μm mixed with protrusions with diameters of 10-200 nm. An adhesive is applied to the whole of one face of each KFC piece 20, and operation of decompression and ordinary pressure return is repeated three times to laminate adhesive applied surfaces to each other by surface joining. An adhesive is then applied to the whole of one face of each laminated material (a laminated material consisting of two KFC pieces), and operation of decompression and ordinary pressure return is repeated three times to carry out mutual surface joining of adhesive applied faces to thereby laminate two sets of laminated materials, thus obtaining a KFC laminated material 21 with a thickness of 2.8 mm consisting of four KFC pieces. The shear breaking force of a test sample 2 with the KFC laminated materials 21 adhesively joined to each other in a fixed area is so strong as 51 MPa to dramatically improve adhesion performance from a value (31 MPa) before lamination. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、移動機械、舶用機械、電子電気機器、モバイル機器、医療機器、一般機械、その他の産業機械、民生機器等に用いられている金属合金製の部材や部品の製造方法に関する。更に詳しくは、異種又は同種の金属合金板を接着接合、又は加熱プレス若しくは加熱ロールで圧着接合して得られる金属合金積層材に関する。   The present invention relates to a method for manufacturing metal alloy members and parts used in mobile machines, marine machinery, electronic and electrical equipment, mobile equipment, medical equipment, general machinery, other industrial machines, consumer equipment, and the like. More specifically, the present invention relates to a metal alloy laminate obtained by bonding different types or the same type of metal alloy plates by adhesive bonding, or by press bonding with a hot press or a heating roll.

本発明者らは、これまで金属合金と樹脂を接合するための技術を開発してきた。各種金属合金と樹脂を強固に接合するための技術について特許文献1〜14に開示している。この金属と樹脂を一体化する技術は、自動車、家庭電化製品、産業機器等、あらゆる部品部材製造業から求められており、このために多くの接着剤が開発されている。この中には非常に優れた接着剤がある。例えば常温、又は加熱により機能を発揮する接着剤は、金属と合成樹脂を一体化する接合に使用され、この方法は現在では一般的な接着技術である。   The inventors have so far developed a technique for joining a metal alloy and a resin. Patent Documents 1 to 14 disclose techniques for firmly bonding various metal alloys and resins. The technology for integrating the metal and the resin is required from various parts and materials manufacturing industries such as automobiles, home appliances, and industrial equipment, and many adhesives have been developed for this purpose. Among these are very good adhesives. For example, an adhesive exhibiting a function at room temperature or by heating is used for joining to integrate a metal and a synthetic resin, and this method is a general bonding technique at present.

一方、接着剤を使用しない接合方法も研究されてきた。マグネシウム、アルミニウムやそれらの合金である軽金属類、またステンレスなどの鉄合金類に対し、接着剤の介在なしで高強度の熱可塑性のエンジニアリング樹脂を射出等によって一体化する方法がその例である。例えば、射出等の方法で樹脂成形と同時に接合を為す方法(以下、「射出接合」という)として、アルミニウム合金に対し熱可塑性樹脂であるポリブチレンテレフタレート樹脂(以下「PBT」という)又はポリフェニレンサルファイド樹脂(以下「PPS」という)を射出接合させる製造技術が開発されている(例えば特許文献1、2参照)。加えて、マグネシウム合金、銅合金、チタン合金、ステンレス鋼等も同系統の樹脂の使用で射出接合することが可能であることも実証されている(特許文献3、4、5、6参照)。   On the other hand, bonding methods that do not use an adhesive have also been studied. An example is a method in which a high-strength thermoplastic engineering resin is integrated by injection or the like without using an adhesive to light metals such as magnesium, aluminum, and alloys thereof, and iron alloys such as stainless steel. For example, as a method of joining simultaneously with resin molding by a method such as injection (hereinafter referred to as “injection joining”), polybutylene terephthalate resin (hereinafter referred to as “PBT”) or polyphenylene sulfide resin which is a thermoplastic resin for an aluminum alloy Manufacturing techniques for injection joining (hereinafter referred to as “PPS”) have been developed (see, for example, Patent Documents 1 and 2). In addition, it has been demonstrated that magnesium alloy, copper alloy, titanium alloy, stainless steel, and the like can be injection-bonded by using the same type of resin (see Patent Documents 3, 4, 5, and 6).

これらの発明は全て本発明者らによるが、これらは比較的単純な接合理論によっている。本発明者らは、アルミニウム合金に関する接合理論を「NMT」(Nano molding technologyの略)理論と称し、金属合金全般の射出接合に関しては、「新NMT」理論と称している。より広く使用できる「新NMT」理論の仮説は以下の通りである。即ち、強烈な接合力ある射出接合を得るために、金属合金側と射出樹脂側の双方に各々条件があり、まず金属側については以下に示す3条件が必要である。   All of these inventions are by the inventors, but they are based on a relatively simple joining theory. The inventors of the present invention refer to the joining theory relating to the aluminum alloy as “NMT” (abbreviation of Nano molding technology) theory and the “new NMT” theory relating to the injection joining of all metal alloys. The hypothesis of the “new NMT” theory that can be used more widely is as follows. That is, in order to obtain injection bonding with strong bonding strength, there are conditions on both the metal alloy side and the injection resin side. First, the following three conditions are necessary on the metal side.

[新NMT理論での金属合金側の条件]
第1条件は、金属合金表面が、化学エッチング手法によって1〜10μm周期の凹凸で、その凹凸高低差がその周期の半分程度まで、即ち0.5〜5μmまでの粗い粗面になっていることである。ただし、実際には、前記粗面で正確に全表面を覆うことはバラツキがあり、一定しない化学反応では難しく、具体的には、粗度計で見た場合に0.2〜20μm範囲の不定期な周期の凹凸で、且つその最大高低差が0.2〜5μmの範囲である粗度曲線が描けること、又は、最新型のダイナミックモード型の走査型プローブ顕微鏡で走査して、JIS規格(JISB0601:2001)でいう平均周期、即ち山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmである粗度面であれば、前記で示した粗度条件を実質的に満たしたものと考えている。本発明者等は、理想とする粗面の凹凸周期が前記したように、ほぼ1〜10μmであるので、分かり易い言葉として「ミクロンオーダーの粗度を有する表面」と称した。
[Conditions on the metal alloy side in the new NMT theory]
The first condition is that the metal alloy surface has irregularities with a period of 1 to 10 μm by a chemical etching method, and the irregularity height difference is about half of the period, that is, a rough rough surface of 0.5 to 5 μm. It is. However, in actuality, it is difficult to accurately cover the entire surface with the rough surface, and it is difficult to perform a chemical reaction that is not constant. Specifically, when viewed with a roughness meter, it is not within the range of 0.2 to 20 μm. Draw a roughness curve with regular periodic irregularities and a maximum height difference in the range of 0.2-5 μm, or scan with the latest dynamic mode scanning probe microscope to meet JIS standards ( JISB0601: 2001) The average period, that is, the roughness surface having a peak-valley average interval (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm, is shown above. It is considered that the roughness condition was substantially satisfied. The inventors of the present invention called the “surface having a micron-order roughness” as an easy-to-understand word because the ideal rough surface irregularity period is approximately 1 to 10 μm as described above.

第2の条件は、上記ミクロンオーダーの粗度を有する金属合金表面に、さらに5nm以上の超微細凹凸が形成されていることである。言い換えると、ミクロの目で見てザラザラ面であることを要する。当該条件を具備するために、上記金属合金表面に、微細エッチング処理や酸化処理、化成処理等を行い、前述のミクロンオーダーの粗度をなす凹部内壁面に5〜500nm、好ましくは10〜300nm、より好ましくは50〜100nm周期の超微細凹凸を形成する。   The second condition is that ultrafine irregularities of 5 nm or more are further formed on the surface of the metal alloy having a roughness on the order of microns. In other words, it needs to be rough when viewed with microscopic eyes. In order to satisfy the conditions, the surface of the metal alloy is subjected to a fine etching treatment, an oxidation treatment, a chemical conversion treatment, etc. More preferably, ultra fine irregularities with a period of 50 to 100 nm are formed.

この超微細凹凸について述べると、その凹凸周期が10nm以下の周期であると樹脂分の進入が明らかに難しくなる。また、この場合には通常、凹凸高低差も小さくなるので、樹脂側から見て円滑面に見える。その結果、スパイクの役目を為さなくなる。又、周期が300〜500nm程度又はこれよりよりも大きな周期なら(その場合、ミクロンオーダーの粗度をなす凹部の直径や周期は10μm近くになると推定される)、ミクロンオーダーの凹部内でのスパイクの数が激減するので効果が効き難くなる。よって、原則としては、超微細凹凸の周期が10〜300nmの範囲であることを要する。しかしながら、超微細凹凸の形状によっては、5nm〜10nm周期のものでも、樹脂がその間に侵入する場合がある。例えば、5〜10nm直径の棒状結晶が錯綜している場合等がこれに該当する。また、300nm〜500nm周期のものでも、超微細凹凸の形状がアンカー効果を生じやすい場合がある。例えば、高さ及び奥行きが数百〜500nmで、幅が数百〜数千nmの階段が無限に連続した形状がこれに該当する。このような場合も含め、要求される超微細凹凸の周期を5nm〜500nmと規定した。   Describing the ultra-fine irregularities, if the irregular period is a period of 10 nm or less, it is clearly difficult to enter the resin component. Further, in this case, since the unevenness height difference is usually small, it looks smooth as viewed from the resin side. As a result, it no longer serves as a spike. If the period is about 300 to 500 nm or longer (in that case, the diameter and period of the concave part having a micron order roughness is estimated to be close to 10 μm), the spike in the micron order concave part Because the number of slashes, the effect becomes difficult to work. Therefore, in principle, it is necessary that the period of the ultra fine irregularities is in the range of 10 to 300 nm. However, depending on the shape of the ultra-fine irregularities, the resin may enter between them even if it has a period of 5 nm to 10 nm. For example, this is the case when rod-like crystals having a diameter of 5 to 10 nm are complicated. Even with a period of 300 nm to 500 nm, the shape of the ultra-fine irregularities may easily cause an anchor effect. For example, this corresponds to a shape in which steps having a height and depth of several hundred to 500 nm and a width of several hundred to several thousand nm are infinitely continuous. Including such a case, the required period of ultra fine irregularities was specified to be 5 nm to 500 nm.

ここで、従来は上記第1の条件に関して、Rsmの範囲を1〜10μm、Rzの範囲を0.5〜5μmと規定していたが、Rsmが0.8〜1μm、Rzが0.2〜0.5μmの範囲であっても、超微細凹凸の凹凸周期が、特に好ましい範囲(概ね30〜100nm)に有れば、接合力が高く維持できる。それ故に、Rsmの範囲を小さい方にやや広げることとした。即ち、Rsmが0.8〜10μm、Rzが0.2〜5μmの範囲とした。   Here, conventionally, regarding the first condition, the range of Rsm was defined as 1 to 10 μm and the range of Rz was defined as 0.5 to 5 μm, but Rsm was 0.8 to 1 μm and Rz was 0.2 to 0.2 μm. Even if it is the range of 0.5 micrometer, if the uneven | corrugated period of an ultra fine unevenness | corrugation exists in the especially preferable range (generally 30-100 nm), joining force can be maintained highly. Therefore, the Rsm range was slightly expanded to a smaller value. That is, Rsm was in the range of 0.8 to 10 μm and Rz was in the range of 0.2 to 5 μm.

さらに、第3の条件は、上記金属合金の表層がセラミック質であることである。具体的には、元来耐食性のある金属合金種に関しては、その表層が自然酸化層レベルかそれ以上の厚さの金属酸化物層であることを要し、耐食性が比較的低い金属合金種(例えばマグネシウム合金や一般鋼材等)では、その表層が化成処理等によって生成した金属酸化物又は金属リン酸化物の薄層であることが第3の条件となる。   Furthermore, the third condition is that the surface layer of the metal alloy is ceramic. Specifically, with respect to the metal alloy type that originally has corrosion resistance, the surface layer needs to be a metal oxide layer having a thickness equal to or greater than that of the natural oxide layer, and the metal alloy type having relatively low corrosion resistance ( For example, in the case of a magnesium alloy or a general steel material, the third condition is that the surface layer is a thin layer of metal oxide or metal phosphorous oxide generated by chemical conversion treatment or the like.

[新NMT理論での樹脂側の条件]
次に、樹脂側の条件を説明する。樹脂としては、硬質の高結晶性の熱可塑性樹脂であって、これに適切な別ポリマーをコンパウンドする等して、急冷時での結晶化速度を遅くした物が使用できる。実際には、結晶性の硬質樹脂であるPBTやPPSに適切な別ポリマー及びガラス繊維等をコンパウンドした樹脂組成物が使用できる。
[Conditions on the resin side in the new NMT theory]
Next, the conditions on the resin side will be described. As the resin, it is possible to use a hard, highly crystalline thermoplastic resin that has a reduced crystallization rate during quenching by compounding another polymer suitable for this. Actually, a resin composition compounded with another polymer suitable for PBT or PPS, which is a crystalline hard resin, and glass fiber can be used.

[新NMT理論に基づく射出接合]
上記金属合金及び樹脂を使用して、一般の射出成形機、射出成形金型によって射出接合できるが、この過程を前述の「新NMT」理論仮説に従って説明する。射出した溶融樹脂は、融点よりも150℃程度温度が低い金型内に導かれるが、この流路で冷やされ、融点以下の温度になっているとみられる。即ち、溶融した結晶性樹脂が急冷された場合、融点以下になったとしてもゼロ時間で結晶が生じ固体に変化することはない。要するに、融点以下ながら溶融している状態、即ち過冷却状態がごく短時間存在する。前述したように、PBTやPPSに特殊なコンパウンドを行うことによって、この過冷却時間を少し長くすることが可能である。これを利用して大量の微結晶が生じることによる粘度の急上昇が起こる前に、ミクロンオーダーの粗度を有する金属表面の凹部にその微結晶が侵入できるようにした。侵入後も冷え続けるので、これに伴い微結晶の数が急激に増えて粘度は急上昇する。しかし、凹部の奥底まで樹脂が到達できるか否かは凹部の大きさや形状にも依存する。
[Injection joining based on the new NMT theory]
The above metal alloy and resin can be used for injection joining with a general injection molding machine or injection mold. This process will be described according to the above-mentioned “new NMT” theoretical hypothesis. The injected molten resin is introduced into a mold having a temperature of about 150 ° C. lower than the melting point, but is cooled in this flow path, and is considered to be a temperature below the melting point. That is, when the melted crystalline resin is quenched, even if the melting point is lower than the melting point, crystals are formed in zero time and do not change to a solid. In short, a melted state below the melting point, that is, a supercooled state exists for a very short time. As described above, this supercooling time can be lengthened a little by applying a special compound to PBT or PPS. This was used to allow the microcrystals to penetrate into the concave portions of the metal surface having a roughness on the order of microns before the viscosity rapidly increased due to the generation of a large amount of microcrystals. Since it continues to cool after intrusion, the number of microcrystals increases rapidly and the viscosity increases rapidly. However, whether or not the resin can reach the depth of the recess depends on the size and shape of the recess.

本発明者等の実験結果では、金属種を選ばず、上記ミクロンオーダーの粗度に係る1〜10μm径の凹部であって、その深さが周期の半分程度までであれば、凹部の結構奥まで微結晶が侵入すると推測された。さらに、その凹部内壁面が、前述した第2条件のように、ミクロの目で見てザラザラ面であれば、超微細凹凸にも一部樹脂が侵入し、その結果、樹脂側に引き抜き力が付加されても引っかかって抜け難くなると推定される。そしてこのザラザラ面が、第3条件で示したように金属酸化物又は金属リン酸化物で覆われていれば、硬度が高く、樹脂と超微細凹凸に係る凹部との引っ掛かりが、スパイクの如く効果的になる。   In the experimental results of the present inventors, the metal type is not selected, and the concave portion having a diameter of 1 to 10 μm according to the roughness on the micron order, and if the depth is about half of the period, the concave portion is quite deep. It was speculated that microcrystals invaded. Furthermore, if the inner wall surface of the recess is a rough surface as seen in the second condition as described above, a part of the resin also penetrates into the ultra-fine irregularities, and as a result, a pulling force is exerted on the resin side. It is presumed that even if it is added, it will be caught and difficult to come off. And if this rough surface is covered with metal oxide or metal phosphorous oxide as shown in the third condition, the hardness is high, and the catch between the resin and the concave portion related to the ultra fine unevenness is effective as a spike. Become.

ここで、接合自体は、樹脂成分と金属合金表面の問題であるが、樹脂組成物に強化繊維や無機フィラーが入っていると、樹脂全体の線膨張率を金属合金に近づけられるので接合後の接合力維持が容易になる。このような仮説に従って、例えばマグネシウム合金、銅合金、チタン合金、ステンレス鋼等に、PBTやPPS系樹脂を射出接合して得た接合体は、せん断破断力で20〜30MPa(約200〜300kgf/cm)以上、引っ張り破断力で30〜40MPa(約300〜400kgf/cm)以上となり、強固な接合体であることが確認されている。 Here, the bonding itself is a problem of the resin component and the surface of the metal alloy. However, if the resin composition contains reinforcing fibers or inorganic fillers, the linear expansion coefficient of the entire resin can be made closer to that of the metal alloy. It becomes easy to maintain the bonding force. According to such a hypothesis, for example, a joined body obtained by injection joining PBT or PPS resin to magnesium alloy, copper alloy, titanium alloy, stainless steel or the like has a shear breaking force of 20 to 30 MPa (about 200 to 300 kgf / cm 2 ) or more and a tensile breaking strength of 30 to 40 MPa (about 300 to 400 kgf / cm 2 ) or more, and it has been confirmed that this is a strong joined body.

[NAT理論(接着剤接合)]
本発明者らは、接着剤接合に関しても「新NMT」理論仮説が応用できると考え、類似理論による高強度の接着が可能であるかを確認した。そして、市販の汎用の1液性エポキシ系接着剤を使用し、金属合金の表面構造を工夫することで、より接着力の高い接合体を得ようと試みた。
[NAT theory (adhesive bonding)]
The present inventors considered that the “new NMT” theoretical hypothesis can be applied to adhesive bonding, and confirmed whether high-strength bonding based on a similar theory is possible. And it tried to obtain the joined body with higher adhesive force by using the commercially available general-purpose one-component epoxy adhesive and devising the surface structure of the metal alloy.

接着剤接合の実験手法に関する手順を以下に示す。前記「新NMT」理論に基づき、射出接合実験で使用したものと同じ表面の金属合金(即ち上記3条件を満たす金属合金)を作成した。そして、液状の1液性エポキシ系接着剤をその金属合金の所定範囲に塗布し、一旦真空下に置いて常圧に戻すなどして金属合金表面の超微細凹凸面に接着剤を侵入させる。その後、前記所定範囲に被着材を貼り合わせ、加熱して硬化させる方法である。   The procedure regarding the experimental method of adhesive bonding is shown below. Based on the “new NMT” theory, a metal alloy having the same surface as that used in the injection joining experiment (that is, a metal alloy satisfying the above three conditions) was prepared. Then, a liquid one-component epoxy adhesive is applied to a predetermined range of the metal alloy, and once placed under vacuum and returned to normal pressure, the adhesive is allowed to enter the ultra fine uneven surface of the metal alloy surface. Thereafter, the adherend is bonded to the predetermined range and heated to be cured.

こうした場合、金属合金表面のミクロンオーダーの粗度に係る凹部(前記第1条件における凹凸の凹部)内に、多少の粘度あるエポキシ系接着剤も液体故に侵入可能である。そして侵入したエポキシ系接着剤は、その後の加熱でこの凹部内で硬化することになる。実際には、この凹部の内壁面には超微細凹凸がさらに形成されており(前記の第2条件)、且つこの超微細凹凸は、セラミック質の高硬度の薄膜(前記の第3条件)で覆われていることから、凹部内部に侵入して固化したエポキシ樹脂は、スパイクのような超微細凹凸に掴まって抜け難くなる。   In such a case, an epoxy adhesive having a certain viscosity can penetrate into the concave portion (roughness concave portion in the first condition) on the surface of the metal alloy having a roughness on the micron order because it is liquid. And the epoxy adhesive which penetrate | invaded hardens | cures in this recessed part by subsequent heating. Actually, an ultra fine unevenness is further formed on the inner wall surface of the recess (the second condition described above), and the ultra fine unevenness is a thin ceramic-like thin film (the third condition described above). Since it is covered, the epoxy resin that has entered the inside of the recess and solidified is difficult to come out by being gripped by ultra-fine irregularities such as spikes.

本発明者らは、「新NMT」理論を応用して、1液性エポキシ接着剤によって、金属合金同士及び金属合金とCFRP(carbon fiber reinforced plasticsの略)との高強度の接着が可能であることを実証した。一例として、A7075アルミニウム合金板同士を、市販の汎用エポキシ接着剤のみからなる接着剤で接合した結果、70MPaもの強烈なせん断破断力、引っ張り破断力を示す接合体を得ることができた。   By applying the “new NMT” theory, the present inventors can bond metal alloys to each other and metal alloys to CFRP (abbreviation of carbon fiber reinforced plastics) with high strength. Proved that. As an example, as a result of joining A7075 aluminum alloy plates with an adhesive made only of a commercially available general-purpose epoxy adhesive, a joined body having an intense shear breaking force and tensile breaking force as high as 70 MPa could be obtained.

実際、このような高強度の接着剤接合は、本発明者等によって、アルミニウム合金に次いで、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、一般鋼材、アルミ鍍金鋼板、亜鉛鍍金鋼板に於いて実証された(特許文献7、8、9、10、11、12、13、及び14参照)。いずれも金属合金表面の状態を制御することによって、各種金属合金を過去に例のない強さで接着することができた。このような接着剤接合に関して「新NMT」理論を応用した前記技術を、本発明者らは「NAT(Nano adhesion technologyの略)」と称している。   In fact, such high-strength adhesive bonding has been demonstrated by the present inventors in magnesium alloys, copper alloys, titanium alloys, stainless steels, general steel materials, aluminum-plated steel sheets, and zinc-plated steel sheets following aluminum alloys. (See Patent Documents 7, 8, 9, 10, 11, 12, 13, and 14). In any case, various metal alloys could be bonded with unprecedented strength by controlling the state of the metal alloy surface. The present inventors have applied the “new NMT” theory for such adhesive bonding as “NAT (abbreviation of nano adhesion technology)”.

WO 03/064150 A1WO 03/064150 A1 WO 2004/041532 A1WO 2004/041532 A1 WO 2008/069252 A1WO 2008/069252 A1 WO 2008/047811 A1WO 2008/047811 A1 WO 2008/078714 A1WO 2008/078714 A1 WO 2008/081933 A1WO 2008/081933 A1 PCT/JP2008/054539(アルミニウム合金)PCT / JP2008 / 054539 (aluminum alloy) PCT/JP2008/057309(マグネシウム合金)PCT / JP2008 / 057309 (magnesium alloy) PCT/JP2008/056820(銅合金)PCT / JP2008 / 056820 (Copper alloy) PCT/JP2008/057131(チタン合金)PCT / JP2008 / 0571131 (titanium alloy) PCT/JP2008/057922(ステンレス鋼)PCT / JP2008 / 057922 (stainless steel) PCT/JP2008/059783(一般鋼材)PCT / JP2008 / 059783 (general steel) 特願2007−336378号公報(アルミ鍍金鋼板)Japanese Patent Application No. 2007-336378 (aluminum plated steel sheet) 特願2008−67313号公報(亜鉛系鍍金鋼板)Japanese Patent Application No. 2008-67313 (galvanized steel sheet)

前述したように、A7075アルミニウム合金板(「超々ジュラルミン」とも言う)同士を、市販の汎用エポキシ系接着剤を用いて接合することで、70MPaもの強烈なせん断破断力、引っ張り破断力を示す接合体を得ることができた。これは、寸法が45mm×15mm×3mm厚のA7075板の対を、0.6〜0.7cmの接着面積で相互に接合した接合体を引っ張り試験して得た数値である。また、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、一般鋼材、アルミ鍍金鋼板、及び亜鉛鍍金鋼板に関しても、同種の金属合金板同士の接合体において高い接着力が観察された。当初は、入手可能な市販の金属合金板を用いていたが、市販品では金属合金板の厚さは合金種によって異なり、本発明者らが要求する厚さ、即ち各種金属合金板について共通の厚さのものは入手出来なかった。しかし接着力測定試験を積み重ねるに従って、金属合金板の厚さと、その金属合金自身が本来保有している曲げ強さによって接着強度が大きく違うことが明らかになった。 As described above, A7075 aluminum alloy plates (also referred to as “ultra-super duralumin”) are bonded to each other using a commercially available general-purpose epoxy adhesive, thereby exhibiting a strong shear breaking force and tensile breaking force as high as 70 MPa. Could get. This is a numerical value obtained by performing a tensile test on a joined body in which a pair of A7075 plates having dimensions of 45 mm × 15 mm × 3 mm thickness is bonded to each other with an adhesion area of 0.6 to 0.7 cm 2 . Further, regarding the magnesium alloy, the copper alloy, the titanium alloy, the stainless steel, the general steel material, the aluminum plated steel plate, and the galvanized steel plate, high adhesive strength was observed in the joined body of the same kind of metal alloy plates. Initially, commercially available metal alloy plates were used, but in commercially available products, the thickness of the metal alloy plate varies depending on the alloy type, and the thickness required by the present inventors, that is, common to various metal alloy plates. Thick ones were not available. However, as the adhesive strength measurement test was repeated, it became clear that the adhesive strength greatly differed depending on the thickness of the metal alloy plate and the bending strength inherent to the metal alloy itself.

即ち、金属合金板の曲げ強度が十分強く、厚さも十分にあるA7075アルミニウム合金板(厚さ3.0mm)の場合には、せん断破断力が70MPa付近であった。一方、A5052アルミニウム合金板(厚さ1.6mm)では60MPa、自動車用熱間圧延鋼材として用いられるSAPH440鋼板材(同1.6mm)では65MPa、AZ31Bマグネシウム合金板(同1.0mm)では30MPa、KFC銅合金板(同0.7mm)では約30MPaであった。   That is, in the case of an A7075 aluminum alloy plate (thickness 3.0 mm) in which the bending strength of the metal alloy plate is sufficiently strong and the thickness is sufficient, the shear breaking force was around 70 MPa. On the other hand, 60 MPa for A5052 aluminum alloy plate (thickness 1.6 mm), 65 MPa for SAPH440 steel plate material (1.6 mm) used as hot rolled steel for automobiles, 30 MPa for AZ31B magnesium alloy plate (1.0 mm), The KFC copper alloy plate (0.7 mm) was about 30 MPa.

このように、市販されている金属合金板は厚さが規定されており、その厚さが一定の値に達していないため、その金属合金種本来の接着強度(せん断破断力、引っ張り破断力)を発揮できない場合がある。これにより、本発明者等が提案するNAT理論に基づく接着接合の効力が減殺されることになる。ここで、本来の接着強度を得るために上記一定の厚さに達していない金属合金板を積層材(同一金属合金種の積層材又は異種金属合金板種の積層材)とし、この積層材同士を一定面積(0.6〜0.7cm)で接着接合し、そのせん断破断力、引っ張り破断力を測定するとする。この場合であっても、金属合金板間の接着が強固でなければ、積層材同士の接合体を引っ張り破断するときに、その積層材を構成する金属合金板同士が先に分離してしまうため、NAT理論に基づく接着接合の効力が減殺されるという問題がある。 Thus, since the thickness of the commercially available metal alloy plate is regulated and the thickness does not reach a certain value, the original adhesive strength (shear breaking force, tensile breaking force) of the metal alloy type May not be possible. As a result, the effectiveness of adhesive bonding based on the NAT theory proposed by the present inventors is reduced. Here, in order to obtain the original adhesive strength, the metal alloy plate that does not reach the certain thickness is used as a laminated material (a laminated material of the same metal alloy type or a laminated material of different metal alloy plate type), and the laminated materials Are bonded with a constant area (0.6 to 0.7 cm 2 ), and the shear breaking force and tensile breaking force are measured. Even in this case, if the adhesion between the metal alloy plates is not strong, the metal alloy plates constituting the laminated material will be separated first when the joined body between the laminated materials is pulled and broken. There is a problem that the effectiveness of adhesive bonding based on the NAT theory is diminished.

本発明は、このような技術背景のもとになされたものであり、その目的は、その金属合金種本来の接着強度を発揮できるような金属合金積層材を提供することにある。特に銅合金板、ステンレス鋼板、チタン合金等に関しては、前述した金属合金種の中でも強度が比較的低いために、本発明が寄与するところが大きいといえる。   The present invention has been made based on such a technical background, and an object of the present invention is to provide a metal alloy laminate capable of exhibiting the original adhesive strength of the metal alloy species. In particular, regarding copper alloy plates, stainless steel plates, titanium alloys and the like, it can be said that the present invention greatly contributes to the relatively low strength among the above-mentioned metal alloy types.

金属合金板表面に前述したNAT理論に基づく表面処理を施し、これに一液性熱硬化型接着剤を塗布して積層材とすることで曲げ強度を補強しつつ、積層材を構成する金属合金板同士を強力に接着接合するようにした。その結果、チタン合金を除く全ての金属合金種で50〜70MPaのせん断破断力が得られた。   The metal alloy that constitutes the laminated material while the surface treatment based on the NAT theory described above is applied to the surface of the metal alloy plate and the bending strength is reinforced by applying a one-component thermosetting adhesive to the laminated material. The plates were strongly bonded together. As a result, a shear fracture strength of 50 to 70 MPa was obtained for all metal alloy types except titanium alloys.

金属合金同士を接着剤で接合した場合、その接着力は金属合金種によって異なるとされるのが一般的である。ところが、各種金属合金にNAT理論に基づく表面処理を施して接着接合した接合体では、後述の実験結果に示すように、接着力が金属合金種に殆ど依存しないことを示した。これは、接着学や接着に関する実務者にとっては驚くべき結果であると思われる。即ち、この結果は、「接着力は使用した接着剤の性能にのみ依存する」、又は「金属合金同士の接着接合は既に最適化されている」ということを示しうる結果であるといえる。   When metal alloys are joined together with an adhesive, the adhesive strength is generally different depending on the type of metal alloy. However, as shown in the experimental results to be described later, it was shown that the adhesive strength hardly depends on the metal alloy type in the joined body in which various metal alloys are subjected to surface treatment based on the NAT theory and adhesively bonded. This seems to be a surprising result for adhesive practitioners and bond practitioners. That is, this result can be said to indicate that “adhesive strength depends only on the performance of the used adhesive” or “adhesive bonding between metal alloys has already been optimized”.

以下、せん断破断力の測定法に関して説明する。せん断破断力の測定に関しては、従来のJISK6850に示される方法が挙げられる。即ち100mm×25mm×1mm厚の金属合金板を用いて、その端部から12.5mmを相互に重ね合わせた接着物(接着面積は25mm×12.5mm=3.125cm)を作成して、これを引っ張り破断試験するというものである。しかし、この方法は、せん断破断力が10〜20MPa程度である場合には適しているが、せん断破断力が70MPaに至るような強烈な接着では、その引っ張り破断試験に於いて破断前に金属合金板の接着面側が引き伸ばされて非接着面側より長くなるという問題がある。1mm程度の薄さであると高強度の一般鋼材でも前記の原因によって曲げ変形が生じる。 Hereinafter, a method for measuring the shear breaking force will be described. Regarding the measurement of the shear breaking force, the method shown in the conventional JISK6850 can be mentioned. That is, using a metal alloy plate having a thickness of 100 mm × 25 mm × 1 mm, an adhesive (12.5 mm = 3.125 cm 2 ) was created by superimposing 12.5 mm from the end of each other, This is a tensile breaking test. However, this method is suitable when the shear breaking force is about 10 to 20 MPa. However, in the case of strong adhesion such that the shear breaking force reaches 70 MPa, the metal alloy is broken before breaking in the tensile breaking test. There is a problem that the bonding surface side of the plate is stretched and becomes longer than the non-bonding surface side. When the thickness is about 1 mm, bending deformation occurs due to the above-described cause even in a high strength general steel material.

せん断破断前に、その様な曲げ変形が金属合金板に生じれば、それは接着面端部に強い剥がし方向の応力集中を生じる。接着面端部がその応力集中で局所的に剥がれるとその周辺に応力集中が移動するだけで剥がれの連鎖が生じ、接合面積が徐々に減少してせん断破断も生じ易くなり破断に至る。即ち、金属合金板が曲げに強い物であれば、剥がれを起点とする破断の開始は遅れるので本来のせん断破断力の数値に近い値が観察できる。要するに、100MPaに近いせん断破断力を示す様な強烈な接着状態において引っ張り破断試験をするときには、金属合金板は小さくして応力集中度を下げることが重要であり、且つ、厚さが十分にあって耐曲がり硬さがあることが必要である。本発明者らは前記のようにJISの規定より小さい金属合金板で破壊試験を行ったが、それでも金属合金板の厚さが当初は不十分だったのである。   If such a bending deformation occurs in the metal alloy plate before the shear fracture, it causes a strong stress concentration in the peeling direction at the edge of the bonding surface. If the edge portion of the bonding surface is locally peeled off due to the stress concentration, the stress concentration moves only to the periphery of the bonding surface, and a chain of peeling is generated. That is, if the metal alloy plate is strong against bending, the start of the break starting from peeling is delayed, and a value close to the original value of the shear breaking force can be observed. In short, when conducting a tensile rupture test in a strong adhesion state that exhibits a shear rupture force close to 100 MPa, it is important to reduce the stress concentration by reducing the metal alloy plate and the thickness is sufficient. Therefore, it is necessary to have bending resistance. As described above, the present inventors conducted a destructive test with a metal alloy plate smaller than the JIS standard, but the thickness of the metal alloy plate was still insufficient at the beginning.

せん断破断力の測定だけでなく、円筒棒状や角棒状の金属合金部材を、その先端部同士で接着接合した接合体を引っ張り破断し、引っ張り破断力を測定する場合でも同様である。JISK6852の規定に従った直径1.27cmの円筒状棒材や1辺1.27cmの四角棒材の端部を対接着した試料を引っ張り破断試験したのでは、本来の値から遥かに低い数値しか観察できない。即ち、接着力が強烈な場合、破断前にかなりの力が掛かって被着体の棒状物自身が伸ばされる。この伸びは僅かなので形状変化が目視で分かるわけではない。棒が十分長いとして、接合面付近に於いて、縦方向に生じる伸び長さは断面の各箇所でほぼ同一になるはずである。しかし同じ長さの引っ張り伸びを押し止めようとする応力は円形や正方形を成す断面上の各箇所によって異なる。例えば、円筒棒の両端を引っ張った場合の応力分布は断面円の外周部で最も高くなることは簡単な物理計算で算出される。要するに接着面に生じる剥がし力はその外周部で最大値となる。そして接着面外周部に生じる応力集中は、丸棒や角棒の直径が大きいほど大きい。   The same applies not only to measuring the shear breaking force, but also to measuring the tensile breaking force by pulling and breaking a joined body obtained by bonding and joining cylindrical rod-shaped or square bar-shaped metal alloy members at their tip portions. When a tensile fracture test was performed on a sample in which the ends of a 1.27 cm diameter cylindrical bar or a 1.27 cm square bar in accordance with JISK 6852 were specified, the numerical value was much lower than the original value. I can't observe. That is, when the adhesive force is strong, a considerable force is applied before the fracture, and the adherend stick itself is stretched. Since this elongation is slight, the shape change is not visually recognized. Assuming that the bars are long enough, the length of the longitudinal extension in the vicinity of the joint surface should be approximately the same at each location in the cross section. However, the stress that tries to hold down the tensile elongation of the same length differs depending on each location on the cross section that forms a circle or a square. For example, it can be calculated by simple physical calculation that the stress distribution when the both ends of the cylindrical rod are pulled is highest at the outer periphery of the cross-sectional circle. In short, the peeling force generated on the bonding surface is maximum at the outer peripheral portion. And the stress concentration which arises on the outer peripheral part of an adhesion surface is so large that the diameter of a round bar or a square bar is large.

結局、棒状物を付き合わせ接着して、これの両端部を引っ張って破断した場合に測定される引っ張り破断力を本来の値に近づけるには、出来るだけ細い棒状物を作り、その端部をつき合せて接着した物で測定すべきである。本発明者らは、3mm×4mm×18mmの角棒状の金属合金片を作成し、その棒端部を接着し、引っ張り破断して引っ張り破断力を求めた。即ち、接着面積は0.12cmであった。A7075アルミニウム合金を3mm×4mm×18mmの角棒状の金属合金片に加工し、これにNAT理論に基づく表面処理を施し、その端部に市販の汎用1液性エポキシ接着剤を塗布して端部同士を接着し、これを引っ張り破断して、引っ張り破断力を測定したところ約70MPaと出た。この数値はA7075で測定した前記せん断破断力と同値であった。せん断破断力と引っ張り破断力がほぼ同値であることに理論的な意味があるか否かは不明であるが、双方がほぼ同値であり且つ高い数値であることから、金属合金同士の接着接合の最適化はNAT理論の適用によって達成されたと考えられる。 After all, in order to bring the tensile breaking force close to the original value when sticking and sticking sticks together and pulling both ends of the sticks to break, the sticks are made as thin as possible. It should be measured with the glued together. The inventors of the present invention created a 3 mm × 4 mm × 18 mm square bar-shaped metal alloy piece, bonded the ends of the bar, and pulled to break to determine the tensile breaking force. That is, the adhesion area was 0.12 cm 2. A7075 aluminum alloy is processed into a 3mm x 4mm x 18mm square bar-shaped metal alloy piece, which is subjected to a surface treatment based on NAT theory, and a commercially available general-purpose one-component epoxy adhesive is applied to the end portion. They were bonded together, and this was pulled and broken, and the tensile breaking force was measured. As a result, it was about 70 MPa. This value was the same value as the shear breaking force measured in A7075. It is unclear whether the shear breaking force and the tensile breaking force have almost the same value, but it is unclear whether both have almost the same value and high values. The optimization is thought to have been achieved by applying NAT theory.

以上のようにNAT理論に基づく同種金属合金片同士の接着接合体は、市販接着剤を使用した場合で、せん断破断力も引っ張り破断力も60〜70MPaを示した。しかしこの数値自体は言わば理論値に近い。実際の接着では、接着接合体が大きくなり応力集中の度合いが大きくなる。それ故、実際のせん断破断力や引っ張り破断力の数値はこれより低くなる。   As described above, the bonded assembly of the same kind of metal alloy pieces based on the NAT theory was obtained when a commercially available adhesive was used, and both the shear breaking force and the tensile breaking force were 60 to 70 MPa. However, this number itself is close to the theoretical value. In actual bonding, the bonded assembly becomes large and the degree of stress concentration increases. Therefore, the actual values of shear breaking force and tensile breaking force are lower than this.

NAT理論に基づく接着方法自体は完成されているので、今後実用面における重要な点は、(1)接着面上に大きな応力集中箇所を設けないようにする設計技術を開発すること、(2)NAT理論に基づく接着力の向上が接着剤に依っていることが明らかになったので、接着剤改良の指針を示し、且つ、それに基づいてより強力な接着剤を開発することと考えられる。即ち、NAT理論を適用して得られた金属合金接合体の接着力は従来に見られないほど強烈なものだが、硬質物同士を接着する場合では必ず応力集中が生じ、設計によってはその応力集中は100MPaを簡単に超える。従って数十MPaの接着力向上が得られたとしても、設計が不十分であればその効果を実感できない。   Since the bonding method based on the NAT theory itself has been completed, the important points in practical use in the future are: (1) development of design technology that prevents large stress concentration points on the bonding surface; (2) Since it became clear that the improvement of the adhesive strength based on the NAT theory depends on the adhesive, it is considered to provide a guideline for improving the adhesive and to develop a stronger adhesive based on the guideline. In other words, the adhesive strength of metal alloy joints obtained by applying the NAT theory is as strong as never seen before, but stress concentration always occurs when bonding hard objects, and depending on the design, the stress concentration Easily exceeds 100 MPa. Therefore, even if an improvement in adhesive strength of several tens of MPa is obtained, the effect cannot be realized if the design is insufficient.

このような観点から、接着面積が被着体の面積に近い面接着であれば、応力集中によって接着層の一部が破壊されてもその接着剤層は広く、連鎖破壊を抑えることが出来るので、全体として原型を守り易いと言える。即ち、NAT理論に基づく接合を積層材の作成に適用することで、各金属合金層が強固に面接合し、かつ連鎖破壊を抑えて接合力を維持することが可能になると考えられる。   From this point of view, if the adhesion area is close to the area of the adherend, even if part of the adhesive layer is destroyed due to stress concentration, the adhesive layer is wide and can suppress chain breakage. It can be said that it is easy to protect the prototype as a whole. That is, it is considered that by applying the joining based on the NAT theory to the production of a laminated material, each metal alloy layer can be strongly surface-joined, and the joining force can be maintained while suppressing chain breakage.

以下、本発明を構成する各要素について詳細に説明する。
〔金属合金部品〕
本発明でいう金属合金部品、即ち前述の「NAT」理論に基づく表面構造を具備する金属合金としては、理論上特にその種類に制限はない。全金属種としてもよいが、実際に意味を有しているのは硬質で実用的な金属種、合金種である。即ち、水銀は当然ながら液状だから本発明に関係しないが、鉛など軟質金属種も本発明者の考える金属種からは除外されている。当然であるが、化学的には存在するが大気中で活発に反応するアルカリ金属種、アルカリ土類金属種(マグネシウムを除いて)も基本的には除外の対象である。
Hereafter, each element which comprises this invention is demonstrated in detail.
[Metal alloy parts]
The type of metal alloy part in the present invention, that is, a metal alloy having a surface structure based on the aforementioned “NAT” theory is not particularly limited in theory. All metal species may be used, but what is actually meaningful is a hard and practical metal species or alloy species. That is, since mercury is naturally liquid, it is not relevant to the present invention, but soft metal species such as lead are also excluded from the metal species considered by the present inventors. Of course, alkali metal species and alkaline earth metal species (except for magnesium) that exist chemically but react actively in the atmosphere are also basically excluded.

本発明者等は、実質的に「NAT」理論を適用可能な金属合金種として、アルミニウム、マグネシウム、銅、チタン、鉄を主成分とする合金種と考えている。以下、これらについて説明する。しかし、あくまでも「NAT」理論は、金属種を限定していないし、更に言えば金属であること自体も限定していない。非金属を「NAT」で条件とするミクロンオーダーの粗度や超微細凹凸面、且つ、高硬度の表面層とすることの3条件を同時に備えさせることは容易でない。要するに「NAT」は表面形状とその表面薄層硬度だけを規定してアンカー効果論で接着を論じているので、少なくとも下記した金属合金種に限定されるものではない。特許文献7にアルミニウム合金に関する記載をした。特許文献8にマグネシウム合金に関する記載をした。特許文献9に銅合金に関する記載をした。特許文献10にチタン合金に関する記載をした。特許文献11にステンレス鋼に関する記載をした。特許文献12に一般鋼材に関する記載をした。これら各種金属合金について詳細に説明する。   The present inventors consider that the metal alloy species to which “NAT” theory can be applied substantially are alloy species mainly composed of aluminum, magnesium, copper, titanium, and iron. Hereinafter, these will be described. However, the “NAT” theory does not limit the metal species, and moreover, it does not limit the metal itself. It is not easy to simultaneously provide the three conditions of making the nonmetal a condition of “NAT”, such as a micron-order roughness, an ultra fine uneven surface, and a high hardness surface layer. In short, since “NAT” defines only the surface shape and its surface layer hardness and discusses adhesion by the anchor effect theory, it is not limited to at least the following metal alloy types. Patent Document 7 describes an aluminum alloy. Patent Document 8 describes a magnesium alloy. Patent Document 9 describes a copper alloy. Patent Document 10 describes a titanium alloy. Patent Document 11 described stainless steel. Patent Document 12 describes general steel materials. These various metal alloys will be described in detail.

