JP2010105094A - Interference-drive joint mechanism - Google Patents

Interference-drive joint mechanism Download PDF

Info

Publication number
JP2010105094A
JP2010105094A JP2008278007A JP2008278007A JP2010105094A JP 2010105094 A JP2010105094 A JP 2010105094A JP 2008278007 A JP2008278007 A JP 2008278007A JP 2008278007 A JP2008278007 A JP 2008278007A JP 2010105094 A JP2010105094 A JP 2010105094A
Authority
JP
Japan
Prior art keywords
wheel
rotation axis
drive
support member
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008278007A
Other languages
Japanese (ja)
Other versions
JP5158710B2 (en
Inventor
Atsushi Konno
敦 近野
Fumiya Nishii
文哉 西井
Yukio Abe
幸勇 阿部
Kin Kyo
欣 姜
Masaru Uchiyama
勝 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2008278007A priority Critical patent/JP5158710B2/en
Publication of JP2010105094A publication Critical patent/JP2010105094A/en
Application granted granted Critical
Publication of JP5158710B2 publication Critical patent/JP5158710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)
  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an interference-drive joint mechanism of a multi-degree-of-freedom having a small inertia force and high output power, and also to obtain the interference-drive joint mechanism that can utilize most of the driving power generated from power sources as power for supporting loads of output shafts and is good at energy efficiency. <P>SOLUTION: The interference-drive joint mechanism is a multi-degree-of-freedom joint mechanism having a redundant drive property in which two sets of differential drive mechanisms are provided for outputting rotating amounts in the direction of two axes by inputting energy from two power sources, the turnings around four rotating shafts obtained from the respective differential drive mechanisms are interfered, a one-degree-of-freedom is degenerated, and a three-degree-of-freedom of a posture component is obtained as the output power. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、本発明は、多自由度な干渉駆動関節機構に関する。   The present invention relates to a multi-degree-of-freedom interference drive joint mechanism.

従来の一般的な関節機構は、一自由度を一つの動力源で駆動させている。これら関節機構のシリアルリンク接続で構成される一般的なマニピュレータは、自由度の増加に伴って、慣性モーメントが増大し、出力できるトルクが大きく取れない問題がある。そのため、高出力なマニピュレータを構成するためには、慣性モーメントが小さく、高出力である関節機構が必要となる。そこで、慣性モーメントの小さい関節機構が提案されている(例えば、特許文献1参照)。   In the conventional general joint mechanism, one degree of freedom is driven by one power source. A general manipulator configured by serial link connection of these joint mechanisms has a problem that the moment of inertia increases with an increase in the degree of freedom, and the torque that can be output cannot be increased. Therefore, in order to construct a high-output manipulator, a joint mechanism with a small moment of inertia and high output is required. Therefore, a joint mechanism having a small moment of inertia has been proposed (see, for example, Patent Document 1).

しかし、特許文献1記載の関節機構では、三自由度を一つの関節で駆動するために動力伝達機構を用いなくてはならないため、機構の複雑化が避けられない。また、得られる出力成分において、姿勢成分の三自由度の他に、動力伝達機構による位置成分が含まれるため、適用用途が限られる。   However, in the joint mechanism described in Patent Document 1, since the power transmission mechanism must be used to drive the three degrees of freedom with one joint, the complexity of the mechanism is inevitable. In addition, the obtained output component includes a position component by the power transmission mechanism in addition to the three degrees of freedom of the posture component, so that the application application is limited.

また、特許文献1記載の関節機構を含む一般的な関節機構は、動力源の数と出力自由度の数とは等しい。しかし、出力軸に発生する負荷をできるだけ多くの動力源に分配し、複数の動力源が協調することでより大きい出力を得るためには、これらのように動力源と出力自由度の数とが等しい必要はなく、むしろ動力源の数が出力自由度数に対して冗長である方がより負荷を分散できる。   Further, in a general joint mechanism including the joint mechanism described in Patent Document 1, the number of power sources and the number of output degrees of freedom are equal. However, in order to distribute the load generated on the output shaft to as many power sources as possible and obtain a larger output by cooperation of multiple power sources, the power source and the number of output degrees of freedom are It is not necessary to be equal, but rather the load can be distributed if the number of power sources is redundant with respect to the number of output degrees of freedom.

特開2001−170883号公報JP 2001-170883 A

三つの回転軸が一点で交わる球面3自由度関節機構は、従来は回転関節を順に結合していくシリアル型がほとんどであった。このようなシリアル型関節機構は、動力源が関節部に局所的に配置されるため、関節機構先端側に配置された動力源は、根本側に配置された動力源にとって負荷の一部となる。そのため、根本側に配置された動力源は、それより先端側に配置された動力源と出力軸の負荷が一つの動力源に集中しがちで、この点でも無駄が多い。以上の問題は、すべての動力源を関節機構の根本側に固定的に配置し、それぞれの自由度ができるだけ干渉して駆動するような機構により解決することができる。   Conventionally, the spherical three-degree-of-freedom joint mechanism in which three rotation axes intersect at one point has been mostly a serial type in which rotary joints are coupled in order. In such a serial joint mechanism, since the power source is locally disposed at the joint portion, the power source disposed on the distal end side of the joint mechanism becomes a part of the load for the power source disposed on the root side. . Therefore, the power source arranged on the root side tends to concentrate the power source arranged on the tip side and the load of the output shaft on one power source, and this point is also wasteful. The above problems can be solved by a mechanism in which all the power sources are fixedly arranged on the base side of the joint mechanism and driven with the respective degrees of freedom interfering as much as possible.

