JP2010107351A - Processing tool or apparatus for measuring shape of to-be-processed object - Google Patents

Processing tool or apparatus for measuring shape of to-be-processed object Download PDF

Info

Publication number
JP2010107351A
JP2010107351A JP2008279533A JP2008279533A JP2010107351A JP 2010107351 A JP2010107351 A JP 2010107351A JP 2008279533 A JP2008279533 A JP 2008279533A JP 2008279533 A JP2008279533 A JP 2008279533A JP 2010107351 A JP2010107351 A JP 2010107351A
Authority
JP
Japan
Prior art keywords
camera
measurement object
imaging
area
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008279533A
Other languages
Japanese (ja)
Inventor
Koji Eba
浩二 江場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2008279533A priority Critical patent/JP2010107351A/en
Publication of JP2010107351A publication Critical patent/JP2010107351A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an imaging area (i.e., a resolution) in a processing tool or an apparatus for measuring a shape of a to-be-processed object without increasing the number of cameras. <P>SOLUTION: An imaging element 2 within the camera 1 is divided into two or more areas A, B, ..., along a side of the imaging element 2. The shape measurement apparatus is provided with: a multistage inclined mirror 3 for displacing the imaging area of a to-be-measured object 4 in each divided area in the direction including a component perpendicular to the first direction (the X-axis direction) in which the camera 1 and the object 4 are relatively moved; a relative movement means for relatively moving the camera 1 and the object 4 in the first direction; and a combination means for causing the imaging element 2 to capture images while the camera 1 and the object 4 are relatively moved by the relative movement means, and combining the images captured in the areas when the images are captured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、加工機械の機内において、カメラを用いた画像認識により、加工用工具または加工対象物の形状を測定する形状測定装置に関する。   The present invention relates to a shape measuring apparatus that measures the shape of a processing tool or a processing object by image recognition using a camera in a processing machine.

工作機械等の加工機械では、加工用工具や、加工対象物の形状を自動認識することで、工具の選択ミスによる加工不具合の防止や、操作ミスによる機械衝突を避ける機能が開発され、実用化され始めている。   In machine tools such as machine tools, functions to prevent machining failures due to tool selection mistakes and avoid machine collisions due to operation mistakes have been developed and put into practical use by automatically recognizing the shape of machining tools and workpieces. Being started.

加工後の形状を高精度に測定する用途を除き、CCDカメラを使用して対象物の撮影し、画像処理により、輪郭抽出やパターンマッチング等をおこなって、対象物を測定するのが一般的であり、マシニングセンタのマガジン上の工具形状を認識する装置(例えば特許文献1)や、旋盤でチャッキングした加工対象物の形状を測定する装置(例えば特許文献2)などが知られている。   Except for the purpose of measuring the shape after processing with high accuracy, it is common to photograph the object using a CCD camera and measure the object by performing contour extraction, pattern matching, etc. by image processing. There are known an apparatus for recognizing a tool shape on a magazine of a machining center (for example, Patent Document 1), an apparatus for measuring a shape of a workpiece to be chucked with a lathe (for example, Patent Document 2), and the like.

工作機械の加工室内に画像認識用カメラを設置しようとすると、加工終了後であっても加工室内にはオイルミストや粉塵等の浮遊が多く、カメラレンズまたは、カメラを格納した防水ボックスの頻繁な清掃が必要になる。このため、対象物の撮影場所は、加工室と板金で隔てられた工具マガジンを備えた工具格納エリア内や、横型マシニングセンタのパレットチェンジャーを介した加工準備エリア内で行う方が有利である。   When trying to install an image recognition camera in the processing room of a machine tool, there is a lot of floating oil mist or dust in the processing room even after the processing is completed. Cleaning is necessary. For this reason, it is advantageous that the object is photographed in a tool storage area provided with a tool magazine separated from the processing chamber by sheet metal or in a processing preparation area via a pallet changer of a horizontal machining center.

加工室内に比べて、上記の様なエリアはスペースが狭く、一般に測定物と撮影用カメラとの距離が余裕を持って確保できない。図5に、このような場合の従来の測定装置におけるカメラ配置例を示し、その構成を簡単に説明する。   Compared to the processing chamber, the area as described above is narrow, and generally the distance between the object to be measured and the photographing camera cannot be secured with a margin. FIG. 5 shows an example of camera arrangement in a conventional measuring apparatus in such a case, and its configuration will be briefly described.

この従来例は、マガジンに格納された測定対象4(この例では切削工具)を、3台のカメラ11〜13を用いて撮影している。ここで、カメラ台数を3台にしているのは、分解能がVGA規格(640×400画素)の安価なネットワークカメラを使用するためである。すなわち、長尺なドリルまでを撮影しようとすると、640×400の画素数の場合、工具の長さ方向の分解能が640では不足する場合があるためである。   In this conventional example, a measurement object 4 (a cutting tool in this example) stored in a magazine is photographed using three cameras 11 to 13. Here, the reason why the number of cameras is three is that an inexpensive network camera having a resolution of VGA standard (640 × 400 pixels) is used. That is, when shooting up to a long drill, if the number of pixels is 640 × 400, the resolution in the length direction of the tool may be insufficient at 640.

ここでネットワークカメラを使用しているのは、工作機械のようにインバータ装置を多用するノイズの多い環境で、カメラから、画像処理装置までの比較的長距離(例えば10mを越える)の信号伝達を安定して行うためである。ネットワークカメラとして現時点で安価に手に入るカメラの撮像素子の画素分解能はVGA規格レベルである。   The network camera is used here in a noisy environment where a large number of inverter devices are used, such as machine tools, to transmit signals over a relatively long distance (for example, over 10 m) from the camera to the image processing device. This is to perform stably. The pixel resolution of the image sensor of a camera that can be obtained at low cost as a network camera at this time is at the VGA standard level.

3個のカメラの撮影画像は、カメラ1が測定対象4の上部側、カメラ2が中部、カメラ3が下部側になるように、3組の画像が縦長に繋ぎ合わされた後、画像処理にかけられる。ここでは、測定対象物として工具をあげたが、測定対象を加工対象物とすると、一般にさらにサイズが大きくなるため、より多くのカメラ数が必要となる。   The captured images of the three cameras are subjected to image processing after the three sets of images are joined together vertically so that the camera 1 is the upper side of the measurement object 4, the camera 2 is the middle, and the camera 3 is the lower side. . Here, a tool is used as the measurement target. However, if the measurement target is a processing target, the size is generally further increased, and thus a larger number of cameras is required.