(アルミニウム合金)
本発明で使用可能なアルミニウム合金は、アルミニウム合金であればいかなる種類を問わない。具体的には、日本工業規格(JIS)に規定されている展伸用アルミニウム合金のA1000番台〜7000番台(耐食アルミニウム合金、高力アルミニウム合金、耐熱アルミニウム合金等)等の全ての合金、及びADC1〜12種(ダイカスト用アルミニウム合金)等の鋳造用アルミニウム合金が使用できる。形状物としては、鋳造用合金等であれば、ダイキャスト法で形状化された部品、またそれを更に機械加工して形状を整えた部品が使用できる。又、展伸用合金では、中間材である板材その他、又それらを熱プレス加工などの機械加工を加えて形状化した部品も使用できる。
(Aluminum alloy)
The aluminum alloy that can be used in the present invention is not limited as long as it is an aluminum alloy. Specifically, all alloys such as A1000 series to 7000 series (corrosion-resistant aluminum alloy, high-strength aluminum alloy, heat-resistant aluminum alloy, etc.) of aluminum alloys for extension specified in Japanese Industrial Standards (JIS), and ADC1 Cast aluminum alloys such as ˜12 types (aluminum alloys for die casting) can be used. As the shape, as long as it is an alloy for casting, a part shaped by a die-cast method, or a part that is further machined to adjust its shape can be used. Moreover, in the alloy for extending | stretching, the board | plate material etc. which are intermediate materials, and the parts which shape | molded them by applying mechanical processing, such as hot press processing, can also be used.

(マグネシウム合金)
本発明に使用するマグネシウム合金は、国際標準機構(ISO)、日本工業規格(JIS)、米国材料試験協会(ASTM)等に規定される展伸用アルミニウム合金のAZ31B合金等、及びAZ91D等の鋳物用マグネシウム合金が使用できる。鋳物用マグネシウム合金であれば、砂型、金型、ダイカストのいずれかの方法で形状化された部品、またそれを更に、切削、研削等の機械加工して形状を整えた部品、構造体が使用できる。又、展伸用マグネシウム合金では、中間材である板材その他、又それらを温間プレス加工等の塑性加工を加えて形状化した部品、構造体が使用できる。
(Magnesium alloy)
Magnesium alloys used in the present invention are AZ31B alloys of aluminum alloys for extension specified by the International Organization for Standardization (ISO), Japanese Industrial Standards (JIS), American Society for Testing and Materials (ASTM), and castings such as AZ91D Magnesium alloy can be used. If it is a magnesium alloy for castings, the parts and structures that have been shaped by any method of sand mold, mold or die casting, and further processed by machining such as cutting and grinding are used. it can. Moreover, in the magnesium alloy for extending | stretching, the board | plate material etc. which are intermediate materials, and the components and structures which shape | molded them by applying plastic processing, such as warm press processing, can be used.

(銅合金)
本発明に使用する銅、及び銅合金とは、銅、黄銅、りん青銅、洋泊、アルミニウム青銅等を指す。日本工業規格(JIS H 3000系)に規定されるC1020、C1100等の純銅系合金、C2600系の黄銅合金、C5600系の銅白系合金、その他のコネクター用の鉄系含む各種用途に開発された銅合金等、全ての銅合金等が対象である。これらの中間材である板材、条、管、棒、線等の塑性加工製品を、切削加工、プレス加工等の機械加工を加えて形状化した部品、及び鍛造加工した部品等が対象である。
(Copper alloy)
The copper and copper alloy used in the present invention refer to copper, brass, phosphor bronze, Western night, aluminum bronze and the like. Copper developed for various uses including pure copper alloys such as C1020 and C1100, C2600 brass alloys, C5600 copper white alloys, and other iron-based connectors for connectors specified in Japanese Industrial Standards (JIS H 3000 series) All copper alloys etc., such as alloys, are the targets. These are intermediate parts such as plates, strips, pipes, bars, wires, etc., and parts that have been shaped by applying machining such as cutting and pressing, and forged parts.

(チタン合金)
本発明に使用するチタン合金は、国際標準化機構(ISO)、日本工業規格(JIS)等で規定される純チタン系合金、α型チタン合金、β型チタン合金、α−β型チタン合金等、全てのチタン合金が対象である。このチタン合金の中間材である板材、棒材、管材等、又それらを切削・研削加工、プレス加工等の機械加工を加えて形状化したものが、各種機械、装置の部品、構造体に使用できる。
(Titanium alloy)
The titanium alloy used in the present invention is a pure titanium alloy, an α-type titanium alloy, a β-type titanium alloy, an α-β-type titanium alloy, etc. defined by the International Organization for Standardization (ISO), Japanese Industrial Standards (JIS), etc. All titanium alloys are targeted. Plates, rods, pipes, etc., which are intermediate materials of this titanium alloy, and those formed by machining such as cutting / grinding and pressing are used for parts and structures of various machines and devices. it can.

(ステンレス鋼)
本発明でいうステンレス鋼とは、鉄にクロム(Cr)を加えたCr系ステンレス鋼、又ニッケル(Ni)をクロム(Cr)と組合せて添加した鋼であるCr−Ni系ステンレス鋼、その他のステンレス鋼と呼称される公知の耐食性鉄合金が対象である。国際標準機構(ISO)、日本工業規格(JIS)、米国材料試験協会(ASTM)等で、規格化されているSUS405、SUS429、SUS403等のCr系ステンレス鋼、SUS301、SUS304、SUS305、SUS316等のCr−Ni系ステンレス鋼である。
(Stainless steel)
The stainless steel in the present invention is a Cr-based stainless steel obtained by adding chromium (Cr) to iron, a Cr-Ni-based stainless steel added by combining nickel (Ni) with chromium (Cr), A known corrosion-resistant iron alloy called stainless steel is the object. SUS405, SUS429, SUS403, and other Cr-based stainless steels standardized by the International Organization for Standardization (ISO), Japanese Industrial Standards (JIS), American Material Testing Association (ASTM), etc., SUS301, SUS304, SUS305, SUS316, etc. Cr-Ni type stainless steel.

(鉄鋼材料)
本発明で用いる鉄鋼材料は、一般構造用圧延鋼材等の炭素鋼(所謂一般鋼材)、高張力鋼(ハイテンション鋼)、低温用鋼、及び原子炉用鋼板等の鉄鋼材料をいう。具体的には、冷間圧延鋼材(以下、「SPCC」という。)、熱間圧延鋼材(以下、「SPHC」という。)、自動車構造用熱間圧延鋼板材(以下、「SAPH」という。)、自動車加工用熱間圧延高張力鋼板材(以下、「SPFH」という。)、主に機械加工に使用される鋼材(以下「SS材」という。)等、各種機械の本体、部品等に使用されている構造用鉄鋼材料が含まれる。これらの多くの鋼材は、プレス加工、切削加工が可能であるので、部品、本体として採用するとき、構造、形状も自由に選択できる。又、本発明でいう鉄鋼材料は、上記鋼材に限らず、日本工業規格(JIS)、国際標準化機構(ISO)等で、規格化されたあらゆる鉄鋼材料が含まれる。
(Steel material)
The steel materials used in the present invention refer to steel materials such as carbon steels (so-called general steel materials) such as general structural rolled steel materials, high-tensile steels (high-tension steels), low-temperature steels, and reactor steel plates. Specifically, cold rolled steel (hereinafter referred to as “SPCC”), hot rolled steel (hereinafter referred to as “SPHC”), hot rolled steel sheet for automobile structure (hereinafter referred to as “SAPH”). Used in the body and parts of various machines, such as hot-rolled high-tensile steel plate materials (hereinafter referred to as “SPFH”) for automobile processing, steel materials mainly used for machining (hereinafter referred to as “SS material”), etc. Structural steel materials that are being included. Since many of these steel materials can be pressed and cut, the structure and shape can be freely selected when they are used as parts and main bodies. In addition, the steel material referred to in the present invention is not limited to the above steel material, and includes any steel material standardized by Japanese Industrial Standards (JIS), International Organization for Standardization (ISO), or the like.

〔金属合金材の化学エッチング〕
本発明における化学エッチングは、金属合金表面にミクロンオーダーの粗度を生じさせることを目的とする。腐食には全面腐食、孔食、疲労腐食など種類があるが、その金属合金に対して全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献記録(例えば「化学工学便覧(化学工学協会編集)」)によれば、アルミニウム合金は塩基性水溶液、マグネシウム合金は酸性水溶液、ステンレス鋼や一般鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記録がある。又、耐食性の強い銅合金は、強酸性とした過酸化水素などの酸化剤によって全面腐食させられるし、チタン合金は蓚酸や弗化水素酸系の特殊な酸で全面腐食させられることが専門書や特許文献から散見される。実際に市場で販売されている金属合金類は、純銅系銅合金や純チタン系チタン合金のように純度が99.9%以上で合金とは言い難い物もあるが、これらも本発明には含まれる。実際に世間で使用されている物の大部分は特徴的な物性を求めて多種多用な他元素が混合されて純金属系の物は少なく、実質的には合金である。
[Chemical etching of metal alloy materials]
The purpose of chemical etching in the present invention is to produce a roughness on the order of microns on the surface of a metal alloy. There are various types of corrosion, such as general corrosion, pitting corrosion, and fatigue corrosion, but it is possible to select an appropriate etching agent by selecting a chemical species that causes general corrosion for the metal alloy and trial and error. According to literature records (for example, “Chemical Engineering Handbook (edited by the Chemical Engineering Association)”), aluminum alloys are basic aqueous solutions, magnesium alloys are acidic aqueous solutions, stainless steel and general steel materials in general are hydrohalic acid such as hydrochloric acid, sulfurous acid, There is a record that the entire surface is corroded by an aqueous solution of sulfuric acid or a salt thereof. In addition, copper alloys with strong corrosion resistance are totally corroded by strong oxidizing agents such as hydrogen peroxide, and titanium alloys can be corroded entirely with oxalic acid or hydrofluoric acid-based special acids. And from the patent literature. The metal alloys that are actually sold in the market, such as pure copper-based copper alloys and pure titanium-based titanium alloys, have a purity of 99.9% or more and are hardly called alloys. included. In fact, most of the materials used in the world are mixed with a wide variety of other elements in order to obtain characteristic physical properties, and there are few pure metal materials, and they are substantially alloys.

即ち、純金属から合金化した目的の金属の殆どが、元々の金属物性を低下させることなく耐食性を上げることにあった。それ故、合金では、前記したように文献から参照して適用した酸塩基類や特定の化学物質を使っても、目標とする化学エッチングが出来ない場合もよくある。要するに、前記した酸塩基類、特定化学薬品の使用は基本であって、実際には使用する酸塩基水溶液の濃度、液温度、浸漬時間、場合によっては添加物を工夫しつつ試行錯誤して適正な化学エッチングを行うことになる。化学エッチング法について言えば、特許文献7にアルミニウム合金に関する記載、特許文献8にマグネシウム合金に関する記載、特許文献9に銅合金に関する記載、特許文献10にチタン合金に関する記載、特許文献11にステンレス鋼に関する記載、特許文献12に一般鋼材に関する記載、特許文献13にアルミ鍍金鋼板に関する記載、及び、特許文献14に亜鉛系鍍金鋼板に関する記載をした。   That is, most of the target metals alloyed from pure metals have improved corrosion resistance without degrading the original metal properties. Therefore, in the case of an alloy, the target chemical etching is often not possible even when using acid bases or specific chemical substances applied with reference to the literature as described above. In short, the use of the acid-bases and specific chemicals described above is fundamental, and in practice, the concentration of the acid-base aqueous solution to be used, the liquid temperature, the immersion time, and in some cases, appropriate by trial and error while devising the additive Chemical etching is performed. Speaking of chemical etching, Patent Document 7 describes aluminum alloy, Patent Document 8 describes magnesium alloy, Patent Document 9 describes copper alloy, Patent Document 10 describes titanium alloy, Patent Document 11 relates to stainless steel. Description, Patent Document 12 describes general steel materials, Patent Document 13 describes aluminum plated steel sheets, and Patent Document 14 describes zinc-based plated steel sheets.

実際に行う作業として全般的に共通する点を説明すると、金属合金形状物を得たら、まず各金属用の市販脱脂剤を溶かした水溶液に浸漬して脱脂し水洗する。この工程は、金属合金形状物を得る工程で付着した機械油や指脂の大部分を除けるので好ましく、常に行うべきである。次いで、薄く希釈した酸・塩基水溶液に浸漬して水洗するのが好ましい。これは本発明者等が予備酸洗浄や予備塩基洗浄と称している工程で、一般鋼材のように酸で腐食するような金属種では、塩基性水溶液に浸漬し水洗し、又、アルミニウム合金のように塩基性水溶液で特に腐食が早い金属種では、希薄酸水溶液に浸漬し水洗することである。これらは、化学エッチングに使用する水溶液と逆性のものを前もって金属合金に付着(吸着)させる工程であり、その後の化学エッチングが誘導期間なしに始まることになって処理の再現性が著しく向上する。それ故にこの予備酸洗浄、予備塩基洗浄工程は本質的なものではないが、実務上、採用することが好ましい。これらの工程の後に化学エッチング工程を入れる。   To explain the points that are generally common as work actually performed, when a metal alloy shaped product is obtained, first, it is immersed in an aqueous solution in which a commercially available degreasing agent for each metal is dissolved and degreased and washed with water. This step is preferred and should always be performed because it removes most of the machine oil and finger grease deposited in the step of obtaining the metal alloy shape. Then, it is preferably immersed in a thinly diluted acid / base aqueous solution and washed with water. This is a process called the preliminary acid cleaning and preliminary base cleaning by the present inventors, and in the case of a metal species that corrodes with an acid such as a general steel material, it is immersed in a basic aqueous solution and washed with water. As described above, in the case of a metal species that is particularly rapidly corroded in a basic aqueous solution, it is immersed in a dilute acid aqueous solution and washed with water. These are processes in which a solution opposite to the aqueous solution used for chemical etching is attached (adsorbed) to the metal alloy in advance, and the subsequent chemical etching starts without an induction period, so that the reproducibility of the process is remarkably improved. . Therefore, the preliminary acid cleaning and preliminary base cleaning steps are not essential, but are preferably employed in practice. A chemical etching step is inserted after these steps.

〔微細エッチング・表面硬化処理〕
本発明における微細エッチングは、金属合金表面に超微細凹凸を形成することを目的とする。また本発明における表面硬化処理は、金属合金の表層を金属酸化物又は金属リン酸化物の薄層とすることを目的とする。金属合金種によっては前記化学エッチングを行っただけで同時にナノオーダーの微細エッチングもなされ、超微細凹凸が形成される場合がある。さらに、金属合金種によっては表面の自然酸化層が元よりも厚くなって表面硬化処理も完了している場合もある。例えば、純チタン系のチタン合金は化学エッチングだけを行うことで、表面がミクロンオーダーの粗度を有し、且つ超微細凹凸も形成される。即ち、化学エッチングと併せて微細エッチングもなされる。しかし、多くは化学エッチングによりミクロンオーダーの大きな凹凸面を作った後で微細エッチングや表面硬化処理を行う必要がある。
[Fine etching / Surface hardening]
The purpose of fine etching in the present invention is to form ultra-fine irregularities on the surface of a metal alloy. Moreover, the surface hardening process in this invention aims at making the surface layer of a metal alloy into a thin layer of a metal oxide or a metal phosphate. Depending on the type of metal alloy, nano-order fine etching may be performed at the same time by performing the chemical etching, and ultra-fine irregularities may be formed. Furthermore, depending on the type of metal alloy, the surface natural oxidation layer may be thicker than the original and the surface hardening process may be completed. For example, a pure titanium-based titanium alloy is subjected only to chemical etching, so that the surface has a roughness on the order of microns and ultra-fine irregularities are also formed. That is, fine etching is performed together with chemical etching. However, in many cases, it is necessary to carry out fine etching or surface hardening treatment after forming a large uneven surface on the order of microns by chemical etching.

この時でも予測できない化学現象に見舞われることが多い。即ち、表面硬化処理や表面安定化処理を目的に化学エッチング後の金属合金に酸化剤等を反応させたり化成処理をしたとき、得られる表面に偶然ながら超微細凹凸が形成される場合がある。マグネシウム合金を過マンガン酸カリ系水溶液で化成処理した場合に生じた酸化マンガンとみられる表面層は10万倍電子顕微鏡でようやく判別つく5〜10nm直径の棒状結晶が錯綜したものである。この試料をXRD(X線回折計)で分析したが、酸化マンガン類由来の回折線は検出できなかった。表面が酸化マンガンで覆われていることはXPS分析で明らかである。XRDで検出できなかった理由は結晶が検出限界を超えた薄い層であったからとみている。要するに、マグネシウム合金では表面硬化処理としての化成処理を施したことで、微細エッチングも併せて完了していたことになった。銅合金でも同様で、塩基性下の酸化で表面を酸化第2銅に変化させる表面硬化処置を取ったところ、純銅系銅合金では、その表面は円形や円が歪んだ形の穴開口部が一面に生じ特有の超微細凹凸面になる。純銅系でない銅合金では凹部型でなく10〜150nm径の粒径物や不定多角形状物が連なり、一部融け合って積み重なった形の超微細凹凸形状になったりする。この場合でも表面の殆どは酸化第2銅で覆われており、表面の硬化と超微細凹凸の形成が同時に生じる。   Even at this time, we are often hit by unpredictable chemical phenomena. That is, when a metal alloy after chemical etching is reacted with an oxidizing agent or chemical conversion treatment for the purpose of surface hardening treatment or surface stabilization treatment, ultra fine irregularities may be formed on the resulting surface by chance. The surface layer that appears to be manganese oxide formed when a magnesium alloy is subjected to chemical conversion treatment with a potassium permanganate aqueous solution is a complex of rod-like crystals having a diameter of 5 to 10 nm that can be finally identified with a 100,000-fold electron microscope. This sample was analyzed by XRD (X-ray diffractometer), but diffraction lines derived from manganese oxides could not be detected. It is clear by XPS analysis that the surface is covered with manganese oxide. The reason why XRD could not be detected is that the crystal was a thin layer exceeding the detection limit. In short, the magnesium alloy was subjected to a chemical conversion treatment as a surface hardening treatment, so that fine etching was also completed. The same applies to copper alloys, and when surface hardening treatment was performed to change the surface to cupric oxide by oxidation under basic conditions, pure copper-based copper alloys had hole openings in the form of circular or circularly distorted surfaces. It occurs on one surface and becomes a unique ultra-fine uneven surface. A copper alloy that is not a pure copper type is not a concave shape, but is continuous with a particle having a diameter of 10 to 150 nm or an indefinite polygonal shape. Even in this case, most of the surface is covered with cupric oxide, and the hardening of the surface and the formation of ultrafine irregularities occur simultaneously.

一般鋼材に関しては、更なる検証が必要ではあるものの、ミクロンオーダーの粗度を形成するための化学エッチングだけで超微細凹凸も併せて形成されていることが多く、元来表層(自然酸化層)が硬いこともあって、表面硬化処理や微細エッチング処理を改めて行わずとも、「NAT」理論を適用可能と考えられた。問題は自然酸化層の耐食性が十分でないために、接着工程までに腐食が始まってしまったり、接着後の環境如何では短時間で接着力が低下することであった。   For general steel materials, although further verification is necessary, ultra-fine irregularities are often formed only by chemical etching to form micron-order roughness, and originally the surface layer (natural oxide layer) However, it was considered that the “NAT” theory can be applied without performing a surface hardening process or a fine etching process again. The problem is that the corrosion resistance of the natural oxide layer is not sufficient, so that corrosion starts before the bonding process, or the adhesive force decreases in a short time depending on the environment after bonding.

これらは化成処理によって防ぐことができるが、実際には接着物を温度衝撃試験にかける試験、一般環境下に放置する試験、塗装した物を塩水噴霧装置にかける試験等を行って、接着の耐久性を調べる必要がある。例を挙げると、化成処理をしていない鋼材(実際にはSPCC:冷間圧延鋼材)同士をフェノール樹脂系接着剤で接着した接合体に関しては、4週間という短期間で接着力が急減した。一方、化成処理をした一般鋼材(SPCC)同士をフェノール樹脂系接着剤で接着した接合体に関しては、同じ期間では当初の接着力から低下しなかった。   These can be prevented by chemical conversion treatment, but in practice, the durability of the adhesive is tested by performing tests such as applying the adhesive to a temperature impact test, leaving it in a general environment, and applying the coated product to a salt spray device. It is necessary to examine sex. For example, regarding a joined body in which steel materials not subjected to chemical conversion treatment (actually SPCC: cold rolled steel material) are bonded with a phenol resin adhesive, the adhesive force rapidly decreased in a short period of 4 weeks. On the other hand, regarding the joined body in which the general steel materials (SPCC) subjected to the chemical conversion treatment were bonded to each other with the phenol resin-based adhesive, they did not decrease from the initial adhesive force in the same period.

また、本発明者らは、一般に、化成処理によって金属合金表面に形成された被膜(化成被膜)の膜厚が厚いと、接着力が低下することが多いことを確認している。前記のマグネシウム合金に付着した酸化マンガン薄層のように、XRDで回折線が検出されないような薄層である方が、強い接着力が得られる。化成被膜が厚い金属合金同士をエポキシ系接着剤で接着し、破壊試験した場合、破壊面は殆どが金属相と化成皮膜の間となる。本発明者らが行った実験では、厚い化成皮膜とエポキシ系接着剤硬化物との接合力は、その化成皮膜と内部金属合金相との接合力より常に強かった。即ち、一般鋼材でも、化成処理時間を更に長くして化成処理層を厚くすれば、接着物の永続性(即ち接着力の維持性)は向上するはずである。しかしながら化成皮膜を厚くすれば、接着力自体が低下する。従って、どの程度でバランスを取るかは、使用目的、用途等にもよる。以下各種金属合金部品の表面処理方法について詳述する。   In addition, the present inventors have generally confirmed that the adhesive force often decreases when the film (chemical conversion film) formed on the surface of the metal alloy by chemical conversion treatment is thick. A strong adhesive force can be obtained when the thin layer is such that a diffraction line is not detected by XRD, such as the thin layer of manganese oxide adhered to the magnesium alloy. When metal alloys having a thick chemical conversion film are bonded to each other with an epoxy adhesive and subjected to a destructive test, the fracture surface is almost between the metal phase and the chemical conversion film. In experiments conducted by the present inventors, the bonding force between the thick chemical conversion film and the cured epoxy adhesive was always stronger than the bonding force between the chemical conversion film and the internal metal alloy phase. That is, even with a general steel material, if the chemical conversion treatment time is further increased and the chemical conversion treatment layer is thickened, the durability of the adhesive (that is, the maintenance of adhesive strength) should be improved. However, if the chemical conversion film is thickened, the adhesive strength itself is reduced. Therefore, the degree of balance depends on the purpose of use and application. The surface treatment method for various metal alloy parts will be described in detail below.

(アルミニウム合金の表面処理)
アルミニウム合金部品は、まず脱脂槽に浸漬して機械加工等で付着した油剤や油脂を除去するのが好ましい。具体的には、本発明に特有な脱脂処理は必要ではなく、市販のアルミニウム合金用脱脂材を、その薬剤メーカーの指定通りの濃度で湯に投入した温水溶液を用意し、これに浸漬し水洗するのが好ましい。要するに、アルミニウム合金で行われている常法の脱脂処理で良い。脱脂材の製品によって異なるが、一般的な市販品では、濃度5〜10%として液温を50〜80℃とし5〜10分間浸漬する。
(Surface treatment of aluminum alloy)
It is preferable that the aluminum alloy part is first immersed in a degreasing tank to remove oils and oils adhered by machining or the like. Specifically, the degreasing treatment unique to the present invention is not necessary, and a warm aqueous solution in which a commercially available degreasing material for aluminum alloy is poured into hot water at a concentration specified by the drug manufacturer is prepared, immersed in this, and washed with water. It is preferable to do this. In short, a conventional degreasing treatment performed with an aluminum alloy may be used. Although it differs depending on the product of the degreasing material, in a general commercial product, the concentration is 5 to 10%, the liquid temperature is 50 to 80 ° C., and the immersion is performed for 5 to 10 minutes.

これ以降の前処理工程は、アルミニウム合金に珪素が比較的多く含まれる合金と、これらの成分が少ない合金とでは処理方法が異なる。珪素分が少ない合金、即ち、A1050、A1100、A2014、A2024、A3003、A5052、A7075等の展伸用アルミニウム合金では、以下のような処理方法が好ましい。即ち、アルミニウム合金部品を、酸性水溶液に短時間浸漬して水洗し、アルミニウム合金部品の表層に酸成分を吸着させるのが、次のアルカリエッチングを再現性良く進める上で好ましい。この処理は、予備酸洗工程といってよいが、使用液は、硝酸、塩酸、硫酸等、安価な鉱酸の1%〜数%濃度の希薄水溶液が使用できる。次いで、強塩基性水溶液に浸漬して水洗し、エッチングを行う。   In the subsequent pretreatment process, the treatment method is different between an alloy containing a relatively large amount of silicon in an aluminum alloy and an alloy containing few of these components. For alloys with low silicon content, ie, aluminum alloys for extension such as A1050, A1100, A2014, A2024, A3003, A5052, and A7075, the following treatment methods are preferred. That is, it is preferable that the aluminum alloy part is immersed in an acidic aqueous solution for a short time to be washed with water and the acid component is adsorbed on the surface layer of the aluminum alloy part in order to proceed the next alkali etching with good reproducibility. This treatment may be referred to as a preliminary pickling step, but a dilute aqueous solution having a concentration of 1% to several percent of an inexpensive mineral acid such as nitric acid, hydrochloric acid, sulfuric acid or the like can be used. Next, it is immersed in a strongly basic aqueous solution, washed with water, and etched.

このエッチングにより、アルミニウム合金表面に残っていた油脂や汚れがアルミニウム合金表層と共に剥がされる。この剥がれと同時に、この表面にはミクロンレベルの粗度を有するようになる。即ち、JIS規格(JIS B 0601:'01,ISO 4287:'97/ISO 1302:'02)で言えば、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5.0μmの凹凸面となる。これらの数値は、昨今の走査型プローブ顕微鏡にかければ自動的に計算をして出力されるようになっている。ただし、細かい凹凸を自動出力で表記した場合の数値は、算出RSm値が実情を表さない場合もある。より正確な数値を得るには、この凹凸に関して走査型プローブ顕微鏡が出力する粗度曲線グラフを目視検査することにより、RSm値を再確認する必要がある。   By this etching, fats and oils remaining on the surface of the aluminum alloy are peeled off together with the surface layer of the aluminum alloy. Simultaneously with this peeling, the surface has a roughness on the micron level. That is, according to the JIS standard (JIS B 0601: '01, ISO 4287: '97 / ISO 1302: '02), the average interval between the valleys and valleys (RSm) is 0.8 to 10 μm, and the maximum height roughness (Rz) is The uneven surface is 0.2 to 5.0 μm. These numerical values are automatically calculated and output if applied to a recent scanning probe microscope. However, the numerical value when the fine unevenness is expressed by automatic output may not be the actual value of the calculated RSm value. In order to obtain a more accurate numerical value, it is necessary to reconfirm the RSm value by visually inspecting the roughness curve graph output by the scanning probe microscope with respect to the unevenness.

前記粗度曲線グラフを目視検査して、0.2〜20μm範囲の不定期な周期で高低差が0.2〜5μm範囲の粗さ状況にあれば、実際は前記山谷平均間隔(RSm:0.8〜10μm)及び最大高さ粗さ(Rz:0.2〜5.0μm)とほぼ同じである。この目視検査法は、自動計算が信頼できないと判断した場合に、目視検査で判断が簡単にできるので好ましい。要するに、本発明で定義した技術用語で言えば、「ミクロンオーダーの粗度ある表面」にする。使用液は、1%〜数%濃度の苛性ソーダ水溶液を、30〜40℃にして数分浸漬するのが好ましい。次に、再度酸性水溶液に浸漬し、水洗することでナトリウムイオンを除き前処理を終えるのが好ましい。本発明者等はこれを中和工程と呼んでいる。この酸性水溶液として数%濃度の硝酸水溶液が特に好ましい。   If the roughness curve graph is visually inspected and the roughness is in the range of 0.2 to 5 μm with irregular intervals in the range of 0.2 to 20 μm, the average interval between the peaks and valleys (RSm = 0. 8 to 10 μm) and the maximum height roughness (Rz: 0.2 to 5.0 μm). This visual inspection method is preferable because it can be easily determined by visual inspection when it is determined that automatic calculation is not reliable. In short, in terms of technical terms defined in the present invention, a “surface with a roughness on the order of microns”. The working solution is preferably immersed in an aqueous caustic soda solution having a concentration of 1% to several percent at 30 to 40 ° C. for several minutes. Next, it is preferable to finish the pretreatment by removing the sodium ions by immersing again in an acidic aqueous solution and washing with water. The inventors refer to this as a neutralization step. As this acidic aqueous solution, a nitric acid aqueous solution having a concentration of several percent is particularly preferable.

一方、ADC10、ADC12等の鋳造用アルミニウム合金では、以下の工程を経るのが好ましい。即ち、アルミニウム合金の表面から油脂類を除去する脱脂工程の後、前述した工程と同様に予備酸洗し、エッチングするのが好ましい。このエッチングにより、強塩基性下で溶解しない銅分や珪素分が微粒子の黒色スマット(以下、この汚れ状物を鍍金業界では「スマット」と呼ぶので、この表現に倣う。)となる。よって、このスマットを溶かし剥がすべく、次いで数%濃度の硝酸水溶液に浸漬するのが好ましい。硝酸水溶液への浸漬で、銅スマットは溶解され、且つ珪素スマットはアルミニウム合金表面から浮く。   On the other hand, it is preferable to go through the following steps in casting aluminum alloys such as ADC10 and ADC12. That is, after the degreasing step of removing fats and oils from the surface of the aluminum alloy, it is preferable to carry out preliminary pickling and etching in the same manner as the above-described step. This etching results in a black smut in which the copper and silicon components that do not dissolve under strong basicity are fine particles (hereinafter, this soiled material is referred to as “smut” in the plating industry, and this expression is followed). Therefore, it is preferable to immerse the smut in an aqueous nitric acid solution having a concentration of several percent in order to dissolve and remove the smut. By immersion in an aqueous nitric acid solution, the copper smut is dissolved and the silicon smut floats from the aluminum alloy surface.

特に、使用した合金がADC12のように珪素分が多量に含まれた合金であると、硝酸水溶液に浸漬しただけでは、珪素スマットがアルミニウム合金基材の表面に付着し続け、これは剥がし切れない。それ故、次いで超音波をかけた水槽内に浸漬して、超音波洗浄し、珪素スマットを物理的に引き剥がすのが好ましい。これで全てのスマットが剥がれ落ちるわけではないが、実用上は十分である。これで前処理を終えても良いが、再度、希薄硝酸水溶液に短時間浸漬し水洗するのが好ましい。これで前処理を終えるが、前処理は酸性水溶液浸漬と水洗で終わっているのでナトリウムイオンが残ることはない。以下、ナトリウムイオンについて述べる。   In particular, if the alloy used is an alloy containing a large amount of silicon, such as ADC12, the silicon smut continues to adhere to the surface of the aluminum alloy substrate simply by being immersed in an aqueous nitric acid solution, which cannot be completely peeled off. . Therefore, it is preferable that the silicon smut is physically peeled off by immersing in an ultrasonic bath and ultrasonic cleaning. This does not remove all the smut, but it is sufficient for practical use. The pretreatment may be completed with this, but it is preferable to immerse again in a dilute nitric acid aqueous solution for a short time and wash with water. This completes the pretreatment, but since the pretreatment is completed by immersion in an acidic aqueous solution and washing with water, sodium ions do not remain. Hereinafter, sodium ions will be described.

実験事実から言えば、エポキシ系接着剤を使用して、アルミニウム合金板同士を接着したときの接合強度は、ミクロンオーダーの粗度とその面のナノオーダーの超微細凹凸の形状特性によって殆ど決定される。実験事実から言えば、苛性ソーダ水溶液によるエッチングで、その浸漬条件等を探し出せば、前述した「NAT」理論でいう条件を偶然にしろ形状的に満たしていれば、意外に強い接着力が得られる。しかしながら、苛性ソーダによるエッチングのみの処理で、表面処理を終了させれば、その後に水洗を十々分に行ってもアルミニウム合金表層にナトリウムイオンが残存する。ナトリウムイオンは小粒径が故に移動し易く、塗装や接着が為された後であっても全体が濡れた状態になると、樹脂層を浸透する水分子に伴われて残存していたナトリウムイオンが、何故か金属/樹脂の境界面に集まって来て、アルミニウム表面の酸化を進める。   From the experimental facts, the bonding strength when aluminum alloy plates are bonded to each other using an epoxy adhesive is almost determined by the roughness of the micron order and the shape characteristics of the nano-order ultra-fine irregularities on the surface. The From the experimental facts, if the immersion conditions and the like are searched for by etching with an aqueous caustic soda solution, an unexpectedly strong adhesive force can be obtained if the conditions described in the “NAT” theory are met by chance. However, if the surface treatment is completed only by etching with caustic soda, sodium ions remain on the surface layer of the aluminum alloy even after sufficient washing with water. Sodium ions are easy to move because of their small particle size, and even after being painted or adhered, when the whole becomes wet, the remaining sodium ions are accompanied by water molecules penetrating the resin layer. Somehow, it gathers at the metal / resin interface and advances the oxidation of the aluminum surface.

即ち、アルミニウム合金表面の腐食が生じ、その結果、基材と塗膜や接着剤間の剥離を促進する。この様な事情から未だに接着前に行うアルミニウム合金前処理として、苛性ソーダ水溶液でのエッチングを行う理由はない。それ故、現在でも、重クロム酸カリ、無水クロム酸の6価クロム化合物の水溶液に、アルミニウム合金を浸漬してクロメート処理するか、又は陽極酸化して未封孔のまま使用するのが強い接着剤接合の標準的前処理法とされている。要するにエッチングによる接着力向上に注目する以前に、アルミニウム合金表面の腐食や変質を防止することに主眼があった。   That is, corrosion of the aluminum alloy surface occurs, and as a result, peeling between the substrate and the coating film or adhesive is promoted. Under such circumstances, there is still no reason to perform etching with an aqueous caustic soda solution as an aluminum alloy pretreatment prior to bonding. Therefore, even today, it is strongly bonded to an aluminum alloy soaked in an aqueous solution of potassium dichromate or hexavalent chromium compound of chromic anhydride, or anodized and used unsealed. It is regarded as a standard pretreatment method for agent bonding. In short, before focusing on improving the adhesion by etching, the main focus was on preventing corrosion and alteration of the aluminum alloy surface.

しかしながら、アルミニウム合金を苛性ソーダエッチングする方法が全く使用されていないわけではなく、塗装の為の前処理でよく使用されている。通常、塗装では極限的な接着力が求められるわけでもなく、風雨が当たる屋外使用用途でなければ水に浸ることもないとの判断による。加えて塗膜保証を10年とする等というような製品でなければ、この塗装前処理法も不合理ではない。本発明はこのような安易な考え方を前提とせず、長期的な接合安定性を重要課題とした。それ故、ナトリウムイオンの排除は最重要事項なのである。   However, the method of caustic soda etching of an aluminum alloy is not completely used, and is often used in a pretreatment for painting. Normally, the coating does not require an extreme adhesive force, and it is based on the judgment that it will not be immersed in water unless it is used outdoors for wind and rain. In addition, this pre-painting method is not unreasonable unless the product has a coating film guarantee of 10 years. The present invention does not presuppose such an easy way of thinking and makes long-term bonding stability an important issue. Therefore, the elimination of sodium ions is of paramount importance.

アルミニウム合金に含有するナトリウム(Na)についても述べておく。アルミニウム金属の製法は、ボーキサイトを苛性ソーダ水溶液で溶解することで高純度のアルミニウム化合物を得、その電解還元によってアルミニウム地金を製造している。この製法上、アルミニウム地金にナトリウムが不純物として含まれることは避けられない。しかし現行の冶金技術は、アルミニウム合金中のナトリウム含量を極限まで抑えることが出来ている。それ故、酸塩基のミストがない通常環境において、昨今の市販アルミニウム合金では、直接的な濡れ(液体の水)が共存しないと腐食が進むことはない。実際、腐食が高速で進行するのは、濡れと潮風からの塩分(塩化ナトリウム)、及び陽光による加熱があるときである。即ち、市販のアルミニウム合金を、悪環境地域、例えば海岸近くに所在する都市で、潮風強く、かつ気温も高い地域の屋外で使用したとき、その腐食速度は速い。   The sodium (Na) contained in the aluminum alloy is also described. In the production method of aluminum metal, high purity aluminum compound is obtained by dissolving bauxite with an aqueous caustic soda solution, and aluminum ingot is produced by electrolytic reduction thereof. In this manufacturing method, it is inevitable that sodium is contained as an impurity in the aluminum metal. However, the current metallurgical technology can suppress the sodium content in the aluminum alloy to the limit. Therefore, in a normal environment where there is no acid-base mist, in a recent commercial aluminum alloy, corrosion does not proceed unless direct wetting (liquid water) coexists. In fact, corrosion proceeds at high speed when there is wetting, salt from the sea breeze (sodium chloride), and heating by sunlight. That is, when a commercially available aluminum alloy is used outdoors in a bad environment area, for example, a city located near the coast, strong in sea breezes and high in temperature, its corrosion rate is high.

この腐食対策は、一般にはその全表面を塗料、接着剤等で被覆する。そのとき、その塗膜や接着層に割れヒビ等が生じないことで必要であり、この割れヒビ等から、塩分を含む水が、アルミニウム合金の表面に侵入しないようにすることが重要である。そのような対策が為された場合、必ずしもアルミニウム合金の表面処理としては一般的なクロメート処理による必要はなく、塗膜耐候性が良くて塗膜/基材間の接着が良好であれば、塗装のみでも悪環境下にても十分に長持ちする。特に、昨今は6価クロムの使用が世界中で拒絶されつつあり、クロメート処理は既に好ましいアルミニウム合金表面処理法と言えない。その一方、現在では、耐候性に優れた塗料、耐湿性や耐熱性に優れた接着剤が多く市販されている。このような中、本発明者等は、塗料や接着剤とアルミニウム合金基材間の強い接合が、長期に維持されるためにアルミニウム合金側に求められる条件の最適化とその理論化を図ろうとした。   As a countermeasure against corrosion, generally, the entire surface is coated with a paint, an adhesive or the like. At that time, it is necessary that cracks or the like are not generated in the coating film or adhesive layer, and it is important that salt-containing water does not enter the surface of the aluminum alloy from the cracks or the like. When such countermeasures are taken, it is not always necessary to use a general chromate treatment as a surface treatment for an aluminum alloy. If the coating film has good weather resistance and adhesion between the coating film and the substrate is good, coating It will last long enough even in a bad environment. In particular, recently, the use of hexavalent chromium is being rejected all over the world, and chromate treatment is not already a preferable aluminum alloy surface treatment method. On the other hand, at present, many paints excellent in weather resistance and adhesives excellent in moisture resistance and heat resistance are commercially available. Under these circumstances, the present inventors have attempted to optimize and theorize the conditions required on the aluminum alloy side in order to maintain a strong bond between the paint or adhesive and the aluminum alloy substrate for a long period of time. did.

アルミニウム合金表面の好ましい粗度は、具体的には基本的に苛性ソーダ等の強塩基性水溶液によって得て、その後に酸性水溶液への浸漬と十分な水洗でナトリウムイオンを取り除く。ところが、電子顕微鏡で観察すると、苛性ソーダ水溶液でのエッチングで得られたアルミニウム合金表面の微細構造は、数十nm周期の超微細凹凸があり、硬化した接着剤が基材凹部から抜け難いとみられる面、即ち「NAT」仮説で求める好ましい超微細凹凸面であるに対し、そのアルミニウム合金を硝酸水溶液に浸漬水洗した後の表面は、超微細凹凸の品質レベル(凹凸の高低差)が低下していた。要するに、ナトリウムイオンを取り除く為の酸性水溶液へ浸漬操作が、一種の化学研磨になる。苛性ソーダ水溶液でのエッチング後のアルミニウム合金表面の電子顕微鏡写真を見た場合、感覚的な表現でいうと、ミクロの目で見た場合のザラザラ面となっており、このザラザラ面は酸性水溶液に浸漬した場合、化学研磨によりザラザラ度を低下せしめ、接着剤接合には逆効果になった。   Specifically, the preferable roughness of the aluminum alloy surface is basically obtained by a strongly basic aqueous solution such as caustic soda, and then sodium ions are removed by immersion in an acidic aqueous solution and sufficient water washing. However, when observed with an electron microscope, the microstructure of the aluminum alloy surface obtained by etching with an aqueous caustic soda solution has ultra-fine irregularities with a period of several tens of nanometers, and the surface on which hardened adhesive is unlikely to escape from the substrate recesses. In other words, the surface after the aluminum alloy was immersed in an aqueous nitric acid solution and washed with water was reduced in the quality level of the ultra-fine unevenness (the unevenness level). . In short, the immersion operation in an acidic aqueous solution for removing sodium ions is a kind of chemical polishing. Looking at the electron micrograph of the surface of the aluminum alloy after etching with an aqueous solution of caustic soda, in a sensuous expression, it is a rough surface when viewed with microscopic eyes, and this rough surface is immersed in an acidic aqueous solution. In this case, the degree of roughness was reduced by chemical polishing, which had an adverse effect on adhesive bonding.

そこでこのザラザラ度を、以下に述べる微細エッチングで取り戻すようにしたものである。要するに、本発明者等が本発明をするに至った経緯、思考、理論は、数nmの高解像度が得られる高性能電子顕微鏡が容易に使用できるようになったことにもよっている。又、本発明において、アルミニウム合金の耐候性耐食性の獲得は、得られた最終的なアルミニウム合金表面を酸化アルミニウム表層とし、且つ、合金基材への接着剤の接合力を極限に高めることで達成しようという考え方である。   Therefore, the roughness is recovered by fine etching described below. In short, the background, thought, and theory that the present inventors have made the present invention are based on the fact that a high-performance electron microscope that can obtain a high resolution of several nanometers can be easily used. In the present invention, the weather resistance and corrosion resistance of the aluminum alloy can be obtained by making the final aluminum alloy surface the aluminum oxide surface layer and by increasing the bonding strength of the adhesive to the alloy base to the maximum. It is the idea of trying.

前処理を終えたアルミニウム合金部品は、最終処理である以下のような表面処理、即ち微細エッチングを行う。前処理を終えたアルミニウム合金部品を、水和ヒドラジン、アンモニア、及び水溶性アミン化合物のいずれか1つ以上を含む水溶液に浸漬し、その後水洗し、70℃以下で乾燥するのが好ましい。これは、前処理の最終処理で行う脱ナトリウムイオン処理によって表面がやや変化し、粗度は保たれるがその表面がやや円滑になったことに対する粗面の復活策でもある。水和ヒドラジン水溶液等の弱塩基性水溶液に、短時間浸漬して微細エッチングし、表面に10〜100nm径で同等高さ、又は深さの凹部若しくは突起のある超微細凹凸面で覆うようにするものであり、細かく言えば、ミクロンオーダーの凹凸の凹部内壁面に、40〜50nm周期の超微細凹凸が多数を占めるように形成し、電子顕微鏡写真で見た感覚を視覚的に言えばザラザラ度の高い面に仕上げるのが好ましい。   The aluminum alloy component that has undergone the pretreatment is subjected to the following surface treatment, that is, fine etching, which is the final treatment. The pretreated aluminum alloy part is preferably immersed in an aqueous solution containing any one or more of hydrated hydrazine, ammonia, and a water-soluble amine compound, then washed with water and dried at 70 ° C. or lower. This is also a revival measure for the rough surface in which the surface is slightly changed by the sodium removal ion treatment performed in the final treatment of the pretreatment, and the roughness is maintained, but the surface becomes slightly smooth. It is immersed in a weakly basic aqueous solution such as a hydrated hydrazine aqueous solution for a short time and finely etched so that the surface is covered with an ultrafine uneven surface having a recess or protrusion having a diameter of 10 to 100 nm and an equivalent height or depth. To be precise, it is formed so that a large number of ultrafine irregularities with a period of 40 to 50 nm occupy on the inner wall surface of concaves and convexes on the order of microns. It is preferable to finish on a high surface.