本発明は、これらの要求を満たすために考案されたものであり、出力軸の負荷を複数の動力源に分担させることによって、一つ一つの動力源にかかる負荷を小さくすることができ、すべての動力源が最大で駆動すれば、シリアル型関節機構に比べてより大きい出力を得ることができる干渉駆動関節機構を提供することを目的としている。また、本発明は、駆動部の慣性モーメントを小さくでき、動力源が発生する駆動力のほとんどを出力軸の負荷を支える力として利用でき、エネルギー効率が良い干渉駆動関節機構を提供することを目的としている。   The present invention has been devised to satisfy these requirements. By sharing the load on the output shaft with a plurality of power sources, the load on each power source can be reduced. It is an object of the present invention to provide an interference drive joint mechanism that can obtain a larger output than a serial joint mechanism when the power source is driven at maximum. Another object of the present invention is to provide an interference drive joint mechanism that can reduce the moment of inertia of the drive unit and can use most of the drive force generated by the power source as a force that supports the load of the output shaft, and has high energy efficiency. It is said.

上記目的を達成するため、本発明に係る干渉駆動関節機構は、四つの動力源から三自由度を出力する干渉駆動関節機構であり、第一の回転軸(S11)と、前記第一の回転軸まわりに回転する第一の駆動輪(6)と、前記第一の駆動輪と対向するように配置され、前記第一の回転軸まわりに前記第一の駆動輪とは独立に回転する第二の駆動輪(7)と、ベース固定部(1)に取り付けられ、前記第一の駆動輪を回転駆動する第一の駆動源(2)と、前記ベース固定部に取り付けられ、前記第二の駆動輪を回転駆動する第二の駆動源(3)と、前記第一の回転軸まわりに回転可能に支持された第一の支持部材(14)と、前記第一の回転軸に直交する第二の回転軸(S12)まわりに回転可能に前記第一の支持部材に支持された第一の差動輪(11)と、前記第一の差動輪に連結支持軸(12)によって固定され、前記第一の差動輪と共に回転する連結輪(13)と、第三の回転軸(S21)まわりに回転する第三の駆動輪(8)と、前記第三の駆動輪と対向するように配置され、前記第三の回転軸まわりに前記第三の駆動輪とは独立に回転する第四の駆動輪(9)と、前記ベース固定部に取り付けられ、前記第三の駆動輪を回転駆動する第三の駆動源(4)と、前記ベース固定部に取り付けられ、前記第四の駆動輪を駆動する第四の動力源(5)と、前記第三の回転軸にまわりに回転可能に支持された第二の支持部材(16)と、前記第三の回転軸に直交する第四の回転軸(S22)まわりに回転可能に前記第二の支持部材に支持された第二の差動輪(15)と、前記第四の回転軸まわりに回転可能に前記第二の支持部材に支持され、前記第二の差動輪と固定され共に回転する第三の支持部材(17)と、前記第二の回転軸まわりに回転可能に前記連結支持軸を支持し、前記第四の回転軸と直交する第五の回転軸(S31)まわりに回転可能に配置された支持軸を有し、前記第三の支持部材を回転可能に支持する第四の支持部材(18)と、前記第五の回転軸まわりに回転可能に前記第四の支持部材に取り付けられた支持軸に支持された第一の従動輪(19)と、前記第三の回転軸と前記第五の回転軸に直交する第六の回転軸(S32)まわりに回転可能に配置された出力軸(10)と、前記出力軸の一端部に結合された第二の従動輪(20)と、を有することを特徴とする。   In order to achieve the above object, an interference driving joint mechanism according to the present invention is an interference driving joint mechanism that outputs three degrees of freedom from four power sources, and includes a first rotation shaft (S11) and the first rotation. A first drive wheel (6) that rotates about an axis and a first drive wheel that is disposed to face the first drive wheel and that rotates independently of the first drive wheel about the first rotation axis. A second driving wheel (7), a first driving source (2) attached to the base fixing part (1) and rotationally driving the first driving wheel; and a second driving wheel (7) attached to the base fixing part; A second drive source (3) for rotationally driving the drive wheels, a first support member (14) rotatably supported about the first rotation axis, and orthogonal to the first rotation axis A first differential wheel (supported by the first support member so as to be rotatable around a second rotation axis (S12)) 1), a connection wheel (13) fixed to the first differential wheel by a connection support shaft (12) and rotating together with the first differential wheel, and a third rotation shaft (S21) rotating around the third rotation shaft (S21). A third driving wheel (8) and a fourth driving wheel (9) disposed so as to face the third driving wheel and rotating independently of the third driving wheel around the third rotation axis. ), A third drive source (4) attached to the base fixing portion and rotationally driving the third drive wheel, and a fourth drive source attached to the base fixing portion and driving the fourth drive wheel. Power source (5), a second support member (16) rotatably supported around the third rotation shaft, and a fourth rotation shaft (S22) orthogonal to the third rotation shaft A second differential wheel (15) supported by the second support member so as to be rotatable around the fourth rotating shaft; Instead, a third support member (17) rotatably supported by the second support member, fixed to the second differential wheel and rotated together, and the connection support rotatably about the second rotation axis. A fourth shaft that supports a shaft and has a support shaft rotatably disposed around a fifth rotation shaft (S31) orthogonal to the fourth rotation shaft, and rotatably supports the third support member; Supporting member (18), a first driven wheel (19) supported by a supporting shaft attached to the fourth supporting member so as to be rotatable about the fifth rotating shaft, and the third rotating member. An output shaft (10) rotatably disposed around a sixth rotation shaft (S32) orthogonal to the shaft and the fifth rotation shaft, and a second driven wheel coupled to one end of the output shaft ( 20).