図5の従来装置例は、画像処理として1つの画像から輪郭線抽出または、シルエット法で、測定物の計測を行う例であるが、2つ以上のカメラを用いて、ステレオ法で、3次元形状を測定する例を図6に示す。測定対象に対して、正面画像を撮影するカメラ12と、撮影角度がそれぞれ左右にθ3,θ4となるカメラ11,カメラ13を使用して、3つの画像を取得し、ステレオ法による画像解析を行って、測定物の形状を測定する。   The example of the conventional apparatus shown in FIG. 5 is an example of measuring an object to be measured by extracting a contour line from one image or silhouette method as image processing, but using two or more cameras and three-dimensionally by a stereo method. An example of measuring the shape is shown in FIG. Using the camera 12 that captures the front image, the camera 11 and the camera 13 whose shooting angles are θ3 and θ4 on the left and right, respectively, three images are acquired for the measurement target, and image analysis is performed using the stereo method. To measure the shape of the object to be measured.

特開平6−134638号公報JP-A-6-134638 特開平5−035323号公報JP-A-5-035323

従来の形状測定装置では、複数カメラを用いるため、カメラ自身のコストもかかるが、設置場所の環境から、カメラ毎に、防水防塵対策が必要なため、カメラ数増加にともなうシステム価格の上昇はさらに顕著になる。また、複数設置されたカメラの光軸を、常に加工振動でずれないように独立して管理調整する事が煩雑になるという課題があった。   The conventional shape measuring device uses multiple cameras, so the cost of the camera itself is also high, but because of the environment of the installation location, waterproof and dustproof measures are required for each camera, so the increase in system price as the number of cameras increases further Become prominent. In addition, there is a problem that it is complicated to independently manage and adjust the optical axes of a plurality of installed cameras so that the optical axes are not always shifted by processing vibration.

また、広角レンズを用いて1つのカメラで撮影するよう構成した場合でも、レンズ周辺でとらえる測定物の1画素あたりの撮影範囲が広がるため、所定の検出位置分解能を得るために画素数は増加し、入手可能な最高画素数のカメラでも十分な測定分解能が得られない場合があるとの課題がある。また、高分解能が必要な用途では、カメラと測定対象物を、例えば直交直行する2方向に移動可能として、カメラと測定対象物との相対位置を変化させながら測定対象物を撮影することも考えられる必要があり、このような構成は、駆動系の追加により、さらにシステムコストが上昇する課題がある。   Even when a wide-angle lens is used to shoot with a single camera, the photographic area per pixel of the measurement object captured around the lens is widened, so the number of pixels increases to obtain a predetermined detection position resolution. However, there is a problem that a sufficient measurement resolution may not be obtained even with a camera having the maximum number of pixels available. In applications that require high resolution, the camera and measurement object can be moved in, for example, two orthogonal directions, and the measurement object can be photographed while changing the relative position of the camera and measurement object. Such a configuration has a problem that the system cost further increases due to the addition of the drive system.

本発明は、上記従来の課題を解決するためになされたものであり、請求項1を適用した測定装置は、カメラで撮影した画像を解析し、測定対象である加工用工具または加工対象物または加工対象物保持装置の形状を計測する形状測定装置において、前記カメラ内の撮像素子は、当該撮像素子の一辺に沿って2以上のエリアに区分されており、前記形状測定装置は、区分された前記エリア毎に、前記測定対象の撮影範囲を、前記カメラと前記測定対象とを相対移動させる第1の方向とは垂直な成分を含む方向にずらすための光学系と、前記カメラと前記測定対象とを、前記第1の方向に相対移動させる相対移動手段と、前記カメラと前記測定対象とを前記相対移動手段により相対移動させながら前記撮像素子に撮像を行わせ、各撮像時点での前記各エリアの撮像画像を合成する合成手段と、を備えることにより、測定対象の撮像画像の分解能を向上させるよう構成する。   The present invention has been made to solve the above-described conventional problems, and the measuring device to which the first aspect is applied analyzes an image photographed by a camera, and a machining tool or a workpiece to be measured or In the shape measuring device for measuring the shape of the workpiece holding device, the image sensor in the camera is divided into two or more areas along one side of the image sensor, and the shape measuring device is divided. For each area, an optical system for shifting the imaging range of the measurement object in a direction including a component perpendicular to a first direction in which the camera and the measurement object are relatively moved, the camera, and the measurement object Are moved relative to each other in the first direction, and the image sensor is caused to take an image while the camera and the measurement object are moved relative to each other by the relative movement unit. Synthesizing means for synthesizing the captured image of each area, by providing, constituting as to improve the resolution of the captured image of the measuring object.

請求項2に係る発明は、請求項1に係る発明において、上記光学系は、前記カメラの前面に配置したミラーを有し、前記ミラーは、前記撮像素子の前記各エリアに対応する反射面毎に、前記各エリアの撮像範囲が、前記カメラと前記測定対象とが相対移動する前記第1の方向と垂直な方向に異なるよう変化させた多段傾斜ミラーである、ことを特徴とする。なお、1つの好適な態様では、カメラと多段傾斜ミラーは、防塵ケース内に一体に組み付けたのち、測定場所に取り付けてもよい。   According to a second aspect of the present invention, in the first aspect of the invention, the optical system includes a mirror disposed on a front surface of the camera, and the mirror is provided for each reflection surface corresponding to each area of the image sensor. In addition, the imaging range of each area is a multi-stage tilt mirror that is changed so as to be different in a direction perpendicular to the first direction in which the camera and the measurement object move relative to each other. In one preferred embodiment, the camera and the multi-stage tilt mirror may be assembled in a dustproof case and then attached to the measurement location.

請求項3を適用した測定装置は、カメラで撮影した画像を解析し、測定対象である加工用工具または加工対象物または加工対象物保持装置の形状を計測する形状計測装置において、前記カメラ内の撮像素子は、当該撮像素子の一辺に沿って2以上のエリアに区分されており、前記形状計測装置は、区分された前記エリア毎に、前記測定対象の撮影範囲を、前記カメラと前記測定対象とを相対移動させる第1の方向に沿ってずらすための光学系と、前記カメラと前記測定対象とを、前記第1の方向に相対移動させる相対移動手段と、前記カメラと前記測定対象とを前記相対移動手段により相対移動させながら前記撮像素子に撮像を行わせ、異なる撮像時点での前記各エリアの撮像画像を用いてステレオ法により前記測定対象の三次元形状を求める形状計算手段と、を備える。   A measuring device to which claim 3 is applied is a shape measuring device that analyzes an image captured by a camera and measures the shape of a processing tool or a processing target or a processing target holding device that is a measurement target. The image sensor is divided into two or more areas along one side of the image sensor, and the shape measuring device sets the photographing range of the measurement object for each of the divided areas, the camera and the measurement object. An optical system for moving the camera and the measurement object relative to each other, relative movement means for moving the camera and the measurement object in the first direction, and the camera and the measurement object. The image sensor is caused to take an image while being relatively moved by the relative moving means, and the three-dimensional shape of the measurement object is obtained by a stereo method using the picked-up images of the respective areas at different times of image pickup. Comprising a shape calculating means.