又、水洗後の乾燥温度を例えば100℃以上の高温にすると、仮に乾燥機内が密閉的であると、沸騰水とアルミニウム間で水酸化反応が生じ、表面が変化してベーマイト層が形成される。これは丈夫な表層と言えず好ましくない。乾燥機内の湿度状況は乾燥機の大きさや換気の様子だけでなく、投入するアルミニウム合金の量にも関係する。その意味で表面のベーマイト化を防ぐにはどの様な投入条件であれ、90℃以下、好ましくは70℃以下で温風乾燥するのが良好な結果を再現性良く得る上で好ましい。70℃以下で乾燥した場合、XPSによる表面元素分析でアルミニウムのピークからアルミニウム(3価)しか検出できず、市販のA5052、A7075アルミニウム合金板材等のXPS分析では検出できるアルミニウム(0価)は消える。   If the drying temperature after washing with water is, for example, 100 ° C. or higher, if the inside of the dryer is sealed, a hydroxylation reaction occurs between boiling water and aluminum, and the surface changes to form a boehmite layer. . This is not preferable because it cannot be said to be a strong surface layer. The humidity condition in the dryer is related not only to the size of the dryer and the state of ventilation, but also to the amount of aluminum alloy to be introduced. In that sense, hot air drying at 90 ° C. or lower, preferably 70 ° C. or lower, is preferred for obtaining good results with good reproducibility under any charging conditions to prevent surface boehmite formation. When dried at 70 ° C. or lower, only aluminum (trivalent) can be detected from the aluminum peak by surface elemental analysis by XPS, and aluminum (zero valent) that can be detected by XPS analysis of commercially available A5052, A7075 aluminum alloy sheet, etc. disappears. .

XPS分析は、金属表面から1〜2nm深さまでに存在する元素が検出できるので、この結果から、水和ヒドラジンやアミン系化合物の水溶液に浸漬し、その後水洗して温風乾燥することで、アルミニウム合金が持っていた本来の自然酸化層(1nm厚さ程度の酸化アルミニウム薄層)が微細エッチングでより厚くなったことが分かった。少なくとも自然酸化層と異なって、2nm以上の厚さのあることが分かったので、それ以上解明しなかった。即ち、アルゴンイオンビーム等でエッチングしてからXPS分析をすれば、10〜100nm程度のより深い位置での分析が可能であるが、ビーム自体の影響で深層のアルミニウム原子の価数が変化する可能性もあるとのことで、現時点でこの解析が困難と考えて本発明者等はこの考察を止めた。   The XPS analysis can detect elements present at a depth of 1 to 2 nm from the metal surface. From this result, it is immersed in an aqueous solution of hydrated hydrazine or an amine compound, and then washed with water and dried with warm air to obtain aluminum. It was found that the original natural oxide layer (a thin aluminum oxide layer having a thickness of about 1 nm) that the alloy had became thicker by fine etching. Since it was found that the layer had a thickness of 2 nm or more unlike at least the natural oxide layer, it was not further elucidated. That is, if XPS analysis is performed after etching with an argon ion beam or the like, analysis at a deeper position of about 10 to 100 nm is possible, but the valence of aluminum atoms in the deep layer may change due to the influence of the beam itself. The present inventors considered this analysis difficult at the present time, and the present inventors stopped this consideration.

他の表面処理方法によるアルミニウム合金表面の酸化アルミニウム層の形成について述べる。アルミニウム合金の耐候性向上のために行う表面処理法の一つに陽極酸化法がある。アルミニウム合金に陽極酸化を為した場合、数μm〜十数μm厚の酸化アルミニウム層が形成でき、耐候性は大きく向上する。陽極酸化処理直後の酸化アルミニウム層には、無数の20〜40nm径程度の穴の開口部が残されている。この状態、即ち未封孔アルマイト状態で接着剤の接合、又は塗料の塗布を行うと、接着剤、又は塗料が開口部から穴に若干入り込んで固化し、強いアンカー効果を発揮し、接着剤による接合では強い接合力を生むとされている。実際、航空機の組み立てでは、陽極酸化アルミニウム合金として、これに接着剤を塗布して異材質材等を接合することが知られている。   The formation of an aluminum oxide layer on the surface of an aluminum alloy by another surface treatment method will be described. One surface treatment method for improving the weather resistance of aluminum alloys is an anodic oxidation method. When anodization is performed on an aluminum alloy, an aluminum oxide layer having a thickness of several μm to several tens of μm can be formed, and weather resistance is greatly improved. An infinite number of holes having a diameter of about 20 to 40 nm are left in the aluminum oxide layer immediately after the anodizing treatment. In this state, that is, when the adhesive is joined or the paint is applied in the unsealed alumite state, the adhesive or paint slightly enters the hole from the opening and solidifies, and exhibits a strong anchor effect. Bonding is said to produce strong bonding force. In fact, in assembling aircraft, it is known that an anodized aluminum alloy is coated with an adhesive to join different materials.

しかしながら、本発明者等はこの説に疑問を持った。即ち、陽極酸化アルミニウム合金同士をエポキシ系接着剤で強固に接合した一体化物のせん断破断試験を行った場合、本発明者等の破断試験によると、40MPa(40N/mm)以上の強い力で破断したサンプルはなく、且つ破断面を見ると、接着剤が破断するのではなく、陽極酸化層(酸化アルミニウム層)がアルミニウム合金基材から剥がれているものが殆どであった。ここで本発明者等の考察を言えば、「強い接合に必要な金属側の表面は、金属酸化物等セラミック質の高硬度の層でなければならないがその厚さは厚すぎてはならない。」というものである。陽極酸化物の表層は酸化アルミニウムであって、基材アルミニウム自身の酸化物ではあるが、表層はセラミック質で基材は金属だから互いに異物同士である。 However, the inventors have questioned this theory. That is, when a shear fracture test of an integrated product in which anodized aluminum alloys are firmly bonded with an epoxy adhesive is performed, according to the fracture test of the present inventors, a strong force of 40 MPa (40 N / mm 2 ) or more is used. There was no broken sample, and when the fractured surface was viewed, the adhesive was not broken, and most of the anodized layer (aluminum oxide layer) was peeled off from the aluminum alloy substrate. According to the present inventors' consideration, “The surface on the metal side required for strong bonding should be a ceramic-like high hardness layer such as metal oxide, but the thickness should not be too thick. ". The surface layer of the anodic oxide is aluminum oxide and is an oxide of the base aluminum itself. However, since the surface layer is ceramic and the base material is metal, they are foreign matters.

セラミック質が厚ければ、必ず極限状態では物性の差異が現れて破断するはずである。それ故、金属酸化物層は薄い方が好ましく、且つ常識から、その金属酸化物はアモルファスか微結晶状態のセラミック質であると基材との接合が万全で好ましいはずと考えた。即ち、接着物のせん断破断力を強烈なものにするには、むやみに酸化金属層を厚くすべきでなく、陽極酸化を為した未封孔アルマイトの使用は好ましくないという結論である。   If the ceramic material is thick, a difference in physical properties will always appear in the extreme state and it should break. Therefore, it is preferable that the metal oxide layer is thin, and based on common sense, it was considered that the metal oxide layer should be preferably bonded to the base material if it is an amorphous or microcrystalline ceramic material. That is, in order to increase the shear breaking force of the adhesive, the metal oxide layer should not be thickened unnecessarily, and the use of unsealed anodized anodized is not preferable.

以下、本発明でいう微細エッチングについて更に詳細に述べる。水和ヒドラジン、アンモニア、又は水溶性アミン等の水溶液で、PH9〜10の弱塩基性水溶液に適当な温度、適当な時間だけ浸漬すると、その表面は直径10〜100nmの超微細凹凸形状で全面が覆われたものとなる。数平均の直径で言えば50nm程度である。又、逆の言い方をすれば、表面に直径10〜100nmの超微細凹凸形状を得るためには、最適なPH、温度、時間を選択すると良いということである。本発明者等が予想している最も好ましい超微細凹凸の周期、又は超微細凹凸部の直径は、50nm程度であろうと経験的に考えている。その理由は、10nm周期の凹凸なら、ザラザラ面というよりも凹凸具合が微細に過ぎて粘性ある接着剤にとっては円滑面であり、又、100nm以上であれば、ザラザラ面というには大まか過ぎて引っかかるイメージがない。なお、本発明でいう「数平均」とは、統計的に検証出来る程度の総和平均という程度ではない、20個以内のサンプルを抽出した程度の平均値をいう。   Hereinafter, the fine etching referred to in the present invention will be described in more detail. When immersed in an aqueous solution of hydrazine, ammonia, water-soluble amine or the like in a weakly basic aqueous solution with a pH of 9 to 10 for an appropriate temperature and for an appropriate time, the surface is an ultra fine uneven shape with a diameter of 10 to 100 nm and the entire surface is It will be covered. The number average diameter is about 50 nm. In other words, in order to obtain an ultra fine uneven shape with a diameter of 10 to 100 nm on the surface, the optimum pH, temperature, and time should be selected. It is empirically considered that the most preferable period of the ultra fine irregularities or the diameter of the ultra fine irregularities expected by the present inventors will be about 50 nm. The reason is that if the irregularities have a period of 10 nm, the irregularity is finer than the rough surface, and it is a smooth surface for a viscous adhesive. There is no image. Note that the “number average” in the present invention is not a total average that can be statistically verified, but an average value that is obtained by extracting 20 or less samples.

50nmは、実験結果から得た経験的感覚からの数値である。ただ50nm周期を目指すとしても、化学反応でそのような規律正しいものが出来るはずがなく、バラついたものになる。電子顕微鏡で撮影した写真を見て数値化するしかなく、その結果から言えば、直径10〜100nmで同等の深さの凹部、又は直径10〜100nmで同等の高さの凸部でほぼ100%全面が覆われた超微細凹凸形状面ということになる。実際、直径10〜20nmの凹凸が表面の大部分を占める場合、又、逆に直径100nm以上の凹凸が多きを占めるような場合も接合力は劣ったものとなった。A7075材やA5052材を水和ヒドラジンの水溶液でエッチングした例を記す。   50 nm is a numerical value from an empirical sense obtained from the experimental results. However, even if aiming for a 50 nm period, such a disciplined chemical reaction cannot be made, and it will vary. There is no choice but to digitize it by looking at a photograph taken with an electron microscope. From the result, it is almost 100% with a concave portion having a diameter of 10 to 100 nm and an equivalent depth or a convex portion having a diameter of 10 to 100 nm and an equivalent height. This is an ultra-fine uneven surface with the entire surface covered. Actually, when the unevenness having a diameter of 10 to 20 nm occupies most of the surface, or conversely, when the unevenness having a diameter of 100 nm or more occupies a large amount, the bonding strength was inferior. An example in which A7075 material and A5052 material are etched with an aqueous solution of hydrated hydrazine will be described.

即ち、このような大きさの凹部や凸部でアルミニウム合金を覆うようにするには、試行錯誤した実験による浸漬条件を探索する必要がある。一水和ヒドラジンの3.5%濃度の60℃の水溶液で言うと、A5052、A7075材の浸漬では浸漬時間を2分間程度とするのが最適であり、この浸漬時間による表面は10〜100nm直径、数平均では直径40〜50nmの凹部で全面が覆われる。しかしながら、4分間浸漬した場合、凹部の直径が拡大して80〜200nmのものとなり、これらの凹部の直径の数平均値では100nm径を超えるように急拡大し、凹部の底部にも更に凹部が発生してその構造が複雑化する。更に、8分間浸漬すると、横穴状の侵食も進んでややスポンジ状になり、更に深い凹部が繋がって谷や峡谷状に変化する。16分浸漬すると、目視でもアルミニウム合金が元の金属色からやや褐色かかって可視光線の吸収具合が変化し始めたことが分かる。   In other words, in order to cover the aluminum alloy with the concave and convex portions having such a size, it is necessary to search for immersion conditions through trial and error experiments. Speaking of a 60% aqueous solution of hydrazine monohydrate at a concentration of 3.5%, it is optimal to immerse the A5052 and A7075 materials at an immersion time of about 2 minutes. In average, the entire surface is covered with a recess having a diameter of 40 to 50 nm. However, when immersed for 4 minutes, the diameter of the recesses increases to 80 to 200 nm, and the number average value of the diameters of these recesses rapidly expands to exceed the 100 nm diameter, and there are further recesses at the bottom of the recesses. Occurs and the structure becomes complicated. Further, when immersed for 8 minutes, the erosion of the side holes progresses to become slightly sponge-like, and deeper recesses are connected to change to valleys or canyons. When immersed for 16 minutes, it can be seen by visual observation that the aluminum alloy is slightly browned from the original metal color and the absorption of visible light begins to change.

ちなみに前述した条件で浸漬時間が1分間のときは、電子顕微鏡写真で10〜40nm径の凹部が観察され、これらの数平均直径は25〜30nmの凹部であった。更に、0.5分間の浸漬であると、表面を覆う凹部の直径は10〜30nmであり、これらの数平均直径で言えば25nm程度で、浸漬時間1分の場合と大差がない。そして浸漬時間0.5分の物と、浸漬時間1分の物の電子顕微鏡写真をよく見比べてみると、凹部の深さは0.5分間浸漬したものが1分間浸漬したものより明らかに浅い様子であった。要するに、弱塩基性水溶液中のA5052、A7075では、何故か20〜25nm周期で侵食が始まり、まずこれが直径20nm程度の凹部を作り、この凹部の深さが直径と同レベルまで深くなったら、その後は凹部の縁が侵食されて凹部直径の拡大となり、凹部の内部の不定方向への侵食が始まることが分かった。そのように侵食された場合、最も接着剤接合に適した単純で且つ丈夫な侵食具合は、A7075、A5052を3〜5%一水和ヒドラジン水溶液(60℃)に浸漬した場合で、ほぼ2分間であった。   By the way, when the immersion time was 1 minute under the conditions described above, concave portions having a diameter of 10 to 40 nm were observed in the electron micrograph, and these number average diameters were concave portions having a diameter of 25 to 30 nm. Furthermore, when the immersion is performed for 0.5 minutes, the diameter of the concave portion covering the surface is 10 to 30 nm, and the number average diameter is about 25 nm, which is not much different from the case of the immersion time of 1 minute. And if you look closely at the electron micrographs of the immersion time of 0.5 minutes and the immersion time of 1 minute, the depth of the recess is clearly shallower than the one immersed for 1 minute. It was a state. In short, in A5052 and A7075 in weakly basic aqueous solution, for some reason, erosion started with a period of 20 to 25 nm. First, this formed a recess with a diameter of about 20 nm, and when the depth of this recess became the same level as the diameter, It was found that the edge of the recess was eroded to increase the diameter of the recess, and erosion in an indefinite direction inside the recess started. When so eroded, the simple and strong erosion condition most suitable for adhesive bonding is approximately 2 minutes when A7075 and A5052 are immersed in a 3-5% monohydric hydrazine aqueous solution (60 ° C.). Met.

例えば、温度23℃で粘度40Pa・秒の1液性高温硬化型エポキシ系接着剤「EP106(セメダイン株式会社(日本国東京都)製)」を使用した場合について説明する。実施例で示す接着実験の結果から言えば、前記条件で水和ヒドラジン水溶液に1分浸漬したA7075等のアルミニウム合金材の場合では、数平均で超微細凹部の直径が25nm程度と小さ過ぎてエポキシ樹脂がこの超微細凹部に侵入し難いようであり、浸漬時間を2分にした場合の接着力が最大になるようであった。前記条件でA7075等を2分間浸漬した場合、超微細凹部の直径は数平均の直径で40nm程度になったので、このエポキシ樹脂はこの程度以上の超微細凹部であれば、この超微細凹部内に頭を突っ込み得るのだろうと推定された。   For example, a case where a one-component high-temperature curing type epoxy adhesive “EP106 (manufactured by Cemedine Co., Ltd. (Tokyo, Japan)) having a viscosity of 40 Pa · sec at a temperature of 23 ° C. will be described. According to the results of the adhesion experiments shown in the examples, in the case of an aluminum alloy material such as A7075 immersed in a hydrated hydrazine aqueous solution for 1 minute under the above conditions, the diameter of the ultrafine recesses is too small on the order of 25 nm on the number average. It seems that the resin hardly penetrates into the ultrafine recesses, and the adhesive strength when the immersion time is 2 minutes seems to be maximized. When A7075 or the like was immersed for 2 minutes under the above-mentioned conditions, the diameter of the ultrafine recess was about 40 nm in terms of number average diameter. It was estimated that it would be possible to pierce the head.

要するに、ミクロンオーダーの凹部の内面が数十nm周期の凹凸あるザラザラ面であると、接合力が高くなるのである。又、前述した浸漬時間が2分間以上、例えば4分間、8分間と長くなると凹部径が大きくなるだけでなく、凹部の中にまた凹部が出来、簡単に言えばスポンジ状になってきて、アルミニウム合金表面層自体の強度が弱くなるだけでなく、深く複雑な穴の奥まで接着剤が侵入できないのである。この結果、接合物の接合境界部に空隙部が増え、結果として接合力が最大値より低下する。要するに、前記のエポキシ系接着剤をA7075等のアルミニウム合金に使用する場合、その接合力を最高にするには、ミクロンオーダーの適当な粗度とするに加え、その表面を数平均値で40〜50nm直径の超微細凹部で覆うことが好ましく、この超微細凹部を作るための最適な浸漬時間の範囲は非常に狭いことが理解できる。前述した2分間前後(概ね1.5分〜3分)の浸漬時間の場合に、最善の接合結果が得られたからである。   In short, when the inner surface of the micron-order concave portion is a rough surface having irregularities with a period of several tens of nanometers, the bonding force is increased. In addition, when the immersion time is longer than 2 minutes, for example, 4 minutes or 8 minutes, not only the diameter of the recesses is increased, but also recesses are formed in the recesses. Not only does the strength of the alloy surface layer itself weaken, but the adhesive cannot penetrate deeply into the complex holes. As a result, voids increase at the bonding boundary portion of the bonded article, and as a result, the bonding force decreases from the maximum value. In short, when the epoxy adhesive is used for an aluminum alloy such as A7075, in order to maximize the bonding force, in addition to setting the surface to a suitable roughness on the order of microns, the surface has a number average value of 40 to 40. It is preferable to cover with an ultrafine recess having a diameter of 50 nm, and it can be understood that the range of the optimum immersion time for making this ultrafine recess is very narrow. This is because the best joining result was obtained when the immersion time was approximately 2 minutes (approximately 1.5 to 3 minutes) as described above.

A5052のアルミニウム合金に対して同じエポキシ系接着剤を使用した場合、苛性ソーダ水溶液によるエッチング時の浸漬条件はA7075に対する場合と若干異なる。これは侵食具合や、その侵食された表面の物性が当然だが異なるからと考えられる。   When the same epoxy adhesive is used for the A5052 aluminum alloy, the immersion conditions during etching with an aqueous caustic soda solution are slightly different from those for A7075. This is probably because the erosion condition and the physical properties of the eroded surface are different.

アンモニア水はヒドラジン水溶液よりもPHが低いし、水溶液を常温より高温にするとアンモニアの揮発が激しくなる。それ故に高濃度、低温での浸漬処理となり、25%濃度程度の最も濃いアンモニア水を常温で使用する場合も15〜20分の浸漬時間が必要となる。逆に水溶性アミン類の多くは、ヒドラジン水溶液よりも強い塩基性水溶液となるのでより短時間での処理となる。量産処理では浸漬時間が長過ぎても短きに過ぎても作業の安定性が失われる。その意味で最適浸漬時間を数分にできる水和ヒドラジンが実際の使用には適しているように思われる。   Ammonia water has a lower pH than an aqueous hydrazine solution, and when the aqueous solution is heated above room temperature, the volatilization of ammonia becomes intense. Therefore, the immersion treatment is performed at a high concentration and a low temperature, and the immersion time of 15 to 20 minutes is required even when the most concentrated ammonia water having a concentration of about 25% is used at room temperature. On the contrary, many water-soluble amines become a basic aqueous solution stronger than the hydrazine aqueous solution, so that the treatment takes a shorter time. In mass production processing, the stability of the work is lost if the immersion time is too long or too short. In that sense, hydrazine hydrate, which can have an optimum soaking time of several minutes, seems to be suitable for practical use.

何れの場合も、水和ヒドラジン、アンモニア、又は水溶性アミンの水溶液への浸漬の後で、数%濃度の過酸化水素水溶液に浸漬した場合に接合力が向上する合金種があった。表面の酸化金属層の厚さが厚くなっているのかもしれないが、厚さ2nm以上について分析が難しく理論的には解明出来なかった。   In any case, there was an alloy type that improved the bonding strength when immersed in an aqueous solution of hydrogen peroxide having a concentration of several percent after immersion in an aqueous solution of hydrated hydrazine, ammonia, or a water-soluble amine. The thickness of the metal oxide layer on the surface may be thick, but it was difficult to analyze with a thickness of 2 nm or more and could not be theoretically solved.

(マグネシウム合金の表面処理)
マグネシウム合金部品は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂を除くのが好ましい。具体的には、市販のマグネシウム合金用脱脂材を、薬剤メーカーの指定通りの濃度で湯に投入して水溶液を用意し、これに浸漬した後、これを水洗するのが好ましい。通常の市販品では、一般的には濃度5〜10%、液温を50〜80℃とし、これに5〜10分浸漬する。次に、酸性水溶液に短時間浸漬した後、これを水洗しマグネシウム合金の化学エッチングを行う。この脱脂工程で除き切れなかった汚れを含めマグネシウム合金表層が剥がされ、同時にミクロンオーダーの粗度、即ち、走査型プローブ顕微鏡観察測定によるJIS規格(JISB0601:2001(ISO 4287))で言えば、粗さ曲線の平均長さ(RSm)が0.8〜10μm、粗さ曲線の最大高さ粗さ(Rz)が0.2〜5μmの凹凸がある面にする。
(Surface treatment of magnesium alloy)
It is preferable that the magnesium alloy parts are first immersed in a degreasing tank to remove oils and finger grease adhered by machining. Specifically, it is preferable that a commercially available degreased material for magnesium alloy is poured into hot water at a concentration specified by the drug manufacturer to prepare an aqueous solution and immersed in it, and then washed with water. In general commercial products, the concentration is generally 5 to 10%, the liquid temperature is 50 to 80 ° C., and the product is immersed in this for 5 to 10 minutes. Next, after being immersed in an acidic aqueous solution for a short time, this is washed with water and chemical etching of the magnesium alloy is performed. The surface of the magnesium alloy including the dirt that could not be removed in this degreasing process was peeled off, and at the same time, the roughness on the order of microns, that is, according to the JIS standard (JISB0601: 2001 (ISO 4287)) measured by scanning probe microscope observation, The surface has an uneven surface with an average length (RSm) of the roughness curve of 0.8 to 10 μm and a maximum height roughness (Rz) of the roughness curve of 0.2 to 5 μm.

上記で行う化学エッチング用の使用液としては、1%〜数%濃度のカルボン酸や鉱酸の水溶液、特にクエン酸、マロン酸、酢酸、硝酸等の水溶液が好ましい。エッチングでは、通常マグネシウム合金に含まれるアルミニウムや亜鉛は、溶解せず黒色のスマットとしてマグネシウム合金表面に付着残存するから、次に弱塩基性水溶液に浸漬してアルミニウムスマットを溶解して除き、次に強塩基水溶液に浸漬して亜鉛スマットを溶解して除くのが好ましい。これらの処理で前処理を終える。   The use solution for chemical etching performed above is preferably an aqueous solution of carboxylic acid or mineral acid having a concentration of 1% to several percent, particularly an aqueous solution of citric acid, malonic acid, acetic acid, nitric acid or the like. In etching, aluminum and zinc usually contained in a magnesium alloy do not dissolve and remain attached to the surface of the magnesium alloy as a black smut. Next, the aluminum smut is dissolved by immersing it in a weakly basic aqueous solution. It is preferable to dissolve and remove zinc smut by dipping in a strong base aqueous solution. The preprocessing is completed with these processes.

前記の前処理を終えたマグネシウム合金部品を、所謂、化成処理する。即ち、マグネシウムは、イオン化傾向の非常に高い金属であるから空気中の湿気と酸素による酸化速度が他の金属に比べて速い。マグネシウム合金には、自然酸化膜があるが耐食性の点から見て十分強いものではなく、通常の環境下でも自然酸化膜を拡散した水分子や酸素で酸化腐食が進行する。それ故、通常のマグネシウム合金部品は、クロム酸や重クロム酸カリ等の水溶液に浸漬して酸化クロムの薄層で全面を覆う(クロメート処理と呼ばれる)か、又はリン酸を含むマンガン塩の水溶液に浸漬して、リン酸マンガン系化合物で全面を覆う処理を行って、腐食防止処置を行う。これらの処置をマグネシウム業界では化成処理と呼んでいる。   The so-called chemical conversion treatment is performed on the magnesium alloy part after the pretreatment. That is, since magnesium is a metal with a very high ionization tendency, the oxidation rate by moisture and oxygen in air is faster than other metals. Magnesium alloys have a natural oxide film, but are not sufficiently strong from the viewpoint of corrosion resistance, and oxidative corrosion proceeds with water molecules and oxygen diffused through the natural oxide film even in a normal environment. Therefore, normal magnesium alloy parts are immersed in an aqueous solution of chromic acid or potassium dichromate and covered with a thin layer of chromium oxide (called chromate treatment), or an aqueous solution of manganese salt containing phosphoric acid Is immersed, and the whole surface is covered with a manganese phosphate compound to prevent corrosion. These treatments are called chemical treatments in the magnesium industry.

要するに、マグネシウム合金に行う化成処理とは、金属塩を含む水溶液にマグネシウム合金を浸漬して、その表面を金属酸化物及び/又は金属リン酸化物の薄層で覆う処置を言う。現在では、6価のクロム化合物を使用するクロメート型の化成処理は環境汚染の観点から忌避されており、ノンクロメート処理と言われるクロム以外の金属塩を使用した化成処理、実際には、前記したリン酸マンガン系化成処理、又は珪素系化成処理が行われる。本発明ではこれらの方法と相違して、弱酸性とした過マンガン酸カリの水溶液を、化成処理用水溶液として使用するのが特に好ましい。この場合、表面を覆う皮膜(化成皮膜という)は、二酸化マンガンとなる。   In short, the chemical conversion treatment performed on the magnesium alloy refers to a treatment in which the magnesium alloy is immersed in an aqueous solution containing a metal salt and the surface thereof is covered with a thin layer of metal oxide and / or metal phosphate. At present, the chromate-type chemical conversion treatment using a hexavalent chromium compound is avoided from the viewpoint of environmental pollution. The chemical conversion treatment using a metal salt other than chromium, which is called non-chromate treatment, is actually described above. Manganese phosphate chemical conversion treatment or silicon chemical conversion treatment is performed. In the present invention, unlike these methods, it is particularly preferable to use a weakly acidic aqueous solution of potassium permanganate as the aqueous solution for chemical conversion treatment. In this case, a coating covering the surface (referred to as a chemical conversion coating) is manganese dioxide.

具体的な処理法としては、前処理を終えたマグネシウム合金部品を非常に希薄な酸性水溶液に短時間浸漬した後、これを水洗し、前処理で洗浄し切れず残存しているナトリウムイオンを中和して除き、次に化成処理用水溶液に浸漬した後、これを水洗する方法が好ましい。希薄な酸性水溶液として、クエン酸やマロン酸の0.1〜0.3%の水溶液を使用するのが好ましく、常温付近で1分程度浸漬するのが好ましい。化成処理用水溶液としては、過マンガン酸カリを1.5〜3%、酢酸を1%前後、及び酢酸ナトリウムを0.5%前後含む水溶液を、温度40〜50℃で使用するのが好ましく、この水溶液では浸漬時間は1分程度が好ましい。これらの操作により、マグネシウム合金はニ酸化マンガンの化成皮膜で覆われたものとなり、その表面形状は、ミクロンオーダーの大きな粗度(粗さ面)を有し、且つ電子顕微鏡で観察するとナノオーダーの超微細凹凸あるものとなる。   As a specific treatment method, a magnesium alloy part that has been pretreated is immersed in a very dilute acidic aqueous solution for a short time, and then washed with water to remove residual sodium ions that have not been thoroughly washed by pretreatment. It is preferable to remove the water and then immerse it in an aqueous solution for chemical conversion treatment and then wash it with water. As the dilute acidic aqueous solution, it is preferable to use a 0.1 to 0.3% aqueous solution of citric acid or malonic acid, and it is preferable to immerse at about room temperature for about 1 minute. As the chemical conversion treatment aqueous solution, it is preferable to use an aqueous solution containing 1.5 to 3% potassium permanganate, about 1% acetic acid and about 0.5% sodium acetate at a temperature of 40 to 50 ° C. In this aqueous solution, the immersion time is preferably about 1 minute. By these operations, the magnesium alloy is covered with a conversion film of manganese dioxide, and the surface shape has a large roughness (roughness surface) on the order of microns, and when observed with an electron microscope, it is on the order of nanometers. There will be ultra-fine irregularities.

図5及び図6は、それぞれ10万倍のナノオーダーの超微細凹凸形状の電子顕微鏡写真である。これらの超微細凹凸の表面形状を、文章表現で表現するのは困難であるが、敢えて言えば、図5の電子顕微鏡写真からは、5〜20nm径で20〜200nm長さの棒状、又は球状物のような無数に錯綜した凹凸で表面が覆われている超微細凹凸形状と言える。図6の電子顕微鏡写真からは、この超微細凹凸形状は、5〜20nm径で10〜30nm長さの棒状、又は球状のような突起が無数に生えた直径80〜120nmの球状物が、不規則に積み重なったような形状の表面を呈している。約10nm径の棒状(針状)物質は、電子顕微鏡観察から言えば完全に結晶であると言うべきだが、X線回折装置(XRD)からはマンガン酸化物で見られる回折線は認められなかった。   FIG. 5 and FIG. 6 are electron micrographs of nano-scale ultra-fine irregularities each having a magnification of 100,000 times. Although it is difficult to express the surface shape of these ultra-fine irregularities with textual expression, from an electron micrograph of FIG. 5, it is a rod-like or spherical shape having a diameter of 5 to 20 nm and a length of 20 to 200 nm. It can be said that the surface is covered with infinitely complex irregularities such as objects. From the electron micrograph shown in FIG. 6, this ultra fine irregular shape is in the form of a rod having a diameter of 5 to 20 nm and a length of 10 to 30 nm, or a sphere having a diameter of 80 to 120 nm with numerous spherical protrusions. The surface is shaped like a regular stack. The rod-like (needle-like) substance having a diameter of about 10 nm should be said to be completely crystalline from the viewpoint of electron microscope observation, but the diffraction line seen in the manganese oxide was not observed from the X-ray diffractometer (XRD). .

X線回折装置(XRD)は、結晶の量が少ないと検出できないので、今のところ学問的にこれらが結晶であると判断して良いか否かは、結晶学の学徒でない本発明者等には分からない。少なくとも、これらがアモルファス(非結晶)というには形が整い過ぎており、本発明者はこれがアモルファスとも言えないと考える。なお、XPS分析からは、マンガン(イオンであり0価のマンガンではない)と酸素の大きなピークが認められ、表層はマンガン酸化物であることは間違いない。この表面は、色調が暗色であり、二酸化マンガンが少なくとも主体のマンガン酸化物である。   The X-ray diffractometer (XRD) cannot detect if the amount of crystals is small, so it is up to the inventor who is not a crystallographic scholar to determine whether these are crystallographically. I do n’t know. At least, these are too shaped to be amorphous (non-crystalline), and the present inventor thinks that they cannot be said to be amorphous. From XPS analysis, large peaks of manganese (which is an ion and not zero-valent manganese) and oxygen are recognized, and there is no doubt that the surface layer is a manganese oxide. This surface has a dark color tone and is a manganese oxide mainly composed of manganese dioxide.

又、前記と全く異なる微細表面形状であるが、直径20〜40nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地の斜面にあるようなデコボコ形状の地面のような超微細凹凸形状で、ほぼ全面が覆われている場合もある。要するに、5〜20nm直径の棒状物が認められない場合には、このような溶岩台地の表面のような形状になることが多く、組成的にはアルミニウム含量の多い場合である。この表面の一例の写真を図7に示したが、これは鋳造用マグネシウム合金であるAZ91Dの処理例である。   In addition, the surface shape is completely different from the above, but the shape is a stack of particles with a diameter of 20 to 40 nm and indefinite polygonal shapes. In some cases, the shape covers almost the entire surface. In short, when a rod-like material having a diameter of 5 to 20 nm is not recognized, the shape is often like the surface of such a lava plateau, and the composition has a high aluminum content. A photograph of an example of this surface is shown in FIG. 7, which is a processing example of AZ91D, which is a magnesium alloy for casting.

(銅合金の表面処理)
銅合金部品は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂をその表面から除去するのが好ましい。具体的には、市販の銅合金用脱脂材を薬剤メーカーの指定通りの濃度で水に投入して水溶液を用意し、これに浸漬し水洗するのが好ましいが、市販の鉄用、ステンレス用、アルミ用等の脱脂剤、更には工業用、一般家庭用の中性洗剤を溶解した水溶液も使用できる。具体的には、市販脱脂剤や中性洗剤を数%〜5%濃度で水に溶解し、50〜70℃とし5〜10分浸漬し水洗するのが好ましい。
(Surface treatment of copper alloy)
It is preferable that the copper alloy part is first immersed in a degreasing tank to remove the oil agent and finger grease adhered by machining from the surface. Specifically, a commercially available copper alloy degreasing material is poured into water at a concentration specified by the drug manufacturer to prepare an aqueous solution, which is preferably immersed in this and washed with water. Degreasing agents for aluminum and the like, and aqueous solutions in which neutral detergents for industrial use and general household use are dissolved can also be used. Specifically, it is preferable to dissolve a commercially available degreasing agent or a neutral detergent in water at a concentration of several% to 5%, immerse at 50 to 70 ° C. for 5 to 10 minutes and wash with water.

次に、銅合金部品を40℃前後に保った数%濃度の苛性ソーダ水溶液に浸漬した後に水洗する洗浄である、予備塩基洗浄するのが好ましい。更に、過酸化水素と硫酸を含む水溶液に、銅合金部品を浸漬した後に、水洗して、化学エッチングとするのが好ましい。この化学エッチングは、20℃〜常温付近の、硫酸、過酸化水素の両方を共に数%含む水溶液が好ましい。このときの浸漬時間は、合金種によって異なるが、数分〜20分である。これらの前処理工程で、殆どの銅合金でミクロンオーダーの好ましい粗度、即ち走査型プローブ顕微鏡で解析してJIS規格(JIS B 0601:2001(ISO4287))でいう粗さ曲線の平均長さ(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜10μmである、粗さ面を有する銅合金となる。好ましくは、最大高さ粗さ(Rz)が0.2〜5μmであると良い。   Next, it is preferable to carry out preliminary base washing, which is washing in which the copper alloy part is immersed in a caustic soda aqueous solution having a concentration of several percent maintained at around 40 ° C. and then washed with water. Furthermore, it is preferable to immerse the copper alloy part in an aqueous solution containing hydrogen peroxide and sulfuric acid and then wash with water to perform chemical etching. This chemical etching is preferably an aqueous solution containing several percent of both sulfuric acid and hydrogen peroxide at 20 ° C. to around room temperature. Although the immersion time at this time changes with alloy types, it is several minutes-20 minutes. In these pretreatment steps, the preferred roughness on the order of microns for most copper alloys, that is, the average length of the roughness curve according to the JIS standard (JIS B 0601: 2001 (ISO 4287)) analyzed with a scanning probe microscope ( RSm) is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 10 μm. Preferably, the maximum height roughness (Rz) is 0.2 to 5 μm.

しかしながら、特に純銅系の銅合金で言えることだが、前述した化学エッチングの結果で得られる粗面は、凹凸周期が10μm以上になることも多く、その平均値、RSmは純銅系以外の銅合金に比較して大きい。一方、そのRSmの大きい割りには凹凸高低差が小さい。特に、銅分が高純度であるC1020(無酸素銅)等、金属結晶粒径の大きいことが明らかなもので、前述したような周期の大きな粗さ曲線を与えることが明らかに多く、凹凸周期と金属結晶粒径の大きさに直接的な相関関係があると推定された。純銅系合金だけでなく、各種合金で行う化学エッチングでも、その多くは結晶粒界から侵食が始まることに起因するからであろうと推定される。何れにせよ、ミクロンオーダー周期の凹凸があっても、その周期の割に凹凸の高低差が小さいと、本発明の効果が発揮され難い。それ故、大きな凹凸の荒さがが不足していると感じたものについては、後記するがそれなりの処理法を実施するのが好ましい。   However, as can be said particularly with pure copper-based copper alloys, the rough surface obtained as a result of the above-mentioned chemical etching often has an irregularity period of 10 μm or more, and the average value, RSm, is a copper alloy other than pure copper-based. Big in comparison. On the other hand, the unevenness height difference is small for the large RSm. In particular, it is obvious that the metal crystal grain size is large, such as C1020 (oxygen-free copper) having a high copper content, and clearly gives a large roughness curve as described above. It was estimated that there was a direct correlation between the crystal grain size and the metal crystal grain size. It is presumed that not only pure copper-based alloys but also chemical etching performed with various alloys are mostly caused by erosion starting from the grain boundaries. In any case, even if there are irregularities with a micron order period, if the height difference of the irregularities is small for the period, the effect of the present invention is hardly exhibited. Therefore, although it will be described later, it is preferable to carry out an appropriate treatment method for those that feel that the roughness of the large unevenness is insufficient.

前処理を終えた銅合金部品を酸化する。電子部品業界では黒化処理と呼ばれている方法が知られているが、本発明で実施する酸化は、その目的と酸化程度が異なるものの工程そのものは同じである。化学的に言えば、銅合金の表面層を強塩基性下で酸化剤によって酸化する。銅原子を酸化剤でイオン化した場合に、周りが強塩基性であると水溶液に溶解せず黒色の酸化第2銅になる。銅合金製部品をヒートシンクや発熱材部品として使用する場合、表面を黒色化して輻射熱の放熱や吸熱での効率を上げるために為されているが、この処理を、銅を使用する電子部品業界では黒化処理と呼んでいる。本発明の表面処理にもこの黒化処理法が利用できる。但し、この黒化処理の目的は、粗さを有する銅合金部品に、硬質で、且つナノオーダーの超微細凹凸を有する表面を作ることであるから、文字通り黒色化することではない。   The pre-treated copper alloy part is oxidized. A method called blackening treatment is known in the electronic component industry, but the oxidation performed in the present invention has the same process and the same process although the degree of oxidation is different. Chemically speaking, the surface layer of the copper alloy is oxidized with an oxidizing agent under strong basicity. When copper atoms are ionized with an oxidizing agent, if the surroundings are strongly basic, they are not dissolved in an aqueous solution and become black cupric oxide. When copper alloy parts are used as heat sinks or heat-generating parts, the surface is blackened to increase the efficiency of heat dissipation and heat absorption, but this process is used in the electronic parts industry using copper. This is called blackening treatment. This blackening treatment method can also be used for the surface treatment of the present invention. However, since the purpose of this blackening treatment is to create a hard and nano-sized surface with ultra-fine irregularities on a rough copper alloy part, it is not literally blackening.

市販の黒化剤を、市販メーカーの指示する濃度、温度で使用できるが、その場合の浸漬時間は所謂黒化時よりずっと短時間である。実際には得られた合金を、電子顕微鏡観察して浸漬時間を調整することになる。本発明者等は、亜塩素酸ナトリウムを5%前後、苛性ソーダを5〜10%含む水溶液を、60〜70℃として使用するのが好ましく、その場合の浸漬時間は0.5〜1.0分程度が好ましい。これらの操作により、銅合金は酸化第2銅の薄層で覆われたものとなり、その表面には、ミクロンオーダーの粗さを有する粗面が形成され、且つ電子顕微鏡で観察すると、その粗面には直径が10〜150nmの円穴、又は長径ないし短径が10〜150nmの楕円状の穴が形成される。   Commercially available blackening agents can be used at concentrations and temperatures specified by commercial manufacturers, but the immersion time in that case is much shorter than during so-called blackening. Actually, the immersion time is adjusted by observing the obtained alloy with an electron microscope. The inventors preferably use an aqueous solution containing about 5% sodium chlorite and 5-10% caustic soda at 60-70 ° C., in which case the immersion time is 0.5-1.0 minutes. The degree is preferred. By these operations, the copper alloy is covered with a thin layer of cupric oxide, and a rough surface having a roughness on the order of microns is formed on the surface. A circular hole having a diameter of 10 to 150 nm or an elliptical hole having a major axis or a minor axis of 10 to 150 nm is formed.

この円形状の穴、又は楕円状の穴である孔開口部が、30〜300nm周期で全表面に存在する超微細凹凸形状のものとなる(この例を図8の写真で示した)。要するに、この表面硬化処理を行うと、超微細凹凸形成と表面硬化層の双方が同時に得られることになる。又、前記の処理液への浸漬時間を2〜3分にするなど長くし、表面硬化処理をし過ぎることは結果的に分かったことであるが、返って接合力を弱くし、好ましくない。   The hole opening which is a circular hole or an elliptical hole has an ultra-fine uneven shape existing on the entire surface with a period of 30 to 300 nm (this example is shown in the photograph of FIG. 8). In short, when this surface hardening treatment is performed, both the formation of ultra-fine irregularities and the surface hardened layer can be obtained simultaneously. In addition, it has been found that the surface hardening treatment is excessively performed by increasing the immersion time in the treatment liquid by 2 to 3 minutes, but it is not preferable because the bonding force is weakened.

前述した純銅系銅合金のエッチングでは、観察結果から金属結晶粒界から銅の侵食が起こるのが確実な模様であり、前述したように結晶粒径の特に大きいもの、即ち、無酸素銅(C1020)では、前述した化学エッチングと表面硬化処理をしただけでは強い接合力を発揮できなかった。要するに、最も重要なサイズの凹部が予期したように出来上がっていないのである。   In the etching of the pure copper-based copper alloy described above, it is a sure pattern that copper erosion occurs from the metal crystal grain boundary based on the observation results, and as described above, a particularly large crystal grain size, that is, oxygen-free copper (C1020 ), It was not possible to exert a strong bonding force only by performing the above-described chemical etching and surface hardening treatment. In short, the most important size of the recess is not as expected.

このような場合の処置法を本発明者等は発見した。結果は非常に単純な方法であるが、一旦表面硬化処理(黒化)を終えた後のものを、再度エッチング液に短時間浸漬して再エッチングし、その後に再度の黒化をする方法である。結果的に、ミクロンオーダーの粗さの周期は、10μm程度か、それ以下に近づけられて予期したようなものとなり、且つ、超微細凹凸の様子は電子顕微鏡観察によると繰り返し処理をしない場合と変わらない。   The present inventors have discovered a treatment method in such a case. The result is a very simple method, but once the surface hardening treatment (blackening) has been completed, it is again immersed in an etching solution for a short time to re-etch and then blackened again. is there. As a result, the period of the roughness on the order of microns is as expected as being close to 10 μm or less, and the appearance of the ultra-fine irregularities is different from the case of no repeated treatment according to the electron microscope observation. Absent.