この発明は、以下のような駆動を行う。第一の動力源に結合された第一の駆動輪と第二の動力源に結合された第二の駆動輪とが同一方向に同一速度で回転駆動すると、それらの駆動輪と駆動結合した第一の差動輪は第二の回転軸まわりには回動せず、第一の差動輪と第一の支持部材とは第一の回転軸まわりを同一方向へ同一速度で回動し、また、第一の駆動輪と第二の駆動輪とが逆方向に同一速度で回転駆動すると、第一の差動輪と第一の支持部材とは第一の回転軸まわりには回動せず、第一の差動輪は第二の回転軸まわりを回動する。また、第三の動力源に結合された第三の駆動輪と第四の動力源に結合された第四の駆動輪とが同一方向に同一速度で回転駆動すると、それらの駆動輪と駆動結合した第二の差動輪は第四の回転軸まわりには回動せず、第二の差動輪と第二の支持部材とは第三の回転軸まわりを同一方向へ同一速度で回動し、また、第三の駆動輪と第四の駆動輪とが逆方向に同一速度で回転駆動すると、第二の差動輪と第二の支持部材とは第三の回転軸まわりには回動せず、第二の差動輪は第四の回転軸まわりを回動する。そして、これら第一から第四の回転軸まわりの回動は干渉して出力され、第三の回転軸まわりの回動は、第二の支持部材と第二の支持部材に回転可能に支持された第三の支持部材とを回動させて、出力三自由度の内の一自由度が得られ、また、第二の回転軸まわりの回動は、第二の回転軸および第五の回転軸と第六の回転軸が常に直交しているため、連結輪および第一の従動輪と第二の従動輪とは噛合い、第二の従動輪に結合されている出力軸を第六の回転軸まわりに回動させて、出力三自由度の内の一自由度が得られる。また、第一の回転軸まわりの回動と第四の回転軸まわりの回動とは、第三の支持部材および第四の支持部材と連結支持軸で回転可能に配置されることより、幾何学的拘束を満たしながら駆動する条件が生じ、このことは、第一の回転軸まわりの回動および第四の回転軸まわりの回動のどちらか一方が他方の回動に従属することを意味し、結果として、第四の回転軸まわりに第三の支持部材を回動することによって、出力三自由度の内の最後の一自由度が得られる。   The present invention performs the following drive. When the first driving wheel coupled to the first power source and the second driving wheel coupled to the second power source are rotationally driven in the same direction at the same speed, the first driving wheel coupled to the driving wheel is coupled to the first driving wheel. One differential wheel does not rotate around the second rotation axis, and the first differential wheel and the first support member rotate around the first rotation axis in the same direction at the same speed, When the first drive wheel and the second drive wheel are rotationally driven in opposite directions at the same speed, the first differential wheel and the first support member do not rotate around the first rotation axis, One differential wheel rotates about the second rotation axis. Further, when the third driving wheel coupled to the third power source and the fourth driving wheel coupled to the fourth power source are rotationally driven in the same direction at the same speed, the driving wheels are coupled to the driving wheels. The second differential wheel does not rotate around the fourth rotation axis, and the second differential wheel and the second support member rotate around the third rotation axis in the same direction at the same speed, Further, when the third driving wheel and the fourth driving wheel are rotationally driven in the opposite directions at the same speed, the second differential wheel and the second support member do not rotate around the third rotation axis. The second differential wheel rotates about the fourth rotation axis. Then, the rotations around the first to fourth rotation axes interfere and are output, and the rotation around the third rotation axis is rotatably supported by the second support member and the second support member. The third support member is rotated to obtain one of the three degrees of freedom of output, and the rotation about the second rotation axis is the second rotation axis and the fifth rotation. Since the shaft and the sixth rotational axis are always orthogonal, the connecting wheel, the first driven wheel and the second driven wheel mesh with each other, and the output shaft coupled to the second driven wheel is connected to the sixth driven wheel. By rotating around the rotation axis, one degree of freedom among the three degrees of freedom of output can be obtained. Further, the rotation around the first rotation axis and the rotation around the fourth rotation axis are arranged so as to be rotatable on the third support member, the fourth support member and the connection support shaft, so that Driving conditions are satisfied, which means that one of the rotation around the first rotation axis and the rotation around the fourth rotation axis is dependent on the other rotation. As a result, the last one degree of freedom among the three degrees of freedom of output can be obtained by rotating the third support member around the fourth rotation axis.

本発明に係る干渉駆動関節機構で、前記第一の駆動輪および前記第二の駆動輪と第一の差動輪とは、互いに噛合する歯車であり、前記第三の駆動輪および前記第四の駆動輪と第二の差動輪とは、互いに噛合する歯車であることが好ましい。また、本発明に係る干渉駆動関節機構で、前記連結輪および前記第一の従動輪と前記第二の従動輪とは、互いに噛合する歯車であることが好ましい。さらに、本発明に係る干渉駆動関節機構は、前記第一から第四の動力源による入力から、前記出力軸に前記第一から第六の回転軸の交点を中心とした姿勢成分三自由度の回転量を与える冗長駆動性を有することが好ましい。   In the interference drive joint mechanism according to the present invention, the first drive wheel, the second drive wheel, and the first differential wheel are gears that mesh with each other, and the third drive wheel and the fourth drive wheel. The drive wheel and the second differential wheel are preferably gears that mesh with each other. In the interference drive joint mechanism according to the present invention, it is preferable that the coupling wheel, the first driven wheel, and the second driven wheel are gears that mesh with each other. Furthermore, the interference drive joint mechanism according to the present invention has a posture component with three degrees of freedom centered on the intersection of the first to sixth rotation axes with the output shaft from the inputs from the first to fourth power sources. It is preferable to have a redundant drive property that gives a rotation amount.