請求項4に係る発明は、請求項3に係る発明において、上記光学系は、前記カメラの前面に配置したミラーを有し、前記ミラーは、前記撮像素子の前記各エリアに対応する反射面毎に、前記各エリアの撮像範囲が、前記カメラと前記測定物とが相対移動する前記第1の方向に沿って異なるよう変化させた多面体ミラーである、ことを特徴とする。なお、1つの好適な態様では、カメラと多段傾斜ミラーは、防塵ケース内に一体に組み付けたのち、測定場所に取り付けてもよい。   The invention according to a fourth aspect is the invention according to the third aspect, wherein the optical system includes a mirror disposed on a front surface of the camera, and the mirror is provided for each reflection surface corresponding to each area of the image sensor. In addition, the imaging range of each area is a polyhedral mirror that is changed so as to be different along the first direction in which the camera and the measurement object move relative to each other. In one preferred embodiment, the camera and the multi-stage tilt mirror may be assembled in a dustproof case and then attached to the measurement location.

請求項1に係る発明を適用した測定装置では、撮像素子の一辺の画素数に対して、エリア分割数に応じた倍数の画素数を、測定対象の相対移動方向に直交する方向についての位置分解能として使用できるため、従来、複数台使用していたカメラを1台ですませることができ、コストを抑えることができる。また、切削振動等でカメラの光軸がずれてもカメラの台数が少なく取り付け調整箇所が減ることで、メンテナンスが容易になる。   In the measurement device to which the invention according to claim 1 is applied, the position resolution in the direction orthogonal to the relative movement direction of the measurement target is obtained by multiplying the number of pixels on one side of the image sensor by a multiple corresponding to the number of area divisions. As a result, it is possible to reduce the cost by using a single camera. In addition, even if the optical axis of the camera is shifted due to cutting vibration or the like, the number of cameras is small and the number of attachment adjustment points is reduced, so that maintenance is facilitated.

請求項2に係る発明を適用した測定装置では、多段傾斜ミラーを標準的なネットワークカメラの直前に置くため、カメラとミラーを小型の防塵ケース内に一体固定して格納でき、機械への取り付けが、容易になるとともに、オイルミストや粉塵等の汚れが付着しても、防塵ケースの窓を清掃するだけで済むため、メンテナンスが容易となる。また、カメラの光軸がミラーによりほぼ90°曲げられるため、測定物とカメラの距離が短い場合にも、カメラ長手方向を測定物と平行にできるため、カメラ配置が容易となる。請求項1に係る発明だけなら、プリズムを用いた装置や、機内の複数箇所にミラーを分散配置した装置も想定されるが、これらの装置では、小型の防塵ケースに光学系を全ておさめるのが難しい。また、カメラのレンズ表面に複数のプリズムを一体整形することも可能であるが、この場合は、レンズの研磨が極めて困難である。請求項2に係る発明は、このような点を改善する。   In the measuring apparatus to which the invention according to claim 2 is applied, the multi-stage tilt mirror is placed immediately in front of the standard network camera. Therefore, the camera and the mirror can be fixed and stored in a small dustproof case, and can be attached to the machine. In addition, even if dirt such as oil mist or dust adheres, it is only necessary to clean the window of the dustproof case, so that maintenance is facilitated. Further, since the optical axis of the camera is bent by approximately 90 ° by the mirror, the camera longitudinal direction can be parallel to the measured object even when the distance between the measured object and the camera is short, so that the camera arrangement becomes easy. If it is only the invention which concerns on Claim 1, the apparatus using a prism and the apparatus which disperse | distributedly arrange | positioned the mirror in several places in a machine are assumed, However, In these apparatuses, all optical systems are contained in a small dustproof case. difficult. It is also possible to integrally shape a plurality of prisms on the lens surface of the camera, but in this case, it is extremely difficult to polish the lens. The invention according to claim 2 improves such a point.

請求項3を適用した測定装置は、測定物とカメラを相対移動することにより、複数の相対位置で撮像を行うことで、1つのカメラで同一測定物の、異なる撮影方向の画像がえられる。それら異なる時点の各エリアの撮影画像のうち、測定対象の同一位置(或いは範囲)をそれら異なる撮影方向から撮影した画像同士を組み合わせることで、ステレオ法により、測定対象の三次元形状を求めることができる。また、測定対象がマガジン上の加工工具のように、異なる加工物が連続的に相対移動する場合には、平行して複数ワークの撮像を進めることができるため、カメラ数を減らしたことによる、測定物の測定時間増加を抑制することができる。   The measurement apparatus to which the third aspect is applied can capture images at a plurality of relative positions by moving the measurement object and the camera relative to each other, thereby obtaining images of the same measurement object in different shooting directions with a single camera. Among the captured images of each area at different points in time, the three-dimensional shape of the measurement object can be obtained by a stereo method by combining images obtained by capturing the same position (or range) of the measurement object from these different shooting directions. it can. In addition, when different workpieces are continuously moved relative to each other like a processing tool on a magazine, it is possible to advance imaging of a plurality of workpieces in parallel, thereby reducing the number of cameras. An increase in measurement time of the measurement object can be suppressed.

請求項4を適用した測定装置では、多面体ミラーを標準的なネットワークカメラの直前に置くため、請求項2の場合と同様、小型化等の効果が得られる。   In the measuring apparatus to which the fourth aspect is applied, since the polyhedral mirror is placed immediately in front of the standard network camera, the effect of downsizing can be obtained as in the case of the second aspect.