(チタン合金の表面処理)
チタン合金部品は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂を取り除くのが好ましい。特殊なものは必要でなく、具体的には、市販の鉄用脱脂剤、ステンレス用脱脂剤、アルミニウム合金用脱脂材、マグネシウム合金用脱脂剤等の一般的な脱脂剤を、その薬剤メーカーの指定通りの濃度で湯に投入して水溶液を用意し、これに浸漬し水洗するのが好ましい。更には、市販されている工業用中性洗剤で、数%濃度の水溶液を作成し、この温度を60℃前後にして浸漬した後、これを水洗するのも好ましい。次に、塩基性水溶液に浸漬して水洗し、予備塩基洗浄することが好ましい。
(Titanium alloy surface treatment)
It is preferable that the titanium alloy part is first immersed in a degreasing tank to remove oils and finger grease adhered by machining. Special products are not required. Specifically, general degreasing agents such as commercially available iron degreasing agents, stainless steel degreasing agents, aluminum alloy degreasing materials, magnesium alloy degreasing agents, etc. are designated by the drug manufacturer. It is preferable to prepare an aqueous solution by pouring it into hot water at a normal concentration, and immerse in this to wash. Furthermore, it is also preferable to prepare an aqueous solution with a concentration of several percent with a commercially available industrial neutral detergent, soak it at a temperature of about 60 ° C., and then wash it with water. Next, it is preferable to immerse in a basic aqueous solution and wash with water, followed by preliminary base cleaning.

次に、還元性の酸の水溶液に浸漬して化学エッチングするのが好ましい。具体的には、蓚酸、硫酸、弗化水素酸等が、チタン合金を全面腐食させ得る還元性酸と言え、これらを使用できる。効率から言えば、このうちエッチング速度が速いのは弗化水素酸である。ただし弗化水素酸は、万が一にも人間の肌に触れると侵入して骨に至り、奥深い痛みが数日続くことがある。要するに塩酸等と異なる問題があり、労働環境面からこの酸は使用を敬遠したほうが好ましい。   Next, it is preferable to perform chemical etching by dipping in an aqueous solution of a reducing acid. Specifically, oxalic acid, sulfuric acid, hydrofluoric acid, and the like can be said to be reducing acids that can corrode titanium alloys entirely, and these can be used. In terms of efficiency, hydrofluoric acid has the highest etching rate. However, hydrofluoric acid may invade human skin and lead to bones, and deep pain may continue for several days. In short, there are problems different from hydrochloric acid and the like, and it is preferable to avoid using this acid from the viewpoint of the working environment.

好ましいのは、弗化水素酸より遥かに安全な扱いができる弗化水素酸の半中和物の1水素2弗化アンモニウムである。1水素2弗化アンモニウムの1%前後の水溶液を、温度50〜60℃として、これに数分浸漬した後、水洗する処理方法が好ましい。1水素2弗化アンモニウム水溶液による化学エッチングは、ミクロンオーダーの粗度(粗さ面)を得るために行ったが、電子顕微鏡観察や最新分析機器による観察では、化学エッチング後の水洗と乾燥によりチタン合金表面は、不思議な形状の超微細凹凸形状となり、且つ、表面は酸化チタン薄層で覆われたものとなることが分かった。要するに、特段の微細エッチング工程、表面酸化工程等の表面処理は、不要であり、行わなくても良いようであった。   Preference is given to ammonium hydrofluoride, a half-neutralized product of hydrofluoric acid which can be handled much more safely than hydrofluoric acid. A treatment method in which an aqueous solution of about 1% of 1 hydrogen difluoride ammonium is immersed in this solution for several minutes at a temperature of 50 to 60 ° C. and then washed with water is preferable. Chemical etching with 1 hydrogen difluoride ammonium aqueous solution was performed to obtain a micron-order roughness (roughness surface), but in electron microscope observations and observations with the latest analytical equipment, titanium was washed and dried after chemical etching. It was found that the surface of the alloy became a mysteriously shaped ultrafine uneven shape, and the surface was covered with a thin titanium oxide layer. In short, it seems that surface treatments such as a special fine etching process and a surface oxidation process are unnecessary and need not be performed.

1水素2弗化アンモニウム水溶液でエッチングし、水洗し、更にこれを乾燥したチタン合金の分析例を示す。まず走査型プローブ顕微鏡による走査解析結果を得た。ここでは20μm角の正方形面積内を走査して、粗さ曲線の平均長さ(輪郭曲線要素の平均長さ)RSmが、1.8μm、最大高さ粗さ(輪郭曲線の最大高さ)Rzは、0.9μが得られた。又、同じ処理をした物の1万倍、10万倍電子顕微鏡写真の例を図12(a),(b)に示した。ここでは、高さ及び幅が10〜300nm、長さが10nm以上の山状又は連山(山脈)状凸部が10〜350nm周期で、全表面に存在する非常にユニークで不思議な超微細凹凸形状が示された。   An analysis example of a titanium alloy that has been etched with an aqueous solution of 1 hydrogen diammonium difluoride, washed with water, and then dried is shown. First, a scanning analysis result by a scanning probe microscope was obtained. Here, a 20 μm square area is scanned, and the average length of the roughness curve (average length of the contour curve element) RSm is 1.8 μm, and the maximum height roughness (maximum height of the contour curve) Rz. 0.9μ was obtained. Moreover, the example of the 10,000 times and 100,000 times electron micrograph of the thing which carried out the same process was shown to Fig.12 (a), (b). Here, a very unique and mysterious ultra-fine uneven shape with a height or width of 10 to 300 nm and a length of 10 nm or more of mountain-shaped or mountain-mountain (mountain) -shaped convex portions existing on the entire surface in a cycle of 10 to 350 nm. It has been shown.

又、XPS分析によると、大きな酸素、チタンのピークが得られ表面の化合物は明らかに酸化チタンであることが分かった。ただ表面色調は暗褐色であり、チタン(3価)酸化物か、又はチタン(3価)とチタン(4価)の混合酸化物の薄膜とみられた。即ち、エッチング前は金属色であり、この表面はチタンの自然酸化層であるが、1水素2弗化アンモニウム水溶液でエッチングした後は、自然酸化層でない暗色の酸化チタン層に変化した。この酸化チタン層をアルゴンイオンビームで十〜数十nmエッチングし、エッチング後の面をXPS分析した。このXPS分析で、チタン酸化物層の厚さが判明したが、この厚さは明らかに自然酸化層の厚さより厚く、1水素2弗化アンモニウム水溶液による純チタン系のチタン合金エッチング品では50nm以上とみられた。   According to XPS analysis, large oxygen and titanium peaks were obtained, and the surface compound was clearly titanium oxide. However, the surface color tone was dark brown, and it was seen as a thin film of titanium (trivalent) oxide or a mixed oxide of titanium (trivalent) and titanium (tetravalent). That is, the surface was a metal color before etching, and this surface was a natural oxidation layer of titanium. This titanium oxide layer was etched by 10 to several tens of nm with an argon ion beam, and the etched surface was subjected to XPS analysis. This XPS analysis revealed the thickness of the titanium oxide layer, which is clearly thicker than that of the natural oxide layer, and more than 50 nm in the case of a pure titanium-based titanium alloy etched product using an aqueous solution of 1 hydrogen difluoride ammonium fluoride. It was seen.

しかも表面から内部に向かってチタンイオンの価数が減少しており、表面の4価又は3価と4価の混合状態から内部に向かって2価が増え、更に2価が減って0価の金属に至ることが分かった。要するに、チタン酸化物である酸化膜は単純なチタン酸化物層でなく、チタン価数が表面から連続的に減ってゼロ価に達したような連続変化層であり、別の表現では、まるで酸素が表面から染み込んだように、表面は濃く内部に向かって薄くなる興味ある連続変化層であることが分かる。このような金属酸化膜では金属相との間にはっきりした境がないため、酸化膜層と金属基材間の接合力は非常に強力で、その耐引き剥がし破壊(応力)力に関しては何ら心配することのないことが予期できる。   Moreover, the valence of titanium ions decreases from the surface to the inside, the divalence increases from the tetravalent or trivalent and tetravalent mixed state on the surface toward the inside, and further the divalent decreases to zero. It turns out that it leads to metal. In short, the oxide film that is titanium oxide is not a simple titanium oxide layer, but a continuously changing layer in which the titanium valence continuously decreases from the surface and reaches zero. It can be seen that the surface is an interesting continuously changing layer that becomes deeper and thinner towards the interior, as if penetrated from the surface. In such a metal oxide film, since there is no clear boundary between the metal phase, the bonding force between the oxide film layer and the metal substrate is very strong, and there is no concern about its peel-off resistance (stress). You can expect nothing to do.

純チタン系合金以外のチタン合金の具体的な処理法は、前述した処理法と同様であるが、還元性の強酸水溶液によるエッチング時に生じる発生期の水素ガスによって、少量添加物として含まれている他金属が還元されて不溶物、いわゆるスマットを生じることがある。スマットの多くは、その後に数%濃度の硝酸水溶液に浸漬することで溶解除去することができる。但し、珪素スマットは硝酸水溶液に溶解せず遊離するだけないので、超音波をかけた水中で剥がすのが好ましい。   The specific treatment method for titanium alloys other than pure titanium alloys is the same as the treatment method described above, but is included as a small amount of additive by the nascent hydrogen gas generated during etching with a reducing strong acid aqueous solution. Other metals may be reduced to produce insoluble matter, so-called smut. Most of the smut can be dissolved and removed by immersing in a nitric acid aqueous solution of several percent concentration. However, since silicon smut does not dissolve in nitric acid aqueous solution and is only liberated, it is preferable to peel it off in ultrasonic water.

純チタン系チタン合金以外の合金を、一水素2弗化アンモニウムでエッチングしスマット除去したものの表面形状は、前述した図12の写真に比較し、その表面形状を言語表現することが難しい表面形状になる。アルミニウムを含有するα−β型チタン合金の例を、図13の写真に示す。ここにはチタン合金らしい(図12に似た)超微細凹凸がない綺麗な山か丘の斜面状部分も観察されるが、植物の枯葉のような形状の不思議な形状が観察された。この表面全体は、前述した第2の条件として好ましい10〜300nm周期の超微細凹凸で覆われているというものではなく、より周期の大きいもの(「微細凹凸」と呼ぶ)が観察され、この微細凹凸自体が滑らかであった。   The surface shape of an alloy other than a pure titanium-based titanium alloy etched with ammonium hydrogen fluoride and smut-removed is a surface shape that is difficult to express in language as compared to the above-mentioned photograph of FIG. Become. An example of an α-β type titanium alloy containing aluminum is shown in the photograph of FIG. Here, a beautiful slope of a mountain or hill that does not have ultra-fine irregularities (similar to FIG. 12), which is typical of a titanium alloy, is observed, but a mysterious shape like a dead leaf of a plant was observed. The entire surface is not covered with ultrafine irregularities having a period of 10 to 300 nm, which is preferable as the second condition described above, but a surface with a longer period (called “fine irregularities”) is observed. The unevenness itself was smooth.

しかしながら、この表面中の、円滑なドーム状部分は別として、枯葉形状部は薄くて湾曲しており、これに硬度があれば強力なスパイク形状となる。α−β型チタン合金表面は、前述したNAT理論における第2の条件(5nm〜500nm周期の超微細凹凸)に合致しない部分が殆どだが、このスパイク形状によって第2の条件で求めている超微細凹凸の役割を果たしうると考えられる。この表面のスパイク形状は大きいため、むしろNATで求めている第1の条件で要求するミクロンオーダーの粗度(表面粗さ)にも関係してくる。このスパイク形状によって、走査型プローブ顕微鏡で見て、第1の条件(山谷平均間隔(RSm):0.8〜10μm,最大高さ粗さ(Rz):0.2〜5μm)を満たす粗度面が形成されている。なお、第2の条件からやや外れて凹凸周期が大きいので、10万倍の電子顕微鏡写真では表面の全体像を掴むことができない。表面観察は、1万倍以下の倍率写真を撮って観察した。即ち、図13のように1万倍の電子顕微鏡で見て、少なくとも10μm角以上の面積を見ることである。そうすれば、円滑なドーム状形状と湾曲した枯葉形状の双方が存在する微細凹凸形状が観察される。   However, apart from the smooth dome-shaped portion in this surface, the dead leaf shape portion is thin and curved, and if it has hardness, it becomes a strong spike shape. The surface of the α-β type titanium alloy has almost no portion that does not meet the above-mentioned second condition (ultra-fine irregularities with a period of 5 nm to 500 nm) in the NAT theory. It is thought that it can play the role of unevenness. Since the surface spike shape is large, it is also related to the micron-order roughness (surface roughness) required under the first condition required by NAT. Roughness satisfying the first condition (mountain valley average interval (RSm): 0.8 to 10 μm, maximum height roughness (Rz): 0.2 to 5 μm) as seen with a scanning probe microscope by this spike shape. A surface is formed. In addition, since it slightly deviates from the second condition and the concavo-convex period is large, the whole surface image cannot be grasped with an electron micrograph of 100,000 times. The surface was observed by taking a magnification photograph of 10,000 times or less. That is, as shown in FIG. 13, the area is at least 10 μm square or more when viewed with a 10,000 × electron microscope. By doing so, a fine concavo-convex shape in which both a smooth dome shape and a curved dead leaf shape are present is observed.

(ステンレス鋼の表面処理)
各種ステンレス鋼は、耐食性を向上すべく開発されたものであるから耐薬品性は明確に記録されている。腐食には全面腐食、孔食、疲労腐食等の種類があるが全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献の記録(例えば「化学工学便覧」、第6版、化学工学会編、丸善 (1999))によれば、ステンレス鋼全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、ハロゲン化金属塩等の水溶液で、全面腐食するとの記録がある。多くの薬剤に耐食性があるステンレス鋼の残された弱点は、ハロゲン化物に腐食されることであるが、炭素含有量を減らしたステンレス鋼、モリブデンを添加したステンレス鋼等ではその弱点が小さくなっている。
(Stainless steel surface treatment)
Since various stainless steels have been developed to improve corrosion resistance, chemical resistance is clearly recorded. There are various types of corrosion, such as general corrosion, pitting corrosion, fatigue corrosion, etc., but it is possible to select an appropriate etching agent by selecting a chemical type that causes general corrosion and performing trial and error. According to literature records (eg “Chemical Engineering Handbook”, 6th edition, edited by Chemical Engineering Society, Maruzen (1999)), stainless steel in general is hydrohalic acid such as hydrochloric acid, sulfurous acid, sulfuric acid, metal halides, etc. There is a record that the entire surface is corroded with an aqueous solution of The remaining weakness of stainless steel that is corrosion resistant to many chemicals is that it is corroded by halides, but the weakness is reduced in stainless steel with reduced carbon content, stainless steel with molybdenum added, etc. Yes.

しかし、基本的には前述した水溶液で、全面腐食を起こすのでステンレス鋼の種類によって、その浸漬条件を変化させればよい。更には、焼き鈍し等で硬度を下げ、構造的に言えば金属結晶粒径を大きくした物は、結晶粒界が少なくなっており、意図的に全面腐食させるのが困難になる。このような場合は、浸漬条件を変えて腐食が進行するような条件にするだけでは、エッチングが意図したレベルまで中々進まず、何らかの添加剤を加えるなどの工夫が必要である。何れにせよ、前処理としてミクロンオーダーの粗度面が大部分を占めるようにすることを目的として化学エッチングする。   However, basically, the above-mentioned aqueous solution causes overall corrosion, so the immersion conditions may be changed depending on the type of stainless steel. Furthermore, a product whose hardness is reduced by annealing or the like and structurally speaking has a large metal crystal grain size has fewer crystal grain boundaries, and it is difficult to intentionally corrode the entire surface. In such a case, it is necessary to devise such as adding some kind of additive without changing the etching condition to the intended level simply by changing the dipping conditions so that the corrosion proceeds. In any case, chemical etching is performed for the purpose of occupying most of the micron-order roughness surface as a pretreatment.

具体的に言えば、特殊な脱脂剤は必要ではなく、市販されている一般的なステンレス鋼用の脱脂剤、鉄用の脱脂剤、アルミニウム合金用脱脂剤、又は市販の一般向け中性洗剤を入手し、これらの脱脂剤メーカーの説明書に記載された指示通りの水溶液の濃度、又は数%濃度で、温度40〜70℃の水溶液にして、処理したいステンレス鋼を5〜10分浸漬し水洗する。これは言わば脱脂工程である。次に、このステンレス鋼を数%濃度の苛性ソーダ水溶液に短時間浸漬した後に、これを水洗して、この表面に塩基性イオンを吸着させるのが好ましい。この操作で、次の化学エッチングが再現性よく進むからである。これは言わば予備塩基洗浄工程である。次にエッチング工程に入る。   Specifically, a special degreasing agent is not required, and a commercially available general stainless steel degreasing agent, iron degreasing agent, aluminum alloy degreasing agent, or a commercially available neutral detergent is available. Obtain and make an aqueous solution at a temperature of 40 to 70 ° C. at a concentration of several percent or as indicated in the instructions of the degreasing agent manufacturer, and immerse the stainless steel to be treated for 5 to 10 minutes. To do. This is a degreasing process. Next, it is preferable to immerse this stainless steel in a caustic soda aqueous solution having a concentration of several percent for a short time, and then wash it with water to adsorb basic ions on this surface. This is because the next chemical etching proceeds with good reproducibility by this operation. This is a so-called preliminary base washing step. Next, the etching process is started.

SUS304であれば、10%濃度程度の硫酸水溶液を温度60〜70℃として、これに数分間浸漬する方法が好ましく、この処理方法により、本発明で要求するミクロンオーダーの粗度が得られる。又、SUS316では、10%濃度程度の硫酸水溶液を温度60〜70℃として5〜10分間浸漬するのが好ましい。ハロゲン化水素酸、例えば塩酸水溶液もエッチングに適しているが、この水溶液を高温化すると酸の一部が揮発し、周囲の鉄製構造物を腐食する恐れがあるほか、局所排気しても排気ガスに何らかの処理が必要になる。その意味で硫酸水溶液の使用がコスト面で好ましい。ただし、鋼材によっては、硫酸単独の水溶液では全面腐食の進行が遅すぎる場合がある。このような場合、硫酸水溶液にハロゲン化水素酸を添加してエッチングすることは効果的である。   In the case of SUS304, a method in which an aqueous sulfuric acid solution having a concentration of about 10% is set to a temperature of 60 to 70 ° C. and is immersed in the solution for several minutes is preferable. In SUS316, it is preferable to immerse an aqueous sulfuric acid solution having a concentration of about 10% at a temperature of 60 to 70 ° C. for 5 to 10 minutes. Hydrohalic acid, such as aqueous hydrochloric acid, is also suitable for etching, but if this aqueous solution is heated to high temperatures, part of the acid may volatilize and corrode surrounding iron structures. Some processing is required. In that sense, the use of an aqueous sulfuric acid solution is preferable in terms of cost. However, depending on the steel material, the progress of overall corrosion may be too slow with an aqueous solution of sulfuric acid alone. In such a case, it is effective to add hydrohalic acid to the sulfuric acid aqueous solution for etching.

前記の化学エッチングの後に、十分水洗することでステンレス鋼の表面は自然酸化し腐食に耐える表層に再度戻るため特に硬化処理は行う必要がない。しかし、ステンレス鋼表面の金属酸化物層を厚く、強固なものにするべく、酸化性の酸、例えば硝酸等の酸化剤、即ち、硝酸、過酸化水素、過マンガン酸カリ、塩素酸ナトリウム等、の水溶液に浸漬した後、これを水洗するのが好ましい。   After the chemical etching, the surface of the stainless steel is naturally oxidized and returned to the surface layer that can withstand corrosion by washing thoroughly with water, so that it is not necessary to perform a hardening process. However, in order to make the metal oxide layer on the stainless steel surface thick and strong, an oxidizing acid, for example, an oxidizing agent such as nitric acid, that is, nitric acid, hydrogen peroxide, potassium permanganate, sodium chlorate, etc. After being immersed in an aqueous solution, it is preferably washed with water.

エポキシ系接着剤接合試験にかけて接合力の高い物を選び、その上で同じ物を電子顕微鏡観察し微細凹凸形状が存在すること、その形状を確認するのが好ましい。勿論、先に電子顕微鏡観察をしてから射出接合試験にかけてもよい。何れにせよ、数十nm〜百nm周期の超微細凹凸、好ましくは、50nm程度の周期の超微細凹凸形状が、確実に存在する微細構造表面を有するステンレス鋼では、高い射出接合力を有するはずである。これらは、前述したように、本発明者等は既にマグネシウム合金、アルミニウム合金、銅合金、チタン合金で確認している。   It is preferable to select an object having a high bonding strength through an epoxy adhesive bonding test, and then observe the same object with an electron microscope to confirm the presence of a fine uneven shape and the shape. Of course, the injection bonding test may be performed after observation with an electron microscope. In any case, a stainless steel having a microstructure surface in which an ultra fine unevenness having a period of several tens to hundreds of nanometers, preferably an ultrafine unevenness having a period of about 50 nm, should surely have a high injection joining force. It is. As described above, the present inventors have already confirmed these with a magnesium alloy, an aluminum alloy, a copper alloy, and a titanium alloy.

実際に、ステンレス鋼を硫酸水溶液で化学エッチングした例を示す。適切なエッチングにより前記したような粗度面(表面粗さ面)が得られ、この粗度面は粗度計(表面粗さ計)、走査型プローブ顕微鏡等を用いた観察で確認できるが、更に表面を電子顕微鏡観察すると非常に興味ある超微細凹凸形状を有した面で覆われていることが分かる。要するに、ステンレス鋼では、上記のような化学エッチングだけで微細エッチングも同時に形成される。この微細エッチング面を電子顕微鏡写真で説明する。微細エッチング面の一例の写真(図14)では、直径20〜70nmの粒径物、不定多角形状物等が積み重なった形状が認められ、この1万倍写真(図14上段)、及び10万倍写真(図14下段)の観察写真も、まるで火山周辺で溶岩が流れて形成される溶岩台地の斜面のガラ場に酷似していた。   An example in which stainless steel is actually chemically etched with a sulfuric acid aqueous solution is shown. The above-mentioned roughness surface (surface roughness surface) is obtained by appropriate etching, and this roughness surface can be confirmed by observation using a roughness meter (surface roughness meter), a scanning probe microscope, etc. Furthermore, when the surface is observed with an electron microscope, it can be seen that the surface is covered with a very interesting surface having an extremely fine uneven shape. In short, in stainless steel, fine etching is simultaneously formed only by chemical etching as described above. This fine etched surface will be described with an electron micrograph. In the photograph of an example of the finely etched surface (FIG. 14), a shape in which particles having a diameter of 20 to 70 nm, indefinite polygonal shapes, and the like are stacked is recognized. The observation photograph in the photograph (bottom of Fig. 14) was very similar to the gala field on the slope of the lava plateau formed by lava flowing around the volcano.

又、エッチング面である超微細凹凸形状で覆われたステンレス鋼をXPS分析すると、酸素、鉄の大きなピークと、ニッケル、クロム、炭素、モリブデンの小さなピークが認められた。要するに、表面は通常のステンレス鋼と全く同じ組成の金属の酸化物であり、同様の耐食面で覆われているとみられた。なお、ここで化学エッチング手法を取ることの重要性について述べておく。どのような手法であっても、予期した前述した表面形状になればよいのであるが、何故化学エッチングかということである。昨今の、光化学レジストを塗布し可視光線、本発明での紫外線等を使って行うような高度の超微細加工法を使用すれば、設計した超微細凹凸形状面が実現可能になると考えられるからである。   In addition, when XPS analysis was performed on stainless steel covered with the ultra-fine irregularities on the etched surface, large peaks of oxygen and iron and small peaks of nickel, chromium, carbon, and molybdenum were recognized. In short, the surface was an oxide of a metal having exactly the same composition as that of ordinary stainless steel, and was considered to be covered with a similar corrosion-resistant surface. Here, the importance of taking a chemical etching method will be described. Whatever the method, it is only necessary to obtain the above-mentioned surface shape as expected, but the reason is chemical etching. Because it is thought that if you use a high-level ultra-fine processing method that is applied using a photochemical resist and visible light, ultraviolet rays in the present invention, etc., the designed ultra-fine uneven surface can be realized. is there.

しかし化学エッチングは、操作が簡単であるという以外に、射出接合に特に好ましい理由がある。即ち、化学エッチングを適切な条件で行うと、適当な凹凸周期、適当な凹部の深さが得られるだけでなく、得られる凹部の微細形状は単純形状とはならず、凹部の多くはアンダー構造になるからである。本発明でいうこのアンダー構造とは、凹部をその垂直面上から見た場合に見えない面があることであり、凹部の底からミクロの目で見たと仮定した場合に、オーバーハング箇所が見えるということである。アンダー構造が射出接合に必要なことは容易に理解できよう。   However, there are reasons why chemical etching is particularly preferred for injection bonding, except that it is simple to operate. In other words, when chemical etching is performed under appropriate conditions, not only can an appropriate concavo-convex cycle and an appropriate depth of the recess be obtained, but the fine shape of the resulting recess is not a simple shape, and many of the recesses are understructured. Because it becomes. The under structure as used in the present invention means that there is a surface that cannot be seen when the concave portion is viewed from the vertical plane, and an overhang portion is visible when it is assumed that the concave portion is viewed with a microscopic eye. That's what it means. It can be easily understood that an under structure is necessary for injection joining.

又、前記還元性酸水溶液によるエッチングの後、硝酸水溶液、過酸化水素水溶液等に浸漬して、金属酸化物層をしっかり作るべく追加処理も行ったが、電子顕微鏡写真で見た場合も接着剤により接合したときの接合力も、この追加処理の付加によって明確な差異はなかった。長期の耐候性試験をすれば、接合力に差が出てくるかもしれないが未だ確認していない。   In addition, after etching with the reducing acid aqueous solution, it was immersed in a nitric acid aqueous solution, a hydrogen peroxide aqueous solution, etc., and additional processing was performed to firmly form a metal oxide layer. There was also no clear difference in the joining force when joining by the addition of this additional treatment. A long-term weather resistance test may show a difference in bonding strength, but it has not been confirmed yet.

(鉄鋼材の表面処理)
鉄鋼材料の腐食には、全面腐食、孔食、疲労腐食等の種類が知られているが、全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。各種文献の記録(例えば、「化学工学便覧(化学工学協会編集)」)によれば、鉄鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記載がある。炭素、クロム、バナジウム、モリブデン、その他の少量添加物の添加量次第で、その腐食速度や腐食形態は変化するが、基本的には前述した水溶液で全面腐食を起こす。従って、基本的には鉄鋼材料の種類によって、その浸漬条件を変化させればよい。
(Surface treatment of steel materials)
There are known types of corrosion of steel materials such as general corrosion, pitting corrosion, fatigue corrosion, etc., but it is possible to select an appropriate etching agent by selecting a chemical type that causes general corrosion and trial and error. According to the records of various documents (for example, “Chemical Engineering Handbook (edited by the Chemical Engineering Association)”) Is described. Depending on the amount of carbon, chromium, vanadium, molybdenum, and other small additives, the corrosion rate and form of corrosion change, but basically, the above-mentioned aqueous solution causes general corrosion. Therefore, basically, the immersion conditions may be changed depending on the type of steel material.

具体的に言えば、まずSPCC、SPHC、SAPH、SPFH、SS材等のように市販され、かつよく使用される鉄鋼材料では、この鉄鋼材用として市販されている脱脂剤、ステンレス鋼用の脱脂剤、アルミニウム合金用脱脂剤、更には、市販の一般向け中性洗剤を入手し、これらの脱脂剤メーカーの説明書に記載された指示通りの水溶液の濃度、又は数%濃度の水溶液にして、この温度を40〜70℃として5〜10分浸漬した後、これを水洗する(脱脂工程)。次に、エッチングを再現性よくするために希薄な苛性ソーダ水溶液に短時間浸漬した後、これを水洗するのが好ましい。この処理工程は、言わば予備塩基洗浄工程である。   Specifically, in the steel materials that are commercially available and often used such as SPCC, SPHC, SAPH, SPFH, SS material, etc., a degreasing agent that is commercially available for this steel material, degreasing for stainless steel Agents, aluminum alloy degreasing agents, and further commercially available neutral detergents, and the concentration of aqueous solution as indicated in the instructions of these degreasing agent manufacturers, or an aqueous solution of several percent concentration, After this temperature is set to 40 to 70 ° C. and immersed for 5 to 10 minutes, this is washed with water (degreasing step). Next, in order to improve etching reproducibility, it is preferable to immerse in a dilute caustic soda aqueous solution for a short time and then wash it with water. This processing step is, so to speak, a preliminary base washing step.

次に、SPCCであれば、10%濃度程度の硫酸水溶液を50℃として、これに数分間浸漬してエッチングするのが好ましい。これは、ミクロンオーダーの粗度を得るためのエッチング工程である。SPHC、SAPH、SPFH、SS材では、前者より硫酸水溶液の温度を10〜20℃上げて実施するのが好ましい。ハロゲン化水素酸、例えば塩酸水溶液もエッチングに適しているが、この水溶液を使用すると、酸の一部が揮発し周囲の鉄製構造物を腐食する恐れがあるほか、局所排気しても排気ガスに何らかの処理が必要になる。その意味で硫酸水溶液の使用がコスト面で好ましい。   Next, in the case of SPCC, it is preferable to etch by immersing the sulfuric acid aqueous solution of about 10% concentration at 50 ° C. for several minutes. This is an etching process for obtaining a micron order roughness. For SPHC, SAPH, SPFH, and SS materials, it is preferable to increase the temperature of the sulfuric acid aqueous solution by 10 to 20 ° C. from the former. Hydrohalic acid such as aqueous hydrochloric acid is also suitable for etching, but if this aqueous solution is used, part of the acid may volatilize and corrode surrounding iron structures. Some processing is required. In that sense, the use of an aqueous sulfuric acid solution is preferable in terms of cost.

[表面処理方法I:水洗して強制乾燥する方法]
前述した化学エッチングの後に水洗して乾燥し、電子顕微鏡写真で観察すると、高さ及び奥行きが50〜500nmで、幅が数百〜数千nmの階段が無限段に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが多い。具体的には、前記の化学エッチング工程で硫酸水溶液を適当な条件で使用したとき、大きなうねりに相当する凹凸面が得られると同時に、微細で不思議な階段状の超微細凹凸形状を有する表面も同時に形成されることが多い。このようにミクロンオーダーの粗度と、超微細凹凸形状の作成が一挙に為される場合、前記エッチング後の水洗は特に十分行ってから水を切り、温度90〜100℃以上の高温で急速乾燥させたものは、そのまま使用できる。表面に変色した錆は出ず、綺麗な自然酸化層となる。
[Surface Treatment Method I: Method of Forced Drying after Washing with Water]
After the chemical etching described above, it is washed with water, dried, and observed with an electron micrograph. Ultra fine irregularities with a height and depth of 50 to 500 nm and a width of several hundred to several thousand nm followed by infinite steps. Often, the shape covers almost the entire surface. Specifically, when an aqueous sulfuric acid solution is used in the above chemical etching process under suitable conditions, an uneven surface corresponding to a large undulation is obtained, and at the same time, a surface having a fine and mysterious step-like ultra-fine uneven shape is also obtained. Often formed simultaneously. Thus, when the roughness of micron order and the creation of ultra-fine irregularities are made at once, the water after the etching is particularly sufficiently washed and then drained and rapidly dried at a high temperature of 90-100 ° C. or higher. You can use it as it is. No rust discolored on the surface, resulting in a beautiful natural oxide layer.

但し、自然酸化層のみでは一般環境下、特に日本国内のように高湿度、温暖環境下では、耐食性は不十分と思われる。おそらく、乾燥下に保管して接着工程にかけることが必要である上に、接着された複合体も経時的に十分な時間、接合力(接着力)を維持できるか疑問である。実際、屋根付きだが実質的に屋外に近い箇所に1ヶ月放置した後(日本国群馬県太田市末広町、2006年12月〜2007年1月)、破断試験をしたところ、やや接合力が低下していた。やはり実用的には、明確な表面安定化処理が必要のようである。   However, the natural oxidation layer alone is considered to have insufficient corrosion resistance in a general environment, particularly in a high humidity and warm environment as in Japan. Perhaps it is necessary to store it under dry conditions for the bonding process, and it is questionable whether the bonded composite can maintain the bonding strength (adhesive strength) for a sufficient amount of time. In fact, after being left for a month in a place with a roof but practically close to the outdoors (Suehiro-cho, Ota City, Gunma Prefecture, Japan, December 2006-January 2007), when a fracture test was performed, the bonding strength was slightly reduced. Was. In practice, it seems that a clear surface stabilization treatment is necessary.

[表面処理方法II:アミン系分子の吸着を利用する方法]
前述の化学エッチングの後で水洗し、引き続いてアンモニア、ヒドラジン、又は水溶性アミン系化合物の水溶液に浸漬し、水洗し、乾燥する。アンモニア等の広義のアミン系物質は、前記エッチング工程後の鋼材に残存することが分かっている。正確に言えば、乾燥後の鋼材をXPSで分析すると窒素原子が確認される。それ故に、アンモニアやヒドラジンを含む広義のアミン類が、鋼材表面に化学吸着しているものだと理解したが、10万倍電子顕微鏡観察の結果で言えば、表面に薄い膜状の異物質が付着しているように見えるので、鉄のアミン系錯体が生じているのかもしれない。
[Surface Treatment Method II: Method Utilizing Adsorption of Amine-Based Molecules]
After the above chemical etching, it is washed with water, and subsequently immersed in an aqueous solution of ammonia, hydrazine, or a water-soluble amine compound, washed with water, and dried. It has been found that amine-based substances in a broad sense such as ammonia remain in the steel material after the etching process. Strictly speaking, nitrogen atoms are confirmed when the steel material after drying is analyzed by XPS. Therefore, I understood that amines in a broad sense, including ammonia and hydrazine, were chemically adsorbed on the surface of steel materials. Since it appears to be attached, an iron-based complex of iron may have occurred.

更に具体的に言えば、アンモニア水に浸漬して得た鋼材と、ヒドラジン水溶液に浸漬して得た鋼材の10万倍の電子顕微鏡写真は、階段上に付着した薄皮状物質の形が異なるように見える。何れにせよ、これらアミン類の吸着又は反応は、水分子の吸着や鉄の水酸化物生成反応より優先しているようである。その意味で、少なくともエポキシ系接着剤との接合操作を行うまでの数日〜数週間は、水分の吸着とその反応による錆の発生を抑えられる。加えて、接着後の接着力の維持も前述した「表面処理方法I」より優れているものと予想している。少なくとも接合物を4週間放置したものでは接合力の低下はなかった。   More specifically, a 100,000 times electron micrograph of a steel material obtained by immersing in ammonia water and a steel material obtained by immersing in an aqueous hydrazine solution seems to have different shapes of thin skin substances adhering to the stairs. Looks like. In any case, the adsorption or reaction of these amines seems to take precedence over the adsorption of water molecules and the iron hydroxide formation reaction. In that sense, at least for several days to several weeks until the joining operation with the epoxy adhesive is performed, generation of rust due to moisture adsorption and reaction thereof can be suppressed. In addition, it is expected that the adhesion strength after adhesion is superior to the “surface treatment method I” described above. There was no decrease in bonding strength when the bonded material was left for 4 weeks.

使用するアンモニア水、ヒドラジン水溶液、又は水溶性アミンの水溶液の濃度や温度は、厳密な条件設定が殆ど必要ない。具体的には、0.5〜数%濃度の水溶液を常温下で用い、0.5〜数分浸漬し、水洗し、乾燥することで効果が得られる。工業的には、若干臭気があるが安価な1%程度濃度のアンモニア水か、臭気が小さく効果が安定的な水和ヒドラジンの1%〜数%の水溶液が好ましい。   The concentration and temperature of the aqueous ammonia, the aqueous hydrazine solution, or the aqueous solution of the water-soluble amine to be used hardly require strict condition setting. Specifically, an effect can be obtained by using an aqueous solution having a concentration of 0.5 to several percent at room temperature, immersing for 0.5 to several minutes, washing with water and drying. Industrially, a 1% to several percent aqueous solution of hydrated hydrazine having a slight odor but having an inexpensive concentration of about 1% or a hydrated hydrazine having a small odor and a stable effect is preferable.

[表面処理方法III:化成処理による方法]
前述した化学エッチングの後で水洗し、引き続いて6価クロム化合物、過マンガン酸塩、又はリン酸亜鉛系化合物等を含む酸や塩の水溶液に浸漬して水洗することで、鋼材表面がクロム酸化物、マンガン酸化物、亜鉛リン酸化物等の金属酸化物や金属リン酸化物で覆われて耐食性が向上することが知られている。これは、鉄合金、鋼材の耐食性向上の方法としてよく知られている方法であり、この方法も利用できる。ただ、真の目的は、実用上で完全と言えるような耐食性の確保ではなく、接着工程までに少なくとも支障を生じることがなく、接着後も一体化物に対してそれなりの耐食処理、例えば塗装等をしておけば、接着部分に経時的な支障を生じ難いレベルにすることである。要するに、化成皮膜を厚くした場合には、耐食性の観点からは好ましいだろうが、接合力で言えば好ましくないのである。化成皮膜は必要であるが、厚過ぎると接合力は逆に弱くなる、というのが本発明者等の見解である。
[Surface treatment method III: Method by chemical conversion treatment]
After the chemical etching described above, the steel surface is chrome-oxidized by rinsing with an aqueous solution of an acid or salt containing a hexavalent chromium compound, permanganate, or zinc phosphate based compound. It is known that corrosion resistance is improved by being covered with metal oxides such as metal oxides, manganese oxides, zinc phosphorus oxides, and metal phosphorus oxides. This is a well-known method for improving the corrosion resistance of iron alloys and steel materials, and this method can also be used. However, the true purpose is not to secure corrosion resistance that can be said to be perfect in practical use, but at least there will be no trouble until the bonding process. If this is done, the level should be such that it does not easily cause trouble over time in the bonded portion. In short, when the chemical conversion film is made thick, it may be preferable from the viewpoint of corrosion resistance, but it is not preferable in terms of bonding strength. Although the chemical conversion film is necessary, it is the view of the present inventors that the bonding force is weakened when it is too thick.

具体的な耐食の実施方法について延べる。化成処理液に三酸化クロムの希薄水溶液に浸漬して水洗、乾燥した場合、表面は酸化クロム(III)で覆われるとみられる。その表面は均一な膜状物で覆われるのではなく、10〜30nm径で同等高さの突起状物もほぼ100nm程度の距離を置いて生じていた。又、弱酸性に調整した数%濃度の過マンガン酸カリの水溶液も好ましく使用できた。   The specific methods for implementing corrosion resistance can be extended. When immersed in a dilute aqueous solution of chromium trioxide in a chemical conversion treatment solution, washed with water and dried, the surface appears to be covered with chromium (III) oxide. The surface was not covered with a uniform film-like object, and protrusions having a diameter of 10 to 30 nm and an equivalent height were generated at a distance of about 100 nm. Also, an aqueous solution of potassium permanganate having a concentration of several percent adjusted to weak acidity could be preferably used.

又、SPCCを、リン酸亜鉛系の水溶液に浸漬する化成処理をした表面の電子顕微鏡写真を撮った。階段状の角部付近に主に異物が付着したような形状であり、且つ階段の平らな部分にも密度は低いが10〜30nm径の小さな突起が点在した形であった。いずれも水溶液を温度45〜60℃にして、前記SPCCを0.5〜数分浸漬し、水洗し、乾燥するのが高い接合力を得るには好ましく、それ故に化成皮膜は薄い。前記した化成処理剤による変化も、倍率の低い1万倍電子顕微鏡写真では確認出来るようなものではなかった。   Moreover, the electron micrograph of the surface which carried out the chemical conversion treatment which immerses SPCC in the zinc phosphate type aqueous solution was taken. The shape was such that foreign matter mainly adhered to the vicinity of the stepped corner, and the flat portion of the step was dotted with small protrusions having a diameter of 10 to 30 nm although the density was low. In any case, it is preferable to obtain an aqueous solution at a temperature of 45 to 60 ° C., soak the SPCC for 0.5 to several minutes, wash with water, and dry to obtain a high bonding strength. Therefore, the chemical conversion film is thin. The change due to the chemical conversion treatment agent described above was not something that could be confirmed by a 10,000 × low electron micrograph.

[表面処理方法IV:シランカップリング剤]
耐食性、耐候性を鋼材に与えるために為す処理法として、多数の発明がなされ提案されており、その中にシランカップリング剤を吸着させる方法が知られている。シランカップリング剤は、親水性基と撥水性基を分子内に持たせた化合物であり、その希薄な水溶液に鋼材を浸漬し、水洗して乾燥させると、親水性のある鋼材表面にシランカップリング剤の親水性基側が吸着し、その結果として鋼材全体をシランカップリング剤の撥水基側が覆う形となる。シランカップリング剤が吸着したままエポキシ系接着剤を作用させた場合、硬化した接着剤と鋼材表面が作る数十nmレベルのごく薄い間隙内に、水分子が浸入して来た場合でも、鋼材を覆うシランカップリング剤の撥水基群により、水分子が鋼材に近づくことが抑制される可能性がある。
[Surface Treatment Method IV: Silane Coupling Agent]
Numerous inventions have been made and proposed as treatment methods for imparting corrosion resistance and weather resistance to steel materials, and methods for adsorbing silane coupling agents therein are known. A silane coupling agent is a compound having a hydrophilic group and a water repellent group in its molecule. When a steel material is immersed in a dilute aqueous solution, washed with water and dried, a silane cup is formed on the surface of the hydrophilic steel material. The hydrophilic base side of the ring agent is adsorbed, and as a result, the entire steel material is covered with the water repellent base side of the silane coupling agent. When an epoxy adhesive is allowed to act with the silane coupling agent adsorbed, even if water molecules enter the very thin gap of several tens of nanometers created by the hardened adhesive and the steel surface, the steel material The water-repellent group of the silane coupling agent covering the water may suppress the water molecules from approaching the steel material.

これらについては、前述した表面処理II、及び表面処理IIIと同様に、表面処理Iより耐食性に優れていると予期できるが、そのことを実証するには長期試験が必要である。本発明者等が行った短時間の耐久性実験では、前述した表面処理I、表面処理II、表面処理III、及び表面処理IVの方法のどれを使用しようと、少なくとも接着剤を接合後に、約1週間(平成2007年1月:日本国群馬県太田市の屋根付き建屋内)後の破壊データ(せん断破断データ)は、初期とほぼ同等の強度だったが、4週間後では前記表面処理Iのものは悪化した。もっと長期間の放置試験を行えば、どの方法が最も実用的なのか判明できると思われる。ただ、実用面で言えば、鋼材は塗装して使用されるのが一般的であり、非塗装物試験にて候補を選び、更に塗装しての長期環境試験が必要であろう。   These can be expected to have better corrosion resistance than the surface treatment I as in the case of the surface treatment II and the surface treatment III described above, but a long-term test is necessary to demonstrate this. In a short-term durability experiment conducted by the present inventors, no matter which of the surface treatment I, surface treatment II, surface treatment III, and surface treatment IV methods described above is used, at least after bonding the adhesive, The fracture data (shear fracture data) after one week (January 2007: Ota City, Gunma Prefecture, Japan) was almost the same as the initial strength, but after four weeks the surface treatment I Things got worse. Longer neglect tests will reveal which method is most practical. However, from a practical standpoint, steel materials are generally used by painting, and it will be necessary to select candidates in the non-painted material test and then apply the paint for a long-term environmental test.