本発明の干渉駆動関節機構においては、ベース固定部に固定配置された第一から第四の動力源のそれぞれの回動を入力とし、互いに直交する第三の回転軸、第四の回転軸および第六の回転軸まわりの三自由度の回動が出力として得られることより、出力軸の負荷を一つの動力源に負担させるのではなく、複数の動力源に分担させることによって、一つ一つの動力源にかかる負荷を小さくすることができる。逆に、すべての動力源が最大で駆動すれば、シリアル型関節機構に比べてより大きい出力を得ることができる。   In the interference drive joint mechanism of the present invention, the rotations of the first to fourth power sources fixedly arranged on the base fixing portion are input, and a third rotation shaft, a fourth rotation shaft, and Since rotation with three degrees of freedom around the sixth rotation shaft is obtained as an output, the load on the output shaft is not borne by one power source, but is shared by a plurality of power sources. The load on one power source can be reduced. On the contrary, if all the power sources are driven at the maximum, a larger output can be obtained as compared with the serial joint mechanism.

本発明の干渉駆動関節機構においては、ベース固定部にすべての動力源を固定配置できるため、駆動部の慣性モーメントを小さくでき、動力源が発生する駆動力のほとんどを出力軸の負荷を支える力として利用でき、エネルギー効率が良い。   In the interference drive joint mechanism of the present invention, since all the power sources can be fixedly arranged on the base fixing portion, the moment of inertia of the drive portion can be reduced, and most of the driving force generated by the power source supports the load on the output shaft. It can be used as energy efficient.

また、本発明は、三つの出力回転軸が互いに直交し一点で交わるため、姿勢成分の駆動を必要とする器具、例えばジョイスティックなどに適用可能である。   In addition, the present invention can be applied to an instrument that requires driving of a posture component, such as a joystick, because the three output rotation axes are orthogonal to each other and intersect at one point.

他の用途としては、多自由度を必要とするロボットの関節へ適用することが考えられる。また、本発明を適用することによって、高出力な三自由度の駆動を行うことが可能となる。   As another application, it can be applied to a joint of a robot that requires multiple degrees of freedom. In addition, by applying the present invention, it is possible to drive with high output and three degrees of freedom.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1に、本発明の実施の形態の干渉駆動関節機構の簡易構成図を示す。駆動に用いられる電動機などの動力源2〜5は、ベース固定部1に固定される。動力源2,3は、それぞれ傘歯車6および傘歯車7と結合されており、回転軸S11まわりの回動を与える。また、動力源4,5は、それぞれ傘歯車8および傘歯車9と結合されており、回転軸S21まわりの回動を与える。なお、出力される姿勢三自由度は、回転軸S32まわりに回転可能に配置された出力軸10を用いて、外部に出力される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a simplified configuration diagram of an interference driving joint mechanism according to an embodiment of the present invention. Power sources 2 to 5 such as an electric motor used for driving are fixed to the base fixing portion 1. The power sources 2 and 3 are coupled to the bevel gear 6 and the bevel gear 7, respectively, and provide rotation about the rotation axis S11. The power sources 4 and 5 are coupled to the bevel gear 8 and the bevel gear 9, respectively, and provide rotation about the rotation axis S21. Note that the output three-degree-of-freedom posture is output to the outside using the output shaft 10 that is rotatably arranged around the rotation axis S32.

図2は、図1におけるベース固定部1の側に配置された歯車列だけを取り出したものである。また、図2は本発明を構成する一部であるが、この部位を差動駆動機構群Cと名付ける。差動駆動機構群Cは、動力源2,3によって回動させられる傘歯車6,7と、回転軸S11まわりに回転可能に支持された支持部材14と、回転軸S11に直交する回転軸S12まわりに回転可能に支持部材14に支持された差動傘歯車11と、差動傘歯車11に連結支持軸12によって結合された連結傘歯車13とから構成される。傘歯車6および傘歯車7と差動傘歯車11とは、互いに噛合する歯車であり、動力源2に結合された傘歯車6と動力源3に結合された傘歯車7とが同一方向に同一速度で回転駆動すると、それらの駆動歯車と駆動結合した差動傘歯車11は回転軸S12まわりには回動せず、差動傘歯車11と支持部材14とは回転軸S11まわりを同一方向へ同一速度で回動する。また、傘歯車6と傘歯車7とが逆方向に同一速度で回転駆動すると、差動傘歯車11と支持部材14とは回転軸S11まわりには回動せず、差動傘歯車11は回転軸S12まわりを回動する。なお、傘歯車6と傘歯車7とを互いに同一方向または逆方向に回動させつつ、それらの駆動歯車の回動速度が互いに異なる場合は、差動傘歯車11と支持部材14とをS11まわりに回動させつつ、差動傘歯車11をS12まわりに回動することとなる。   FIG. 2 shows only the gear train arranged on the base fixing part 1 side in FIG. FIG. 2 shows a part of the present invention, and this part is named a differential drive mechanism group C. The differential drive mechanism group C includes bevel gears 6 and 7 that are rotated by the power sources 2 and 3, a support member 14 that is rotatably supported around the rotation axis S11, and a rotation axis S12 that is orthogonal to the rotation axis S11. It comprises a differential bevel gear 11 supported by a support member 14 so as to be rotatable around, and a connecting bevel gear 13 coupled to the differential bevel gear 11 by a connecting support shaft 12. The bevel gear 6 and the bevel gear 7 and the differential bevel gear 11 are gears that mesh with each other, and the bevel gear 6 coupled to the power source 2 and the bevel gear 7 coupled to the power source 3 are the same in the same direction. When rotationally driven at a speed, the differential bevel gear 11 that is drivingly coupled to these drive gears does not rotate about the rotation axis S12, and the differential bevel gear 11 and the support member 14 travel around the rotation axis S11 in the same direction. Rotates at the same speed. When the bevel gear 6 and the bevel gear 7 are rotationally driven in the opposite directions at the same speed, the differential bevel gear 11 and the support member 14 do not rotate around the rotation axis S11, and the differential bevel gear 11 rotates. It rotates around the axis S12. In the case where the bevel gear 6 and the bevel gear 7 are rotated in the same direction or in the opposite direction, and the rotation speeds of the drive gears are different from each other, the differential bevel gear 11 and the support member 14 are rotated around S11. The differential bevel gear 11 is rotated around S12 while being rotated.