請求項1ならびに請求項2に係る発明の実施形態の一例を図1に示す。カメラ1内の撮像素子2は、当該素子2の一辺(図示例ではX軸方向すなわち測定対象の移動方向、に平行な辺)に沿ってエリアA、エリアB,エリアCの3つに区分され、それぞれのエリアが測定対象の異なる範囲を撮影するように設計されている。エリアA,B,Cは、図に示したX軸方向に並んでいる。撮像素子2は例えばVGA規格の解像度(画素数)であり、エリアA,B,Cは、それぞれ、例えば133×640画素の画素数を有する。カメラ1の前には多段傾斜ミラー3が設置されており、撮像素子2の中央のエリアBに入射する光の光軸は、多段傾斜ミラー3の中央のθBの角度を有する反射面で45°曲げられており、測定対象の中央付近を撮影するように構成されている。   An example of an embodiment of the invention according to claims 1 and 2 is shown in FIG. The image sensor 2 in the camera 1 is divided into three areas A, B, and C along one side of the element 2 (in the illustrated example, a side parallel to the X-axis direction, that is, the moving direction of the measurement target). Each area is designed to shoot a different range of measurement object. Areas A, B, and C are arranged in the X-axis direction shown in the figure. The image sensor 2 has, for example, VGA standard resolution (number of pixels), and each of the areas A, B, and C has a number of pixels of 133 × 640 pixels, for example. A multi-stage tilt mirror 3 is installed in front of the camera 1, and the optical axis of light incident on the central area B of the image sensor 2 is 45 ° at a reflection surface having an angle θB at the center of the multi-stage tilt mirror 3. It is bent and is configured to photograph the vicinity of the center of the measurement target.

一方、エリアAに入射する光の光軸は、多段傾斜ミラー3の傾斜角θAの反射面で曲げられており、測定物移動方向のX軸と直行するZ軸の+方向にθ1の角度を持って撮影が行われるように構成されている。エリアCは、多段傾斜ミラー3のθCの角度の反射面を使用してZ軸の−方向にθ2の角度を持って撮影が行われるように構成されている。   On the other hand, the optical axis of the light incident on the area A is bent by the reflecting surface having the inclination angle θA of the multi-stage tilting mirror 3, and the angle θ1 is set to the + direction of the Z axis perpendicular to the X axis in the moving direction of the measurement object. It is configured so that it can be taken. Area C is configured such that photographing is performed with the angle θ2 in the negative direction of the Z axis using the reflective surface with the angle θC of the multistage tilt mirror 3.

ここに多段傾斜ミラーの傾斜角θA、θB,θCは、θA=45°+θ1/2
θB=45°、θC=45°−θ2/2になるように構成されている。
Here, the tilt angles θA, θB, and θC of the multi-stage tilt mirror are θA = 45 ° + θ1 / 2.
θB = 45 ° and θC = 45 ° −θ2 / 2.

多段傾斜ミラー3の各反射面の法線方向がX軸方向に対して垂直である場合、各エリアA,B,Cが同じ撮影時点で撮像する範囲は、X軸方向について、各エリアの幅に応じた分だけ、ずれたものとなる。しかし、図示しない相対移動手段により、カメラ1と測定対象4とをX軸方向に相対移動させながら、撮影時点ごとに撮像素子2に撮影を行わせることで、各エリアの異なる撮影時点の撮像画像の中から、X軸方向位置が一致するものを求めることができる。したがって、図示省略した画像合成手段により、それら各撮影時点での各エリアの撮像画像を、各エリアの撮像範囲のZ軸方向の位置と、各撮影時点でのそれら各エリアの撮像範囲のX軸方向の位置と、に応じてタイルの敷き詰め(もちろん、各撮像画像を重複させつつ敷き詰めても良い)の如くに合成することで、Z軸方向については撮像素子2のY方向についての長さ(すなわち画素数)よりも大きく、X軸方向については各エリアA,B,Cの幅よりも大きい範囲の画像を合成することができる。   When the normal direction of each reflecting surface of the multi-stage tilt mirror 3 is perpendicular to the X-axis direction, each area A, B, and C is imaged at the same shooting time point with respect to the X-axis direction. It will be shifted by the amount corresponding to. However, the relative movement means (not shown) moves the camera 1 and the measuring object 4 relative to each other in the X-axis direction, and causes the image sensor 2 to perform shooting at each shooting time point, so that the picked-up images at different shooting time points in each area. Among them, those having the same position in the X-axis direction can be obtained. Therefore, the image synthesis means (not shown) captures the captured image of each area at each shooting time point, the position of the imaging range of each area in the Z-axis direction, and the X axis of the imaging range of each area at each shooting time point. The length of the image sensor 2 in the Y direction in the Z-axis direction (by combining tiled tiles according to the position of the direction (of course, each captured image may be spread while overlapping). That is, it is possible to synthesize an image in a range larger than the width of each area A, B, C in the X-axis direction.

ここで、各エリアの撮像範囲のZ軸方向についての位置は、多段傾斜ミラー3の各反射面の基準方向(例えばY軸方向)に対する角度と、ミラー3・測定対象4間の距離と、に基づき求めることができる。また、各撮影時点でのそれら各エリアの撮像範囲のX軸方向の位置は、撮像素子2の各エリアA,B,Cの撮像範囲のX軸方向についての初期位置、各撮影時点の時刻、カメラ1と測定対象4との相対移動の速度、等に基づき求めることができる。   Here, the position in the Z-axis direction of the imaging range of each area is determined by the angle of each reflecting surface of the multi-stage tilt mirror 3 with respect to the reference direction (for example, the Y-axis direction) and the distance between the mirror 3 and the measurement target 4. Can be determined based on Further, the position in the X-axis direction of the imaging range of each area at each shooting time point is the initial position in the X-axis direction of the imaging range of each area A, B, C of the image sensor 2, the time at each shooting time point, It can be determined based on the speed of relative movement between the camera 1 and the measuring object 4.

なお、上述の相対移動手段としては、従来公知のものを用いればよい。相対移動手段は、例えば、カメラ1をX軸方向に移動させる(この場合測定対象4は固定)ものであっても良いし、測定対象4をX軸方向に移動させる(この場合カメラ1は固定)ものであってもよい。   In addition, a conventionally well-known thing should just be used as the above-mentioned relative movement means. The relative movement means may be, for example, one that moves the camera 1 in the X-axis direction (in this case, the measurement object 4 is fixed), or moves the measurement object 4 in the X-axis direction (in this case, the camera 1 is fixed). ).

また、上述の画像合成手段は、例えば各撮影時点での各エリアA,B,Cの撮像画像を、画像メモリ上の、それぞれその時点での当該エリアの撮像範囲に対応するX及びZ方向位置に書き込むようなもので良い。このような処理を実現するハードウエア及びソフトウエアは従来より知られており、画像合成手段としてはこのような従来の手段を用いることができる。   Further, the above-described image compositing means, for example, captures the captured images of the areas A, B, and C at each photographing time position in the X and Z directions corresponding to the photographing range of the area at that time on the image memory. Something like writing on. Hardware and software for realizing such processing are conventionally known, and such conventional means can be used as the image composition means.