〔1液性熱硬化型接着剤〕
NAT理論に基づく接合では1液性熱硬化型接着剤を使用する。主液と硬化剤を混ぜて接着剤を作成して、数分〜1時間以内に塗布して常温硬化させるタイプの2液性接着剤であっても金属合金板の接着自体は可能であるが、本発明に適していない。これは、NAT理論が、液状接着剤が金属合金表面上のミクロンオーダーの粗度をなす凹部に深く侵入し、且つこの凹部内壁面にある超微細凹凸にも侵入することを根拠とするためである。2液性接着剤、例えば、2液性エポキシ樹脂接着剤では、主液と硬化剤を混ぜたその瞬間から高分子化、ゲル化が始まり、前記の超微細凹凸に侵入するには分子径が大きくなり過ぎる。且つ、現実には、2液を混合してから塗布し、金属合金表面に染込ませる作業(後述)までの時間を固定できない。これにより接着力の安定性が確保できないという問題がある。
[One-component thermosetting adhesive]
In joining based on the NAT theory, a one-component thermosetting adhesive is used. Even if it is a two-component adhesive of the type in which a main liquid and a curing agent are mixed to create an adhesive, which is applied within a few minutes to an hour and cured at room temperature, the metal alloy plate itself can be bonded. It is not suitable for the present invention. This is because the NAT theory is based on the fact that the liquid adhesive penetrates deeply into the concave portion having a micron-order roughness on the metal alloy surface, and also penetrates into the ultra-fine irregularities on the inner wall surface of the concave portion. is there. In the case of a two-component adhesive, for example, a two-component epoxy resin adhesive, polymerization and gelation start from the moment when the main liquid and the curing agent are mixed, and the molecular diameter is too small to penetrate into the ultra-fine irregularities. Too big. In reality, it is impossible to fix the time until the work (described later) for mixing and applying the two liquids to infiltrate the surface of the metal alloy. Thereby, there exists a problem that stability of adhesive force cannot be ensured.

言い換えると、一般的に2液性接着剤や2液性硬化物とみられている物であっても、硬化剤を混合してから直ぐに高分子化やゲル化が起こらない、例えば数時間は実質的に反応が進まない物であれば、実質的に1液性熱硬化型接着剤と見なせるため本発明に適しているといえる。このような接着剤としては、不飽和ポリエステル樹脂に特定の有機過酸化物を加えたものが挙げられる。本発明で使用するのは、実質的に1液性であるエポキシ樹脂系接着剤及び不飽和ポリエステル樹脂系接着剤である。以下、これらについて詳しく述べる。   In other words, even if it is generally regarded as a two-component adhesive or a two-component cured product, polymerization or gelation does not occur immediately after mixing the curing agent. If the reaction does not proceed, it can be regarded as a one-component thermosetting adhesive, which is suitable for the present invention. Examples of such an adhesive include those obtained by adding a specific organic peroxide to an unsaturated polyester resin. The epoxy resin adhesive and unsaturated polyester resin adhesive that are substantially one-component are used in the present invention. These are described in detail below.

(エポキシ樹脂系接着剤)
1液性熱硬化型エポキシ樹脂系接着剤はエポキシ樹脂と硬化剤の混合物である。双方とも容易に入手可能であり、エポキシ樹脂については、ビスフェノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能ポリフェノール型エポキシ樹脂、脂環型エポキシ樹脂等が市販されている。又、エポキシ基が多官能の化合物、例えば複数の水酸基やアミノ基を有する多官能化合物やオリゴマー等と結合した多官能エポキシ樹脂も多種が市販されている。一方、エポキシ樹脂の硬化剤として使用できる物には、ジシアンジアミド、イミダゾール類、芳香族ジアミン類、脂肪族ポリアミン類等のアミン系化合物、フェノール樹脂等の複数の水酸基を有する類、及び酸無水物類等がある。この内、エポキシ樹脂と混ぜると常温で反応が始まり、そのままゲル化固化に進めるのは脂肪族アミン類であり、これは本発明に適合しない。それ故、本発明で使用すべき硬化剤は、ジシアンジアミド、イミダゾール類、芳香族ジアミン類、酸無水物類、及びフェノール樹脂から選ぶことになる。
(Epoxy resin adhesive)
The one-component thermosetting epoxy resin adhesive is a mixture of an epoxy resin and a curing agent. Both are readily available, and as for epoxy resins, bisphenol type epoxy resins, glycidylamine type epoxy resins, polyfunctional polyphenol type epoxy resins, alicyclic epoxy resins, and the like are commercially available. In addition, various types of polyfunctional epoxy resins in which an epoxy group is combined with a polyfunctional compound, for example, a polyfunctional compound or oligomer having a plurality of hydroxyl groups or amino groups, are commercially available. On the other hand, materials that can be used as curing agents for epoxy resins include amine compounds such as dicyandiamide, imidazoles, aromatic diamines, aliphatic polyamines, groups having a plurality of hydroxyl groups such as phenol resins, and acid anhydrides. Etc. Among these, when mixed with an epoxy resin, the reaction starts at room temperature, and it is aliphatic amines that proceed to gelation and solidification as it is, and this is not compatible with the present invention. Therefore, the curing agent to be used in the present invention will be selected from dicyandiamide, imidazoles, aromatic diamines, acid anhydrides, and phenolic resins.

接着剤の組成物として、上記エポキシ樹脂と硬化剤の他、有機又は無機の充填材がある。特に重要なのは無機充填材の添加であり、これは接着の強度向上や接着の安定性維持に大いに役立つ。即ち、多くの接着剤メーカーの開発研究の多くは、ポリマーや硬化剤種の選択というより無機有機の充填剤の探索と試行錯誤である。即ち、使用する充填材の種類(材料種だけでなくその平均粒径、粒径分布、その表面処理法等)、充填材の添加量、更には充填材の分散技術等は、市販品に応用されている。それ故、市販の物が多数ある1液性エポキシ樹脂系接着剤に関しては、充填剤を含めて、本発明者らは市販品を使用した。一方、後述する不飽和ポリエステル樹脂系接着剤については市販品が存在しないので、充填剤については本発明者らが知る一般的な配合をした。   As an adhesive composition, there is an organic or inorganic filler in addition to the epoxy resin and the curing agent. Of particular importance is the addition of an inorganic filler, which is very useful for improving the strength of the bond and maintaining the stability of the bond. That is, much of the development research of many adhesive manufacturers is exploration and trial and error of inorganic organic fillers rather than selection of polymers and curing agent types. In other words, the type of filler used (not only the material type but also its average particle size, particle size distribution, its surface treatment method, etc.), the amount of filler added, and the filler dispersion technology, etc. are applied to commercial products. Has been. Therefore, regarding the one-component epoxy resin adhesive having many commercially available products, the present inventors used a commercial product including a filler. On the other hand, since there is no commercial product for the unsaturated polyester resin-based adhesive described later, the fillers were generally blended by the inventors.

1液性エポキシ樹脂系接着剤として本発明者らが使用したのは「EP106(セメダイン株式会社(日本国東京都)製)」、及び「EP160(セメダイン株式会社製)」である。前者は硬化剤にジシアンジアミド、後者はイミダゾール類を使用した物である。双方とも充填材として粒径数μm以上の物を使用しているが、その種類、平均粒径、粒径分布、表面処理の有無、等については開示されておらず、本発明者らも分析しなかった。硬化剤種から判断して「EP106」は常温下では強い接着力を示すものの高温下では接着力が大きく下がると見込まれ、一方の「EP160」はイミダゾール類が硬化剤であるので前者よりは耐熱性がある。メーカーカタログには「EP160」は耐熱性1液性エポキシ接着剤とされており、その硬化物のガラス転移点(硬化樹脂が明確に軟質化する温度であり、通常この温度付近で接着力が急減するので接着剤の耐熱性の指標とされる)は140℃とある。「EP106」は室温下で20Pa秒程度の粘度の液状物で、一方の「EP160」は室温下ではペースト状であり、50℃程度に昇温すると液状化した。接着剤が前述した超微細凹凸に侵入するためには、少なくとも塗布時に粘度10Pa秒程度以下の液体であることが必要だから、特に「EP160」では塗布後にやや昇温して金属表面に染込ませる必要がある。なお、昇温するとごく僅かでも重合反応が生じるおそれがあるので、双方とも保管は5℃以下とした冷蔵庫に入れる。   As the one-component epoxy resin adhesive, the present inventors used “EP106 (made by Cemedine Co., Ltd., Tokyo, Japan)” and “EP160 (made by Cemedine Co., Ltd.)”. The former uses dicyandiamide as the curing agent, and the latter uses imidazoles. Both use materials with a particle size of several μm or more as fillers, but the type, average particle size, particle size distribution, presence or absence of surface treatment, etc. are not disclosed, and the present inventors also analyze I did not. Judging from the type of curing agent, “EP106” shows strong adhesion at room temperature, but is expected to have a significant decrease in adhesion at high temperatures. There is sex. According to the manufacturer's catalog, “EP160” is a heat-resistant one-component epoxy adhesive, and its cured product has a glass transition point (the temperature at which the cured resin clearly softens. Usually, the adhesive strength rapidly decreases around this temperature. Therefore, the heat resistance of the adhesive is 140 ° C. “EP106” is a liquid having a viscosity of about 20 Pa seconds at room temperature, while “EP160” is a paste at room temperature, and liquefied when the temperature was raised to about 50 ° C. In order for the adhesive to penetrate into the ultra-fine irregularities described above, it is necessary that the liquid has a viscosity of about 10 Pa seconds or less at the time of application. There is a need. In addition, since there is a possibility that a polymerization reaction may occur even if the temperature rises very little, both are stored in a refrigerator set at 5 ° C. or less.

(不飽和ポリエステル樹脂系接着剤)
通常の熱硬化型不飽和ポリエステル樹脂は、不飽和ポリエステル樹脂を含む主液と有機過酸化物からなる硬化剤の2液性物であるが、硬化剤を選べば室温下では容易にゲル化せず80〜90℃でゲル化硬化する系にもなる。それ故、この様な系の物を硬化剤混合後数時間以内に使用すれば、超微細凹凸に侵入しうるので、実質的には1液性熱硬化型接着剤として本発明に使用できる。熱硬化型不飽和ポリエステル樹脂の組成は、通常、(1)不飽和ポリエステル樹脂、(2)液状ビニルモノマー、(3)硬化剤(有機過酸化物)、(4)コバルト化合物等の硬化促進剤が含まれる。通常は、2液性として使用し、主液には(1)(2)が混合されていて、これに(3)硬化剤を加え、混合使用する。なお、熱硬化性ではあるが、硬化剤を選べば室温付近でも重合反応が開始されるので、その様な場合には硬化促進剤(4)も使用して室温下での硬化を確実にする操作を行う。但し、このような室温硬化型の組成は本発明に適していない。
(Unsaturated polyester resin adhesive)
A normal thermosetting unsaturated polyester resin is a two-part material consisting of a main liquid containing an unsaturated polyester resin and a curing agent composed of an organic peroxide. If a curing agent is selected, it will easily gel at room temperature. It becomes a system which gelates and cures at 80 to 90 ° C. Therefore, if such a system is used within a few hours after mixing the curing agent, it can penetrate into the ultra-fine irregularities, so that it can be practically used in the present invention as a one-component thermosetting adhesive. The composition of the thermosetting unsaturated polyester resin is usually (1) an unsaturated polyester resin, (2) a liquid vinyl monomer, (3) a curing agent (organic peroxide), (4) a curing accelerator such as a cobalt compound. Is included. Usually, it is used as a two-component type, and (1) and (2) are mixed in the main solution, and (3) a curing agent is added to this and mixed and used. Although it is thermosetting, if a curing agent is selected, the polymerization reaction starts even near room temperature. In such a case, a curing accelerator (4) is also used to ensure curing at room temperature. Perform the operation. However, such a room temperature curable composition is not suitable for the present invention.

不飽和ポリエステル樹脂組成物に関しては、多数の解説書が出版されているが、ここではその要点を示す。(1)の不飽和ポリエステルとしては、無水マレイン酸、フマル酸等の不飽和二塩基酸、無水フタル酸、イソフタル酸、アジピン酸、エンド酸等の飽和二塩基酸と各種グリコールを混合脱水重合して得たアルキッド樹脂と称される一群と、エポキシ樹脂やフェノール樹脂の末端や中間部にメタクリル酸等を反応させてエステルとし一体化したビニルエステル樹脂の一群がある。アルキッド樹脂は不飽和ポリエステルであるが、ビニルエステル樹脂は不飽和ジエステルの程度なので不飽和ポリエステルとは通常言わない。しかし、本発明内では、双方とも不飽和結合と複数のエステルを分子内に含むので、ビニルエステル類も不飽和ポリエステルの仲間に入れて話を進める。双方とも分子量が数千程度の固体又は高粘度液体であり、これを(2)液状ビニルモノマー(実際には多くでスチレンが使われる)に溶かすことで(1)(2)からなる主液は、やや粘性ある液体となる。   A number of manuals have been published regarding unsaturated polyester resin compositions, but the main points are shown here. As unsaturated polyester (1), unsaturated dibasic acids such as maleic anhydride and fumaric acid, saturated dibasic acids such as phthalic anhydride, isophthalic acid, adipic acid and endo acid and various glycols are mixed and subjected to dehydration polymerization. There are a group of alkyd resins obtained and a group of vinyl ester resins in which the ends and intermediate parts of the epoxy resin and phenol resin are reacted with methacrylic acid or the like to form an ester. Alkyd resins are unsaturated polyesters, but vinyl ester resins are usually referred to as unsaturated polyesters because of the degree of unsaturated diesters. However, in the present invention, both of them contain an unsaturated bond and a plurality of esters in the molecule, so that vinyl esters are also included in the group of unsaturated polyesters. Both are solids or high-viscosity liquids having a molecular weight of about several thousand, and the main liquid consisting of (1) and (2) by dissolving this in (2) liquid vinyl monomer (actually styrene is used in many cases) It becomes a slightly viscous liquid.

(3)の硬化剤は有機過酸化物であり、不飽和ポリエステル樹脂の硬化用に使用される有機過酸化物には、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイドを初め多種あり、昇温や(4)硬化促進剤の添加で分解してラジカルを生成し重合を開始する。本発明では基本的に重合が非常に低速であり、その結果、金属合金板表面への接着剤塗布に際して接着剤組成物中にゲル(巨大分子)が少ない状態とし、接着剤組成物を、ミクロンオーダーの粗度に係る凹部壁面に形成された超微細凹凸にも1気圧程度の圧力で侵入可能とする。要するに「新NMT」「NAT」理論の基本的な考えは、液状樹脂が前記のような超微細凹凸に侵入した後で高硬度固化することが強力な接着接合を生むというものであるから、接着剤成分の早期のゲル化は接着力をそぐ。   The curing agent (3) is an organic peroxide, and the organic peroxide used for curing the unsaturated polyester resin includes methyl ethyl ketone peroxide and benzoyl peroxide. Decomposition by addition of a curing accelerator to generate radicals to initiate polymerization. In the present invention, the polymerization is basically very slow. As a result, when the adhesive is applied to the surface of the metal alloy plate, the adhesive composition has a small amount of gel (macromolecule). It is possible to intrude into the ultra-fine irregularities formed on the concave wall surface according to the roughness of the order with a pressure of about 1 atm. In short, the basic idea of the “new NMT” and “NAT” theory is that the liquid resin solidifies with high hardness after intrusion into the ultra-fine irregularities as described above, which results in strong adhesive bonding. The early gelation of the agent component weakens the adhesive strength.

それ故、(3)の有機過酸化物としてキックオフ温度(熱分解開始温度)の高い物、例えば、ビス(1−ヒドロキシシクロヘキシル)パーオキサイド、ヒドロヘキシヘプチルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーベンゾエート、t−ブチルパーアセナート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、t−ブチルパーオキシベンゾエート、等が使用できる。   Therefore, the organic peroxide of (3) has a high kick-off temperature (thermal decomposition start temperature), such as bis (1-hydroxycyclohexyl) peroxide, hydrohexyl heptyl peroxide, t-butyl hydroperoxide, Cumene hydroperoxide, t-butyl perbenzoate, t-butyl peracenate, di-t-butyl peroxide, dicumyl peroxide, t-butyl-peroxyisopropyl monocarbonate, t-hexyl-peroxyisopropyl monocarbonate , T-butyl peroxybenzoate, etc. can be used.

これらの中でもt−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、t−ブチルパーオキシベンゾエート等の使用は本発明に於いて特に好ましい。換言すると、主液に硬化剤を混ぜた後で、少なくとも常温下で1時間、好ましくは3時間ゲル化が始まらず、混合液に温度計を差していたとしても液温が上がらないものが適している。その意味で前記の物が好ましいのである。これらを使用しても、混合液が60〜80℃まで昇温するとゲル化を始めるため、1液性エポキシ系接着剤やフェノール樹脂系接着剤と比較して温度管理は厳しく行う必要がある。結論として、不飽和ポリエステル系接着剤としては、前記の(1)(2)(3)の混合物を使用する。(4)の効果促進剤は必ずしも必要でない。   Among these, the use of t-butyl-peroxyisopropyl monocarbonate, t-hexyl-peroxyisopropyl monocarbonate, t-butyl peroxybenzoate and the like is particularly preferable in the present invention. In other words, after mixing the curing agent with the main liquid, gelation does not start at least at room temperature for 1 hour, preferably 3 hours, and the liquid temperature does not increase even if a thermometer is inserted into the mixed liquid. ing. In this sense, the above-mentioned thing is preferable. Even if these are used, gelation starts when the temperature of the mixed solution rises to 60 to 80 ° C., and therefore it is necessary to strictly control the temperature as compared with a one-component epoxy adhesive or a phenol resin adhesive. In conclusion, as the unsaturated polyester adhesive, the mixture of (1), (2) and (3) is used. The effect promoter (4) is not necessarily required.

〔充填材について〕
接着剤に加える充填材について説明する。特に無機充填材は、接着剤硬化物の破壊理論に関係するとされている。具体的には、硬化した接着剤相のミクロンレベルの微細ヒビの連鎖成長を抑制するのに無機充填材の存在が重要である。即ち、接着剤硬化物相に強い力がかかって、応力集中箇所の局部でミクロンレベルの小さなヒビが入ったとする。その後に力が弱まり生じたヒビは小さなまま残されたとしても、その後の環境温度の変化や繰り返し加えられた弱い力によってヒビは成長する。長時間の経過でヒビはミリオーダーにまで成長し、やがて弱い力で破断する。接着剤中に分散された無機充填材が存在することで、この微細ヒビの成長を防ぐことが出来るとされている。特に、接着剤相の破壊がミリオーダーに近づいた場合にこれを封じ込める役目を有するとみられるのがエラストマー系の充填材である。金属合金板同士の接合で最も重要なことは、局所的に起こる接合破壊を止めることではなく、その周辺への連鎖を抑えることである。即ち、接着剤組成について、エラストマー系充填材を導入して最適化することが重要である。この場合、エラストマーの粒径が十数μm〜数十μmと大きくてもよい。
[About fillers]
The filler added to the adhesive will be described. In particular, the inorganic filler is considered to be related to the fracture theory of the cured adhesive. Specifically, the presence of an inorganic filler is important to suppress microscopic crack growth at the micron level of the cured adhesive phase. That is, it is assumed that a strong force is applied to the adhesive cured product phase and small cracks at the micron level enter the local area of the stress concentration portion. Even if the cracks caused by the subsequent weakening of force remain small, the cracks grow due to subsequent changes in environmental temperature and repeated weak forces. Over time, cracks grow to the order of millimeters and eventually break with weak force. The presence of the inorganic filler dispersed in the adhesive is supposed to prevent the growth of fine cracks. In particular, it is an elastomeric filler that seems to have a role of containing the adhesive phase when it breaks down to the order of millimeters. The most important thing in joining the metal alloy plates is not stopping the joint breakage that occurs locally but suppressing the chain to the periphery. That is, it is important to optimize the adhesive composition by introducing an elastomeric filler. In this case, the particle size of the elastomer may be as large as several tens of micrometers to several tens of micrometers.

即ち、ヒビが成長してやがてその両端が粒径数μm〜十数μmの無機微粉と衝突すると、そこでヒビの成長が止まると推定できる。ただし、粒子径が小さきに過ぎるとヒビは無機微粉を通過するし、粒子と接着剤樹脂分との親和力がないと粒子が凝集したままで全体に良く分散せず、ヒビが伸びてズレや微小割れまで成長し易い。要するに、適した無機充填材をしっかり分散できれば実質的な接着力が向上するし接着の永続性も向上する。それ故、無機充填材は接着剤にとって非常に重要な要素であるし、その配合が適切か否かを判断するためには試行錯誤以外にないと思われる。前述したエラストマーの粒径はNAT理論に基づく表面形状(ミクロンオーダーの粗度)との比較において、相対的に大きいが、実用上は十分効果を発揮した。エラストマーは、金属合金表面と接着剤硬化相の界面近辺に存在しない場合でも、接着剤硬化相自体の弾性向上に寄与するからである。   That is, when cracks grow and eventually both ends collide with inorganic fine powder having a particle diameter of several μm to several tens of μm, it can be estimated that the crack growth stops there. However, if the particle size is too small, the cracks pass through the inorganic fine powder, and if there is no affinity between the particles and the adhesive resin, the particles remain agglomerated and do not disperse well throughout, and the cracks grow and become misaligned or minute. Easy to grow up to cracks. In short, if a suitable inorganic filler can be firmly dispersed, the substantial adhesive force is improved and the durability of the adhesion is also improved. Therefore, the inorganic filler is a very important element for the adhesive, and it seems that there is nothing other than trial and error to determine whether the formulation is appropriate. Although the particle size of the elastomer described above is relatively large in comparison with the surface shape (roughness on the order of microns) based on the NAT theory, it is sufficiently effective in practical use. This is because the elastomer contributes to improving the elasticity of the adhesive-cured phase itself even when it does not exist in the vicinity of the interface between the metal alloy surface and the adhesive-cured phase.

1液性エポキシ樹脂系接着剤における無機充填材に関する技術蓄積は接着剤メーカーに多くあると見られ、本発明者らは接着剤メーカーのエポキシ系接着剤を購入して使用した。しかし不飽和ポリエステル樹脂系の接着剤は市販品がない。不飽和ポリエステル樹脂と硬化剤の組み合わせを2液性接着剤として使用すること自体は可能であるが、硬化剤に使う有機過酸化物は低温貯蔵が必要であり、また低温貯蔵しても少しづつ分解が進む。従って2液性接着剤としての販売に適していないということが理由にある。従って、充填材を含めた接着剤組成物は自作する必要がある。   It is considered that there is a lot of technology accumulation regarding the inorganic filler in the one-component epoxy resin adhesive in the adhesive manufacturer, and the present inventors purchased and used the epoxy adhesive of the adhesive manufacturer. However, there is no commercially available unsaturated polyester resin adhesive. It is possible to use a combination of an unsaturated polyester resin and a curing agent as a two-component adhesive, but the organic peroxide used for the curing agent needs to be stored at a low temperature, and even if it is stored at a low temperature little by little. Decomposition proceeds. Therefore, it is because it is not suitable for sale as a two-component adhesive. Therefore, it is necessary to make the adhesive composition including the filler.

従来は、どのような無機充填材が不飽和ポリエステル樹脂系接着剤に最適なのか不明であったが、無機充填材として、炭酸カルシウム、マイカ、ガラスフレーク、ガラスバルーン、炭酸マグネシウム、シリカ、タルク、クレー(粘土)等が使用できることを確認した。無機充填材の平均粒径は5〜15mとした。本発明者らは、(1)不飽和ポリエステル樹脂、(2)スチレン、及び(3)硬化剤(t−ブチルパーオキシベンゾエート)に、無機充填材として微粉タルク「ハイミクロンHE5(竹原化学工業株式会社(日本国兵庫県)製)」を添加した。この「ハイミクロンHE5」の粉体の平均粒径は10μm程度であり、(1)+(2)の樹脂分合計に対して2〜3質量%使用した。   Conventionally, it was unclear what inorganic fillers are optimal for unsaturated polyester resin adhesives, but as inorganic fillers, calcium carbonate, mica, glass flakes, glass balloons, magnesium carbonate, silica, talc, It was confirmed that clay (clay) or the like can be used. The average particle size of the inorganic filler was 5 to 15 m. The inventors have (1) unsaturated polyester resin, (2) styrene, (3) hardener (t-butylperoxybenzoate), fine talc “HIMICRON HE5 (Takehara Chemical Co., Ltd.) as an inorganic filler. Company (made in Hyogo, Japan) ”was added. The average particle size of the powder of “Hi-micron HE5” was about 10 μm, and was used in an amount of 2 to 3% by mass with respect to the total resin content of (1) + (2).

実際の作成法は市販のGFRP用の不飽和ポリエステル樹脂主液((1)+(2))としてアルキッド樹脂とスチレンの混合液である「リゴラック258BQTN(昭和高分子株式会社(日本国東京都)製)」や、ビニルエステル樹脂とスチレンの混合液である「リポキシR802(昭和高分子株式会社製)」を100部とり、これに微粉タルクを加えて混合し、これをサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社(日本国東京都)製)」にかけて充填材を分散させた。得られた充填材入り主液に硬化剤としてt−ブチルパーオキシベンゾエート「パーブチルZ(日油株式会社(日本国東京都)製)」を1部加えて、よく混合し、接着剤とした。   The actual production method is “Rigolac 258BQTN (Showa Polymer Co., Ltd. (Tokyo, Japan)”, which is a mixed liquid of alkyd resin and styrene as a commercially available unsaturated polyester resin main liquid for GFRP ((1) + (2)). ) ”Or“ Lipoxy R802 (made by Showa Polymer Co., Ltd.) ”, which is a mixture of vinyl ester resin and styrene, is mixed with fine talc and mixed with this. Ashizawa Finetech Co., Ltd. (Tokyo, Japan) ”was used to disperse the filler. One part of t-butyl peroxybenzoate “Perbutyl Z (manufactured by NOF Corporation (Tokyo, Japan))” as a curing agent was added to the obtained main liquid containing filler, and mixed well to obtain an adhesive.

〔接着剤塗布後の処理工程〕
前述した製造方法により得た接着剤を金属合金板の必要箇所に塗布する。筆塗りでもヘラ塗りでもよい。接着剤が常温で粘度10Pa秒程度以下の液状であれば、接着剤を塗布した金属合金板をデシケータのような減圧が可能な容器に一旦入れる。又、常温でペースト状の接着剤の場合は、接着剤を塗り付けた金属合金板を予め50〜70℃に加熱しておいたデシケータのような減圧容器に入れる。そして50mmHg程度まで減圧して数秒置き、その後空気を入れて常圧に戻すのが好ましい。更に、減圧と昇圧のサイクルを繰り返すのが好ましい。減圧下で接着剤と金属合金間の空気が抜け、常圧戻しで接着剤が金属面上の超微細凹凸に侵入し易くなる。勿論、より専門的な圧力容器を使用して減圧と加圧のサイクルを繰り返してもよい。ただし、実際の量産に当たっては、圧力容器を使用して高圧空気を使用するのは設備上も経費上もコストアップに繋がるので、気密性のある袋や減圧容器を使用して減圧/常圧戻しを数回行うのが経済的である。容器や袋から取り出し、常温以下の温度とした保管場所に置き、短時間内に次工程に入るのが好ましい。
[Processing after adhesive application]
The adhesive obtained by the above-described manufacturing method is applied to a necessary portion of the metal alloy plate. Brush painting or spatula painting may be used. If the adhesive is liquid at room temperature and has a viscosity of about 10 Pa seconds or less, the metal alloy plate coated with the adhesive is once put into a container such as a desiccator that can be decompressed. In the case of a paste adhesive at room temperature, the metal alloy plate coated with the adhesive is placed in a vacuum container such as a desiccator that has been heated to 50 to 70 ° C. in advance. It is preferable to reduce the pressure to about 50 mmHg and leave it for a few seconds, and then return to normal pressure by introducing air. Furthermore, it is preferable to repeat the cycle of pressure reduction and pressure increase. The air between the adhesive and the metal alloy escapes under reduced pressure, and the adhesive easily penetrates into ultra-fine irregularities on the metal surface when returned to normal pressure. Of course, a more specialized pressure vessel may be used to repeat the decompression and pressurization cycles. However, in actual mass production, using high-pressure air with a pressure vessel leads to increased costs both in terms of equipment and costs, so pressure-reducing / returning to normal pressure using air-tight bags and vacuum vessels It is economical to do this several times. It is preferable to take it out from the container or bag, place it in a storage place at a temperature below room temperature, and enter the next step within a short time.

〔金属合金板同士の接着剤接合〕
NAT理論に基づく金属合金板同士の接着接合においては、各金属合金板は、同種の金属合金又は異種の金属合金のいずれでも良い。金属合金板に接着剤を塗布し、可能であれば前記減圧/常圧戻しの工程を行い、これらを重ねてから厚い鉄板を錘として乗せ又はサイズの小さい金属合金板同士なら抱き合わせてクリップ等で留め、熱風乾燥機にて加熱硬化させる。加熱する際は、エポキシ系接着剤の場合、硬化剤によって温度域が異なる。どの様な硬化剤を用いたとしても、硬化方法として、80〜90℃、130〜140℃、160〜180℃の各温度に30分づつ置く3段法を採ることで、確実に硬化を完了することができると考えられた。勿論、市販の接着剤ではメーカー指示の温度履歴でも行ったが、前記の3段方を用いた場合との比較で、せん断破断力は変わらなかった。一方、不飽和ポリエステル樹脂系接着剤では、70〜80℃、110〜120℃の各温度域に45分づつ置く2段法で加熱硬化した。これらは本発明者らが行った方法に過ぎず、特に加熱条件は限られるべきものではない。
[Adhesive bonding between metal alloy plates]
In adhesive bonding between metal alloy plates based on the NAT theory, each metal alloy plate may be either the same type of metal alloy or a different type of metal alloy. Apply an adhesive to the metal alloy plate, and if possible, perform the above-mentioned decompression / normal pressure return process, and after stacking these, place a thick iron plate as a weight, or tie together a small metal alloy plate with a clip or the like Fastened and cured with a hot air dryer. When heating, in the case of an epoxy adhesive, the temperature range differs depending on the curing agent. Regardless of the type of curing agent used, the curing method is reliably completed by adopting a three-stage method in which each curing temperature is set to 80 to 90 ° C, 130 to 140 ° C, and 160 to 180 ° C for 30 minutes. Was thought to be able to. Of course, with a commercially available adhesive, the temperature history instructed by the manufacturer was also used, but the shear fracture strength did not change as compared with the case of using the above three-stage method. On the other hand, the unsaturated polyester resin adhesive was heat-cured by a two-stage method in which each temperature range of 70 to 80 ° C. and 110 to 120 ° C. was placed for 45 minutes. These are only methods performed by the present inventors, and the heating conditions should not be particularly limited.

〔金属合金板同士の圧着接合〕
金属合金板同士を、接着剤を介在させることなく強固に接合させることが可能であれば、クラッド材又はサンドイッチ材の製造工程を簡素化し、低コスト化に大きく寄与することとなる。本発明者らはアルミニウム合金A5052に前述したNAT理論に基づく表面処理を施し、銅合金C1100との圧着接合を試みた。ここでC1100は脱脂処理のみを施し、エッチングを施していない。そしてA5052の前記表面処理を施した面と、C1100の前記脱脂処理のみを施した面を面接触させるように両者を重ね合わせた。そして重ね合わせた接合体を、200℃とした熱ロールにゆっくり通して圧着させ、クラッド材を作成した。必要であれば、その際、更に熱プレスで150℃×20MPa(100cm当たり20t)程度かけると両者は爆着で接合したようなクラッド材に出来る。即ち、芯材となる側のA5052は硬度が高く、その表面にはミクロンオーダーの粗度が形成されている。一方で、皮材となる金属合金が純銅に近い軟質物であれば、強い圧力を加えることで、その表面が変形し、前記ミクロンオーダーの粗度をなしている凹部に多少でも押し込めるとの考え方である。
[Crimp bonding between metal alloy plates]
If the metal alloy plates can be firmly bonded without interposing an adhesive, the manufacturing process of the clad material or the sandwich material is simplified, which greatly contributes to cost reduction. The inventors of the present invention performed surface treatment based on the above-described NAT theory on the aluminum alloy A5052, and tried to perform pressure bonding with the copper alloy C1100. Here, C1100 is only subjected to a degreasing process and is not etched. Then, the surface of A5052 subjected to the surface treatment and the surface of C1100 subjected to only the degreasing treatment were overlapped with each other. Then, the superposed bonded body was slowly passed through a hot roll set to 200 ° C. and pressure-bonded to prepare a clad material. If necessary, a clad material in which both members are bonded by explosive bonding can be obtained by applying about 150 ° C. × 20 MPa (20 t per 100 cm 2 ) by hot pressing. That is, A5052 on the side to be the core material has high hardness, and the surface has a roughness on the order of microns. On the other hand, if the metal alloy that is the skin material is a soft material close to pure copper, the surface is deformed by applying a strong pressure, and the idea is that it can be pushed into the recesses with the micron-order roughness even slightly. It is.

上記実験の結果、予期以上の安定したクラッド材が得られた。勿論、皮材となる銅合金C1100は、軟質といえ金属であるから、ミクロンオーダーの粗度に係る凹部に押し込まれる深さは限られている。しかしながら、接着剤を用いない金属合金板同士の面接合であるから、接着剤接合のような連鎖破壊はない。高温下での接合力は反って接着剤による接合よりも強い可能性がある。現状、本発明者らによる接着剤開発の目標は、1液性エポキシ接着剤を用いた場合で100℃、150℃における高い接着力の確保であるが、これは困難だからである。このように簡略された接合方法によって、高温での高い接合力が得られれば、自動車のエンジン廻り部品など使用範囲が大きく広がると思われる。   As a result of the above experiment, a clad material more stable than expected was obtained. Of course, since the copper alloy C1100 serving as the skin material is soft and is a metal, the depth to be pushed into the recesses having a micron-order roughness is limited. However, since it is a surface bonding between metal alloy plates that do not use an adhesive, there is no chain break like adhesive bonding. The bonding force at high temperature may warp more than bonding with an adhesive. At present, the goal of the adhesive development by the present inventors is to secure a high adhesive force at 100 ° C. and 150 ° C. when using a one-component epoxy adhesive, but this is difficult. If a high joining force at a high temperature can be obtained by such a simple joining method, the range of use such as parts around the engine of an automobile is expected to be greatly expanded.

前述したように、皮材となる側の金属合金板は、比較的軟質の金属、例えば、C1020やC1100等の純銅系の銅合金、純チタン、A1085、A1050、A1100等の純アルミ系のアルミニウム合金、及び純鉄や軟鉄、の薄板材である。そして芯材となる金属合金板は、NAT理論に基づく表面処理を施した各種金属合金である。この芯材となる金属合金板の両面にNAT理論に基づく表面処理を施し、その両面を、前記軟質金属の薄板材(2枚)の脱脂処理を施した面と、各々面接合させるように挟み、その接合体をを高圧でプレス、又は高温高圧の熱プレスすることでサンドイッチ材が得られる。本発明者らが実際に行った方法はロールと熱プレス機の双方を使用する方法であった。結果として、接着剤や樹脂類の介在なしに、高い圧力で軟質金属を芯材となる金属の凹凸面に押し込むことが可能だった。当然ながらせん断破断力や引っ張り破断力は、接着剤を介在して接合した場合と比較して大きく劣るが、面接着であり実用面で支障があるとは考えられない。ここで言う実用面とは、クラッド材又はサンドイッチ材に対して、90度曲げ加工等をして、これらを構成する金属合金板同士が剥離しない状態で使用している場合をいう。クラッド材又はサンドイッチ材に一切曲げ加工等が施されず、これらを構成する金属合金板同士を引きはがす力が加わるような場合には、当然適していない。   As described above, the metal alloy plate on the skin side is a relatively soft metal, for example, pure copper-based copper alloys such as C1020 and C1100, pure titanium, and pure aluminum-based aluminum such as A1085, A1050, and A1100. An alloy, and a thin plate material of pure iron or soft iron. And the metal alloy plate used as a core material is various metal alloys which performed the surface treatment based on NAT theory. A surface treatment based on the NAT theory is applied to both surfaces of the metal alloy plate as the core material, and the both surfaces are sandwiched between the soft metal thin plate materials (2 sheets) and the surface subjected to the degreasing treatment. The sandwich is obtained by pressing the joined body at high pressure or hot pressing at high temperature and high pressure. The method actually carried out by the present inventors was a method using both a roll and a heat press. As a result, it was possible to push a soft metal into the uneven metal surface as a core material with high pressure without any adhesive or resin. Of course, the shear breaking force and the tensile breaking force are greatly inferior to those in the case of joining with an adhesive, but it is considered to be surface adhesion and not practically hindered. The practical aspect mentioned here refers to a case where the clad material or sandwich material is bent 90 degrees and used in a state in which the metal alloy plates constituting them are not separated from each other. Of course, it is not suitable when the clad material or sandwich material is not subjected to any bending work and a force is applied to peel off the metal alloy plates constituting them.

本発明者らが提案するNAT理論とは、芯材となる金属合金板の表面に、(1)ミクロンオーダーの粗度を有し、(2)且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、(3)且つ、表層が金属酸化物又は金属リン酸化物の薄層となることを要するが、接着剤を介在させない圧着では、(1)と(3)の要件を満たせば良い。即ち、超微細凹凸にまで軟質の金属が侵入することはないので、(2)の要件は不要であり、また、超微細凹凸は、接合力の向上に寄与しない。従って、圧着接合を行う場合には、超微細凹凸を形成するためのエッチングは不要である。それでも金属合金板同士が、芯材側表面のミクロンオーダーの粗度に係る凹凸でかみ合っているので、一定の接合力があり、しかも面接合であるから前述した実用的なレベルには達しているのである。   The NAT theory proposed by the present inventors is that the surface of the metal alloy plate as the core material has (1) a roughness on the order of microns, and (2) and in the plane having the roughness, Ultra fine irregularities with a period of 5 to 500 nm are formed, and (3) and the surface layer is required to be a thin layer of metal oxide or metal phosphate. Satisfy the requirement 3). That is, since the soft metal does not penetrate into the ultra fine unevenness, the requirement (2) is not necessary, and the ultra fine unevenness does not contribute to the improvement of the bonding force. Therefore, when performing pressure bonding, etching for forming ultra-fine irregularities is not necessary. Nevertheless, the metal alloy plates are meshed with irregularities related to the micron-order roughness of the core material side surface, so there is a certain bonding force, and since it is surface bonding, it has reached the above-mentioned practical level. It is.

更に言えば、(2)超微細凹凸にまで軟質の金属が侵入し得た場合、その後の加熱圧縮力や擦れ合って生じる局所的発熱から相間で両者間の合金相が出来る可能性もある。何れにせよ、接合した板状物を曲げた場合、その中間層に接着剤硬化物のような物がないので金属合金同士が耐えられる伸び以内の曲げであれば何処にも破壊される部位がない。この効果が実用面で大きく、実際にどのような合金組み合わせでどの程度の圧着操作をすれば良いのかを開発すべきである。本発明では、皮材となる金属合金として、軟質でこの方法が最も容易と思われた純銅系銅合金のC1100薄板を使用した例を示した。   Furthermore, (2) when a soft metal can penetrate into the ultra-fine irregularities, there is a possibility that an alloy phase between the two may be formed between the two due to the subsequent heat compression force and local heat generated by rubbing. In any case, when the joined plate is bent, there is no such thing as an adhesive cured product in the intermediate layer, so there is a part that can be broken anywhere if it is bent within the elongation that the metal alloys can withstand. Absent. This effect is great in practical use, and it should be developed how much crimping operation should be performed with what kind of alloy combination. In the present invention, an example is shown in which a pure copper-based copper alloy C1100 thin plate, which is soft and seems to be the easiest in this method, is used as a metal alloy as a skin material.

金属合金板表面に前述したNAT理論に基づく表面処理を施し、これに一液性熱硬化型接着剤を塗布して積層材とすることで曲げ強度を補強しつつ、積層材を構成する金属合金板同士を強力に接着接合するようにした。その結果、その積層材同士を一定面積で接着接合したときのせん断破断力は、チタン合金を除く全ての金属合金種で50〜70MPaを示した。   The metal alloy that constitutes the laminated material while the surface treatment based on the NAT theory described above is applied to the surface of the metal alloy plate and the bending strength is reinforced by applying a one-component thermosetting adhesive to the laminated material. The plates were strongly bonded together. As a result, the shear fracture strength when the laminated materials were bonded and bonded with a constant area showed 50 to 70 MPa for all metal alloy types except titanium alloys.

ここでNAT理論に基づく接合は、対象となる金属合金種を選ばないので、異なる金属合金種の金属合金板を積層して、複数の金属合金種からなる積層材を作成することができる。当然に、同種の金属合金板を積層して所定の厚さとした積層材を作成することもできる。ここで、金属合金の比重を比較すると、マグネシウム合金は1.7〜1.8、アルミニウム合金は2.7付近、チタン合金は4付近、ステンレス鋼や一般鋼材は7.9付近、銅合金は8.9付近である。又、通常の環境で耐食性に優れるのはアルミニウム合金、銅合金、チタン合金、及びステンレス鋼であり、湿気や浸水環境で優れるのは銅合金、チタン合金、及びステンレス鋼であり、特に海水には銅合金、チタン合金が強い。導電性や熱伝導性で優れているのはアルミニウム合金、及び銅合金である。又、構造体として使用可能な強度を有するのはステンレス鋼、一般鋼材、その他にA7075アルミニウム合金(超々ジュラルミン)、α−β型チタン合金等である。鋼材としては、昨今、ハイテンション鋼という抗張力300〜700MPaの高張力鋼が開発されている。このハイテンション鋼も一般鋼材と同様にNAT理論に基づく表面処理を施し、異種又は同種の金属合金板を積層することができ、曲げ強度のある積層材とすることができる。   Here, since joining based on the NAT theory does not select a target metal alloy type, metal alloy plates of different metal alloy types can be laminated to create a laminated material composed of a plurality of metal alloy types. Naturally, a laminated material having a predetermined thickness can be prepared by laminating the same kind of metal alloy plates. Here, when comparing the specific gravity of the metal alloy, the magnesium alloy is 1.7 to 1.8, the aluminum alloy is about 2.7, the titanium alloy is about 4, the stainless steel and general steel materials are about 7.9, and the copper alloy is It is around 8.9. Also, aluminum alloys, copper alloys, titanium alloys, and stainless steels are excellent in corrosion resistance in normal environments, and copper alloys, titanium alloys, and stainless steels are excellent in moisture and water immersion environments. Copper alloy and titanium alloy are strong. Aluminum alloys and copper alloys are excellent in electrical conductivity and thermal conductivity. Further, stainless steel, general steel materials, A7075 aluminum alloy (ultra-super duralumin), α-β type titanium alloy, and the like have strength that can be used as a structure. As a steel material, a high-tensile steel having a tensile strength of 300 to 700 MPa, which is a high-tensile steel, has been developed recently. This high-tension steel can also be subjected to a surface treatment based on the NAT theory in the same way as general steel materials, and can be laminated with different or similar metal alloy plates, so that a laminated material with bending strength can be obtained.

即ち、上記各金属合金種の特性を考慮し、目的に応じた特性の金属合金板を選択し、それらを組み合わせて最適な積層材を作成することができる。また、複数の金属合金板が強固に接合され、かつ、その接合力が維持される積層材を作成することができる。   That is, in consideration of the characteristics of each of the above metal alloy types, a metal alloy plate having characteristics according to the purpose can be selected and combined to create an optimal laminated material. In addition, it is possible to create a laminated material in which a plurality of metal alloy plates are firmly bonded and the bonding force is maintained.

NAT理論に基づく接着剤接合では、その接着力は金属合金種によってではなく接着剤性能だけで決まる。それ故、金属合金種に関し同種同士でも異種同士でも同様に接合できる。但し現状で最高の接着力が発揮される1液性エポキシ樹脂系接着剤を使用しても常温下のせん断破断力や引っ張り破断力で60MPa程度が限界である。今後は接着剤の改良が求められるだろうが、前記を現状と考えればNAT理論の効果が最も発揮されるのは板状物の面接着である。同種の金属合金板を積層すれば厚板に近い物性を有する積層材を得ることができるし、異種の金属合金板を積層すれば、芯材及び皮材を構成する金属合金板が分離し難いサンドイッチ材等が得られる。後者では、各種金属合金の有する物性を併存させることが出来る。即ち、各種金属合金の各々が有する耐食性、軽量性、強靭性、良導電性、良熱電導性を比較的自由に選択して、用途に最適な金属合金接合体を製造することが出来る。   In adhesive bonding based on the NAT theory, the adhesive force is determined not only by the metal alloy type but only by the adhesive performance. Therefore, the same kind or different kinds of metal alloy types can be joined in the same manner. However, even if a one-component epoxy resin adhesive that exhibits the highest adhesive force at present is used, the shear breaking force or tensile breaking force at room temperature is about 60 MPa. In the future, improvement of the adhesive will be required, but considering the above as the present situation, it is the surface adhesion of the plate that is most effective in the NAT theory. If the same kind of metal alloy plate is laminated, a laminated material having physical properties close to that of a thick plate can be obtained. If different types of metal alloy plates are laminated, the metal alloy plates constituting the core material and the skin material are difficult to separate. Sandwich materials are obtained. In the latter, the physical properties of various metal alloys can coexist. That is, it is possible to produce a metal alloy joined body that is most suitable for the application by relatively freely selecting the corrosion resistance, lightness, toughness, good electrical conductivity, and good thermal conductivity of each metal alloy.