図3は、図1における前記差動駆動機構群Cより一つ内側に配置された歯車列だけを取り出したものである。なお、この部位を差動駆動機構群Bと名付ける。差動駆動機構群Bは、動力源4,5によって回動させられる傘歯車8,9と、回転軸S21まわりに回転可能に支持された支持部材16と、回転軸S21に直交する回転軸S22まわりに回転可能に支持部材16に支持された差動傘歯車15とから構成される。傘歯車8および傘歯車9と差動傘歯車15とは、互いに噛合する歯車であり、動力源4に結合された傘歯車8と動力源5に結合された傘歯車9とが同一方向に同一速度で回転駆動すると、それらの駆動歯車と駆動結合した差動傘歯車15は回転軸S22まわりには回動せず、差動傘歯車15と支持部材16とは回転軸S21まわりを同一方向へ同一速度で回動する。また、傘歯車8と傘歯車9とが逆方向に同一速度で回転駆動すると、差動傘歯車15と支持部材16とは回転軸S21まわりには回動せず、差動傘歯車15は回転軸S22まわりを回動する。なお、傘歯車8と傘歯車9とを互いに同一方向または逆方向に回動させつつ、それらの駆動歯車の回動速度が互いに異なる場合は、差動傘歯車15と支持部材16とをS21まわりに回動させつつ、差動傘歯車15をS22まわりに回動することとなる。   FIG. 3 shows only the gear train arranged on the inner side of the differential drive mechanism group C in FIG. This part is named differential drive mechanism group B. The differential drive mechanism group B includes bevel gears 8 and 9 that are rotated by power sources 4 and 5, a support member 16 that is rotatably supported around the rotation axis S21, and a rotation axis S22 that is orthogonal to the rotation axis S21. A differential bevel gear 15 is supported by a support member 16 so as to be rotatable around. The bevel gear 8 and the bevel gear 9 and the differential bevel gear 15 are gears that mesh with each other, and the bevel gear 8 coupled to the power source 4 and the bevel gear 9 coupled to the power source 5 are the same in the same direction. When rotationally driven at a speed, the differential bevel gear 15 that is drivingly coupled to these drive gears does not rotate about the rotation axis S22, and the differential bevel gear 15 and the support member 16 are about the rotation axis S21 in the same direction. Rotates at the same speed. When the bevel gear 8 and the bevel gear 9 are rotationally driven in the opposite directions at the same speed, the differential bevel gear 15 and the support member 16 do not rotate around the rotation axis S21, and the differential bevel gear 15 rotates. It rotates around the axis S22. In the case where the bevel gear 8 and the bevel gear 9 are rotated in the same direction or in the opposite direction, and the rotation speeds of the drive gears are different from each other, the differential bevel gear 15 and the support member 16 are rotated around S21. The differential bevel gear 15 is rotated around S22 while being rotated.