撮像素子で得られた各エリアA,B,Cの画像は、Z方向の座標順に合成されるとともに、測定物をX軸方向に逐次相対移動させる毎に、X軸方向について位置の異なる画像と合成されて、測定対象4全体の画像として1枚に合成される。合成された画像が、画像処理にかけられる。普及価格帯のVGA分解能のネットワークカメラを使用した例では、撮像素子2を3つのエリアに分割することで、Z軸方向について640素子を3カ所割り当てることができ、各エリアの撮影領域同士を20%オーバーラップ(重複)させても、Z軸方向について1664素子を使用して撮影できるため、UXGA規格のカメラを超える分解能での撮影が可能となる。   The images of the areas A, B, and C obtained by the imaging device are combined in the order of the coordinates in the Z direction, and each time the measurement object is sequentially moved relative to the X axis direction, The combined images are combined into one image as the entire measurement object 4. The synthesized image is subjected to image processing. In an example using a network camera with VGA resolution in a popular price range, by dividing the image sensor 2 into three areas, three 640 elements can be allocated in the Z-axis direction, and 20 imaging areas in each area can be assigned to each other. Even if they are overlapped by%, it is possible to shoot using 1664 elements in the Z-axis direction, so it is possible to shoot with a resolution exceeding that of a UXGA standard camera.

また、図示例では、多段傾斜ミラー3は、撮影角度をエリアA,B,Cごとに異ならせると共に、各エリアA,B,Cに入射する光の光軸をほぼ90°曲げている。このために、一般に光軸と平行な方向が長くなるカメラ1を、測定対象4の長手方向と平行に配置することができ、測定対象4とカメラ1との距離が制約された機内計測においても、カメラ設置場所の確保が容易になる効果を合わせ持っている。   Further, in the illustrated example, the multi-stage tilt mirror 3 varies the photographing angle for each of the areas A, B, and C, and bends the optical axis of the light incident on each area A, B, and C by approximately 90 °. For this reason, the camera 1 that is generally longer in the direction parallel to the optical axis can be arranged parallel to the longitudinal direction of the measurement target 4, and in-machine measurement in which the distance between the measurement target 4 and the camera 1 is restricted. It also has the effect of making it easier to secure the camera installation location.

図1の例では、撮像素子2を3分割したが、3分割に限らず、2分割以上に分割すれば、上述のZ軸方向についての撮影範囲の増大(言い換えれば分解能の増大)効果を得ることができる。   In the example of FIG. 1, the imaging device 2 is divided into three, but not limited to three, and if divided into two or more, the effect of increasing the imaging range in the Z-axis direction (in other words, increasing resolution) is obtained. be able to.

また、多段傾斜ミラー3の各反射面のうち、両端の反射面を微少量だけ中央側に向けて、各エリアA,B,Cが同時点で同じX方向位置の撮像範囲を撮像するようにしてもよい。   Further, among the reflecting surfaces of the multi-stage tilt mirror 3, the reflecting surfaces at both ends are directed to the center side by a minute amount so that the areas A, B, and C are simultaneously imaged within the same X direction position. May be.

また、上述の例では、各エリアの同一時点での撮像範囲をZ軸方向(すなわち撮影面上で上記相対移動の方向に垂直な方向)にずらせたが、このずらし方向はZ軸方向そのものに限られるものではなく、Z軸方向の成分を含んだ方向であればよい。   In the above example, the imaging range at the same time in each area is shifted in the Z-axis direction (that is, the direction perpendicular to the direction of relative movement on the imaging surface), but this shifting direction is the Z-axis direction itself. The direction is not limited, and any direction including a component in the Z-axis direction may be used.

次に、別の例として、請求項3ならびに請求項4に対応する実施形態の一例を図2に示す。カメラ1内の撮像素子2は、エリアA、エリアB,エリアCに区分され、それぞれのエリアが測定対象の異なる範囲を撮影するように設計されている。カメラ1の前には多面体ミラー5が設置されており、撮像素子2の中央のエリアBに入射する光の光軸は、多面体ミラー5の中央の反射面で90°曲げられて水平方向に向けられる。これによりエリアBは、測定対象の範囲の中央にある工具7を撮影するように構成されている。図2の紙面が水平面であり、カメラ1の撮像面は紙面に対して平行(すなわち撮像方向が紙面に垂直)となっている。   Next, as another example, an example of an embodiment corresponding to claim 3 and claim 4 is shown in FIG. The image sensor 2 in the camera 1 is divided into an area A, an area B, and an area C, and each area is designed to capture a different range of a measurement target. A polyhedral mirror 5 is installed in front of the camera 1, and the optical axis of light incident on the central area B of the image sensor 2 is bent 90 ° at the central reflecting surface of the polyhedral mirror 5 and directed in the horizontal direction. It is done. Thereby, the area B is configured to photograph the tool 7 at the center of the range to be measured. The paper surface of FIG. 2 is a horizontal plane, and the imaging surface of the camera 1 is parallel to the paper surface (that is, the imaging direction is perpendicular to the paper surface).

一方、エリアAに入射する光の光軸は、多面体ミラー5の工具8側の反射面により、水平方向に90°曲げられ水平方向に向けられると同時に、水平面内でθ3だけ曲げられる。これによりエリアAは、回転して工具8を撮影するように構成されている。また、エリアCに入射する光軸は、工具1側の反射面で90°曲げられて水平方向に向けられると同時に、水平面内でθ4だけ曲げられる。これによりエリアCは、工具6を撮影するように構成されている。   On the other hand, the optical axis of the light incident on the area A is bent by 90 ° in the horizontal direction and directed in the horizontal direction by the reflecting surface of the polyhedral mirror 5 on the tool 8 side, and is also bent by θ3 in the horizontal plane. Thereby, the area A is configured to rotate and photograph the tool 8. Further, the optical axis incident on the area C is bent by 90 ° on the reflection surface on the tool 1 side and directed in the horizontal direction, and at the same time, is bent by θ4 in the horizontal plane. Thereby, the area C is configured to photograph the tool 6.