更には、本発明によれば、NAT理論に基づく表面処理を施した金属合金板と脱脂処理のみした軟質の金属合金板とを、接着剤を用いず、圧着又は加熱圧着によって面接合させ、クラッド材を得ることができる。これにより、積層材の製造工程を劇的に低コスト化、簡素化することが可能になる。   Furthermore, according to the present invention, the metal alloy plate subjected to the surface treatment based on the NAT theory and the soft metal alloy plate subjected only to the degreasing treatment are surface-bonded by pressure bonding or thermocompression bonding without using an adhesive, and the clad A material can be obtained. As a result, the manufacturing process of the laminated material can be drastically reduced in cost and simplified.

以下、本発明の実施の形態を説明する。測定等に使用した機器類は以下に示したものである。
(a)X線表面観察(XPS観察)
数μm径の表面を深さ1〜2nmまでの範囲で構成元素を観察する形式のESCA「AXIS−Nova(クレイトス(米国)/株式会社 島津製作所(日本国京都府)製)」を使用した。
(b)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(株式会社 日立製作所製)」及び「JSM−6700F(日本電子株式会社(日本国東京都)製)」を使用し1〜2KVにて観察した。
(c)走査型プローブ顕微鏡観察
「SPM−9600(株式会社 島津製作所製)」を使用した。
(d)X線回折分析(XRD分析)
「XRD−6100(株式会社 島津製作所製)」を使用した。
(e)複合体の接合強度の測定
引っ張り試験機「MODEL−1323(アイコーエンジニアリング株式会社(日本国大阪府)製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
次に積層材を構成する金属合金板の表面処理について説明する。
Embodiments of the present invention will be described below. The equipment used for measurement etc. is shown below.
(A) X-ray surface observation (XPS observation)
An ESCA “AXIS-Nova (Kraitos (USA) / Shimadzu Corporation (Kyoto Prefecture, Japan))” that observes constituent elements on a surface having a diameter of several μm in a depth range of 1 to 2 nm was used.
(B) Electron microscope observation Using SEM type electron microscopes “S-4800 (manufactured by Hitachi, Ltd.)” and “JSM-6700F (manufactured by JEOL Ltd. (Tokyo, Japan))” at 1-2 KV Observed.
(C) Scanning probe microscope observation “SPM-9600 (manufactured by Shimadzu Corporation)” was used.
(D) X-ray diffraction analysis (XRD analysis)
“XRD-6100 (manufactured by Shimadzu Corporation)” was used.
(E) Measurement of Bonding Strength of Composite Material Using a tensile tester “MODEL-1323 (manufactured by Aiko Engineering Co., Ltd. (Osaka, Japan))”, the shear breaking strength was measured at a pulling speed of 10 mm / min.
Next, the surface treatment of the metal alloy plate constituting the laminated material will be described.

[実験例1](アルミニウム合金(A7075)の表面処理)
市販の厚さ3mmのアルミニウム合金板材「A7075」を入手し、切断して長方形(45mm×18mm)のA7075片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社(日本国東京都)製)」を投入して、60℃、濃度7.5%の水溶液とした。これに前記A7075片を7分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記A7075片を1分浸漬し、よく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A7075片を4分浸漬し、よく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記A7075片を1分浸漬し、水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記A7075片を2分浸漬し、水洗した。次いで5%濃度の過酸化水素水溶液を40℃とし、これに前記A7075片を5分浸漬し、水洗した。次いで67℃にした温風乾燥機に前記A7075片を15分入れて乾燥した。
[Experimental Example 1] (Surface treatment of aluminum alloy (A7075))
A commercially available aluminum alloy plate “A7075” having a thickness of 3 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) A7075 pieces. A commercially available degreasing agent for aluminum alloy “NE-6 (manufactured by Meltex Co., Ltd. (Tokyo, Japan))” was added to the water in the tank to prepare an aqueous solution at 60 ° C. and 7.5% concentration. The A7075 pieces were immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the A7075 pieces were immersed in this for 1 minute and washed thoroughly with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in another tank, and the A7075 pieces were immersed in this for 4 minutes and washed thoroughly with water. Subsequently, a 3% nitric acid aqueous solution at 40 ° C. was prepared in another tank, and the A7075 pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the A7075 pieces were immersed in this for 2 minutes and washed with water. Next, a 5% aqueous hydrogen peroxide solution was brought to 40 ° C., and the A7075 pieces were immersed in this for 5 minutes and washed with water. Next, the A7075 pieces were put in a warm air dryer at 67 ° C. for 15 minutes and dried.

乾燥後、アルミ箔で前記A7075片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡で観察したところ、40〜100nm径の凹部で覆われていることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図3に示した。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによると山谷平均間隔(RSm)は3〜4μm、最大高さ粗さ(Rz)は1〜2μmであった。   After drying, the A7075 pieces were wrapped together with aluminum foil, which was then sealed in a plastic bag. When one of the same treatment was observed with an electron microscope, it was found that it was covered with a recess having a diameter of 40 to 100 nm. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. The roughness data was obtained by scanning probe microscope. According to this, the peak / valley average interval (RSm) was 3 to 4 μm, and the maximum height roughness (Rz) was 1 to 2 μm.

[実験例2](アルミニウム合金(A5052)の表面処理)
市販の厚さ1.6mmのアルミニウム合金板材「A5052」を入手し、切断して長方形(45mm×18mm)のA5052片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を投入して、60℃、濃度7.5%の水溶液とした。これに前記A5052片を7分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記A5052片を1分浸漬し、よく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記A5052片を2分浸漬し、よく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記A5052片を1分浸漬し、よく水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記A5052片を2分浸漬し、水洗した。次いで67℃にした温風乾燥機に前記A5052片を15分入れて乾燥した。
[Experiment 2] (Surface treatment of aluminum alloy (A5052))
A commercially available 1.6 mm-thick aluminum alloy sheet “A5052” was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) A5052 pieces. A commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was added to the water in the tank to prepare an aqueous solution at 60 ° C. and a concentration of 7.5%. The A5052 piece was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the A5052 pieces were immersed in this for 1 minute and washed thoroughly with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in another tank, and the A5052 pieces were immersed in this for 2 minutes and washed thoroughly with water. Subsequently, a 3% nitric acid aqueous solution having a temperature of 40 ° C. was prepared in another tank, and the A5052 pieces were immersed in this for 1 minute and thoroughly washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the A5052 pieces were immersed in this for 2 minutes and washed with water. Next, the A5052 pieces were put in a warm air dryer set to 67 ° C. for 15 minutes and dried.

乾燥後、アルミ箔で前記A5052片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡で観察したところ、30〜100nm径の凹部で覆われていることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図4に示した。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによると山谷平均間隔(RSm)は1〜2μm、最大高さ粗さ(Rz)は0.3〜0.5μmであった。   After drying, the A5052 pieces were wrapped together with an aluminum foil, which was then placed in a plastic bag and sealed. When one of the same treatment was observed with an electron microscope, it was found to be covered with a recess having a diameter of 30 to 100 nm. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. The roughness data was obtained by scanning probe microscope. According to this, the peak / valley mean interval (RSm) was 1-2 μm, and the maximum height roughness (Rz) was 0.3-0.5 μm.

[実験例3](マグネシウム合金の表面処理)
市販の厚さ1mmのマグネシウム合金板材「AZ31B」を入手し、切断して長方形(45mm×18mm)のAZ31B片を多数作成した。槽の水に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス株式会社製)」を投入して、65℃、濃度7.5%の水溶液とした。これに前記AZ31B片を5分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度の水和クエン酸水溶液を用意し、これに前記AZ31B片を6分浸漬し、よく水洗した。次いで別の槽に65℃とした1%濃度の炭酸ナトリウムと1%濃度の炭酸水素ナトリウムを含む水溶液を用意し、これに前記AZ31B片を5分浸漬し、よく水洗した。続いて別の槽に65℃とした15%濃度の苛性ソーダ水溶液を用意し、これに前記AZ31B片を5分浸漬し、水洗した。次いで別の槽に40℃とした0.25%濃度の水和クエン酸水溶液を用意し、これに前記AZ31B片を1分浸漬し、水洗した。次いで過マンガン酸カリを2%、酢酸を1%、及び水和酢酸ナトリウムを0.5%含む水溶液(45℃)を用意し、これに前記AZ31B片を1分浸漬し、15秒水洗した後、90℃にした温風乾燥機に15分入れて乾燥した。
[Experiment 3] (Surface treatment of magnesium alloy)
A commercially available magnesium alloy plate “AZ31B” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) AZ31B pieces. A commercially available magnesium alloy degreasing agent “Cleaner 160 (manufactured by Meltex Co., Ltd.)” was added to the water in the tank to form an aqueous solution at 65 ° C. and a concentration of 7.5%. The AZ31B piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1% hydrated citric acid aqueous solution at 40 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 6 minutes and washed thoroughly with water. Next, an aqueous solution containing 1% sodium carbonate and 1% sodium hydrogen carbonate at 65 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 15% caustic soda aqueous solution at 65 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 5 minutes and washed with water. Next, a 0.25% strength hydrated citric acid aqueous solution at 40 ° C. was prepared in another tank, and the AZ31B piece was immersed in this for 1 minute and washed with water. Next, an aqueous solution (45 ° C.) containing 2% potassium permanganate, 1% acetic acid, and 0.5% hydrated sodium acetate was prepared, and the AZ31B piece was immersed in this for 1 minute and washed with water for 15 seconds. Then, it was placed in a hot air drier at 90 ° C. for 15 minutes and dried.

乾燥後、アルミ箔で前記AZ31B片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡で観察したところ、5〜10nm径の棒状結晶が複雑に絡み合っている箇所や、それらの塊が100nm径程度の集まりとなり、その集まりが面を作っている超微細な凹凸形状で覆われている箇所があった。電子顕微鏡を10万倍として観察したときの写真を図5、図6に示した。又、走査型プローブ顕微鏡で走査して粗度観測を行ったところJISで言う山谷平均間隔、即ち凹凸周期の平均値(RSm)が2〜3μm、最大高さ粗さ(Rz)が1〜1.5μmであった。   After drying, the AZ31B pieces were wrapped together with aluminum foil, which was then placed in a plastic bag and sealed. When one of the same treatments was observed with an electron microscope, it was found that 5-10 nm diameter rod-shaped crystals were intricately entangled and their lumps gathered together with a diameter of about 100 nm, and the gathering formed a surface. There was a portion covered with fine irregularities. The photographs when the electron microscope is observed at a magnification of 100,000 are shown in FIGS. In addition, when the roughness was observed by scanning with a scanning probe microscope, the mean interval between ridges and valleys as defined by JIS, that is, the average value (RSm) of the concave-convex period was 2-3 μm, and the maximum height roughness (Rz) was 1-1. It was 5 μm.

[実験例4](銅合金(C1100)の表面処理)
市販の厚さ1mmの純銅系銅合金であるタフピッチ銅板材「C1100」を入手し、切断して長方形(45mm×18mm)のC1100片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)を用意し、これに前記C1100片を5分浸漬して水洗した。次いで40℃とした1.5%濃度の苛性ソーダ水溶液に前記C1100片を1分浸漬して水洗することにより予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB−5002(メック株式会社(日本国兵庫県)製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記C1100片を10分浸漬し、水洗した。
[Experimental Example 4] (Surface treatment of copper alloy (C1100))
A commercially available tough pitch copper plate material “C1100”, which is a pure copper-based copper alloy with a thickness of 1 mm, was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) C1100 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was prepared in a tank, and the C1100 pieces were immersed in this for 5 minutes and washed with water. Next, preliminary base washing was performed by immersing the C1100 piece in a 1.5% strength caustic soda solution at 40 ° C. for 1 minute and washing with water. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB-5002 (MEC Co., Ltd. (Hyogo, Japan))” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared. Was immersed for 10 minutes and washed with water.

次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、前記C1100片を1分浸漬し、よく水洗した。次いで前記C1100片を前述したエッチング用槽に1分浸漬して水洗した後、前述した酸化用水溶液に1分浸漬し、よく水洗した。次いで前記C1100片を、90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記C1100片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は3〜7μm、最大高さ粗さ(Rz)は3〜5μmであった。又、10万倍電子顕微鏡で観察したところ、直径又は長径短径の平均が10〜150nmの孔開口部又は凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われていた。電子顕微鏡を1万倍、10万倍として観察したときの写真を図8に示した。   Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the C1100 piece was immersed for 1 minute and washed thoroughly with water. Next, the C1100 piece was immersed in the above-described etching bath for 1 minute and washed with water, and then immersed in the above-described oxidizing aqueous solution for 1 minute and thoroughly washed with water. Next, the C1100 piece was placed in a hot air dryer at 90 ° C. for 15 minutes and dried. After drying, the C1100 pieces were wrapped together with aluminum foil, which was then placed in a plastic bag and sealed. One of the same treatment was subjected to a scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 3-7 μm, and the maximum height roughness (Rz) was 3-5 μm. Moreover, when observed with an electron microscope of 100,000 times, it was found that the average diameter or major axis and minor axis averaged from 10 to 150 nm, and the hole openings or recesses existed on the entire surface at irregular intervals of 30 to 300 nm. Was covered. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG.

[実験例5](銅合金(C5191)の表面処理)
市販の厚さ0.8mmのリン青銅板材「C5191」を入手し、切断して長方形(45mm×18mm)のC5191片を多数作成した。槽に市販のアルミ合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)を脱脂用水溶液として用意し、これに前記C5191片を5分浸漬して脱脂し、よく水洗した。続いて別の槽に銅合金用エッチング材「CB5002(メック株式会社製)」を20%、30%過酸化水素を18%含む水溶液(25℃)を用意し、これに前記C5191片を15分浸漬し水洗した。次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液(65℃)として用意し、これに前記C5191片を1分浸漬し、よく水洗した。
[Experimental Example 5] (Surface treatment of copper alloy (C5191))
A commercially available phosphor bronze plate material “C5191” having a thickness of 0.8 mm was obtained and cut to prepare a large number of rectangular (45 mm × 18 mm) C5191 pieces. Prepare an aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” as a degreasing aqueous solution, and immerse the C5191 piece in this for 5 minutes. And degreased and washed thoroughly with water. Subsequently, an aqueous solution (25 ° C.) containing 20% of an etching agent for copper alloy “CB5002 (made by MEC Co., Ltd.)” and 18% of 30% hydrogen peroxide was prepared in another tank, and the C5191 piece was added to this for 15 minutes. It was immersed and washed with water. Next, an aqueous solution containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution (65 ° C.) in another tank, and the C5191 pieces were immersed in this for 1 minute and washed thoroughly with water.

次いで前記C5191片を、再び前述したエッチング液に1分浸漬し、水洗した後、再度前述した酸化用水溶液に1分浸漬し、水洗した。次いで前記C5191片を、90℃にした温風乾燥機に15分入れて乾燥した。アルミニウム箔に包んで保管した。同じ処理をした1個を、電子顕微鏡にて1万倍、10万倍として観察したときの写真を図9に示した。電子顕微鏡を10万倍としたときの観察で、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状であり、純銅系であるタフピッチ銅の微細構造とは全く異なった形状であった。又、走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.3〜0.4μmであった。   Next, the C5191 piece was again immersed in the above-described etching solution for 1 minute, washed with water, then again immersed in the above-described oxidizing aqueous solution for 1 minute and washed with water. Next, the C5191 piece was placed in a hot air dryer at 90 ° C. for 15 minutes and dried. Wrapped in aluminum foil and stored. FIG. 9 shows a photograph of the same treated piece observed with an electron microscope at 10,000 times and 100,000 times. An observation with an electron microscope at a magnification of 100,000 times shows that the projections having an average diameter or major axis and minor axis of 10 to 200 nm are mixed together and have an ultra-fine irregular shape that is present on the entire surface. The shape was completely different from the structure. Moreover, it applied to the scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 1 to 3 μm, and the maximum height roughness (Rz) was 0.3 to 0.4 μm.

[実験例6](銅合金(KFC)の表面処理)
市販の厚さ0.7mmの鉄含有銅合金板材「KFC(株式会社 神戸製鋼所製)」を入手し、切断して長方形(45mm×18mm)のKFC片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)を用意し、これに前記KFC片を5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗することにより予備塩基洗浄した。次いで、銅合金用エッチング材「CB5002(メック株式会社製)」を20%、30%過酸化水素を18%含む水溶液(25℃)を用意し、これに前記KFC片を8分浸漬し、水洗した。
[Experimental example 6] (Surface treatment of copper alloy (KFC))
A commercially available iron-containing copper alloy sheet “KFC (manufactured by Kobe Steel, Ltd.)” having a thickness of 0.7 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) KFC pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was prepared in a tank, and the KFC pieces were immersed in this for 5 minutes and washed with water. Next, preliminary base washing was performed by immersing in an aqueous 1.5% caustic soda solution at 40 ° C. for 1 minute and washing with water. Next, an aqueous solution (25 ° C.) containing 20% of an etching material for copper alloy “CB5002 (MEC Co., Ltd.)” and 18% of 30% hydrogen peroxide was prepared, and the KFC piece was immersed in this for 8 minutes, and washed with water. did.

次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記KFC片を1分浸漬し、よく水洗した。次いで、前述したエッチング用槽に前記KFC片を1分浸漬して水洗した後、前述した酸化用水溶液に1分浸漬し、よく水洗した。次いで前記KFC片を、90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、前記KFC片をアルミ箔でまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.3〜0.5μmであった。又、10万倍電子顕微鏡観察したところ、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状で全面が覆われていた。電子顕微鏡を1万倍、10万倍として観察したときの写真を図10に示した。   Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the KFC pieces were immersed in this for 1 minute and washed thoroughly with water. Next, the KFC piece was immersed in the above-described etching tank for 1 minute and washed with water, and then immersed in the above-described oxidizing aqueous solution for 1 minute and thoroughly washed with water. Next, the KFC pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried. After drying, the KFC pieces were wrapped together with aluminum foil, which was then put in a plastic bag and sealed. One of the same treatment was subjected to a scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 1 to 3 μm, and the maximum height roughness (Rz) was 0.3 to 0.5 μm. Further, when observed with an electron microscope of 100,000 times, the entire surface was covered with an ultra fine uneven shape in which convex portions having an average diameter or major axis and minor axis of 10 to 200 nm were mixed and present on the entire surface. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG.

[実験例7](銅合金(KLF5)の表面処理)
市販の厚さ0.7mmの特殊銅合金板材「KLF5(株式会社 神戸製鋼所製)」を入手し、切断して長方形(45mm×18mm)のKLF5片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)を用意し、これに前記KLF5片を5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗することにより予備塩基洗浄した。次いで銅合金用エッチング材「CB5002(メック株式会社製)」を20%、30%過酸化水素を18%含む水溶液(25℃)を用意し、これに前記KLF5片を8分浸漬し、水洗した。
[Experimental Example 7] (Surface treatment of copper alloy (KLF5))
A commercially available 0.7 mm thick special copper alloy sheet “KLF5 (manufactured by Kobe Steel, Ltd.)” was obtained and cut to create a large number of rectangular (45 mm × 18 mm) KLF5 pieces. Prepare an aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” in the tank, and immerse the KLF5 pieces in this for 5 minutes and wash with water. Next, preliminary base washing was performed by immersing in an aqueous 1.5% caustic soda solution at 40 ° C. for 1 minute and washing with water. Next, an aqueous solution (25 ° C.) containing 20% of an etching material for copper alloy “CB5002 (MEC Co., Ltd.)” and 18% of 30% hydrogen peroxide was prepared, and the KLF5 piece was immersed in this for 8 minutes and washed with water. .

次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記KLF5片を1分浸漬してよく水洗した。次いで前述したエッチング用槽に前記KLF5片を1分浸漬して水洗した後、前述した酸化用水溶液に1分浸漬し、よく水洗した。次いで前記KLF5片を、90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記KLF5片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.3〜0.5μmであった。又、10万倍電子顕微鏡観察したところ、直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混ざり合って積み重なった形状、言わば溶岩台地斜面ガラ場状の超微細凹凸形状でほぼ全面が覆われていた。電子顕微鏡を1万倍、10万倍として観察したときの写真を図11に示す。   Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the KLF5 pieces were immersed in this for 1 minute and washed with water. Next, the KLF5 piece was immersed in the etching tank described above for 1 minute and washed with water, and then immersed in the aqueous solution for oxidation described above for 1 minute and thoroughly washed with water. Next, the KLF5 pieces were placed in a warm air dryer at 90 ° C. for 15 minutes and dried. After drying, the KLF5 pieces were wrapped together with an aluminum foil, and further put in a plastic bag and sealed. One of the same treatment was subjected to a scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 1 to 3 μm, and the maximum height roughness (Rz) was 0.3 to 0.5 μm. In addition, when observed with an electron microscope at a magnification of 100,000 times, a shape in which a particle having a diameter of 10 to 20 nm and an indefinite polygon having a diameter of 50 to 150 nm are mixed and stacked, that is, a lava plateau slope-like ultra fine uneven shape is formed. Almost the entire surface was covered. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG.

[実験例8](純チタン合金の表面処理)
市販の厚さ1mmの純チタン型チタン合金板材「KS40(株式会社 神戸製鋼所製)」を入手し、切断して長方形(45mm×18mm)のKS40片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記KS40片を5分浸漬して脱脂し、よく水洗した。続いて別の槽に1水素2弗化アンモニウムを40%含む万能エッチング材「KA−3(株式会社 金属化工技術研究所(日本国東京都)製)」を2%含む水溶液(60℃)を用意し、これに前記KS40片を3分浸漬し、イオン交換水でよく水洗した。次いで、前記KS40片を3%濃度の硝酸水溶液に1分浸漬し、水洗した後、90℃とした温風乾燥機に15分入れて乾燥した。
[Experiment 8] (Surface treatment of pure titanium alloy)
A commercially available pure titanium-type titanium alloy plate “KS40 (manufactured by Kobe Steel, Ltd.)” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) KS40 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was prepared in a tank, and this was used as a degreasing aqueous solution. The KS40 pieces were immersed in this degreasing aqueous solution for 5 minutes to degrease and washed thoroughly with water. Subsequently, an aqueous solution (60 ° C.) containing 2% of a universal etching material “KA-3 (manufactured by Metallurgy Engineering Laboratory (Tokyo, Japan))” containing 40% ammonium difluoride and 40% hydrogen in a separate tank. Prepared, the KS40 piece was immersed in this for 3 minutes, and washed thoroughly with ion-exchanged water. Next, the KS40 pieces were immersed in a 3% nitric acid aqueous solution for 1 minute, washed with water, and then placed in a warm air dryer at 90 ° C. for 15 minutes for drying.

乾燥後、アルミ箔で前記KS40片ををまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡、及び走査型プローブ顕微鏡にかけ観察した。電子顕微鏡での観察から、幅と高さが10〜数百nmで長さが10nm以上(殆どは数百nm)の湾曲した連山状突起が間隔周期10〜数百nmで面上に林立している形状の超微細凹凸面を有していることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図12に示した。又、走査型プローブ顕微鏡の観察で、山谷平均間隔(RSm)は1〜3μm、最高高さ粗さ(Rz)は0.8〜1.5μmであった。又、XPSによる分析から表面には酸素とチタンが大量に観察され、少量の炭素が観察された。これらから表層は酸化チタンが主成分であることが分かり、しかも暗色であることから3価のチタンの酸化物と推定された。   After drying, the KS40 pieces were wrapped together with aluminum foil, and then put in a plastic bag and sealed. One piece subjected to the same treatment was observed with an electron microscope and a scanning probe microscope. From observation with an electron microscope, curved continuous mountain-shaped projections having a width and height of 10 to several hundreds of nanometers and a length of 10 nm or more (mostly several hundreds of nanometers) stand on the surface at intervals of 10 to several hundred nanometers. It was found to have an ultra-fine irregular surface of the shape. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. Moreover, by observation with a scanning probe microscope, the mean valley interval (RSm) was 1 to 3 μm, and the maximum height roughness (Rz) was 0.8 to 1.5 μm. Further, from the analysis by XPS, a large amount of oxygen and titanium were observed on the surface, and a small amount of carbon was observed. From these, it was found that the surface layer was composed mainly of titanium oxide, and because it was dark, it was estimated to be a trivalent titanium oxide.

[実験例9](α−β型チタン合金の表面処理)
市販の厚さ1mmのα−β型チタン合金板材「KSTi−9(株式会社 神戸製鋼所製)」を入手し、切断して長方形(45mm×18mm)のKSTi−9片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記KSTi−9片を5分浸漬して脱脂し、よく水洗した。次いで別の槽に苛性ソーダ1.5%濃度の水溶液(40℃)を用意し、これに前記KSTi−9片を1分浸漬し、水洗した。次いで別の槽に、市販汎用エッチング試薬「KA−3(株式会社 金属化工技術研究所製)」を2重量%溶解した水溶液(60℃)を用意し、これに前記KSTi−9片を3分浸漬し、イオン交換水でよく水洗した。ここで前記KSTi−9片には黒色のスマットが付着していたので、40℃とした3%濃度の硝酸水溶液に3分浸漬し、次いで超音波を効かしたイオン交換水に5分浸漬してスマットを落とし、再び3%硝酸水溶液に0.5分浸漬し、水洗した。次いで前記KSTi−9片を、90℃とした温風乾燥機に15分入れて乾燥した。得られたKSTi−9片に金属光沢はなく暗褐色であった。
[Experimental Example 9] (Surface treatment of α-β type titanium alloy)
A commercially available α-β type titanium alloy plate “KSTi-9 (manufactured by Kobe Steel, Ltd.)” having a thickness of 1 mm was obtained and cut to prepare a large number of rectangular (45 mm × 18 mm) KSTi-9 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was prepared in a tank, and this was used as a degreasing aqueous solution. The KSTi-9 pieces were immersed in this degreasing aqueous solution for 5 minutes for degreasing and thoroughly washed with water. Next, an aqueous solution (40 ° C.) having a caustic soda concentration of 1.5% was prepared in another tank, and the KSTi-9 pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (60 ° C.) in which 2 wt% of a commercially available general-purpose etching reagent “KA-3 (manufactured by Metal Chemical Engineering Laboratory Co., Ltd.)” was dissolved was prepared in another tank, and the KSTi-9 piece was added to this for 3 minutes. It was immersed and washed thoroughly with ion exchange water. Here, since the black smut was adhered to the KSTi-9 piece, it was immersed in a 3% concentration nitric acid aqueous solution at 40 ° C. for 3 minutes, and then immersed in ion-exchanged water subjected to ultrasonic waves for 5 minutes. The smut was dropped and again immersed in a 3% nitric acid aqueous solution for 0.5 minutes and washed with water. Next, the KSTi-9 pieces were placed in a warm air dryer at 90 ° C. for 15 minutes and dried. The obtained KSTi-9 pieces were dark brown with no metallic luster.

乾燥後、アルミ箔で前記KSTi−9片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡、及び走査型プローブ顕微鏡で観察した。電子顕微鏡を1万倍、10万倍として観察したときの写真を図13に示す。その様子は実験例8の電顕観察写真図12に酷似した部分に加え、表現が難しい枯葉状の部分が多く見られた。又、走査型プローブ顕微鏡による走査解析によると、山谷平均間隔RSmは4〜6μm、最大高さ粗さRzは1〜2μmと出た。   After drying, the KSTi-9 pieces were wrapped together with an aluminum foil, which was then placed in a plastic bag and sealed. One piece subjected to the same treatment was observed with an electron microscope and a scanning probe microscope. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. In addition to the portion very similar to the electron microscope observation photograph in FIG. 12 of Experimental Example 8, many dead leaf-like portions that are difficult to express were observed. Moreover, according to the scanning analysis by the scanning probe microscope, the average valley / rap distance RSm was 4 to 6 μm and the maximum height roughness Rz was 1 to 2 μm.

[実験例10](ステンレス鋼の表面処理)
市販の厚さ1mmのステンレス鋼板材「SUS304」を入手し、切断して長方形(45mm×18mm)のSUS304片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記SUS304片を5分浸漬して脱脂し、よく水洗した。次いで別の槽に1水素2弗化アンモニウムを1%と98%硫酸を5%含む水溶液(65℃)を用意し、これに前記SUS304片を4分浸漬し、イオン交換水でよく水洗した。次いで、前記SUS304片を、40℃とした3%濃度の硝酸水溶液に3分浸漬し、水洗した後、90℃とした温風乾燥機に15分入れて乾燥した。
[Experimental Example 10] (Stainless steel surface treatment)
A commercially available stainless steel plate “SUS304” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) SUS304 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was prepared in a tank, and this was used as a degreasing aqueous solution. The SUS304 pieces were immersed in this degreasing aqueous solution for 5 minutes to degrease and washed thoroughly with water. Next, an aqueous solution (65 ° C.) containing 1% ammonium difluoride 1% and 98% sulfuric acid 5% was prepared in another tank, and the SUS304 piece was immersed in this for 4 minutes and washed thoroughly with ion-exchanged water. Next, the SUS304 piece was immersed in a 3% nitric acid aqueous solution at 40 ° C. for 3 minutes, washed with water, and then placed in a hot air dryer at 90 ° C. for 15 minutes for drying.

乾燥後、アルミ箔で前記SUS304片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。同じ処理をした1個を電子顕微鏡、及び走査型プローブ顕微鏡で観察した。電子顕微鏡を1万倍、10万倍として観察したときの写真を図14に示す。電子顕微鏡による観察では、表面が、直径20〜70nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地斜面ガラ場状、の超微細凹凸形状で覆われていた。また、走査型プローブ顕微鏡の走査解析で、山谷平均間隔(RSm)は1〜2μmであり、その最大高さ粗さ(Rz)は0.3〜0.4μmであった。更に別の1個をXPS分析にかけた。このXPS分析から表面には酸素と鉄が大量に、又、少量のニッケル、クロム、炭素、ごく少量のモリブデン、珪素が観察された。これらから表層は金属酸化物が主成分であることが分かった。この分析パターンはエッチング前のSUS304と殆ど同じであった。   After drying, the SUS304 pieces were wrapped together with aluminum foil, which was then placed in a plastic bag and sealed. One piece subjected to the same treatment was observed with an electron microscope and a scanning probe microscope. A photograph when the electron microscope is observed at a magnification of 10,000 times and 100,000 times is shown in FIG. In the observation with an electron microscope, the surface was covered with an ultra-fine uneven shape of a shape in which a particle having a diameter of 20 to 70 nm or an indefinite polygonal shape was piled up, that is, a lava plateau sloped surface. Moreover, in the scanning analysis of the scanning probe microscope, the mean valley interval (RSm) was 1 to 2 μm, and the maximum height roughness (Rz) was 0.3 to 0.4 μm. Another one was subjected to XPS analysis. From this XPS analysis, a large amount of oxygen and iron was observed on the surface, and a small amount of nickel, chromium, carbon, a very small amount of molybdenum and silicon were observed. From these, it was found that the surface layer was mainly composed of metal oxide. This analysis pattern was almost the same as SUS304 before etching.

〔実験例11〕(一般鋼材(SPCC)の表面処理)
市販の厚さ1.6mmの冷間圧延鋼板材「SPCC」を入手し、切断して長方形(45mm×18mm)のSPCC片を多数作成した。各SPCC片の端部に穴を開け、その穴に塩化ビニルでコートした銅線を通し、SPCC片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」7.5%を含む水溶液(60℃)を用意し、これに前記SPCC片を5分浸漬し、水道水(群馬県太田市)で水洗した。次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これに前記SPCC片を1分浸漬し、水洗した。次いで別の槽に98%硫酸を10%含む水溶液(50℃)を用意し、これに前記SPCC片を6分浸漬し、イオン交換水で十分に水洗した。次いで前記SPCC片を、25℃とした1%濃度のアンモニア水に1分浸漬して水洗した後、2%濃度の過マンガン酸カリ、1%濃度の酢酸、0.5%濃度の水和酢酸ナトリウムを含む水溶液(45℃)に1分浸漬して十分に水洗した。次いで、前記SPCC片を90℃とした温風乾燥機内に15分入れて乾燥した。
[Experiment 11] (Surface treatment of general steel (SPCC))
A commercially available cold rolled steel plate material “SPCC” having a thickness of 1.6 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) SPCC pieces. A hole was made at the end of each SPCC piece, a copper wire coated with vinyl chloride was passed through the hole, and the copper wire was bent and processed so that the SPCC pieces did not overlap each other, so that all could be hung at the same time. Prepare an aqueous solution (60 ° C.) containing 7.5% of a degreasing agent for aluminum alloy “NE-6 (manufactured by Meltex Co., Ltd.)” in a tank, and immerse the SPCC piece in this for 5 minutes, and tap water (Gunma Prefecture) Washed in Ota City). Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the SPCC pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (50 ° C.) containing 10% of 98% sulfuric acid was prepared in another tank, and the SPCC pieces were immersed in this for 6 minutes and sufficiently washed with ion-exchanged water. Next, the SPCC piece was immersed in 1% ammonia water at 25 ° C. for 1 minute and washed with water, then 2% potassium permanganate, 1% acetic acid, 0.5% hydrated acetic acid. It was immersed in an aqueous solution containing sodium (45 ° C.) for 1 minute and thoroughly washed with water. Next, the SPCC piece was placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

同じ処理をしたSPCC片の10万倍電子顕微鏡による観察結果を図15に示した。この写真から、高さ及び奥行きが80〜200nmで幅が数百〜数千nmの階段が無限に続いた形状の超微細凹凸形状で、ほぼ全面が覆われていることが分かる。パーライト構造が剥き出しになった様子であり、化成処理層はごく薄いことが分かる。一方、走査型プローブ顕微鏡による走査解析では、山谷平均間隔RSmが1〜3μm、最大高さ粗さRzが0.3〜1.0μmの粗度が観察された。   FIG. 15 shows the observation results of the SPCC pieces subjected to the same treatment with a 100,000 times electron microscope. From this photograph, it can be seen that the entire surface is covered with an ultra-fine uneven shape having an infinite number of steps having a height and depth of 80 to 200 nm and a width of several hundred to several thousand nm. The pearlite structure is exposed and it can be seen that the chemical conversion layer is very thin. On the other hand, in the scanning analysis using the scanning probe microscope, roughness having a peak-valley average interval RSm of 1 to 3 μm and a maximum height roughness Rz of 0.3 to 1.0 μm was observed.

〔実験例12〕(一般鋼材(SPHC)の表面処理)
市販の厚さ1.6mmの熱間圧延鋼板材「SPHC」を入手し、切断して長方形(45mm×18mm)のSPHC片を多数作成した。各SPHC片の端部に穴を開け、その穴に塩化ビニルでコートした銅線を通し、SPHC片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」7.5%を含む水溶液(60℃)を用意し、これに前記SPHC片を5分浸漬し、水道水(群馬県太田市)で水洗した。次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これに前記SPHC片を1分浸漬し、水洗した。次いで別の槽に98%硫酸を10%と1水素2弗化アンモニウム1%を含む水溶液(65℃)を用意し、これに前記SPHC片を2分浸漬し、イオン交換水で十分に水洗した。次いで、前記SPHC片を、25℃とした1%濃度のアンモニア水に1分浸漬して水洗した。次いで、前記SPHC片を、80%正リン酸を1.5%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、塩基性炭酸ニッケルを0.23%含む水溶液(55℃)に1分浸漬して十分に水洗した。次いで、前記SPHC片を90℃とした温風乾燥機内に15分入れて乾燥した。
[Experimental example 12] (Surface treatment of general steel (SPHC))
A commercially available hot rolled steel sheet material “SPHC” having a thickness of 1.6 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) SPHC pieces. A hole was made in the end of each SPHC piece, a copper wire coated with vinyl chloride was passed through the hole, and the copper wire was bent and processed so that the SPHC pieces did not overlap each other, so that all could be hung at the same time. An aqueous solution (60 ° C.) containing 7.5% of an aluminum alloy degreasing agent “NE-6 (Meltex Co., Ltd.)” is prepared in a tank, and the SPHC piece is immersed in this for 5 minutes, and tap water (Gunma Prefecture) Washed in Ota City). Then, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the SPHC pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (65 ° C.) containing 10% 98% sulfuric acid and 1% ammonium hydrogen fluoride in a separate tank was prepared, and the SPHC pieces were immersed in this for 2 minutes and thoroughly washed with ion-exchanged water. . Next, the SPHC piece was immersed in 1% aqueous ammonia at 25 ° C. for 1 minute and washed with water. Next, the SPHC piece was mixed with an aqueous solution containing 1.5% 80% orthophosphoric acid, 0.21% zinc white, 0.16% sodium silicofluoride, and 0.23% basic nickel carbonate (55 ° C). ) And then thoroughly washed with water. Next, the SPHC pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

得られたSPHC片の10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜500nmで幅が数百〜数万nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが分かり、これもやはりパーライト構造であった。一方、走査型プローブ顕微鏡による走査解析では山谷平均間隔RSmが1〜3μm、最大高さ粗さRzが0.3〜1.0μmの粗度が観察された。   From the observation result of the obtained SPHC piece with a 100,000 times electron microscope, the entire surface is almost entirely in the shape of an ultra fine concavo-convex shape having a height and depth of 80 to 500 nm and a width of several hundred to several tens of thousands of stairs. It was found that it was covered, and this was also a pearlite structure. On the other hand, in the scanning analysis by the scanning probe microscope, roughness with an average valley and valley interval RSm of 1 to 3 μm and a maximum height roughness Rz of 0.3 to 1.0 μm was observed.

〔実験例12’〕(一般鋼材(SAPH440)の表面処理)
また、市販の厚さ1.6mmの自動車構造用熱間圧延鋼板材「SAPH440」を入手し、切断して長方形(45mm×18mm)のSAPH440片を多数作成した。このSAPH440片に対しても、上記SPHC片と全く同様の表面処理を施した。表面処理後のSAPH440片の表面形状は、SPHC片と同様であった。
[Experimental example 12 '] (Surface treatment of general steel (SAPH440))
In addition, a commercially available hot rolled steel plate material “SAPH440” with a thickness of 1.6 mm was obtained and cut to produce a large number of rectangular (45 mm × 18 mm) SAPH440 pieces. This SAPH440 piece was also subjected to the same surface treatment as the SPHC piece. The surface shape of the SAPH440 piece after the surface treatment was the same as that of the SPHC piece.

〔実験例13〕(超高張力鋼材(DP590N)の表面処理)
市販の厚さ1mmの超高張力鋼板材「DP590N(新日本製鐵株式会社(日本国東京都)製)」を入手し、切断して長方形(45mm×18mm)のDP590N片を多数作成した。各DP590N片の端部に穴を開け、その穴に塩化ビニルでコートした銅線を通し、DP590N片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」7.5%を含む水溶液(60℃)を用意し、これに前記DP590N片を5分浸漬し、水道水(群馬県太田市)で水洗した。次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これに前記DP590N片を1分浸漬し、水洗した。次いで別の槽に98%硫酸を10%と1水素2弗化アンモニウム1%を含む水溶液(65℃)を用意し、これに前記DP590N片を2分浸漬し、イオン交換水で十分に水洗した。次いで、前記DP590N片を、25℃とした1%濃度のアンモニア水に1分浸漬して水洗した。次いで、前記DP590N片を、80%正リン酸を1.5%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、塩基性炭酸ニッケルを0.23%含む水溶液(55℃)に2分浸漬して十分に水洗した。次いで、前記DP590N片を、90℃とした温風乾燥機内に15分入れて乾燥した。
[Experimental example 13] (Surface treatment of ultra high strength steel (DP590N))
A commercially available 1 mm thick ultra-high strength steel plate material “DP590N (manufactured by Nippon Steel Corporation (Tokyo, Japan))” was obtained and cut to create a large number of rectangular (45 mm × 18 mm) DP590N pieces. A hole was made in the end of each DP590N piece, a copper wire coated with vinyl chloride was passed through the hole, the copper wire was bent and processed so that the DP590N pieces did not overlap each other, and all could be suspended at the same time. Prepare an aqueous solution (60 ° C.) containing 7.5% of a degreasing agent for aluminum alloy “NE-6 (manufactured by Meltex Co., Ltd.)” in a tank, soak the DP590N piece for 5 minutes, and tap water (Gunma Prefecture) Washed in Ota City). Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the DP590N piece was immersed in this for 1 minute and washed with water. Next, an aqueous solution (65 ° C.) containing 10% 98% sulfuric acid and 1% ammonium hydrogen fluoride in a separate tank was prepared, and the DP590N piece was immersed in this for 2 minutes and thoroughly washed with ion-exchanged water. . Next, the DP590N piece was immersed in 1% ammonia water at 25 ° C. for 1 minute and washed with water. Next, the DP590N piece is an aqueous solution containing 1.5% 80% orthophosphoric acid, 0.21% zinc white, 0.16% sodium silicate, and 0.23% basic nickel carbonate (55 ° C. ) For 2 minutes and thoroughly washed with water. Next, the DP590N piece was placed in a warm air dryer at 90 ° C. for 15 minutes and dried.

[実験例14](接着剤の作成)
市販の1液性エポキシ接着剤「EP106NL(セメダイン株式会社製)」、及び「EP160(セメダイン株式会社製)」、多層型カーボンナノチューブ「MCNT(ナノカーボンテクノロジーズ株式会社(日本国東京都)製)」、熱可塑性樹脂であるポリエーテルスルホンの微粉砕物「スミカエクセル4100MP(住友化学株式会社(日本国)製)」を入手した。エポキシ接着剤「EP106NL」100部に対して前記「MCNT」を0.3部取り、よく混ぜ、40℃以上にならぬよう冷風をかけて冷やしながら、ジルコニアビーズ0.5mmを80容積%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」にかけて粉砕分散させた。この際の周速は、11.4m/秒であり、0.5時間かけて破砕分散させた。この方法でCNT0.3%入りの「EP106NL」を得た。これを5℃とした冷蔵庫に保管した。約1週間後に、前記の接着剤100部に再び「EP106NL」を加え更に「スミカエクセル4100MP」を加えて自動乳鉢でよく混合した。更にこの混合物を前記サンドグラインドミル「ツエア」にかけた。この際の周速は、11.4m/秒であり、1時間かけて破壊分散させた。その結果として得られた接着剤を以下「EP106−A」と称する。この「EP106−A」は、「MCNT」を0.1質量%、「スミカエクセル4100MP」を2質量%含む物である。
[Experiment 14] (Preparation of adhesive)
Commercially available one-component epoxy adhesives “EP106NL (made by Cemedine Co., Ltd.)” and “EP160 (made by Cemedine Co., Ltd.)”, multi-walled carbon nanotube “MCNT (manufactured by Nanocarbon Technologies Co., Ltd. (Tokyo, Japan))” In addition, a polyethersulfone finely pulverized product “SUMICA EXCEL 4100MP (manufactured by Sumitomo Chemical Co., Ltd., Japan)” was obtained. 0.3 parts of the above-mentioned “MCNT” was taken with respect to 100 parts of the epoxy adhesive “EP106NL”, mixed well, and filled with 80% by volume of 0.5 mm of zirconia beads while cooling with cold air so as not to exceed 40 ° C. The mixture was pulverized and dispersed in a sand grind mill “Tsuair (Ashizawa Finetech Co., Ltd.)”. The peripheral speed at this time was 11.4 m / sec, and it was crushed and dispersed over 0.5 hours. By this method, “EP106NL” containing 0.3% of CNT was obtained. This was stored in a refrigerator at 5 ° C. About one week later, “EP106NL” was added again to 100 parts of the adhesive, and “Sumika Excel 4100MP” was further added and mixed well in an automatic mortar. Further, this mixture was subjected to the sand grind mill “Tweer”. The peripheral speed at this time was 11.4 m / second, and the dispersion was broken and dispersed over 1 hour. The resulting adhesive is hereinafter referred to as “EP106-A”. This “EP106-A” contains 0.1% by mass of “MCNT” and 2% by mass of “Sumika Excel 4100MP”.