図4は、差動駆動機構群Cと差動駆動機構群Bとを連結するために配置された支持部材および歯車列の構成図である。なお、この部位を連結歯車列群Aと名付ける。連結歯車列群Aは、回転軸S22まわりに回転可能に支持部材16に支持され、差動傘歯車15と固定されて同様に回転する支持部材17と、回転軸S12まわりに回転可能に連結支持軸14を支持し、回転軸S22と直交する回転軸S31まわりに回転可能に配置された支持軸を有し、支持部材17を回転可能に支持する支持部材18と、回転軸S31まわりに回転可能に支持部材18に取り付けられた支持軸に支持された従動傘歯車19と、回転軸S22と回転軸S31とに直交する回転軸S32まわりに回転可能に配置された出力軸10と、出力軸10の一端部に結合された従動傘歯車20とから構成される。また、連結歯車列群Aは、差動駆動機構群Cと差動駆動機構群Bとから得られる回転軸S11、回転軸S12、回転軸S21および回転軸S22まわりの回動を干渉させ、姿勢成分の三自由度を出力する。回転軸S21まわりの回動は、支持部材16と支持部材16に回転可能に支持された支持部材17とを回動させて、出力三自由度の内の一自由度が得られ、また、回転軸S12まわりの回動は、回転軸S12および回転軸S31と回転軸S32とが常に直交しているため、連結傘歯車13および従動傘歯車19と従動傘歯車20とは噛合い、従動傘歯車20に結合されている出力軸10を回転軸S32まわりに回動させて、出力三自由度の内の一自由度が得られる。また、回転軸S11まわりの回動と回転軸S22まわりの回動とは、支持部材17および支持部材18と連結支持軸12で回転可能に配置されることより、幾何学的拘束を満たしながら駆動する条件が生じ、このことは、回転軸S11まわりの回動および回転軸S22まわりの回動のどちらか一方が他方の回動に従属することを意味し、結果として、回転軸S22まわりに支持部材17を回動することによって、出力三自由度の内の最後の一自由度が得られる。   FIG. 4 is a configuration diagram of a support member and a gear train arranged to connect the differential drive mechanism group C and the differential drive mechanism group B. FIG. In addition, this part is named the connection gear train group A. The connected gear train group A is supported by the support member 16 so as to be rotatable around the rotation axis S22, and is connected to and supported by the support member 17 fixed to the differential bevel gear 15 and rotating in the same manner, and rotatable around the rotation axis S12. A support member 18 that supports the shaft 14 and has a support shaft that is rotatably arranged around a rotation axis S31 that is orthogonal to the rotation axis S22. The support member 18 that rotatably supports the support member 17 is rotatable about the rotation axis S31. A driven bevel gear 19 supported by a support shaft attached to the support member 18, an output shaft 10 rotatably disposed around a rotation axis S32 orthogonal to the rotation shaft S22 and the rotation shaft S31, and the output shaft 10 And a driven bevel gear 20 coupled to one end of the. Further, the connecting gear train group A interferes with the rotation about the rotation shaft S11, the rotation shaft S12, the rotation shaft S21, and the rotation shaft S22 obtained from the differential drive mechanism group C and the differential drive mechanism group B, and the posture Output the three degrees of freedom of the component. The rotation around the rotation axis S21 rotates the support member 16 and the support member 17 rotatably supported by the support member 16 to obtain one degree of freedom of the three output degrees of freedom. The rotation about the axis S12 is such that the rotation shaft S12, the rotation shaft S31, and the rotation shaft S32 are always orthogonal to each other, so that the connecting bevel gear 13, the driven bevel gear 19, and the driven bevel gear 20 are meshed. The output shaft 10 coupled to 20 is rotated about the rotation axis S32, so that one of the three degrees of freedom of output is obtained. Further, the rotation about the rotation axis S11 and the rotation about the rotation axis S22 are arranged so as to be rotatable by the support member 17 and the support member 18 and the connecting support shaft 12, so that the geometric constraint is satisfied. This means that one of the rotation around the rotation axis S11 and the rotation around the rotation axis S22 depends on the other rotation, and as a result, the rotation around the rotation axis S22 is supported. By rotating the member 17, the last one degree of freedom among the three degrees of freedom of output is obtained.

図1〜図4で示される構成から成る干渉駆動関節機構の場合、単純な構造なので部品点数を少なく製作できる利点があるものの、構成に特別な傘歯車を用いなくてはならず、また、傘歯車同士の幾何学的干渉を考慮すると、出力軸の可動範囲を広く取ることができないという欠点がある。そこで、一般的な傘歯車を用いて、なおかつ出力軸の可動範囲を広くとれるように、図1で示す差動駆動機構群Cおよび差動駆動機構群Bと同等の機構を別の機構で実現した実施例を図5に示す。   In the case of the interference driving joint mechanism having the configuration shown in FIGS. 1 to 4, the simple structure has an advantage that the number of parts can be reduced, but a special bevel gear must be used for the configuration. Considering geometrical interference between the gears, there is a drawback that the movable range of the output shaft cannot be widened. Therefore, a mechanism equivalent to the differential drive mechanism group C and the differential drive mechanism group B shown in FIG. 1 is realized by another mechanism so that a general bevel gear can be used and the movable range of the output shaft can be widened. FIG. 5 shows the embodiment which was made.

図5で示される差動駆動機構群Cは、平歯車に固定された傘歯車23〜26を含む歯車列21〜27と、それら歯車列21〜27の回転を許容する対偶を有する支持部材28より構成される。これにより、図1の差動駆動機構群Cと同様な運動(回転軸S11および回転軸S12の回動)を行う。また、図5で示される差動駆動機構群Bは、平歯車に固定された傘歯車31,32を含む歯車列29〜33と、それら歯車列29〜33の回転を許容する対偶を有する支持部材34より構成される。これにより、図1の差動駆動機構群Bと同様な運動(回転軸S21および回転軸S22まわりの回動)を行う。   The differential drive mechanism group C shown in FIG. 5 includes a gear train 21 to 27 including bevel gears 23 to 26 fixed to a spur gear, and a support member 28 having a pair that allows the gear trains 21 to 27 to rotate. Consists of. Thereby, the same movement as the differential drive mechanism group C in FIG. 1 (rotation of the rotation shaft S11 and the rotation shaft S12) is performed. Further, the differential drive mechanism group B shown in FIG. 5 includes a gear train 29 to 33 including bevel gears 31 and 32 fixed to a spur gear, and a support having a pair that allows the gear trains 29 to 33 to rotate. The member 34 is configured. Thus, the same movement as the differential drive mechanism group B in FIG. 1 (rotation about the rotation axis S21 and the rotation axis S22) is performed.

また、図5で示した構成から成る広い可動範囲を有する干渉駆動関節機構を図6に示す。   Further, FIG. 6 shows an interference driving joint mechanism having a wide movable range having the configuration shown in FIG.

本発明の実施の形態の干渉駆動関節機構の構成を示す斜視図である。It is a perspective view which shows the structure of the interference drive joint mechanism of embodiment of this invention. 図1に示す干渉駆動関節機構を構成する部位である差動駆動機構群Cの詳細を示す斜視図である。It is a perspective view which shows the detail of the differential drive mechanism group C which is a site | part which comprises the interference drive joint mechanism shown in FIG. 図1に示す干渉駆動関節機構を構成する部位である差動駆動機構群Bの詳細を示す斜視図である。It is a perspective view which shows the detail of the differential drive mechanism group B which is a site | part which comprises the interference drive joint mechanism shown in FIG. 図1に示す干渉駆動関節機構を構成する部位である連結歯車列群Aの詳細を示す斜視図である。It is a perspective view which shows the detail of the connection gear train group A which is a site | part which comprises the interference drive joint mechanism shown in FIG. 本発明の実施の形態の干渉駆動関節機構の、広い可動範囲を有する差動駆動機構群C,Bの実施例の歯車配置を示す斜視図である。It is a perspective view which shows the gear arrangement | positioning of the Example of the differential drive mechanism groups C and B which have a wide movable range of the interference drive joint mechanism of embodiment of this invention. 図5に示す干渉駆動関節機構の実施例の全体を示す斜視図である。It is a perspective view which shows the whole Example of the interference drive joint mechanism shown in FIG.