ここに、多面体ミラー5は、3つの反射面を含む断面が台形となった形状をしており、右側の反射面と中央の反射面の法線同士は2面間の角度が、θ4/2の角度をなし、左側の反射面と中央の反射面の法線同士はθ3/2の角度をなすように形成されている。多面体ミラー5全体は、カメラ1の前面に45°傾斜して配置されており、これにより各反射面についての入射光軸が水平方向に向けられるようになっている。また、カメラ1と多面体ミラー5は、防塵ケース内に一体で固定された上で、機械の測定エリアに設置される。   Here, the polyhedral mirror 5 has a trapezoidal cross section including three reflective surfaces, and the normal between the right reflective surface and the central reflective surface has an angle between the two surfaces of θ4 / 2. The normal lines of the left reflective surface and the central reflective surface are formed so as to form an angle of θ3 / 2. The entire polyhedral mirror 5 is disposed at an angle of 45 ° with respect to the front surface of the camera 1 so that the incident optical axis of each reflecting surface is directed in the horizontal direction. In addition, the camera 1 and the polyhedral mirror 5 are integrally fixed in a dustproof case and then installed in a measurement area of the machine.

撮像素子の各エリアには、エリアAに工具8、エリアBに工具7,エリアCに工具6が同時に撮影されるが、測定対象(工具6,7,及び8)をカメラ1に対し、図示の測定物移動方向に相対移動させながら撮影を行うと、図3のように、工具6に着目した場合、時系列で工具6が右から左に移動する間に、t=T0においてエリアAにθ3の角度から撮影した工具6の画像が、t=T1においてエリアBに正面から撮影した工具6の画像が、t=T2においてエリアCにθ4の角度から撮影した工具6の画像が得られることになる。したがって、時系列で得られた各エリアの画像を組み合わせることにより、ステレオ法等の手法を用いて工具6の例えば三次元形状の測定を実施することができる。   In each area of the image sensor, the tool 8 in the area A, the tool 7 in the area B, and the tool 6 in the area C are simultaneously photographed, but the measurement target (tools 6, 7, and 8) is illustrated with respect to the camera 1. When taking an image while relatively moving in the moving direction of the measured object, when focusing on the tool 6 as shown in FIG. 3, while the tool 6 moves from right to left in time series, it moves to the area A at t = T0. An image of the tool 6 photographed from the angle θ3, an image of the tool 6 photographed from the front in the area B at t = T1, and an image of the tool 6 photographed from the angle θ4 in the area C at t = T2. become. Therefore, by combining images of each area obtained in time series, for example, a three-dimensional shape of the tool 6 can be measured using a method such as a stereo method.

なお、撮像素子2を分割したことによる画像の短軸方向(すなわち図2,3に示す想定物移動方向に対応する方向)についての分解能減少は、上述の請求項1に係る発明の実施形態の例と同様に、測定対象の相対移動による撮影領域の変化を利用して、時系列の画像を合成することにより補うことができる。   Note that the resolution reduction in the short axis direction of the image (that is, the direction corresponding to the assumed object movement direction shown in FIGS. 2 and 3) due to the division of the image sensor 2 is that of the embodiment of the invention according to claim 1 described above. As in the example, it is possible to compensate by synthesizing time-series images using changes in the imaging region due to relative movement of the measurement object.

図4は、請求項1から4に係る発明を同時に適用した計測装置の実施例であり、撮像素子2を6つのエリアに分割している。また、この例の多面体ミラー9は、6つの反射面から構成されている。これら6つの反射面は、隣接する2面ずつがペアになっている。中央のペアは、図2の例の多面体ミラー5の中央の反射面に対応しており、測定対象からの光を水平方向からカメラ1に入射する約90度曲げるが、測定物移動方向には曲げない。ただし、中央のペアを構成する各反射面は、撮影範囲を図1の例と同様にZ軸方向(図4では紙面に垂直な方向)にずらすべく角度が異なっている。中央のペアのうちの図中右側の反射面で反射された光は、撮像素子2のエリアCに入射し、同様にそのペアの図中左側の反射面で反射された光は、撮像素子2のエリアDに入射する。エリアCとエリアDとは、Z軸方向について異なる高さ(位置)の画像を撮像する。同様に、6つの反射面のうちの右側のペアは、エリアE及びFに対応しており、これらエリアE,FはZ軸方向について異なる高さの画像を撮像するように傾斜している。また、同様に左側のペアは、エリアA及びBに対応しており、これらエリアA,BはZ軸方向について異なる高さの画像を撮像するように傾斜している。なお、各ペアの各反射面は、例えばエリアA,C,及びEが同じZ軸方向位置を撮像し、エリアB,D,及びFが同じZ軸方向位置(ただしA,C及びEとは異なる)を撮像するように角度が設定されている。   FIG. 4 shows an embodiment of a measuring apparatus to which the inventions according to claims 1 to 4 are applied simultaneously, and the image pickup device 2 is divided into six areas. The polyhedral mirror 9 in this example is composed of six reflecting surfaces. These six reflecting surfaces are paired with two adjacent surfaces. The center pair corresponds to the center reflecting surface of the polyhedral mirror 5 in the example of FIG. 2, and the light from the measurement object is bent by about 90 degrees to enter the camera 1 from the horizontal direction. Do not bend. However, the angles of the reflecting surfaces constituting the central pair are different so as to shift the photographing range in the Z-axis direction (direction perpendicular to the paper surface in FIG. 4) as in the example of FIG. The light reflected by the reflective surface on the right side in the drawing of the center pair enters the area C of the image sensor 2, and similarly, the light reflected by the reflective surface on the left side in the drawing of the pair is image sensor 2. Is incident on the area D. Area C and area D capture images having different heights (positions) in the Z-axis direction. Similarly, the right pair of the six reflecting surfaces corresponds to areas E and F, and these areas E and F are inclined so as to capture images having different heights in the Z-axis direction. Similarly, the left pair corresponds to areas A and B, and these areas A and B are inclined so as to capture images having different heights in the Z-axis direction. In addition, each reflective surface of each pair images, for example, areas A, C, and E in the same Z-axis direction position, and areas B, D, and F have the same Z-axis direction position (however, A, C, and E are The angle is set so as to image (different).

このように、多面体ミラー9は、多面体ミラー5の各面をそれぞれ2分割し、水平方向の傾斜角を、図1の例の多段傾斜ミラー3と同様に変化させたものということができる。この実施例では、測定物の長手方向(Z軸方向)の分解能向上を行うと同時に、ステレオ法を単一カメラで行うことができる。   Thus, it can be said that the polyhedral mirror 9 is obtained by dividing each surface of the polyhedral mirror 5 into two parts and changing the inclination angle in the horizontal direction in the same manner as the multistage inclined mirror 3 in the example of FIG. In this embodiment, the resolution can be improved in the longitudinal direction (Z-axis direction) of the measurement object, and at the same time, the stereo method can be performed with a single camera.

図7は、請求項1ならびに請求項2に係る発明の実施形態の別の一例を示す図であり、マシニングセンタの回転テーブル22上に乗ったイケール21に取り付けられている測定対象4を測定する例を示している。この例では、測定対象4が加工対象物及び加工対象物保持装置であるため、加工工具と比較して広い面積を撮影するために、1920×1080画素を持つフルハイビジョン用の撮像素子2を使用しており、同素子2を測定対象4の上部であるY軸方向についての+側を撮影するエリアAと、下部であるY軸方向についての−側を撮影するエリアAに2分割している。そして、2つの反射面を持つ多段傾斜ミラー3を使用して、エリアA,Bそれぞれの撮影範囲が、測定対象4の上部及び下部という各々の目的の範囲となるように構成されている。   FIG. 7 is a diagram showing another example of the embodiment of the invention according to claims 1 and 2, and is an example of measuring the measuring object 4 attached to the scale 21 mounted on the rotary table 22 of the machining center. Is shown. In this example, since the measurement target 4 is a processing target and a processing target holding device, the image sensor 2 for full high-definition having 1920 × 1080 pixels is used to capture a larger area than the processing tool. The element 2 is divided into two parts: an area A for photographing the + side in the Y-axis direction, which is the upper part of the measurement object 4, and an area A for photographing the − side in the Y-axis direction, which is the lower part. . Then, the multistage tilt mirror 3 having two reflecting surfaces is used so that the shooting ranges of the areas A and B are the respective target ranges of the upper part and the lower part of the measurement object 4.

この例では、回転テーブル22を回転させつつ測定対象4の撮像を行い、各撮像時点での各エリアの撮像画像を組み合わせることで、大きな撮像範囲の画像を得る。この場合、カメラ1と測定対象4との相対移動は、回転テーブル22による測定対象4の回転により実現されている。この場合でも、多段傾斜ミラー3により各エリアの撮像範囲をずらす方向は、カメラ1と測定対象4との相対移動の方向、すなわち回転の方向に対して垂直な成分を含んでいる。   In this example, the measurement object 4 is imaged while rotating the turntable 22, and an image in a large imaging range is obtained by combining the captured images of each area at each imaging time point. In this case, the relative movement between the camera 1 and the measuring object 4 is realized by the rotation of the measuring object 4 by the rotary table 22. Even in this case, the direction in which the imaging range of each area is shifted by the multistage tilt mirror 3 includes a component perpendicular to the direction of relative movement between the camera 1 and the measuring object 4, that is, the direction of rotation.

本発明の請求項1、2に係る発明の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the invention which concerns on Claims 1 and 2 of this invention. 本発明の請求項3、4に係る発明の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the invention which concerns on Claims 3 and 4 of this invention. 本発明の請求項3、4に係る発明の実施形態で時間経過を示す図である。It is a figure which shows time passage in embodiment of the invention which concerns on Claims 3 and 4 of this invention. 本発明の請求項1から4に係る発明を同時に適用した実施形態の一例を示す図である。It is a figure which shows an example of embodiment which applied the invention which concerns on Claims 1 to 4 of this invention simultaneously. 従来の測定装置の一例を示す図である。It is a figure which shows an example of the conventional measuring apparatus. 従来の測定装置の一例を示す図である。It is a figure which shows an example of the conventional measuring apparatus. 本発明の請求項1、2に係る発明の実施形態の別の一例を示す図である。It is a figure which shows another example of embodiment of the invention which concerns on Claims 1 and 2 of this invention.

符号の説明Explanation of symbols

1 カメラ、2 撮像素子、3 多段傾斜ミラー、4 測定対象、5 多面体ミラー、6,7,8 工具、9 多面体ミラー、10 防塵ケース。 DESCRIPTION OF SYMBOLS 1 Camera, 2 Image pick-up element, 3 Multi stage inclination mirror, 4 Measurement object, 5 Polyhedron mirror, 6, 7, 8 Tool, 9 Polyhedron mirror, 10 Dust-proof case.

Claims (4)

カメラで撮影した画像を解析し、測定対象である加工用工具または加工対象物または加工対象物保持装置の形状を計測する形状測定装置において、
前記カメラ内の撮像素子は、当該撮像素子の一辺に沿って2以上のエリアに区分されており、
前記形状測定装置は、
区分された前記エリア毎に、前記測定対象の撮影範囲を、前記カメラと前記測定対象とを相対移動させる第1の方向とは垂直な成分を含む方向にずらすための光学系と、
前記カメラと前記測定対象とを、前記第1の方向に相対移動させる相対移動手段と、
前記カメラと前記測定対象とを前記相対移動手段により相対移動させながら前記撮像素子に撮像を行わせ、各撮像時点での前記各エリアの撮像画像を合成する合成手段と、
を備えることにより、測定対象の撮像画像の分解能を向上させるよう構成した形状測定装置。
In the shape measuring device that analyzes the image taken with the camera and measures the shape of the processing tool or the processing target or processing target holding device that is the measurement target,
The image sensor in the camera is divided into two or more areas along one side of the image sensor,
The shape measuring device is
An optical system for shifting the imaging range of the measurement object for each of the divided areas in a direction including a component perpendicular to a first direction in which the camera and the measurement object are relatively moved;
Relative movement means for relatively moving the camera and the measurement object in the first direction;
Synthesizing means for causing the imaging device to perform imaging while relatively moving the camera and the measurement object by the relative movement means, and synthesizing the captured images of the areas at the time of each imaging;
A shape measuring device configured to improve the resolution of a captured image to be measured.
請求項1に記載の装置であって、上記光学系は、前記カメラの前面に配置したミラーを有し、前記ミラーは、前記撮像素子の前記各エリアに対応する反射面毎に、前記各エリアの撮像範囲が、前記カメラと前記測定対象とが相対移動する前記第1の方向と垂直な方向に異なるよう変化させた多段傾斜ミラーである、ことを特徴とする形状測定装置。   2. The apparatus according to claim 1, wherein the optical system includes a mirror disposed on a front surface of the camera, and the mirror includes each area for each reflecting surface corresponding to each area of the imaging element. The shape measuring apparatus is characterized in that the imaging range is a multi-stage tilt mirror which is changed so as to be different in a direction perpendicular to the first direction in which the camera and the measurement object are relatively moved. カメラで撮影した画像を解析し、測定対象である加工用工具または加工対象物または加工対象物保持装置の形状を計測する形状計測装置において、
前記カメラ内の撮像素子は、当該撮像素子の一辺に沿って2以上のエリアに区分されており、
前記形状計測装置は、
区分された前記エリア毎に、前記測定対象の撮影範囲を、前記カメラと前記測定対象とを相対移動させる第1の方向に沿ってずらすための光学系と、
前記カメラと前記測定対象とを、前記第1の方向に相対移動させる相対移動手段と、
前記カメラと前記測定対象とを前記相対移動手段により相対移動させながら前記撮像素子に撮像を行わせ、異なる撮像時点での前記各エリアの撮像画像を用いてステレオ法により前記測定対象の三次元形状を求める形状計算手段と、
を備える形状測定装置。
In the shape measuring device that analyzes the image taken by the camera and measures the shape of the processing tool or the processing target or processing target holding device that is the measurement target,
The image sensor in the camera is divided into two or more areas along one side of the image sensor,
The shape measuring device is
An optical system for shifting the imaging range of the measurement object for each of the divided areas along a first direction in which the camera and the measurement object are relatively moved;
Relative movement means for relatively moving the camera and the measurement object in the first direction;
The camera and the measurement object are moved relative to each other by the relative movement means, and the imaging device performs imaging, and the three-dimensional shape of the measurement object is obtained by a stereo method using captured images of the areas at different imaging points. Shape calculation means for obtaining
A shape measuring device comprising:
請求項3に記載の装置であって、上記光学系は、前記カメラの前面に配置したミラーを有し、前記ミラーは、前記撮像素子の前記各エリアに対応する反射面毎に、前記各エリアの撮像範囲が、前記カメラと前記測定物とが相対移動する前記第1の方向に沿って異なるよう変化させた多面体ミラーである、ことを特徴とする形状測定装置。