[実験例15](接着実験1)
市販の接着剤「EP106NL(セメダイン株式会社製)」を使用して、実験例1で得たA7075片同士を接着接合した。これを、せん断破断力測定用の試験試料とする。即ち、実験例1に示した方法で45mm×18mm×3mm厚のA7075片を6個作成し、このA7075片の端部に「EP106NL」を薄く塗り付けた。これを大型デシケータに入れて蓋をし、真空ポンプを使用して内部を30mmHg以下に減圧にした。減圧下に30秒以上置き、常圧に戻した。この減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてA7075片を取り出した。そして接着剤塗布面同士を突き合わせ接着面積が0.6〜0.7cmになるようにしてからクリップ2個で固定した。この方法によってA7075片の対を3組作成した。これを90℃にセットしておいた熱風乾燥機内に入れた。90℃に40分保持した後に135℃に昇温し、この温度に40分保持した。その後に更に165℃に昇温して40分保持し、熱風乾燥機の電源を切って翌日まで放冷した。これにより、図1に示すように、A7075片同士の接着接合体である試験試料1が完成した。この図に示すように、2枚のA7075アルミニウム合金片10が相互に面端部で接着接合されている。図1の斜線部分で示される範囲が接着面積に相当する。このようにして得た得た3組の試験試料について、常温で引っ張り破断試験した。せん断破断時の力をその後の測定で出た接着面積で除してせん断破断力を算出した。このせん断破断力について3組の平均値を算出したところ69.1MPaであった。
[Experimental Example 15] (Adhesion Experiment 1)
A7075 pieces obtained in Experimental Example 1 were bonded and bonded together using a commercially available adhesive “EP106NL (manufactured by Cemedine Co., Ltd.)”. This is a test sample for measuring shear breaking force. That is, six A7075 pieces of 45 mm × 18 mm × 3 mm thickness were prepared by the method shown in Experimental Example 1, and “EP106NL” was thinly applied to the end of the A7075 piece. This was put in a large desiccator and covered, and the inside was reduced to 30 mmHg or less using a vacuum pump. It was put under reduced pressure for 30 seconds or more and returned to normal pressure. This decompression / return to normal pressure operation was repeated three times, after which the desiccator was opened and the A7075 piece was taken out. Then, the adhesive application surfaces were butted together so that the adhesion area was 0.6 to 0.7 cm 2 and fixed with two clips. Three pairs of A7075 pieces were prepared by this method. This was placed in a hot air dryer set at 90 ° C. After holding at 90 ° C. for 40 minutes, the temperature was raised to 135 ° C. and kept at this temperature for 40 minutes. Thereafter, the temperature was further raised to 165 ° C. and maintained for 40 minutes, and the hot air dryer was turned off and allowed to cool to the next day. Thereby, as shown in FIG. 1, the test sample 1 which is an adhesive joined body of A7075 pieces was completed. As shown in this figure, two A7075 aluminum alloy pieces 10 are adhesively bonded to each other at the surface end portions. The range indicated by the hatched portion in FIG. 1 corresponds to the adhesion area. The three sets of test samples thus obtained were subjected to a tensile break test at room temperature. The shear breaking force was calculated by dividing the shear breaking force by the adhesion area obtained in the subsequent measurement. It was 69.1 MPa when the average value of 3 sets was calculated about this shear breaking force.

[実験例16](接着実験2)
実験例14で得た接着剤「EP106−A」を使用して実験例1で得たA7075片同士を接着接合した。これを、せん断破断力測定用の試験試料とする。即ち、使用した接着剤が「EP106−A」である他は、実験例15と全く同様に実験を行い、3組の試験試料のせん断破断力を測定した。その結果、せん断破断力の平均値は77.1MPaであった。
[Experimental Example 16] (Adhesion Experiment 2)
The A7075 pieces obtained in Experimental Example 1 were adhesively bonded together using the adhesive “EP106-A” obtained in Experimental Example 14. This is a test sample for measuring shear breaking force. That is, an experiment was performed in exactly the same manner as in Experimental Example 15 except that the adhesive used was “EP106-A”, and the shear fracture strength of three sets of test samples was measured. As a result, the average value of the shear breaking force was 77.1 MPa.

[実験例17](接着実験3)
市販の接着剤「EP160(セメダイン株式会社製)」を使用して、実験例1〜13の表面処理を施した金属合金片同士を接着接合した。これをせん断破断力測定用の試験試料とする。A7075片同士の接着接合方法を以下に示す。実験例1に示した表面処理を施した45mm×18mm×3mm厚のA7075片を18個作成し、このA7075片の端部に「EP160」を薄く塗り付けた。これを予め70℃の温風乾燥機内に1時間入れて暖めておいた大型デシケータに入れて蓋をし、真空ポンプを使用して内部を30mmHg以下に減圧にした。減圧下に30秒以上置き、常圧に戻した。この減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてA7075片を取り出した。そして接着剤塗布面同士を突き合わせ接着面積が0.6〜0.7cmになるようにしてからクリップ2個で固定した。この方法によってA7075片の対を9組作成した。これを90℃にセットしておいた熱風乾燥機内に入れた。90℃に40分保持した後に135℃に昇温し、この温度に40分保持した。その後に更に165℃に昇温して40分保持し、熱風乾燥機の電源を切って翌日まで放冷した。
[Experimental Example 17] (Adhesion Experiment 3)
Using the commercially available adhesive “EP160 (manufactured by Cemedine Co., Ltd.)”, the metal alloy pieces subjected to the surface treatment of Experimental Examples 1 to 13 were bonded and bonded together. This is a test sample for measuring shear breaking force. A method for adhesive bonding of A7075 pieces is shown below. Eighteen A7075 pieces of 45 mm × 18 mm × 3 mm thickness subjected to the surface treatment shown in Experimental Example 1 were prepared, and “EP160” was thinly applied to the end portions of the A7075 pieces. This was put in a large desiccator that had been heated in a hot air dryer at 70 ° C. for 1 hour in advance and covered, and the inside was depressurized to 30 mmHg or less using a vacuum pump. It was put under reduced pressure for 30 seconds or more and returned to normal pressure. This decompression / return to normal pressure operation was repeated three times, after which the desiccator was opened and the A7075 piece was taken out. Then, the adhesive application surfaces were butted together so that the adhesion area was 0.6 to 0.7 cm 2 and fixed with two clips. Nine pairs of A7075 pieces were prepared by this method. This was placed in a hot air dryer set at 90 ° C. After holding at 90 ° C. for 40 minutes, the temperature was raised to 135 ° C. and kept at this temperature for 40 minutes. Thereafter, the temperature was further raised to 165 ° C. and maintained for 40 minutes, and the hot air dryer was turned off and allowed to cool to the next day.

上記A7075片と同じ方法で、実験例2、3、6、8、9、10、及び12’の表面処理を施した金属合金片同士を「EP160」で接着接合した。これにより、A7075片、A5052片、AZ31B片、KFC片、KS40片、KSTi−9片、SUS304片、及びSAPH440片の、各種金属合金毎に9組の試験試料を得た。各種金属合金について、試験試料9個のうち、3個を常温で、3個を100℃下で、残り3個を150℃下で引っ張り破断試験した。せん断破断時の力をその後の測定で出た接着面積で除してせん断破断力を算出し、平均値を出した。その結果を図16に示す。   In the same manner as the A7075 piece, the metal alloy pieces subjected to the surface treatment of Experimental Examples 2, 3, 6, 8, 9, 10, and 12 'were bonded and bonded together with "EP160". As a result, 9 sets of test samples were obtained for each of various metal alloys of A7075 pieces, A5052 pieces, AZ31B pieces, KFC pieces, KS40 pieces, KSTi-9 pieces, SUS304 pieces, and SAPH440 pieces. About various metal alloys, among the nine test samples, three were subjected to a tensile fracture test at room temperature, three at 100 ° C., and the other three at 150 ° C. The shear breaking force was calculated by dividing the shear breaking force by the adhesion area obtained in the subsequent measurement, and the average value was obtained. The result is shown in FIG.

図16に示すように、A5052、A7075、及びSAPH440の接合体は、常温(25℃)でのせん断破断力が50〜60MPaであった。また、SUS304の接合体は、常温でのせん断破断力が50MPa弱であった。一方、KFC、KS40、KSTi−9、及びAZ31Bの接合体は、常温でのせん断破断力が30MPa付近であり、前述の金属合金より低かった。この常温におけるせん断破断力のみを比較した場合、その差は金属合金種が異なることに起因するとも考えられる。しかし100℃、150℃でのせん断破断力を比較すると、金属合金種の相違による差が常温ほどには大きくないため、必ずしもせん断破断力の差は金属合金種の相違によるものではないと考えられる。図16から把握されるように、100℃以上の温度でのせん断破断力は、上記の金属合金種で似た値になり、100℃では26〜37MPaに収束し、150℃では9〜15MPaに収束した。   As shown in FIG. 16, the joined body of A5052, A7075, and SAPH440 had a shear fracture strength at room temperature (25 ° C.) of 50 to 60 MPa. Further, the joined body of SUS304 had a shear breaking strength at room temperature of less than 50 MPa. On the other hand, the joined body of KFC, KS40, KSTi-9, and AZ31B had a shear fracture strength at room temperature of around 30 MPa, which was lower than that of the metal alloy described above. When only the shear breaking force at normal temperature is compared, the difference may be attributed to different metal alloy types. However, when the shear fracture strength at 100 ° C. and 150 ° C. is compared, the difference due to the difference in the metal alloy type is not as great as that at room temperature, so the difference in the shear fracture force is not necessarily due to the difference in the metal alloy type. . As can be seen from FIG. 16, the shear breaking force at a temperature of 100 ° C. or higher is similar to that of the above metal alloy species, converges to 26 to 37 MPa at 100 ° C., and reaches 9 to 15 MPa at 150 ° C. Converged.

結局、30MPa以上のせん断破断力を示す領域では、金属合金種間におけるバラツキが存在するが、これは各金属合金種の曲げ強度の差違によるものであると本発明者らは推定した。AZ31Bは強度が弱い上に、厚さは1mmである。同様に、KFCも強度は十分高いとは言えない上に、厚さは0.7mmである。また、チタン合金板KS40及びKSTi−9の双方とも、厚さは1mmであった。これらについては、これ以上の厚さのものが一般向けに市販されておらず、本発明者らは同じ厚さでの比較を行っていなかったのだが、それでも、せん断破断力の測定に関しては接着面積をかなり小さく絞っていたので、厚さに依存することなく、本来のせん断破断力の値が得られると予想していたのである。   Eventually, in the region showing a shear breaking force of 30 MPa or more, the present inventors estimated that there is a variation between metal alloy types, which is due to a difference in bending strength of each metal alloy type. AZ31B has a low strength and a thickness of 1 mm. Similarly, KFC is not sufficiently strong and has a thickness of 0.7 mm. Moreover, both the titanium alloy plates KS40 and KSTi-9 had a thickness of 1 mm. For these, those with a thickness greater than this were not commercially available, and the present inventors did not make a comparison with the same thickness. Because the area was narrowed down considerably, it was expected that the original value of shear breaking force could be obtained without depending on the thickness.

本発明者らは、各金属合金種について本来のせん断破断力の値を得るために、試験片の大きさ自体は現行の45mm×18mmであって、接着面積が0.7cm程度で良いと判断している。しかしながら、この図16の結果から、金属合金板の厚さは少なくとも3mm程度は必要であると判断した。但し、強度が抜き出でている一般鋼材SAPH440に関しては、現行の厚さ1.6mmでも十分と考えた。 In order to obtain the value of the original shear breaking force for each metal alloy type, the inventors of the present invention have a test piece size of 45 mm × 18 mm, and an adhesion area of about 0.7 cm 2. Deciding. However, from the result of FIG. 16, it was determined that the thickness of the metal alloy plate is required to be at least about 3 mm. However, regarding the general steel material SAPH440 with extracted strength, the current thickness of 1.6 mm was considered sufficient.

[実験例18](KFC積層材による接着実験)
実験例6で示した表面処理を施した厚さ0.7mmのKFC片を24枚用意した。各KFC片の片面全面に接着剤「EP160」を塗り、予め70℃の温風乾燥機内に1時間入れて暖めておいたデシケータに入れて蓋をし、真空ポンプを使用して実験例17と同様に減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてKFC片を取り出した。取り出したKFC片の接着剤塗布面同士を面接合させて、KFC片2枚を積層した。これにより積層材を12組得た。次いで、各積層材(KFC片2枚からなる積層材)の片面全面に再び「EP160」を塗り、同様にデシケータを使用して減圧/常圧戻しの操作を3回繰り返し、接着剤塗布面同士を面接合させて、2組の積層材を積層した。これによりKFC片4枚からなる積層材を作成した。即ち、厚さ2.8mm(0.7mm×4)のKFC積層材を6組得たことになる。
[Experiment 18] (Adhesion experiment with KFC laminate)
24 pieces of 0.7 mm thick KFC pieces subjected to the surface treatment shown in Experimental Example 6 were prepared. Apply the adhesive “EP160” to the entire surface of each KFC piece, put it in a warm air dryer at 70 ° C. for 1 hour, cover it in a desiccator and cover it with Experiment Example 17 using a vacuum pump. Similarly, the operation of reducing pressure / returning to normal pressure was repeated three times, and then the desiccator was opened to take out the KFC piece. The adhesive-coated surfaces of the removed KFC pieces were subjected to surface bonding, and two KFC pieces were laminated. Thereby, 12 sets of laminated materials were obtained. Next, “EP160” is applied again to the entire surface of one side of each laminated material (a laminated material consisting of two KFC pieces), and the operation of reducing pressure / returning to normal pressure is repeated three times using a desiccator. Were bonded to each other to laminate two sets of laminated materials. In this way, a laminated material composed of four KFC pieces was prepared. That is, six sets of KFC laminates having a thickness of 2.8 mm (0.7 mm × 4) were obtained.

さらに各KFC積層材の端部に「EP160」を塗り、デシケータを使用して減圧/常圧戻しの操作を3回繰り返し、接着面積が0.6〜0.7cmになるように接着剤塗布部同士を接着接合させた。この接合体を3組作成し、各接合体全体をクリップ6個で固定した。これらの接合体を90℃にセットしておいた熱風乾燥機内に入れた。90℃に40分保持した後に135℃に昇温し、この温度に40分保持した。その後に更に165℃に昇温して40分保持し、熱風乾燥機の電源を切って翌日まで放冷した。これにより、図2に示すように、KFC積層材21同士の接着接合体である試験試料2を得た。この図に示すように、2つのKFC積層材21が相互に面端部で接着接合されている。そして各KFC積層材21は、4枚のKFC片20から構成されている。得られた3組の試験試料について、接着実験3で示したKFC片同士の接合体と同様にせん断破断力を測定した。3組の平均のせん断破断力は平均51MPaであった。 Furthermore, apply “EP160” to the end of each KFC laminate and repeat the decompression / return to normal pressure operation three times using a desiccator, and apply the adhesive so that the adhesion area is 0.6 to 0.7 cm 2. The parts were bonded together. Three sets of the joined bodies were prepared, and the entire joined bodies were fixed with six clips. These joined bodies were put in a hot air dryer set at 90 ° C. After holding at 90 ° C. for 40 minutes, the temperature was raised to 135 ° C. and kept at this temperature for 40 minutes. Thereafter, the temperature was further raised to 165 ° C. and maintained for 40 minutes, and the hot air dryer was turned off and allowed to cool to the next day. As a result, as shown in FIG. 2, a test sample 2 which is an adhesive bonded body between the KFC laminates 21 was obtained. As shown in this figure, two KFC laminates 21 are bonded and bonded to each other at the surface end portions. Each KFC laminate 21 is composed of four KFC pieces 20. About the obtained 3 sets of test samples, the shear fracture strength was measured in the same manner as the joined body of KFC pieces shown in the adhesion experiment 3. The average shear breaking force of the three sets was 51 MPa on average.

[実験例19](A5052積層材による接着実験)
実験例2で示した表面処理を施した厚さ1.6mmのA5052片を12枚用意した。実験例18と全く同じ方法で、各A5052片の片面全面に接着剤「EP160」を塗り、デシケータによる減圧/常圧戻しの操作を3回繰り返した。そのA5052片の接着剤塗布面同士を面接合させて、A5052片2枚を積層し、A5052積層材を作成した。即ち、厚さ3.2mm(1.6mm×2)のA5052積層材を6組得たことになる。さらにA5052積層材同士を、実験例18と同様に、接着面積が0.6〜0.7cmになるように接着接合し、3組の接合体を得た。これらについて、せん断破断力を測定した結果、3組の平均のせん断破断力は54MPaであった。
[Experimental Example 19] (Adhesion experiment with A5052 laminate)
Twelve A5052 pieces with a thickness of 1.6 mm subjected to the surface treatment shown in Experimental Example 2 were prepared. In exactly the same manner as in Experimental Example 18, the adhesive “EP160” was applied to one entire surface of each A5052 piece, and the operation of reducing pressure / returning to normal pressure with a desiccator was repeated three times. The adhesive-coated surfaces of the A5052 pieces were subjected to surface bonding, and two A5052 pieces were laminated to create an A5052 laminated material. That is, six sets of A5052 laminates having a thickness of 3.2 mm (1.6 mm × 2) were obtained. Further, the A5052 laminates were bonded and bonded in the same manner as in Experimental Example 18 so that the bonding area was 0.6 to 0.7 cm 2 , and three sets of bonded bodies were obtained. As a result of measuring the shear breaking force, the average shear breaking force of the three sets was 54 MPa.

[実験例20](SUS304積層材による接着実験)
実験例10で示した表面処理を施した厚さ1mmのSUS304片を12枚用意した。実験例18と全く同じ方法で、各SUS304片の片面全面に接着剤「EP160」を塗り、デシケータによる減圧/常圧戻しの操作を3回繰り返した。そのSUS304片の接着剤塗布面同士を面接合させて、SUS304片2枚を積層し、SUS304積層材を作成した。即ち、厚さ2.0mm(1.0mm×2)のSUS304積層材を6組得たことになる。さらにSUS304積層材同士を、実験例18と同様に、接着面積が0.6〜0.7cmになるように接着接合し、3組の接合体を得た。これらについて、せん断破断力を測定した結果、3組の平均のせん断破断力は58MPaであった。
[Experiment 20] (Adhesion experiment with SUS304 laminate)
Twelve SUS304 pieces having a thickness of 1 mm and subjected to the surface treatment shown in Experimental Example 10 were prepared. In exactly the same manner as in Experimental Example 18, the adhesive “EP160” was applied to the entire surface of one surface of each SUS304 piece, and the operation of depressurization / return to normal pressure with a desiccator was repeated three times. The adhesive-applied surfaces of the SUS304 pieces were bonded to each other, and two SUS304 pieces were laminated to create a SUS304 laminated material. That is, six sets of SUS304 laminated materials having a thickness of 2.0 mm (1.0 mm × 2) were obtained. Further, SUS304 laminated materials were bonded and bonded in the same manner as in Experimental Example 18 so that the bonding area was 0.6 to 0.7 cm 2 , and three sets of bonded bodies were obtained. As a result of measuring the shear breaking force for these, the average shear breaking force of the three sets was 58 MPa.

[実験例21](AZ31B/SPCC積層材による接着実験)
実験例3で示した表面処理を施した厚さ1mmのAZ31B片と、実験例11で示した表面処理を施した厚さ1.6mmのSPCC片を各々6枚ずつ用意した。各AZ31B片の片面全面、各SPCC片の片面全面に接着剤「EP160」を塗り、予め70℃の温風乾燥機内に1時間入れて暖めておいたデシケータに入れて蓋をし、真空ポンプを使用して実験例17と同様に減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてAZ31B片及びSPCC片を取り出した。取り出したAZ31B片及びSPCC片の接着剤塗布面同士を面接合させて積層材を作成した。これにより、厚さ2.6mm(1.0mm+1.6mm)のAZ31B/SPCC積層材を6組得たことになる。そして、この積層材では、AZ31Bの曲げ強度をSPCCによって強化していることになる。
[Experiment 21] (Adhesion experiment with AZ31B / SPCC laminate)
Six AZ31B pieces with a thickness of 1 mm subjected to the surface treatment shown in Experimental Example 3 and six SPCC pieces with a thickness of 1.6 mm subjected to the surface treatment shown in Experimental Example 11 were prepared. Apply the adhesive “EP160” to one side of each AZ31B piece and one side of each SPCC piece, put it in a 70 ° C hot air dryer for 1 hour, put it in a desiccator that has been heated and cover it, In the same manner as in Experimental Example 17, the decompression / return to normal pressure operation was repeated three times, and then the desiccator was opened to take out the AZ31B piece and the SPCC piece. The adhesive-coated surfaces of the extracted AZ31B piece and SPCC piece were surface-bonded to create a laminated material. As a result, six sets of AZ31B / SPCC laminated material having a thickness of 2.6 mm (1.0 mm + 1.6 mm) were obtained. And in this laminated material, the bending strength of AZ31B is strengthened by SPCC.

さらに各積層材のAZ31B面の端部に「EP160」を塗り、デシケータを使用して減圧/常圧戻しの操作を3回繰り返し、接着面積が0.6〜0.7cmになるように接着剤塗布部同士を接着接合させた。このAZ31B面同士が上記面積で接着接合されている接合体を3組作成し、各接合体全体をクリップ6個で固定した。これらの接合体を90℃にセットしておいた熱風乾燥機内に入れた。90℃に40分保持した後に135℃に昇温し、この温度に40分保持した。その後に更に165℃に昇温して40分保持し、熱風乾燥機の電源を切って翌日まで放冷した。即ち、AZ31B/SPCC積層材同士の接合体を3組得た。これらについて、せん断破断力を測定した。3組の平均のせん断破断力は48MPaであった。 Furthermore, “EP160” is applied to the end of the AZ31B surface of each laminated material, and the operation of decompression / return to normal pressure is repeated three times using a desiccator, so that the adhesion area becomes 0.6 to 0.7 cm 2. The agent application portions were bonded and bonded together. Three sets of bonded bodies in which the AZ31B surfaces were bonded and bonded in the above-described area were prepared, and the entire bonded bodies were fixed with six clips. These joined bodies were put in a hot air dryer set at 90 ° C. After holding at 90 ° C. for 40 minutes, the temperature was raised to 135 ° C. and kept at this temperature for 40 minutes. Thereafter, the temperature was further raised to 165 ° C. and maintained for 40 minutes, and the hot air dryer was turned off and allowed to cool to the next day. That is, three sets of joined bodies of AZ31B / SPCC laminates were obtained. About these, the shear breaking force was measured. The average shear breaking force of the three sets was 48 MPa.

[実験例22](KS40/SPHC積層材による接着実験)
実験例8で示した表面処理を施した厚さ1mmのKS40片と、実験例12で示した表面処理を施した厚さ1.6mmのSPHC片を各々6枚ずつ用意した。各KS40片の片面全面、各SPHC片の片面全面に接着剤「EP160」を塗り、予め70℃の温風乾燥機内に1時間入れて暖めておいたデシケータに入れて蓋をし、真空ポンプを使用して実験例17と同様に減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてKS40片及びSPHC片を取り出した。取り出したKS40片及びSPHC片の接着剤塗布面同士を面接合させて積層材を作成した。これにより、厚さ2.6mm(1.0mm+1.6mm)のKS40/SPHC積層材を6組得たことになる。そして、この積層材では、KS40の曲げ強度をSPHCによって強化していることになる。
[Experimental example 22] (Adhesion experiment with KS40 / SPHC laminate)
Six KS40 pieces with a thickness of 1 mm subjected to the surface treatment shown in Experimental Example 8 and six SPHC pieces with a thickness of 1.6 mm subjected to the surface treatment shown in Experimental Example 12 were prepared. Apply the adhesive “EP160” on one side of each KS40 piece and one side of each SPHC piece, put it in a 70 ° C hot air dryer for 1 hour, put it in a desiccator that has been heated, cover it, and put a vacuum pump In the same manner as in Experimental Example 17, the decompression / return to normal pressure operation was repeated three times, and then the desiccator was opened to take out the KS40 piece and the SPHC piece. The adhesive-coated surfaces of the extracted KS40 pieces and SPHC pieces were surface-bonded to form a laminated material. As a result, six sets of KS40 / SPHC laminates having a thickness of 2.6 mm (1.0 mm + 1.6 mm) were obtained. And in this laminated material, the bending strength of KS40 is strengthened by SPHC.

さらに各積層材のKS40面の端部に「EP160」を塗り、デシケータを使用して減圧/常圧戻しの操作を3回繰り返し、接着面積が0.6〜0.7cmになるように接着剤塗布部同士を接着接合させた。このKS40面同士が上記面積で接着接合されている接合体を3組作成し、各接合体全体をクリップ6個で固定した。これらの接合体を90℃にセットしておいた熱風乾燥機内に入れた。90℃に40分保持した後に135℃に昇温し、この温度に40分保持した。その後に更に165℃に昇温して40分保持し、熱風乾燥機の電源を切って翌日まで放冷した。即ち、KS40/SPHC積層材同士の接合体を3組得た。これらについて、せん断破断力を測定した。3組の平均のせん断破断力は40MPaであった。 Furthermore, “EP160” is applied to the end of the KS40 surface of each laminated material, and the operation of depressurization / return to normal pressure is repeated three times using a desiccator, so that the bonding area becomes 0.6 to 0.7 cm 2. The agent application portions were bonded and bonded together. Three sets of bonded bodies in which the KS40 surfaces were bonded and bonded in the above-described area were created, and the entire bonded bodies were fixed with six clips. These joined bodies were put in a hot air dryer set at 90 ° C. After holding at 90 ° C. for 40 minutes, the temperature was raised to 135 ° C. and kept at this temperature for 40 minutes. Thereafter, the temperature was further raised to 165 ° C. and maintained for 40 minutes, and the hot air dryer was turned off and allowed to cool to the next day. That is, three sets of joined bodies of KS40 / SPHC laminates were obtained. About these, the shear breaking force was measured. The average shear breaking force of the three sets was 40 MPa.

構造強度が強い厚さ1.6mmのA5052、厚さ3mmのA7075、厚さ1.6mmの一般鋼材(SAPH440)の接合体のせん断破断力が50〜60MPaであるから、これらと比較して明らかに低い。また、他の積層材(KFC積層材、A5052積層材、SUS304積層材、AZ31B/SPCC積層材)の接合体と比較しても低いといえる。これは、KS40の表面に形成されている超微細凹凸が、前述したNAT理論の第2の条件には合致しているものの、好ましい周期(10〜300nm周期)で出現する頻度が低いからと考えられる。   Since the shear breaking force of a joined body of 1.6 mm thick A5052, 3 mm thick A7075, 1.6 mm thick general steel (SAPH440) is 50 to 60 MPa, the structural strength is clear. Very low. Moreover, it can be said that it is low compared with the joined body of other laminated materials (KFC laminated material, A5052 laminated material, SUS304 laminated material, AZ31B / SPCC laminated material). This is probably because the ultra-fine irregularities formed on the surface of the KS 40 meet the second condition of the NAT theory described above, but appear less frequently in a preferable period (10 to 300 nm period). It is done.

[実験例23](KSTi−9/SPHC積層材による接着実験)
実験例9で示した表面処理を施した厚さ1mmのKSTi−9片と、実験例12で示した表面処理を施した厚さ1.6mmのSPHC片を各々6枚ずつ用意した。各KSTi−9片の片面全面、各SPHC片の片面全面に接着剤「EP160」を塗り、予め70℃の温風乾燥機内に1時間入れて暖めておいたデシケータに入れて蓋をし、真空ポンプを使用して実験例17と同様に減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてKSTi−9片及びSPHC片を取り出した。取り出したKSTi−9片及びSPHC片の接着剤塗布面同士を面接合させて積層材を作成した。これにより、厚さ2.6mm(1.0mm+1.6mm)のKSTi−9/SPHC積層材を6組得たことになる。そして、この積層材では、KSTi−9の曲げ強度をSPHCによって強化していることになる。
[Experimental Example 23] (Adhesion experiment with KSTi-9 / SPHC laminate)
Six pieces of 1 mm thick KSTi-9 pieces subjected to the surface treatment shown in Experimental Example 9 and six pieces of 1.6 mm thick SPHC pieces subjected to the surface treatment shown in Experimental Example 12 were prepared. Apply the adhesive "EP160" to one side of each KSTi-9 piece and one side of each SPHC piece, put in a desiccator that has been warmed in a warm air dryer at 70 ° C for 1 hour, cover and vacuum. The operation of depressurization / return to normal pressure was repeated three times using the pump in the same manner as in Experimental Example 17, and then the desiccator was opened to take out the KSTi-9 piece and the SPHC piece. The adhesive-coated surfaces of the extracted KSTi-9 pieces and SPHC pieces were surface-bonded to form a laminated material. As a result, six sets of KSTi-9 / SPHC laminates having a thickness of 2.6 mm (1.0 mm + 1.6 mm) were obtained. And in this laminated material, the bending strength of KSTi-9 is strengthened by SPHC.

さらに各積層材のKSTi−9面の端部に「EP160」を塗り、デシケータを使用して減圧/常圧戻しの操作を3回繰り返し、接着面積が0.6〜0.7cmになるように接着剤塗布部同士を接着接合させた。このKSTi−9面同士が上記面積で接着接合されている接合体を3組作成し、各接合体全体をクリップ6個で固定した。これらの接合体を90℃にセットしておいた熱風乾燥機内に入れた。90℃に40分保持した後に135℃に昇温し、この温度に40分保持した。その後に更に165℃に昇温して40分保持し、熱風乾燥機の電源を切って翌日まで放冷した。即ち、KSTi−9/SPHC積層材同士の接合体を3組得た。これらについて、せん断破断力を測定した。3組の平均のせん断破断力は42MPaであった。 Furthermore, “EP160” is applied to the end portion of the KSTi-9 surface of each laminated material, and the operation of depressurization / return to normal pressure is repeated three times using a desiccator so that the adhesion area becomes 0.6 to 0.7 cm 2. The adhesive-applied parts were bonded to each other. Three sets of bonded bodies in which the KSTi-9 surfaces were bonded and bonded in the above-described area were created, and the entire bonded bodies were fixed with six clips. These joined bodies were put in a hot air dryer set at 90 ° C. After holding at 90 ° C. for 40 minutes, the temperature was raised to 135 ° C. and kept at this temperature for 40 minutes. Thereafter, the temperature was further raised to 165 ° C. and maintained for 40 minutes, and the hot air dryer was turned off and allowed to cool to the next day. That is, three sets of joined bodies of KSTi-9 / SPHC laminates were obtained. About these, the shear breaking force was measured. The average shear breaking force of the three sets was 42 MPa.

構造強度が強い厚さ1.6mmのA5052、厚さ3mmのA7075、厚さ1.6mmの一般鋼材(SAPH440)の接合体のせん断破断力が50〜60MPaであるから、これらと比較して明らかに低い。また、他の積層材(KFC積層材、A5052積層材、SUS304積層材、AZ31B/SPCC積層材)の接合体と比較しても低いといえる。これは、KSTi−9の表面の殆どが、前述した第2の条件に合致していないからと考えられる。   Since the shear breaking force of a joined body of 1.6 mm thick A5052, 3 mm thick A7075, 1.6 mm thick general steel (SAPH440) is 50 to 60 MPa, the structural strength is clear. Very low. Moreover, it can be said that it is low compared with the joined body of other laminated materials (KFC laminated material, A5052 laminated material, SUS304 laminated material, AZ31B / SPCC laminated material). This is presumably because most of the surface of KSTi-9 does not meet the second condition described above.

[せん断破断力の比較]
実験例18〜23の試験結果、即ち常温におけるKFC積層材、A5052積層材、SUS304積層材、AZ31B/SPCC積層材、KS40/SPHC積層材、及びKSTi−9/SPHC積層材同士の接合体のせん断破断力を図17に示す。また、図16から常温(25℃)におけるA7075片、SAPH440片同士の接合体のせん断破断力も転載している。また括弧内の数値は積層化する前のせん断破断力を示す。
[Comparison of shear breaking strength]
Test results of Experimental Examples 18 to 23, that is, shearing of a joined body of KFC laminated material, A5052 laminated material, SUS304 laminated material, AZ31B / SPCC laminated material, KS40 / SPHC laminated material, and KSTi-9 / SPHC laminated material at room temperature The breaking force is shown in FIG. Moreover, the shear breaking force of the joined body of A7075 piece and SAPH440 piece in normal temperature (25 degreeC) from FIG. 16 is also reprinted. The numerical value in the parenthesis indicates the shear breaking force before lamination.

図17から、金属合金が実験条件下で曲がりを生じないような十分な強度を保有していれば、各金属合金種で共通して、常温下(25℃)におけるせん断破断力が50〜60MPaを示すことがわかる。A5052積層材では、積層前(53MPa)と比較して、せん断破断力が殆ど向上していない(54MPa)が、これは1.6mm厚であっても最適な接着がなされている、即ちNAT理論を適用した効果が十分に発揮できることを示す。一方、KFC(積層前は31MPa)、AZ31B(積層前は28MPa)では、せん断破断力が20MPa向上するという劇的な効果が得られた。また、SUS304(積層前は47MPa)でも、10MPa以上のせん断破断力の向上を確認できた。これらについては積層化することによって、最適な接着が可能となったと言える。さらに、チタン合金類であるKS40(積層前は31MPa)、KSTi−9(積層前は36MPa)についても、積層化によって、それぞれ40MPa、42MPaと40MPa以上のせん断破断力を示すようになった。   From FIG. 17, if the metal alloy possesses sufficient strength that does not bend under the experimental conditions, the shear fracture force at room temperature (25 ° C.) is 50-60 MPa in common with each metal alloy type. It can be seen that In the A5052 laminated material, the shear breaking force is hardly improved (54 MPa) compared to before lamination (53 MPa), but this is optimal adhesion even with a thickness of 1.6 mm, that is, NAT theory. It shows that the effect of applying can be fully demonstrated. On the other hand, with KFC (31 MPa before lamination) and AZ31B (28 MPa before lamination), a dramatic effect was obtained in which the shear breaking force was improved by 20 MPa. Further, even with SUS304 (47 MPa before lamination), an improvement in shear breaking force of 10 MPa or more could be confirmed. About these, it can be said that the optimal adhesion | attachment was attained by laminating | stacking. Furthermore, KS40 (31 MPa before lamination) and KSTi-9 (36 MPa before lamination), which are titanium alloys, also exhibited shear breaking forces of 40 MPa, 42 MPa, and 40 MPa or more, respectively, by lamination.

各金属合金種間におけるせん断破断力のバラつきは、特に好ましい表面形状に近い形状か否かによるものと考えられる。即ち、超微細凹凸形状の周期が30〜100nmの範囲であれば特に好ましいのであるが、純チタン合金KS40に関しては、前述したように超微細凹凸が前記範囲から外れており、α−β型チタン合金KSTi−9に関してはNAT理論の第2の条件(5〜500nm周期)からも外れている。故に、これらをSPHCによって補強した場合であっても、常温下でのせん断破断力が40MPa台と明らかに低いものになっている。   It is considered that the variation in the shear breaking force between the metal alloy types depends on whether the shape is close to a particularly preferable surface shape. That is, it is particularly preferable if the period of the ultra-fine irregularities is in the range of 30 to 100 nm. However, for the pure titanium alloy KS40, as described above, the ultra-fine irregularities are out of the above range, and α-β type titanium The alloy KSTi-9 also deviates from the second condition of NAT theory (5-500 nm period). Therefore, even when these are reinforced with SPHC, the shear breaking force at room temperature is clearly as low as 40 MPa.

[実験例24](A7075/DP160積層材による接着実験)
実験例1と全く同じ方法で300mm×25mm×3mm厚のA7075片に表面処理を施した。また、厚さ1mmの超高張力鋼板材「DP160(新日本製鐵株式会社(日本国東京都)製)」を長方形(280mm×18mm)に切断したDP160ハイテンション鋼材片に、実験例13と全く同じ方法で表面処理を施した。このA7075片の片面全面、DP160片の片面全面に実験例14で得た「EP160−A」を薄く塗り付けた。これらを予め70℃の温風乾燥機内に1時間入れて暖めておいた大型デシケータに入れて蓋をし、真空ポンプを使用して内部を30mmHg以下に減圧にした。減圧下に30秒以上置き、常圧に戻した。この減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてA7075片、DP160片を取り出した。そしてA7075片、DP160片の接着剤塗布面同士を面接合させた。この接合体を90℃にセットしておいた熱風乾燥機内に入れた。90℃に40分保持した後に135℃に昇温し、この温度に40分保持した。その後に更に165℃に昇温して40分保持し、熱風乾燥機の電源を切って翌日まで放冷した。その結果図18に示すA7075/DP160積層材である試験試料3を得た。
[Experiment 24] (Adhesion experiment with A7075 / DP160 laminate)
Surface treatment was performed on A7075 pieces having a thickness of 300 mm × 25 mm × 3 mm in exactly the same manner as in Experimental Example 1. Further, an experimental example 13 and a DP160 high-tensile steel piece obtained by cutting a 1 mm thick ultra-high-strength steel plate material “DP160 (manufactured by Nippon Steel Corp. (Tokyo, Japan)) into a rectangle (280 mm × 18 mm)” Surface treatment was performed in exactly the same way. "EP160-A" obtained in Experimental Example 14 was thinly applied to one side of the A7075 piece and one side of the DP160 piece. These were placed in a large desiccator that had been heated in a hot air dryer at 70 ° C. for 1 hour and covered, and the inside was reduced to 30 mmHg or less using a vacuum pump. It was put under reduced pressure for 30 seconds or more and returned to normal pressure. This pressure reduction / normal pressure return operation was repeated three times, and then the desiccator was opened to take out A7075 pieces and DP160 pieces. And the adhesive application surfaces of the A7075 piece and the DP160 piece were subjected to surface bonding. This joined body was put in a hot air dryer set at 90 ° C. After holding at 90 ° C. for 40 minutes, the temperature was raised to 135 ° C. and kept at this temperature for 40 minutes. Thereafter, the temperature was further raised to 165 ° C. and maintained for 40 minutes, and the hot air dryer was turned off and allowed to cool to the next day. As a result, a test sample 3 as an A7075 / DP160 laminate shown in FIG. 18 was obtained.

ここで、図18に示すように、A7075片31よりもDP160片32が一回り小さく、A7075片31の中央部分にDP160片32を接着するようにした。このようにして得られたA7075/DP160積層材のDP160片側を下に向けて、その両端を幅10mm、厚さ1.5mmの板棒材2本で支え、上面となっているA7075片の中央部分に錘を置いた。   Here, as shown in FIG. 18, the DP160 piece 32 is slightly smaller than the A7075 piece 31, and the DP160 piece 32 is adhered to the central portion of the A7075 piece 31. The center of the A7075 piece which is the upper surface of the A7075 piece obtained in this way, with the DP160 piece side of the A7075 / DP160 laminated material facing downward and the two ends supported by two plate bars with a width of 10 mm and a thickness of 1.5 mm. A weight was placed on the part.

一方、上記A7075/DP160積層材との曲げ強度を比較すべく、A7075/A5052積層材を作成した。即ち、実験例1と全く同じ方法で300mm×25mm×3mm厚のA7075片に表面処理を施した。また、実験例2と全く同じ方法で280mm×18mm×1mm厚のA5052片に表面処理を施した。これらをA7075/DP160積層材と同様に接合し、A7075/A5052積層材を得た。即ち、補強用金属が「DP160」ではなく「A5052」である点が異なる。このようにして得られたA7075/A5052積層材をのA5052片側を下に向けて、その両端を幅10mm、厚さ1.5mmの板棒材2本で支え、上面となっているA7075片の中央部分に錘を置いた。   On the other hand, an A7075 / A5052 laminate was prepared in order to compare the bending strength with the A7075 / DP160 laminate. That is, surface treatment was performed on A7075 pieces of 300 mm × 25 mm × 3 mm thickness by exactly the same method as in Experimental Example 1. Further, A5052 pieces having a thickness of 280 mm × 18 mm × 1 mm were subjected to surface treatment in exactly the same manner as in Experimental Example 2. These were joined in the same manner as the A7075 / DP160 laminate to obtain an A7075 / A5052 laminate. That is, the difference is that the reinforcing metal is not “DP160” but “A5052”. The A7075 / A5052 laminate obtained in this way is faced down with the A5052 piece side, and both ends thereof are supported by two plate bars having a width of 10 mm and a thickness of 1.5 mm. A weight was placed in the center.

A7075/DP160積層材、A7075/A5052積層材の双方の中央に置く錘の重さを徐々に増やしていき、中央部のたわみを測定した。その結果、A7075/DP160積層材の場合には、錘が21kgのときに中央部が元の位置から1.2mm下がった。一方、A7075/A5052積層材の場合には、錘が10kgのときに中央部が元の位置から1.2mm下がった。即ち、積層材の作成にあたり、A5052よりもハイテンション鋼を用いることによって、抗張力が明らかに向上したことを確認できた。このような接着接合によっても溶接やボルト止めと同様に、積層化の効果が得られたことになる。更に言えば、抗張力の大きい金属合金を芯材に貼り付けて一体化することにより、部品の機械的性質を一変させることも出来るのである。   The weight of the weight placed at the center of both the A7075 / DP160 laminate and the A7075 / A5052 laminate was gradually increased, and the deflection at the center was measured. As a result, in the case of the A7075 / DP160 laminated material, when the weight was 21 kg, the central portion was lowered by 1.2 mm from the original position. On the other hand, in the case of the A7075 / A5052 laminated material, when the weight was 10 kg, the central portion was lowered by 1.2 mm from the original position. That is, it was confirmed that the tensile strength was clearly improved by using high tension steel rather than A5052 in the production of the laminated material. By such adhesive bonding, the effect of layering is obtained as in the case of welding and bolting. Furthermore, the mechanical properties of the parts can be completely changed by attaching a metal alloy having a high tensile strength to the core material and integrating them.

[実験例25](SUS304/AZ31B/SUS304サンドイッチ材の作成)
実験例3と全く同じ方法で100mm×25mm×1mm厚のAZ31B片に表面処理を施した。又、実験例10と全く同じ方法で100mm×25mm×0.1mm厚のSUS304片に表面処理を施した。AZ31B片の両面全面に実験例14で得た接着剤「EP106−A」を塗布した。また、AZ31B片1枚に対して、SUS304片の片面全面に「EP106−A」を塗布したものを2枚用意した。これらについて実験例24と同様に減圧/常圧戻しの操作を行った。そして、AZ31B片の両面各々にSUS304片の接着剤塗布面側を面接合させるようにして、このAZ31B片をSUS304片で挟み込み、これを実験例24と同様に加熱して接着剤を硬化させた。これにより、SUS304/AZ31B/SUS304サンドイッチ材を得た。即ち、皮材がSUS304(0.1mm)、芯材がAZ31B(1.0mm)で構成された厚さ1.2mmのサンドイッチ材となっている。これは耐食性があり、且つ比重が2.4程度であり、且つ曲げ強度も十分にある材料である。パソコンケース等の軽量で強度の必要な材料に使用できる。
[Experiment 25] (Creation of SUS304 / AZ31B / SUS304 sandwich material)
Surface treatment was applied to a 100 mm × 25 mm × 1 mm thick AZ31B piece in exactly the same manner as in Experimental Example 3. Further, a surface treatment was performed on a SUS304 piece having a thickness of 100 mm × 25 mm × 0.1 mm in exactly the same manner as in Experimental Example 10. The adhesive “EP106-A” obtained in Experimental Example 14 was applied to the entire surface of both sides of the AZ31B piece. Also, two sheets of SUS31B coated with “EP106-A” on the entire surface of one surface of SUS304 were prepared. About these, operation of pressure reduction / normal pressure return was performed similarly to Experimental Example 24. Then, the adhesive application surface side of the SUS304 piece was surface-bonded to each of both surfaces of the AZ31B piece, the AZ31B piece was sandwiched between the SUS304 pieces, and this was heated in the same manner as in Experimental Example 24 to cure the adhesive. . Thereby, a SUS304 / AZ31B / SUS304 sandwich material was obtained. That is, the sandwich material is 1.2 mm in thickness, in which the skin material is SUS304 (0.1 mm) and the core material is AZ31B (1.0 mm). This is a material having corrosion resistance, a specific gravity of about 2.4, and sufficient bending strength. Can be used for lightweight and strong materials such as PC cases.