符号の説明Explanation of symbols

1 ベース固定部
2〜5 動力源
6〜9 傘歯車
10 出力軸
11,15 差動傘歯車
12 連結支持軸
13 連結傘歯車
14,16,17,18 支持部材
19,20 従動傘歯車
S11,S12,S21,S22 回転軸
DESCRIPTION OF SYMBOLS 1 Base fixing | fixed part 2-5 Power source 6-9 Bevel gear 10 Output shaft 11,15 Differential bevel gear 12 Connection support shaft 13 Connection bevel gear 14,16,17,18 Support member 19,20 Driven bevel gear S11, S12 , S21, S22 Rotating shaft

Claims (4)

第一の回転軸(S11)と、
前記第一の回転軸まわりに回転する第一の駆動輪(6)と、
前記第一の駆動輪と対向するように配置され、前記第一の回転軸まわりに前記第一の駆動輪とは独立に回転する第二の駆動輪(7)と、
ベース固定部(1)に取り付けられ、前記第一の駆動輪を回転駆動する第一の駆動源(2)と、
前記ベース固定部に取り付けられ、前記第二の駆動輪を回転駆動する第二の駆動源(3)と、
前記第一の回転軸まわりに回転可能に支持された第一の支持部材(14)と、
前記第一の回転軸に直交する第二の回転軸(S12)まわりに回転可能に前記第一の支持部材に支持された第一の差動輪(11)と、
前記第一の差動輪に連結支持軸(12)によって固定され、前記第一の差動輪と共に回転する連結輪(13)と、
第三の回転軸(S21)まわりに回転する第三の駆動輪(8)と、
前記第三の駆動輪と対向するように配置され、前記第三の回転軸まわりに前記第三の駆動輪とは独立に回転する第四の駆動輪(9)と、
前記ベース固定部に取り付けられ、前記第三の駆動輪を回転駆動する第三の駆動源(4)と、
前記ベース固定部に取り付けられ、前記第四の駆動輪を駆動する第四の動力源(5)と、
前記第三の回転軸にまわりに回転可能に支持された第二の支持部材(16)と、
前記第三の回転軸に直交する第四の回転軸(S22)まわりに回転可能に前記第二の支持部材に支持された第二の差動輪(15)と、
前記第四の回転軸まわりに回転可能に前記第二の支持部材に支持され、前記第二の差動輪と固定され共に回転する第三の支持部材(17)と、
前記第二の回転軸まわりに回転可能に前記連結支持軸を支持し、前記第四の回転軸と直交する第五の回転軸(S31)まわりに回転可能に配置された支持軸を有し、前記第三の支持部材を回転可能に支持する第四の支持部材(18)と、
前記第五の回転軸まわりに回転可能に前記第四の支持部材に取り付けられた支持軸に支持された第一の従動輪(19)と、
前記第三の回転軸と前記第五の回転軸に直交する第六の回転軸(S32)まわりに回転可能に配置された出力軸(10)と、
前記出力軸の一端部に結合された第二の従動輪(20)と、
を有することを特徴とする干渉駆動関節機構。
A first rotating shaft (S11);
A first drive wheel (6) rotating about the first rotation axis;
A second drive wheel (7) disposed so as to face the first drive wheel and rotating independently of the first drive wheel about the first rotation axis;
A first drive source (2) attached to the base fixing portion (1) and configured to rotationally drive the first drive wheel;
A second drive source (3) attached to the base fixing portion and rotationally driving the second drive wheel;
A first support member (14) rotatably supported about the first rotation axis;
A first differential wheel (11) supported by the first support member so as to be rotatable about a second rotation axis (S12) orthogonal to the first rotation axis;
A connection ring (13) fixed to the first differential wheel by a connection support shaft (12) and rotating together with the first differential wheel;
A third drive wheel (8) rotating around a third rotation axis (S21);
A fourth drive wheel (9) disposed to face the third drive wheel and rotating independently of the third drive wheel around the third rotation axis;
A third drive source (4) attached to the base fixing portion and rotationally driving the third drive wheel;
A fourth power source (5) attached to the base fixing portion and driving the fourth drive wheel;
A second support member (16) rotatably supported about the third rotation axis;
A second differential wheel (15) supported by the second support member so as to be rotatable around a fourth rotation axis (S22) orthogonal to the third rotation axis;
A third support member (17) supported by the second support member so as to be rotatable about the fourth rotation axis, and fixed to the second differential wheel and rotating together;
A support shaft that supports the connection support shaft so as to be rotatable around the second rotation shaft, and is rotatably arranged around a fifth rotation shaft (S31) orthogonal to the fourth rotation shaft; A fourth support member (18) for rotatably supporting the third support member;
A first driven wheel (19) supported by a support shaft attached to the fourth support member so as to be rotatable about the fifth rotation shaft;
An output shaft (10) disposed to be rotatable around a sixth rotation axis (S32) orthogonal to the third rotation axis and the fifth rotation axis;
A second driven wheel (20) coupled to one end of the output shaft;
An interference drive joint mechanism characterized by comprising:
前記第一の駆動輪および前記第二の駆動輪と第一の差動輪とは、互いに噛合する歯車であり、
前記第三の駆動輪および前記第四の駆動輪と第二の差動輪とは、互いに噛合する歯車であることを特徴とする、
請求項1記載の干渉駆動関節機構。
The first drive wheel and the second drive wheel and the first differential wheel are gears that mesh with each other,
The third driving wheel and the fourth driving wheel and the second differential wheel are gears that mesh with each other,
The interference driving joint mechanism according to claim 1.
前記連結輪および前記第一の従動輪と前記第二の従動輪とは、互いに噛合する歯車であることを特徴とする、請求項1または2記載の干渉駆動関節機構。   The interference driving joint mechanism according to claim 1, wherein the coupling wheel, the first driven wheel, and the second driven wheel are gears that mesh with each other. 請求項1から3までの何れかに記載の干渉駆動関節機構を用い、前記第一から第四の動力源による入力から、前記出力軸に前記第一から第六の回転軸の交点を中心とした姿勢成分三自由度の回転量を与える冗長駆動性を有することを、特徴とする干渉駆動関節機構。   The interference driving joint mechanism according to any one of claims 1 to 3, wherein an input from the first to fourth power sources is used and the output shaft is centered on an intersection of the first to sixth rotating shafts. An interference driving joint mechanism characterized by having a redundant driving property that gives a rotation amount of the posture component having three degrees of freedom.
JP2008278007A 2008-10-29 2008-10-29 Interference drive joint mechanism Expired - Fee Related JP5158710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278007A JP5158710B2 (en) 2008-10-29 2008-10-29 Interference drive joint mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278007A JP5158710B2 (en) 2008-10-29 2008-10-29 Interference drive joint mechanism