4. The apparatus according to claim 3, wherein the optical system includes a mirror disposed on a front surface of the camera, and the mirror is provided for each reflection surface corresponding to each area of the image sensor. The shape measuring device is characterized in that the imaging range is a polyhedral mirror that is changed so as to be different along the first direction in which the camera and the measurement object move relative to each other.


JP2008279533A 2008-10-30 2008-10-30 Processing tool or apparatus for measuring shape of to-be-processed object Pending JP2010107351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279533A JP2010107351A (en) 2008-10-30 2008-10-30 Processing tool or apparatus for measuring shape of to-be-processed object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279533A JP2010107351A (en) 2008-10-30 2008-10-30 Processing tool or apparatus for measuring shape of to-be-processed object

Publications (1)

Publication Number Publication Date
JP2010107351A true JP2010107351A (en) 2010-05-13

Family

ID=42296937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279533A Pending JP2010107351A (en) 2008-10-30 2008-10-30 Processing tool or apparatus for measuring shape of to-be-processed object

Country Status (1)

Country Link
JP (1) JP2010107351A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104660A1 (en) * 2012-12-24 2014-07-03 두산인프라코어 주식회사 Device and method for toolpath generation
JP2018144128A (en) * 2017-03-02 2018-09-20 ファナック株式会社 Machine tool system
JP2019100803A (en) * 2017-11-30 2019-06-24 株式会社岩間工業所 Workpiece measuring system by one camera, and machining center mounted with the same
WO2023218540A1 (en) * 2022-05-10 2023-11-16 ファナック株式会社 Industrial system control device, industrial system, and image acquisition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134638A (en) * 1992-10-26 1994-05-17 Osaka Kiko Co Ltd Automatic collation and recognization device for tool
JP2006078291A (en) * 2004-09-08 2006-03-23 Tokyo Institute Of Technology Omnidirectional three-dimensional measuring apparatus
JP2007240197A (en) * 2006-03-06 2007-09-20 Hiroshima Industrial Promotion Organization Three-dimensional shape measuring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134638A (en) * 1992-10-26 1994-05-17 Osaka Kiko Co Ltd Automatic collation and recognization device for tool
JP2006078291A (en) * 2004-09-08 2006-03-23 Tokyo Institute Of Technology Omnidirectional three-dimensional measuring apparatus
JP2007240197A (en) * 2006-03-06 2007-09-20 Hiroshima Industrial Promotion Organization Three-dimensional shape measuring system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104660A1 (en) * 2012-12-24 2014-07-03 두산인프라코어 주식회사 Device and method for toolpath generation
JP2018144128A (en) * 2017-03-02 2018-09-20 ファナック株式会社 Machine tool system
US10507558B2 (en) 2017-03-02 2019-12-17 Fanuc Corporation Machine tool system
JP2019100803A (en) * 2017-11-30 2019-06-24 株式会社岩間工業所 Workpiece measuring system by one camera, and machining center mounted with the same
WO2023218540A1 (en) * 2022-05-10 2023-11-16 ファナック株式会社 Industrial system control device, industrial system, and image acquisition method

Similar Documents

Publication Publication Date Title
US10863164B2 (en) Stereo camera and method of controlling stereo camera
CN102692364B (en) Blurring image processing-based dynamic grain measuring device and method
JP5713624B2 (en) 3D measurement method
US20070291281A1 (en) Three-dimensional shape measuring system
TWI521471B (en) 3 - dimensional distance measuring device and method thereof
US20060215881A1 (en) Distance measurement apparatus, electronic device, distance measurement method, distance measurement control program and computer-readable recording medium
JP2008241643A (en) Three-dimensional shape measuring device
CN111223048B (en) 3D visual point cloud data splicing method and system
US20180156601A1 (en) Method and apparatus for determining the 3d coordinates of an object
WO2019125427A1 (en) System and method for hybrid depth estimation
JP2010107351A (en) Processing tool or apparatus for measuring shape of to-be-processed object
JP2007093412A (en) Three-dimensional shape measuring device
JP2018155664A (en) Imaging system, imaging control method, image processing device, and image processing program
JP2018134712A (en) Robot system and control method for robot system
JP2000304508A (en) Three-dimensional input device
Lu et al. Image-based system for measuring objects on an oblique plane and its applications in 2-D localization
JP2688925B2 (en) 3D image display device
JP6508763B2 (en) Surface inspection device
JP2007333525A (en) Distance measurement device
JPH11223516A (en) Three dimensional image pickup device
JP2006179031A (en) Image input apparatus
JP5490855B2 (en) Edge inspection device for plate substrate
JP2012154862A (en) Three-dimensional dimension measuring device
KR101078424B1 (en) Laser vision apparatus
KR100395773B1 (en) Apparatus for measuring coordinate based on optical triangulation using the images

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205