[実験例26](SUS304/SPCC/SUS304サンドイッチ材の作成)
実験例11と全く同じ方法で100mm×25mm×1.6mm厚のSPCC片に表面処理を施した。又、実験例10と全く同様な方法で100mm×25mm×0.1mm厚のSUS304片に表面処理を施した。SPCC片の両面全面に実験例14で得た接着剤「EP106−A」を塗布した。また、SPCC片1枚に対して、SUS304片の片面全面に「EP106−A」を塗布したものを2枚用意した。これらについて実験例24と同様に減圧/常圧戻しの操作を行った。そして、SPCC片の両面各々にSUS304片の接着剤塗布面側を面接合させるようにして、このSPCC片をSUS304片で挟み込み、これを実験例24と同様に加熱して接着剤を硬化させた。これにより、SUS304/SPCC/SUS304サンドイッチ材を得た。即ち、皮材がSUS304(0.1mm)、芯材がSPCC(1.6mm)で構成された厚さ1.8mmのサンドイッチ材となっている。これは耐食性があり、高強度の構造材の材料となる。屋外で腐食しないので、屋根材等に使用できる。
[Experiment 26] (Preparation of SUS304 / SPCC / SUS304 sandwich material)
Surface treatment was applied to a 100 mm × 25 mm × 1.6 mm thick SPCC piece in exactly the same manner as in Experimental Example 11. Further, the SUS304 piece having a thickness of 100 mm × 25 mm × 0.1 mm was subjected to a surface treatment in the same manner as in Experimental Example 10. The adhesive “EP106-A” obtained in Experimental Example 14 was applied to the entire surface of both sides of the SPCC piece. In addition, two SPCC pieces with “EP106-A” coated on the entire surface of one side of the SUS304 piece were prepared. About these, operation of pressure reduction / normal pressure return was performed similarly to Experimental Example 24. Then, the adhesive-coated surface side of the SUS304 piece was surface-bonded to both surfaces of the SPCC piece, and the SPCC piece was sandwiched between the SUS304 pieces and heated in the same manner as in Experimental Example 24 to cure the adhesive. . Thereby, a SUS304 / SPCC / SUS304 sandwich material was obtained. That is, the sandwich material is a 1.8 mm thick material composed of SUS304 (0.1 mm) for the skin material and SPCC (1.6 mm) for the core material. This is corrosion resistant and is a material for a high strength structural material. Since it does not corrode outdoors, it can be used for roofing materials.

[実験例27](A5052/C1100積層材の作成)
実験例2と全く同じ方法で100mm×100mm×5mm厚のA5052片に表面処理を施した。又、実験例4と全く同様な方法で100mm×100mm×0.5mm厚のC1100片に表面処理を施した。A5052片の片面全面、C1100片の片面全面に実験例14で得た接着剤「EP106−A」を塗布した。これらについて実験例24と同様に減圧/常圧戻しの操作を行った。そして、A5052片とC1100片の接着剤塗布面同士を面接合させ、これを実験例24と同様に加熱して接着剤を硬化させた。これにより、A5052/C1100積層材を得た。即ち、一方の面がA5052であり、他方の面がC1100で構成された厚さ5.5mmの積層材となっている。
[Experiment 27] (Creation of A5052 / C1100 laminate)
Surface treatment was applied to 100 mm × 100 mm × 5 mm thick A5052 pieces in exactly the same manner as in Experimental Example 2. Further, a surface treatment was performed on a C1100 piece having a thickness of 100 mm × 100 mm × 0.5 mm in the same manner as in Experimental Example 4. The adhesive “EP106-A” obtained in Experimental Example 14 was applied to the entire surface of one side of the A5052 piece and the entire surface of one side of the C1100 piece. About these, operation of pressure reduction / normal pressure return was performed similarly to Experimental Example 24. And the adhesive application surfaces of A5052 piece and C1100 piece were surface-joined, this was heated like Experimental Example 24, and the adhesive agent was hardened. This obtained the A5052 / C1100 laminated material. That is, it is a laminated material having a thickness of 5.5 mm in which one surface is A5052 and the other surface is C1100.

この積層材のA5052面側を機械加工して、幅2mmで深さ3mm程度の溝を多数設けると、これは放熱に適した表面積の大きい面となる。そして、A5052は強度が十分にあるアルミニウム合金であるから、溝が増えても構造的に十分な強度を維持することができる。さらに、A5052と面接触しているのは最も熱伝導性の高い純銅系の銅合金C1100である。従ってC1100面上にパワー型半導体や高周波半導体などの発熱性の高い電子部品を設置すると、熱は銅合金C1100を経由してアルミニウム合金A5052側に移り、溝が設けられたA5052の広い表面から放熱できる。ここで、このような放熱機構を構成するにあたり、アルミニウム合金を一切用いず、全てを銅合金で作成することも可能であるが、重量が大きくなってしまうのでモバイル用機器等には適していない。又、A5052の熱伝導性は銅より劣るものの、それほど低くはないし、強度もある。結論としては、A5052/C1100積層材からなる放熱機構は、放熱性に優れ、且つ、一定の強度もあって軽量であるから、モバイル用通信機器のヒートシンク等に用いることができる。   When a large number of grooves having a width of 2 mm and a depth of about 3 mm are formed by machining the A5052 surface side of the laminated material, this becomes a large surface area suitable for heat dissipation. Since A5052 is an aluminum alloy with sufficient strength, structurally sufficient strength can be maintained even if the number of grooves increases. Further, it is the pure copper-based copper alloy C1100 having the highest thermal conductivity that is in surface contact with A5052. Therefore, when a highly heat-generating electronic component such as a power type semiconductor or a high-frequency semiconductor is installed on the C1100 surface, the heat is transferred to the aluminum alloy A5052 side via the copper alloy C1100, and heat is radiated from the wide surface of the A5052 provided with the groove. it can. Here, in constructing such a heat dissipation mechanism, it is possible to make all of it with a copper alloy without using any aluminum alloy, but it is not suitable for mobile devices because the weight increases. . In addition, although the thermal conductivity of A5052 is inferior to copper, it is not so low and has strength. In conclusion, the heat dissipation mechanism made of the A5052 / C1100 laminate material is excellent in heat dissipation, has a certain strength, and is lightweight, so that it can be used as a heat sink for mobile communication devices.

[実験例28](A5052/C1100クラッド材の作成)
実験例2と全く同じ方法で100mm×100mm×5mm厚のA5052片に表面処理を施した。又、0.5mm厚のC1100板材を入手し、これを切断して100mm×100mm×0.5mm厚のC1100片とした。このC1100片を、アルミ用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液(60℃)に5分浸漬して水道水で水洗し、70℃とした温風乾燥機で乾燥した。A5052片とC1100片の四隅を揃えて密着させ、平板プレス機で1tかけて仮接合した。次に加熱可能な平板金型を100トン型プレス機に乗せて、金型温度を200℃に制御した。仮接合したA5052片とC1100片の対を金型間に乗せ、締め切った時の金型隙間(即ち成型品の厚さ)が5.3mmになるようセットして圧縮した。圧縮した状態で30秒置いて金型を開き、接合したA5052/C1100クラッド材を取り出した。取り出したクラッド材の周辺をフライス盤で削り、100mm×100mmの綺麗な正方形状に戻した。さらに、A5052面側に、NCフライス盤によって幅2mm深さ3mmの溝を20本の設け、放熱板とした。
この機械加工したクラッド材を温度衝撃試験機に入れて、−30℃/+100℃の温度衝撃を3000サイクル加えたが、全く2種材料間に剥がれが生じなかった。A5052/C1100クラッド材からなる放熱機構は、放熱性に優れ、且つ、一定の強度もあって軽量であるから、モバイル用通信機器のヒートシンク等に用いることができる。
[Experiment 28] (Creation of A5052 / C1100 clad material)
Surface treatment was applied to 100 mm × 100 mm × 5 mm thick A5052 pieces in exactly the same manner as in Experimental Example 2. Further, a C1100 plate material having a thickness of 0.5 mm was obtained, and this was cut into C1100 pieces having a thickness of 100 mm × 100 mm × 0.5 mm. This C1100 piece was immersed in an aqueous solution (60 ° C.) containing 7.5% of an aluminum degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” for 5 minutes, washed with tap water, and warmed to 70 ° C. It dried with the dryer. The four corners of the A5052 piece and the C1100 piece were brought into close contact with each other and temporarily joined with a flat plate press machine for 1 t. Next, a heatable flat plate mold was placed on a 100-ton mold press and the mold temperature was controlled at 200 ° C. A pair of temporarily bonded A5052 pieces and C1100 pieces was placed between the molds, and set and compressed so that the mold gap (ie, the thickness of the molded product) when closed was 5.3 mm. The mold was opened for 30 seconds in a compressed state, and the bonded A5052 / C1100 clad material was taken out. The periphery of the taken out clad material was shaved with a milling machine, and returned to a beautiful square shape of 100 mm × 100 mm. Furthermore, 20 grooves having a width of 2 mm and a depth of 3 mm were provided on the A5052 surface side by an NC milling machine to obtain a heat radiating plate.
This machined clad material was put into a temperature impact tester and a temperature impact of −30 ° C./+100° C. was applied for 3000 cycles, but no peeling occurred between the two materials. The heat dissipation mechanism made of the A5052 / C1100 clad material is excellent in heat dissipation, has a certain strength, and is lightweight, so that it can be used as a heat sink for mobile communication devices.

[実験例29](不飽和ポリエステル樹脂系接着剤)
市販の不飽和ポリエステル樹脂「リポキシR802(昭和高分子株式会社製)」100部に熱可塑性樹脂のポリエーテルスルホン「スミカエクセル4100MP(住友化学株式会社製)」2部を加え、窒素下で100℃まで上げて攪拌混合した。冷やした後で、これをジルコニアビーズ0.5mmを80容積%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」にかけた。その際の周速を11.4m/秒として、微粉タルク「ハイミクロンHE5(竹原化学工業株式会社(日本国兵庫県)製)」2部を加えて運転を30分続けて分散させた。これにより得られた液状物を主液とし、この主液100部に対しt−ブチルパーオキシベンゾエート「パーブチルZ(日油株式会社製)」を1部加え、よく混合して接着剤とした。この接着剤は60分以内に使用した。
[Experimental example 29] (Unsaturated polyester resin adhesive)
To 100 parts of commercially available unsaturated polyester resin “Lipoxy R802 (made by Showa High Polymer Co., Ltd.)”, 2 parts of thermoplastic resin polyether sulfone “Sumika Excel 4100MP (made by Sumitomo Chemical Co., Ltd.)” was added, and 100 ° C. under nitrogen. And mixed with stirring. After cooling, this was applied to a sand grind mill “Tuea (manufactured by Ashizawa Finetech Co., Ltd.)” filled with 80% by volume of zirconia beads 0.5 mm. At that time, the peripheral speed was 11.4 m / sec, and 2 parts of fine talc “Hi-micron HE5 (manufactured by Takehara Chemical Industry Co., Ltd., Hyogo, Japan)” was added and dispersed for 30 minutes. The liquid thus obtained was used as a main liquid, and 1 part of t-butyl peroxybenzoate “Perbutyl Z (manufactured by NOF Corporation)” was added to 100 parts of the main liquid and mixed well to obtain an adhesive. This adhesive was used within 60 minutes.

[実験例30](SPCC/SUS304積層材の作成)
実験例11と全く同じ方法で100mm×100mm×1.6mm厚のSPCC片に表面処理を施した。又、実験例10と全く同様な方法で100mm×100mm×0.1mm厚のSUS304片に表面処理を施した。SPCC片、SUS304片の片面全面に実験例29で得た不飽和ポリエステル樹脂系接着剤を塗り付けた。SPCC片、SUS304片を大型デシケータに入れ、真空ポンプにて50mmHg程度まで減圧にし、減圧下に数十秒置いて常圧に戻した。この減圧/常圧戻しの作業を3回繰り返し、デシケータから両金属合金片を取り出した。取り出した金属合金片を50℃とした温風乾燥機に30分入れ、ゲル化を若干進めた。温風乾燥機からSPCC片、SUS304片を取り出し、双方の接着剤塗布面同士を面接合した。
[Experiment 30] (Preparation of SPCC / SUS304 laminate)
Surface treatment was performed on a SPCC piece having a thickness of 100 mm × 100 mm × 1.6 mm in exactly the same manner as in Experimental Example 11. Further, a surface treatment was performed on a 100 mm × 100 mm × 0.1 mm thick SUS304 piece in exactly the same manner as in Experimental Example 10. The unsaturated polyester resin adhesive obtained in Experimental Example 29 was applied to the entire surface of one side of the SPCC piece and the SUS304 piece. The SPCC piece and the SUS304 piece were put in a large desiccator, and the pressure was reduced to about 50 mmHg with a vacuum pump, and the pressure was returned to normal pressure by placing for several tens of seconds under reduced pressure. This decompression / return to normal pressure operation was repeated three times, and both metal alloy pieces were taken out from the desiccator. The taken-out metal alloy piece was placed in a hot air drier at 50 ° C. for 30 minutes, and gelation was slightly advanced. The SPCC piece and the SUS304 piece were taken out from the hot air dryer, and both adhesive-coated surfaces were surface-joined.

10mm厚の鉄板を2枚用意し、その1枚を熱風乾燥機内に置き、その鉄板上にポリエチフィルムを敷き、その上に前記SPCC片とSUS304片を接合したものを置き、その上に別のポリエチフィルムを敷き、さらにその上にもう1枚の鉄板を乗せた。熱風乾燥機の扉を閉め、温度を90℃にセットして昇温した。そして90℃に1時間置き、更に120℃まで昇温し1時間置いて電源を切って放冷した。これにより得られたSPCC/SUS304積層材をフライス盤で90mm×90mmの正方形板状物に加工した。SPCC片とSUS304片の間で剥がれは観察されなかったので、これを温度衝撃試験機に入れ−30℃/+80℃の温度衝撃を1000サイクル加えた。この温度衝撃試験でも2層間に剥がれは確認されなかった。   Prepare two 10mm-thick iron plates, place one in a hot air dryer, lay a polyethylene film on the iron plate, put the SPCC piece and SUS304 piece on it, put another piece on it A polyethylene film was laid, and another iron plate was placed on it. The door of the hot air dryer was closed and the temperature was set at 90 ° C. to raise the temperature. Then, it was placed at 90 ° C. for 1 hour, further heated to 120 ° C., placed for 1 hour, turned off, and allowed to cool. The SPCC / SUS304 laminate thus obtained was processed into a 90 mm × 90 mm square plate with a milling machine. Since no peeling was observed between the SPCC piece and the SUS304 piece, this was put in a temperature shock tester and a temperature shock of −30 ° C./+80° C. was applied for 1000 cycles. In this temperature shock test, no peeling was confirmed between the two layers.

図1は、金属合金片同士を1液性熱硬化型接着剤で接着した接合体を示す外観図である。FIG. 1 is an external view showing a joined body in which metal alloy pieces are bonded to each other with a one-component thermosetting adhesive. 図2は、KFC積層材同士を1液性熱硬化型接着剤で接着した接合体を示す外観図である。FIG. 2 is an external view showing a joined body in which KFC laminates are bonded together with a one-component thermosetting adhesive. 図3は、苛性ソーダ水溶液でエッチングし、水和ヒドラジン水溶液で微細エッチング処理したA7075アルミニウム合金片の1万倍、10万倍電子顕微鏡写真である。FIG. 3 is a 10,000 times and 100,000 times electron micrograph of an A7075 aluminum alloy piece etched with a caustic soda aqueous solution and finely etched with a hydrated hydrazine aqueous solution. 図4は、苛性ソーダ水溶液でエッチングし、水和ヒドラジン水溶液で微細エッチング処理したA5052アルミニウム合金片の1万倍、10万倍電子顕微鏡写真である。FIG. 4 is a 10,000 times and 100,000 times electron micrograph of an A5052 aluminum alloy piece etched with a caustic soda aqueous solution and finely etched with a hydrated hydrazine aqueous solution. 図5は、クエン酸水溶液でエッチングし、過マンガン酸カリ水溶液で化成処理したAZ31Bマグネシウム合金片の10万倍電子顕微鏡写真である。FIG. 5 is a 100,000 times electron micrograph of an AZ31B magnesium alloy piece etched with a citric acid aqueous solution and subjected to chemical conversion treatment with a potassium permanganate aqueous solution. 図6は、クエン酸水溶液でエッチングし、過マンガン酸カリ水溶液で化成処理したAZ31Bマグネシウム合金片の10万倍電子顕微鏡写真である。FIG. 6 is a 100,000 times electron micrograph of an AZ31B magnesium alloy piece etched with a citric acid aqueous solution and subjected to chemical conversion treatment with a potassium permanganate aqueous solution. 図7は、有機カルボン酸水溶液でエッチングし、過マンガン酸カリ水溶液で化成処理したAZ91Dマグネシウム合金片の1万倍、10万倍電子顕微鏡写真である。FIG. 7 is a 10,000 times and 100,000 times electron micrograph of an AZ91D magnesium alloy piece etched with an organic carboxylic acid aqueous solution and subjected to chemical conversion treatment with a potassium permanganate aqueous solution. 図8は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で表面硬化処理したC1100タフピッチ銅片の1万倍、10万倍電子顕微鏡写真である。FIG. 8 is a 10,000 times and 100,000 times electron micrograph of a C1100 tough pitch copper piece etched with sulfuric acid / hydrogen peroxide aqueous solution and surface-hardened with sodium chlorite aqueous solution. 図9は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で表面硬化処理したC5191リン青銅片の1万倍、10万倍電子顕微鏡写真である。FIG. 9 is a 10,000 times and 100,000 times electron micrograph of a C5191 phosphor bronze piece etched with a sulfuric acid / hydrogen peroxide aqueous solution and subjected to surface hardening treatment with a sodium chlorite aqueous solution. 図10は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で表面硬化処理したKFC銅合金片の1万倍、10万倍電子顕微鏡写真である。FIG. 10 is a 10,000 times and 100,000 times electron micrograph of a KFC copper alloy piece etched with sulfuric acid / hydrogen peroxide aqueous solution and surface-hardened with sodium chlorite aqueous solution. 図11は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で表面硬化処理したKLF5銅合金片の1万倍、10万倍電子顕微鏡写真である。FIG. 11 is a 10,000 times and 100,000 times electron micrograph of a KLF5 copper alloy piece etched with sulfuric acid / hydrogen peroxide solution and surface-hardened with sodium chlorite solution. 図12は、1水素2弗化アンモニウム水溶液でエッチングした純チタン系チタン合金KS40片の1万倍、10万倍電子顕微鏡写真である。FIG. 12 is a 10,000 times and 100,000 times electron micrograph of a pure titanium-based titanium alloy KS40 piece etched with an aqueous solution of 1 hydrogenammonium difluoride. 図13は、1水素2弗化アンモニウム水溶液でエッチングしたα−β型チタン合金KSTi−9片の1万倍、10万倍電子顕微鏡写真である。FIG. 13 is an electron micrograph of 10,000 times and 100,000 times of an α-β type titanium alloy KSTi-9 piece etched with an aqueous 1 hydrogen difluoride ammonium fluoride solution. 図14は、硫酸水溶液でエッチングしたステンレス鋼SUS304片の1万倍、10万倍電子顕微鏡写真である。FIG. 14 is a 10,000 times and 100,000 times electron micrograph of a stainless steel SUS304 piece etched with an aqueous sulfuric acid solution. 図15は、硫酸水溶液でエッチングし、過マンガン酸カリ系水溶液で化成処理した冷間圧延鋼材SPCC鋼材片の1万倍、10万倍電子顕微鏡写真である。FIG. 15 is a 10,000 times and 100,000 times electron micrograph of a cold rolled steel SPCC steel piece etched with a sulfuric acid aqueous solution and subjected to chemical conversion treatment with a potassium permanganate aqueous solution. 図16は、各種金属合金片同士を1液性エポキシ系接着剤により接着接合した接合体のせん断破断力と試験温度の関係を示すグラフである。FIG. 16 is a graph showing the relationship between the shear breaking force and the test temperature of a joined body obtained by bonding various metal alloy pieces to each other with a one-component epoxy adhesive. 図17は、各種金属合金積層材同士を1液性エポキシ系接着剤により接着接合した接合体のせん断破断力と試験温度の関係を示すグラフである。FIG. 17 is a graph showing the relationship between the shear rupture force and the test temperature of a joined body in which various metal alloy laminates are bonded and bonded together using a one-component epoxy adhesive. 図18は、A7075アルミニウム合金片とDP160ハイテンション鋼材片を1液性エポキシ系接着剤で面接着した積層材を示す外観図である。FIG. 18 is an external view showing a laminated material in which A7075 aluminum alloy pieces and DP160 high-tension steel material pieces are surface-bonded with a one-component epoxy adhesive.

符号の説明Explanation of symbols

1:試験試料
2:試験試料
3:試験試料
10:A7075アルミニウム合金片
20:KFC銅合金片
21:KFC積層材
31:A7075アルミニウム合金片
32:DP160ハイテンション鋼材片
1: Test sample 2: Test sample 3: Test sample 10: A7075 aluminum alloy piece 20: KFC copper alloy piece 21: KFC laminated material 31: A7075 aluminum alloy piece 32: DP160 high tension steel material piece

Claims (16)

第1の金属合金板及び第2の金属合金板から構成される金属合金積層材であって、
前記第1の金属合金板及び前記第2の金属合金板の表面は、それぞれエッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
その第1の金属合金板の表面とその第2の金属合金板の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate comprising a first metal alloy plate and a second metal alloy plate,
The surfaces of the first metal alloy plate and the second metal alloy plate are each etched so that the average interval between peaks and valleys (RSm) is 0.8 to 10 μm and the maximum height roughness (Rz) is. The surface has a roughness on the order of microns of 0.2 to 5 μm, and ultra-fine irregularities with a period of 5 to 500 nm are formed in the surface having the roughness, and the surface layer is made of metal oxide or metal phosphorus. A thin layer of oxide,
By heating while applying pressure in a state in which a one-component thermosetting adhesive is interposed between the surface of the first metal alloy plate and the surface of the second metal alloy plate, A metal alloy laminate characterized by curing a liquid thermosetting adhesive.
複数の銅合金板から構成される金属合金積層材であって、
各銅合金板の表面は、それぞれエッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が酸化第2銅の薄層であり、
それらの銅合金板の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of a plurality of copper alloy plates,
The surface of each copper alloy plate is etched, so that the average interval between peaks and valleys (RSm) is 0.8 to 10 μm and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the degree of roughness, ultrafine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of cupric oxide,
The one-component thermosetting adhesive was cured by heating while applying pressure in a state where the one-component thermosetting adhesive was interposed between the surfaces of the copper alloy plates. A metal alloy laminate characterized by
複数のアルミニウム合金板から構成される金属合金積層材であって、
各アルミニウム合金板の表面は、それぞれエッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層がナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウムの薄層であり、
それらのアルミニウム合金板の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of a plurality of aluminum alloy plates,
The surface of each aluminum alloy plate is etched, so that the mean valley interval (RSm) is 0.8 to 10 μm and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the degree of roughness and the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of aluminum oxide having a thickness of 2 nm or more that does not contain sodium ions. ,
The one-component thermosetting adhesive was cured by heating while applying pressure in a state where the one-component thermosetting adhesive was interposed between the surfaces of the aluminum alloy plates. A metal alloy laminate characterized by
複数のステンレス鋼板から構成される金属合金積層材であって、
各ステンレス鋼板の表面は、それぞれエッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物の薄層であり、
それらのステンレス鋼板の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of a plurality of stainless steel plates,
The surface of each stainless steel plate is etched to provide a roughness on the order of microns with an average interval between peaks and valleys (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide,
That the one-component thermosetting adhesive was cured by heating while applying pressure in a state where the one-component thermosetting adhesive was interposed between the surfaces of the stainless steel plates. Characteristic metal alloy laminate.
マグネシウム合金板及び鋼板材から構成される金属合金積層材であって、
前記マグネシウム合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層がマンガン酸化物の薄層であり、
前記鋼板材の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
前記マグネシウム合金板の表面と前記鋼板材の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of a magnesium alloy plate and a steel plate material,
When the surface of the magnesium alloy plate is etched, the average roughness (RSm) of the valley and valley is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of manganese oxide,
The surface of the steel sheet material is etched to give a roughness on the order of microns with a peak-valley average interval (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide or metal phosphate,
The one-component thermosetting adhesive is heated by applying pressure in a state where a one-component thermosetting adhesive is interposed between the surface of the magnesium alloy plate and the surface of the steel plate material. A metal alloy laminate characterized by curing.
チタン合金板及び鋼板材から構成される金属合金積層材であって、
前記チタン合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層がチタン酸化物の薄層であり、
前記鋼板材の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
前記チタン合金板の表面と前記鋼板材の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
It is a metal alloy laminate composed of a titanium alloy plate and a steel plate material,
When the surface of the titanium alloy plate is etched, the average roughness (RSm) of the valleys is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of titanium oxide,
The surface of the steel sheet material is etched to give a roughness on the order of microns with a peak-valley average interval (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide or metal phosphate,
The one-component thermosetting adhesive is heated by applying pressure in a state where the one-component thermosetting adhesive is interposed between the surface of the titanium alloy plate and the surface of the steel plate material, and is laminated. A metal alloy laminate characterized by curing.
α−β型チタン合金板及び鋼板材から構成される金属合金積層材であって、
前記α−β型チタン合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、10μm角の面積内に円滑なドーム状形状と枯葉形状の双方が混在する微細凹凸が形成され、且つ、表層がチタンとアルミニウムを含む金属酸化物の薄層であり、
前記鋼板材の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
前記α−β型チタン合金板の表面と前記鋼板材の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of an α-β type titanium alloy plate and a steel plate material,
When the surface of the α-β type titanium alloy plate is etched, the average interval between peaks and valleys (RSm) is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the roughness of the order, fine irregularities in which both a smooth dome shape and a dead leaf shape are mixed are formed in an area of 10 μm square, and the surface layer is titanium. And a thin layer of metal oxide containing aluminum,
The surface of the steel sheet material is etched to give a roughness on the order of microns with a peak-valley average interval (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide or metal phosphate,
By heating while applying pressure in a state where a one-component thermosetting adhesive is interposed between the surface of the α-β-type titanium alloy plate and the surface of the steel plate, the one-component heat A metal alloy laminate characterized by curing a curable adhesive.
アルミニウム合金板及び超高張力鋼板材から構成される金属合金積層材であって、
前記アルミニウム合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層がナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウムの薄層であり、
前記超高張力鋼板材の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
前記アルミニウム合金板の表面と前記超高張力鋼板材の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of an aluminum alloy plate and an ultra-high strength steel plate material,
When the surface of the aluminum alloy plate is etched, the average roughness (RSm) of the valleys is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of aluminum oxide having a thickness of 2 nm or more not containing sodium ions,
The surface of the ultra-high-strength steel sheet material is etched, so that the average interval between peaks and valleys (RSm) is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed in the surface having the roughness, and the surface layer is a thin layer of metal oxide or metal phosphate,
By heating while applying pressure in a state where a one-component thermosetting adhesive is interposed between the surface of the aluminum alloy plate and the surface of the ultra-high-strength steel plate material, the one-component thermosetting is performed. A metal alloy laminate characterized by curing a mold adhesive.
マグネシウム合金板を芯材とし、ステンレス鋼板を皮材として構成されるサンドイッチ型の金属合金積層材であって、
前記マグネシウム合金板の両側表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層がマンガン酸化物の薄層であり、
前記ステンレス鋼板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物の薄層であり、
前記マグネシウム合金板の両側表面各々と前記ステンレス鋼板の表面の間に1液性熱硬化型接着剤を介在させて、[ステンレス鋼板/マグネシウム合金板/ステンレス鋼板]のサンドイッチ型となるように積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
It is a sandwich-type metal alloy laminate composed of a magnesium alloy plate as a core material and a stainless steel plate as a skin material,
The both surfaces of the magnesium alloy plate are etched so that the average interval between peaks and valleys (RSm) is 0.8 to 10 μm and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the degree of roughness, ultrafine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of manganese oxide,
The surface of the stainless steel plate is etched to have a roughness on the order of microns with an average interval between peaks and valleys (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide,
A one-component thermosetting adhesive was interposed between each surface on both sides of the magnesium alloy plate and the surface of the stainless steel plate so as to be a sandwich type of [stainless steel plate / magnesium alloy plate / stainless steel plate]. A metal alloy laminate characterized by curing the one-component thermosetting adhesive by heating while applying pressure in a state.
鋼板材を芯材とし、ステンレス鋼板を皮材として構成されるサンドイッチ型の金属合金積層材であって、
前記鋼板材の両側表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
前記ステンレス鋼板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物の薄層であり、
前記鋼板材の両側表面各々と前記ステンレス鋼板の表面の間に1液性熱硬化型接着剤を介在させて、[ステンレス鋼板/鋼板材/ステンレス鋼板]のサンドイッチ型となるように積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A sandwich-type metal alloy laminate composed of a steel plate as a core material and a stainless steel plate as a skin material,
The both side surfaces of the steel sheet material are etched to provide a micron-order roughness having a peak-valley average interval (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide or metal phosphate,
The surface of the stainless steel plate is etched to have a roughness on the order of microns with an average interval between peaks and valleys (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide,
In a state of being laminated so as to be a sandwich type of [stainless steel plate / steel plate material / stainless steel plate] by interposing a one-component thermosetting adhesive between each surface on both sides of the steel plate material and the surface of the stainless steel plate. The metal alloy laminate material, wherein the one-component thermosetting adhesive is cured by heating while applying pressure.
アルミニウム合金板及び銅合金板から構成される金属合金積層材であって、
前記アルミニウム合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層がナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウムの薄層であり、
前記銅合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が酸化第2銅の薄層であり、
前記アルミニウム合金板の表面と前記銅合金板の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of an aluminum alloy plate and a copper alloy plate,
When the surface of the aluminum alloy plate is etched, the average roughness (RSm) of the valleys is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of aluminum oxide having a thickness of 2 nm or more not containing sodium ions,
When the surface of the copper alloy plate is etched, the average roughness (RSm) of the valleys is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. In the surface having the roughness, ultrafine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of cupric oxide,
The one-component thermosetting adhesive is heated by applying pressure in a state of being laminated with a one-component thermosetting adhesive interposed between the surface of the aluminum alloy plate and the surface of the copper alloy plate. A metal alloy laminate characterized by curing the agent.
鋼板材及びステンレス鋼板から構成される金属合金積層材であって、
前記鋼板材の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
前記ステンレス鋼板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には、5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物の薄層であり、
前記鋼板材の表面と前記ステンレス鋼板の表面の間に1液性熱硬化型接着剤を介在させて積層した状態で、圧力を加えつつ加熱することによって、その1液性熱硬化型接着剤を硬化させたことを特徴とする金属合金積層材。
A metal alloy laminate composed of a steel plate material and a stainless steel plate,
The surface of the steel sheet material is etched to give a roughness on the order of microns with a peak-valley average interval (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide or metal phosphate,
The surface of the stainless steel plate is etched to have a roughness on the order of microns with an average interval between peaks and valleys (RSm) of 0.8 to 10 μm and a maximum height roughness (Rz) of 0.2 to 5 μm. In the surface having the roughness, ultra-fine irregularities with a period of 5 to 500 nm are formed, and the surface layer is a thin layer of metal oxide,
By heating while applying pressure in a state where a one-component thermosetting adhesive is interposed between the surface of the steel plate and the surface of the stainless steel plate, the one-component thermosetting adhesive is A metal alloy laminate characterized by being cured.
請求項1ないし12から選択される1項に記載した金属合金積層材であって、
前記1液性熱硬化型接着剤がエポキシ樹脂系接着剤であることを特徴とする金属合金積層材。
The metal alloy laminate according to claim 1, which is selected from claims 1 to 12,
The one-component thermosetting adhesive is an epoxy resin-based adhesive.
請求項1ないし12から選択される1項に記載した金属合金積層材であって、
前記1液性熱硬化型接着剤が不飽和ポリエステル樹脂系接着剤であることを特徴とする金属合金積層材。
The metal alloy laminate according to claim 1, which is selected from claims 1 to 12,
The one-component thermosetting adhesive is an unsaturated polyester resin-based adhesive.
第1の金属合金板及び第2の金属合金板から構成される金属合金積層材であって、
前記第1の金属合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
その第1の金属合金板の表面と前記第2の金属合金板を面接触させて積層した状態で、両者を熱プレス又は熱ロールによって圧着させたことを特徴とする金属合金積層材。
A metal alloy laminate comprising a first metal alloy plate and a second metal alloy plate,
When the surface of the first metal alloy plate is etched, the average interval between peaks and valleys (RSm) is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. And the surface layer is a thin layer of metal oxide or metal phosphate,
A metal alloy laminate, wherein the surface of the first metal alloy plate and the second metal alloy plate are brought into surface contact with each other and laminated together by hot pressing or hot roll.
アルミニウム合金板及び銅合金板から構成されるクラッド型の金属合金積層材であって、
前記アルミニウム合金板の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、表層がナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウムの薄層であり、
そのアルミニウム合金の表面と前記銅合金板を面接触させて積層した状態で、両者を熱プレス又は熱ロールによって圧着させたことを特徴とする金属合金積層材。
A clad metal alloy laminate composed of an aluminum alloy plate and a copper alloy plate,
When the surface of the aluminum alloy plate is etched, the average roughness (RSm) of the valley is 0.8 to 10 μm, and the maximum height roughness (Rz) is 0.2 to 5 μm. And the surface layer is a thin layer of aluminum oxide not containing sodium ions and having a thickness of 2 nm or more,
A metal alloy laminate, wherein the aluminum alloy surface and the copper alloy plate are laminated while being brought into surface contact with each other, and both are crimped by a hot press or a hot roll.
JP2008283692A 2008-11-04 2008-11-04 Metal alloy laminate Active JP5372469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283692A JP5372469B2 (en) 2008-11-04 2008-11-04 Metal alloy laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283692A JP5372469B2 (en) 2008-11-04 2008-11-04 Metal alloy laminate

Publications (2)

Publication Number Publication Date
JP2010110931A true JP2010110931A (en) 2010-05-20
JP5372469B2 JP5372469B2 (en) 2013-12-18

Family

ID=42299904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283692A Active JP5372469B2 (en) 2008-11-04 2008-11-04 Metal alloy laminate

Country Status (1)

Country Link
JP (1) JP5372469B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147036A1 (en) * 2012-03-29 2013-10-03 日鐵住金建材株式会社 Metal sheet laminated with metal foil and method for manufacturing metal sheet laminated with metal foil
CN103551383A (en) * 2013-10-15 2014-02-05 大连理工大学 Magnesium-steel composite board and producing method thereof
CN103612008A (en) * 2013-11-30 2014-03-05 西安科技大学 Magnesium alloy and copper composite panel manufacturing method based on transient liquid phase diffusion connection
JP2015514862A (en) * 2012-02-24 2015-05-21 シェンチェン ビーワイディー オート アールアンドディー カンパニーリミテッド Aluminum alloy resin composite and method for preparing the same
US9770884B2 (en) 2012-02-24 2017-09-26 Shenzhen Byd Auto R&D Company Limited Metal-resin composite and method for producing the same
US9783894B2 (en) 2012-05-28 2017-10-10 Byd Company Limited Metal composite and method of preparing the same, metal-resin composite and method of preparing the same
US9808974B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9809895B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9862131B2 (en) 2012-02-24 2018-01-09 Byd Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9889588B2 (en) 2012-02-24 2018-02-13 Shenzhen Byd Auto R&D Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
JP2019116666A (en) * 2017-12-27 2019-07-18 三井化学株式会社 Method for manufacturing surface roughened magnesium alloy member
JP2022003303A (en) * 2017-05-22 2022-01-11 株式会社ササクラ Radiation panel for air conditioning and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102206082B1 (en) * 2019-11-27 2021-01-22 한국생산기술연구원 A titanium welding method using GMAW

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975968A (en) * 1982-10-25 1984-04-28 Aisin Chem Co Ltd Adhesive
JPH0570741A (en) * 1991-09-11 1993-03-23 Sunstar Eng Inc Method for bonding aluminum alloy for automotive structural member
WO2008114669A1 (en) * 2007-03-12 2008-09-25 Taisei Plas Co., Ltd. Aluminum alloy composite and method of bonding therefor
WO2008126812A1 (en) * 2007-04-06 2008-10-23 Taisei Plas Co., Ltd. Copper alloy composite and process for producing the same
WO2008133296A1 (en) * 2007-04-24 2008-11-06 Taisei Plas Co., Ltd. Stainless steel complex and its manufacturing method
WO2008133096A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Magnesium alloy compound material, and its manufacturing method
WO2008146833A1 (en) * 2007-05-28 2008-12-04 Taisei Plas Co., Ltd. Steel product composite and process for producing the steel product composite
JP2009061648A (en) * 2007-09-05 2009-03-26 Taisei Plas Co Ltd Joint composite material including metal alloy and manufacturing method thereof
JP5008040B2 (en) * 2007-04-13 2012-08-22 大成プラス株式会社 Titanium alloy composite and its joining method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975968A (en) * 1982-10-25 1984-04-28 Aisin Chem Co Ltd Adhesive
JPH0570741A (en) * 1991-09-11 1993-03-23 Sunstar Eng Inc Method for bonding aluminum alloy for automotive structural member
WO2008114669A1 (en) * 2007-03-12 2008-09-25 Taisei Plas Co., Ltd. Aluminum alloy composite and method of bonding therefor
WO2008126812A1 (en) * 2007-04-06 2008-10-23 Taisei Plas Co., Ltd. Copper alloy composite and process for producing the same
WO2008133096A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Magnesium alloy compound material, and its manufacturing method
JP5008040B2 (en) * 2007-04-13 2012-08-22 大成プラス株式会社 Titanium alloy composite and its joining method
JP5129903B2 (en) * 2007-04-13 2013-01-30 大成プラス株式会社 Magnesium alloy composite and manufacturing method thereof
WO2008133296A1 (en) * 2007-04-24 2008-11-06 Taisei Plas Co., Ltd. Stainless steel complex and its manufacturing method
JP5094849B2 (en) * 2007-04-24 2012-12-12 大成プラス株式会社 Stainless steel composite
WO2008146833A1 (en) * 2007-05-28 2008-12-04 Taisei Plas Co., Ltd. Steel product composite and process for producing the steel product composite
JP5139426B2 (en) * 2007-05-28 2013-02-06 大成プラス株式会社 Steel composite and manufacturing method thereof
JP2009061648A (en) * 2007-09-05 2009-03-26 Taisei Plas Co Ltd Joint composite material including metal alloy and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9770884B2 (en) 2012-02-24 2017-09-26 Shenzhen Byd Auto R&D Company Limited Metal-resin composite and method for producing the same
US9889588B2 (en) 2012-02-24 2018-02-13 Shenzhen Byd Auto R&D Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9862131B2 (en) 2012-02-24 2018-01-09 Byd Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9809895B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9808974B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
JP2015514862A (en) * 2012-02-24 2015-05-21 シェンチェン ビーワイディー オート アールアンドディー カンパニーリミテッド Aluminum alloy resin composite and method for preparing the same
US9802388B2 (en) 2012-02-24 2017-10-31 Shenzhen Byd Auto R&D Company Limited Aluminum alloy resin composite and method of preparing the same
KR20140144708A (en) * 2012-03-29 2014-12-19 닛뽄스틸 앤드 스미킨 메탈 프로덕츠 컴퍼니 리미티드 Metal sheet laminated with metal foil and method for manufacturing metal sheet laminated with metal foil
JPWO2013147036A1 (en) * 2012-03-29 2015-12-14 日鐵住金建材株式会社 Metal foil laminated metal plate and method for producing metal foil laminated metal plate
WO2013147036A1 (en) * 2012-03-29 2013-10-03 日鐵住金建材株式会社 Metal sheet laminated with metal foil and method for manufacturing metal sheet laminated with metal foil
CN104203566A (en) * 2012-03-29 2014-12-10 日铁住金建材株式会社 Metal sheet laminated with metal foil and method for manufacturing metal sheet laminated with metal foil
KR101958953B1 (en) * 2012-03-29 2019-03-15 닛뽄스틸 앤드 스미킨 메탈 프로덕츠 컴퍼니 리미티드 Metal sheet laminated with metal foil and method for manufacturing metal sheet laminated with metal foil
US9783894B2 (en) 2012-05-28 2017-10-10 Byd Company Limited Metal composite and method of preparing the same, metal-resin composite and method of preparing the same
CN103551383A (en) * 2013-10-15 2014-02-05 大连理工大学 Magnesium-steel composite board and producing method thereof
CN103612008A (en) * 2013-11-30 2014-03-05 西安科技大学 Magnesium alloy and copper composite panel manufacturing method based on transient liquid phase diffusion connection
JP2022003303A (en) * 2017-05-22 2022-01-11 株式会社ササクラ Radiation panel for air conditioning and manufacturing method thereof
JP7233126B2 (en) 2017-05-22 2023-03-06 株式会社ササクラ Radiation panel for air conditioning and manufacturing method thereof
JP2019116666A (en) * 2017-12-27 2019-07-18 三井化学株式会社 Method for manufacturing surface roughened magnesium alloy member
JP7030510B2 (en) 2017-12-27 2022-03-07 三井化学株式会社 Manufacturing method of surface roughened magnesium alloy member

Also Published As

Publication number Publication date
JP5372469B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5372469B2 (en) Metal alloy laminate
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP4965347B2 (en) Tubular composite and manufacturing method thereof
JP4903881B2 (en) Joined body of metal alloy and adherend and method for producing the same
JP5426932B2 (en) Composite of metal alloy and thermosetting resin and method for producing the same
JP5108891B2 (en) Method for producing metal resin composite
EP2103406B1 (en) Process for production of highly corrosion-resistant composite
US9751265B2 (en) Method for preparing a composite of metal and resin
JP5108904B2 (en) Composite of metal and polyamide resin composition and method for producing the same
KR101216800B1 (en) Steel product composite and process for producing the steel product composite
Xie et al. Large-area mechanical interlocking via nanopores: Ultra-high-strength direct bonding of polymer and metal materials
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
JP5094849B2 (en) Stainless steel composite
WO2010082660A1 (en) Adhesive-bonded composite containing metal alloy, and process for production of same
JP4906004B2 (en) Method for producing composite of metal alloy and fiber reinforced plastic
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
KR20090122258A (en) Aluminum alloy composite and method of bonding therefor
JP2011073191A (en) Joined body of cfrp and adherend and method of manufacturing the same
WO2010016485A1 (en) Composite of metal alloy with polyamide resin composition and process for producing the same
JP2009241569A (en) Tubular joining composite
JP2010269534A (en) Bonded composite containing metal, and method for manufacturing the same
JP2010131789A (en) Adhesion composite containing metal alloy, and method for producing the same
JP2009255429A (en) Composite body of metal alloy and carbon fiber reinforced plastic and electro-corrosion inhibition method thereof
JP2009061648A (en) Joint composite material including metal alloy and manufacturing method thereof
JP2011148937A (en) Solvent-type epoxy adhesive and adhering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250