Publications (2)

Publication Number Publication Date
JP2010105094A true JP2010105094A (en) 2010-05-13
JP5158710B2 JP5158710B2 (en) 2013-03-06

Family

ID=42295040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278007A Expired - Fee Related JP5158710B2 (en) 2008-10-29 2008-10-29 Interference drive joint mechanism

Country Status (1)

Country Link
JP (1) JP5158710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934525A (en) * 2010-09-15 2011-01-05 北京航空航天大学 Variable-rigidity flexible joint design of humanoid robot
CN102001094A (en) * 2010-10-21 2011-04-06 北京航空航天大学 Reliable joint control-driven component and control method thereof
CN106182071A (en) * 2016-08-05 2016-12-07 北京理工大学 Two degrees of freedom rotates flexible differential driving joint module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168894U (en) * 1984-10-09 1986-05-12
JPH01150042A (en) * 1987-12-03 1989-06-13 Toshiba Corp Manipulator joint mechanism
JP2001170883A (en) * 1999-12-15 2001-06-26 Hitachi Ltd Joint mechanism
JP2004283940A (en) * 2003-03-20 2004-10-14 Harada Denshi Kogyo Kk Coordinate driving mechanism, and joint mechanism for robot using it
JP2005127475A (en) * 2003-10-27 2005-05-19 Ntn Corp Link operating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168894U (en) * 1984-10-09 1986-05-12
JPH01150042A (en) * 1987-12-03 1989-06-13 Toshiba Corp Manipulator joint mechanism
JP2001170883A (en) * 1999-12-15 2001-06-26 Hitachi Ltd Joint mechanism
JP2004283940A (en) * 2003-03-20 2004-10-14 Harada Denshi Kogyo Kk Coordinate driving mechanism, and joint mechanism for robot using it
JP2005127475A (en) * 2003-10-27 2005-05-19 Ntn Corp Link operating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934525A (en) * 2010-09-15 2011-01-05 北京航空航天大学 Variable-rigidity flexible joint design of humanoid robot
CN102001094A (en) * 2010-10-21 2011-04-06 北京航空航天大学 Reliable joint control-driven component and control method thereof
CN106182071A (en) * 2016-08-05 2016-12-07 北京理工大学 Two degrees of freedom rotates flexible differential driving joint module

Also Published As

Publication number Publication date
JP5158710B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5403303B2 (en) Parallel mechanism
JP5560495B2 (en) Electric joint having two pivot joints and humanoid robot mounted with this joint
JP4659098B2 (en) Parallel link robot with posture change mechanism with 3 degrees of freedom
US8820189B2 (en) Articulated robot wrist
WO2017183505A1 (en) Work device and dual-arm work device
WO2015076201A1 (en) Link actuation device
KR101483081B1 (en) Parallel robot wrist using differential gear
WO2013065560A1 (en) Method for initially setting position of origin of link actuators, and link actuator
JP6963155B2 (en) Manipulators and robots
WO2013014720A1 (en) Parallel link robot
WO2015001643A1 (en) Robot, arm structure for robot, and actuating device
WO2013018229A1 (en) Composite drive device and robot
JP2016036863A (en) Parallel link robot and parallel link structure
US11938624B2 (en) Parallel kinematic robot
JP5158710B2 (en) Interference drive joint mechanism
JP6061022B2 (en) Compound drive and robot
KR101947697B1 (en) Parallel actuator with 4-dof
JP2012066323A (en) Operation mechanism
JP2020078839A (en) Parallel link robot
JP6765284B2 (en) Activator and double-arm actuator
JP5423910B1 (en) robot
KR101983563B1 (en) Parallel type integrated actuator
JP5394358B2 (en) Parallel link robot with posture change mechanism with 3 degrees of freedom
WO2013015165A1 (en) Constant-velocity universal joint and link actuator
US10272562B2 (en) Parallel kinematics robot with rotational degrees of freedom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees