JP2010104087A - 電気自動車の回生制御装置 - Google Patents

電気自動車の回生制御装置 Download PDF

Info

Publication number
JP2010104087A
JP2010104087A JP2008271089A JP2008271089A JP2010104087A JP 2010104087 A JP2010104087 A JP 2010104087A JP 2008271089 A JP2008271089 A JP 2008271089A JP 2008271089 A JP2008271089 A JP 2008271089A JP 2010104087 A JP2010104087 A JP 2010104087A
Authority
JP
Japan
Prior art keywords
brake
braking
amount
temperature
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008271089A
Other languages
English (en)
Other versions
JP5287134B2 (ja
Inventor
Takao Morita
隆夫 森田
Kinichiro Hoshijima
謹一郎 星島
Nobuaki Ota
延昭 太田
Ryoichi Goto
良一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2008271089A priority Critical patent/JP5287134B2/ja
Publication of JP2010104087A publication Critical patent/JP2010104087A/ja
Application granted granted Critical
Publication of JP5287134B2 publication Critical patent/JP5287134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

【課題】電気自動車の回生制御装置に関し、ブレーキトルクの制御における電気回生トルク成分と機械的な摩擦制動トルク成分とのバランスを取り、制動性能を向上させる。
【解決手段】車輪に回生駆動される電動機及び該車輪を制動する摩擦制動装置を有する電気自動車において、該電動機の回生トルク量を制御する回生制御装置であって、該摩擦制動装置のブレーキ温度Teを算出するブレーキ温度算出手段32と、所定走行距離当たりの制動回数を制動頻度fとして算出する制動頻度算出手段33と、ブレーキ温度算出手段32で算出されたブレーキ温度Te及び制動頻度算出手段33で算出された制動頻度fに基づいて、該電動機の回生トルク量Nを制御する回生量制御手段31とを備える。
【選択図】図2

Description

本発明は、車輪に回生駆動される電動機及び該車輪を制動する摩擦制動装置を有する電気自動車において、電動機の回生トルク量を制御する回生制御装置に関する。
モータを動力源として車輪を駆動する電気自動車では、制動時における駆動輪のトルクを利用してモータで発電し、電力を回生する制御が行われている。回生制御によってバッテリに吸収される回生制動トルクは、車輪に併設されたディスクブレーキ等の摩擦制動装置で消費される摩擦制動トルクと併せて、車両の制動トルクとして働くことになる。このように、車輪に回生制動トルクと摩擦制動トルクとを作用させて制動する際に、回生制動トルク量を制御することによって、制動時のエネルギ効率を向上させる技術が提案されている。
例えば特許文献1には、制動操作の初期の段階で制動トルクの全体に対する回生制動トルクの比率を高く設定する技術が開示されている。この技術では、ブレーキスイッチがOFF状態からON状態に切り換えられた時点で回生制動トルクの大きさを運転者の要求制動トルクに対応する大きさに設定し、回生制御を開始している。その後、さらにブレーキペダルが踏み込まれて第1設定操作力以上の圧力がマスターシリンダーの加圧室に与えられると、摩擦係合部材をブレーキ回転体に近づけ、摩擦制動トルクを作用させている。このような制御により、エネルギの回収効率を高めることが可能であるとされている。
特開2003−284202号公報
ところで、電気回生トルク成分と機械的な摩擦制動トルク成分とから構成されるブレーキトルクのうち、摩擦制動トルク成分は車両の走行状態に応じて変化する。例えば、摩擦係合部材とブレーキ回転体との接触摩擦によりそれらの表面温度が上昇すると、摩擦係数が変化するため、摩擦係合要素とブレーキ回転体との間の押圧力が同一であっても摩擦制動トルク成分は低下する。
そのため、車両の走行状態に依っては、ブレーキトルクが過剰あるいは不足した状態となる場合があり、良好な制動フィーリングを実現することが難しいという課題がある。特に、高速走行時からの繰り返し制動操作がなされた場合にはこのような傾向が顕著となり、運転者の要求に見合った制動力を付与することが困難となる。
また、ディスクブレーキ等の摩擦制動装置では、摩擦係合要素とブレーキ回転体とが物理的に接触することによって制動がなされるため、ブレーキ回転体から摩擦制動装置側への熱伝導量が大きい。この場合の熱伝導量は、ブレーキ回転体の表面温度だけでなく摩擦係合要素の押圧力や制動頻度に応じて累積されるため、正確な算出が困難であり、その結果、制動性能の低下を招きやすいという課題もある。
本発明はこのような課題に鑑みてなされたもので、ブレーキトルクの制御における電気回生トルク成分と機械的な摩擦制動トルク成分とのバランスを取りつつ、制動性能を向上させることができるようにした、電気自動車の回生制御装置を提供することを目的とする。
本発明の電気自動車の回生制御装置(請求項1)は、車輪に回生駆動される電動機及び該車輪を制動する摩擦制動装置を有する電気自動車において、該電動機の回生トルク量を制御する回生制御装置であって、該摩擦制動装置のブレーキ温度を算出するブレーキ温度算出手段と、所定走行距離当たりの制動回数を制動頻度として算出する制動頻度算出手段と、該ブレーキ温度算出手段で算出された該ブレーキ温度及び該制動頻度算出手段で算出された該制動頻度に基づいて、該電動機の回生トルク量を制御する回生量制御手段とを備えたことを特徴としている。
また、本発明の電気自動車の回生制御装置(請求項2)は、請求項1記載の構成に加え、該回生量制御手段が、該ブレーキ温度が予め設定された所定温度以上であり、かつ、該制動頻度が予め設定された所定頻度以上である場合に、該電動機の回生トルク量を増大させる回生トルク量増大制御を実施することを特徴としている。
また、本発明の電気自動車の回生制御装置(請求項3)は、請求項1又は2記載の構成に加え、該ブレーキ温度算出手段が、該ブレーキ温度の上昇量を算出する昇温量算出手段と、該ブレーキ温度の低下量を算出する降温量算出手段とを有することを特徴としている。
また、本発明の電気自動車の回生制御装置(請求項4)は、請求項3記載の構成に加え、車速を検出する車速検出手段と、車両重量を算出する車両重量算出手段とをさらに備え、該昇温量算出手段が、制動操作開始時及び制動操作完了時のそれぞれの該車速及び該車両重量に基づいて、該ブレーキ温度の上昇量を算出することを特徴としている。
また、本発明の電気自動車の回生制御装置(請求項5)は、請求項4記載の構成に加え、該回生量制御手段が、制動操作中において該車速が小さくなるほど該回生トルク量を減少させることを特徴としている。
また、本発明の電気自動車の回生制御装置(請求項6)は、請求項3〜5の何れか1項に記載の構成に加え、該摩擦制動装置における冷却の時定数を算出する冷却時定数算出手段と、制動操作完了時からの経過時間を計測する計時手段とをさらに備え、該降温量算出手段が、該時定数及び該経過時間に基づいて、該ブレーキ温度の低下量を算出することを特徴としている。
本発明の電気自動車の回生制御装置(請求項1)によれば、ブレーキ温度と制動頻度とを考慮して電気回生トルク成分が増分されるので摩擦制動装置の熱による摩擦制動トルク成分の低下及び摩擦制動装置への熱伝導による摩擦係合性能低下を抑制することができ、全体として所望のブレーキトルクを維持した良好な制動性能を確保することができる。
また、本発明の電気自動車の回生制御装置(請求項2)によれば、ブレーキ温度の昇温を抑えて摩擦制動装置をモータで保護することができ、ブレーキの熱的劣化やブレーキの摩耗を抑制することができる。
また、本発明の電気自動車の回生制御装置(請求項3)によれば、ブレーキ温度を昇温させる要素と降温させる要素とを分離してそれぞれを別途算出することにより、正確なブレーキ温度の推定が可能となる。
また、本発明の電気自動車の回生制御装置(請求項4)によれば、簡素な構成でブレーキ温度の上昇量を把握することができる。
また、本発明の電気自動車の回生制御装置(請求項5)によれば、車両が停止する寸前で回生トルク量が低減されるため、停止時のショックを軽減することができ、ブレーキフィーリングを向上させることができる。
また、本発明の電気自動車の回生制御装置(請求項6)によれば、簡素な構成でブレーキ温度の低下量を把握することができる。
以下、図面により、本発明の一実施形態について説明する。
図1〜図7は、本発明の一実施形態に係る電気自動車の回生制御装置を説明するためのものであり、図1は本回生制御装置が適用された車両の全体構成を示す模式図、図2は本回生制御装置の構成を示すブロック図、図3及び図4は本回生制御装置の制御手順を説明するためのフローチャートである。
また、図5は本回生制御装置での車両重量の推定に用いられるマップ、図6は本回生制御装置に設定されている冷却の時定数を示すマップ、図7は本回生制御装置で設定される回生特性を示すグラフである。
[1.全体構成]
本実施形態の回生制御装置は、電気自動車10に適用されている。この電気自動車10は、車輪11をモータ14(電動機)で駆動しており、各車輪11にはディスクブレーキ15(摩擦制動装置)が併設されている。本実施形態の電気自動車10は、図1に示すように、後輪の二輪がギヤボックス12を介してモータ14と機械的に接続されている。
また、本電気自動車10には、制動制御に係る電子制御ユニットとして、EVECU3(Electric Vehicle Electronic Control Unit),MCU4(Motor Control Unit)及びASCU5(Active Stability Control Unit)が設けられている。これらの各コントロールユニット3,4,5は、マイクロコンピュータで構成された電子制御装置であり、周知のマイクロプロセッサやROM,RAM等を集積したLSIデバイスとして提供されている。
EVECU3は、MCU4及びASCU5よりも上位のコントロールユニットである。すなわち、EVECU3はMCU4及びASCU5を統括管理する機能を有しており、各コントロールユニット4,5で実施される制御のタイミングや制御量の設定,指示を管轄としている。
MCU4は、EVECU3からの指示を受けて具体的な制御電圧,制御電流の値を演算し、モータ14へ制御信号を送信するものである。なおモータ14は、MCU4からの制御信号に応じて、電動機としても発電機としても機能する。
ASCU5は、EVECU3からの指示を受けてH/U16(Hydraulic Unit)を制御し、各輪11のディスクブレーキ15を個別に制御するものである。また、ASCU5は所謂ASC機能を備えており、各車輪11のグリップ力に応じた制動力を各車輪11へ付与して姿勢の安定性を向上させている。
例えば、車輪11の横滑りを検出すると、その車輪11に制動力を付与するとともに他の車輪11の駆動力を抑制して、姿勢の乱れを抑制するヨーモーメントを生成する制御(すなわち、ASC制御)を実施する。このようにASCU5は、車輪11の横滑りを検出する横滑り検出手段としての機能を備えている。なお、ASCU5で判断された各車輪11の横滑りの有無は、EVECU3へ入力されている。
H/U16は各車輪11のディスクブレーキ15へ導入されるブレーキ液圧を制御するアクチュエータである。このH/U16は油圧配管でブレーキマスターシリンダー8に接続されており、ブレーキペダル9の踏み込みによってブレーキブースター7を介して入力されたブレーキ液圧を受けて、各輪11のディスクブレーキ15を制御している。
ブレーキペダル9にはブレーキペダルSW6b(ブレーキペダルスイッチ)が付設されており、ブレーキペダル9の踏み込みの有無がEVECU3へ入力されている。本実施形態では、ブレーキペダル9の踏み込みの有無に対応してオン信号又はオフ信号の何れか一方がEVECU3へ入力されている。
また、ブレーキマスターシリンダー8とH/U16とを接続する油圧配管上には、ブレーキペダル9の踏み込みによって生じるマスターシリンダー8内の制動圧力Pを検出するブレーキ液圧センサ6aが介装されている。ここでの検出情報も、EVECU3へと入力されている。
また、EVECU3には、電気自動車10の車体に作用する減速度D(前後加速度)を検出する加速度センサ1及び外気温Taを検出する外気温センサ2が接続されている。EVECU3はこれらの入力情報に基づいてMCU4を制御し、制動時におけるモータ14の回生量を制御する。
なお、各車輪11には、その回転数を検出する速度センサ13が設けられている。ここで検出された各車輪11の回転数は、ASCU5へ入力されている。なお、ASCU5はこれらの回転数に基づいて累計走行距離S及び車速Vを算出しており、ここで算出された走行距離S及び車速VはEVECU3へ入力されている。このように、ASCU5は車速検出手段としての機能と、トリップメータとしての機能を兼ね備えている。
[2.EVECU]
本電気自動車10の制動時における回生制御に係る制御構成について詳述する。
図2に示すように、EVECU3の入力側には制御に係る情報源として、加速度センサ1,外気温センサ2,ASCU5,ブレーキ液圧センサ6a及びブレーキペダルSW6bが接続されている。一方、出力側にはMCU4が接続されている。EVECU3には、減速度D,外気温Ta,ブレーキペダル9の踏み込みの有無及び制動圧力P,車速V,各車輪11の横滑りの有無が入力されており、これらの情報に基づき、EVECU3はディスクブレーキ15のブレーキ温度Te(表面温度)を推定して、MCU4を介してモータ14の回生トルク量Nを制御する。EVECU3は、回生量制御手段31,ブレーキ温度算出手段32,制動頻度算出手段33を備えて構成される。
[2−1.ブレーキ温度算出手段]
ブレーキ温度算出手段32は、ブレーキ温度Teを推定算出するものであり、ブレーキ温度Teの上昇量Tbを算出する昇温量算出手段34と、ブレーキ温度Teの低下量Tcを算出する降温量算出手段35とを備えて構成される。
昇温量算出手段34は、制動操作開始時の車速Vs及び制動操作完了時の車速Veと電気自動車10の車両重量Wとに基づき、以下の式1を用いてブレーキ温度Teの上昇量Tbを算出する。
Figure 2010104087

ここでいう車両重量Wとは、いわゆる車体重量に乗員や積荷等の重量を加算した実総重量である。図5に示すように、EVECU3の内部には制動時の制動圧力P及び減速度Dと車体の慣性質量との対応関係を記述したマップが予め用意されており、このマップを用いて車両重量Wが求められるようになっている。図5中に示すように、車両重量Wが重いほど、同一の制動操作時に発生する減速度Dは小さくなる。なお、式1中のk1は試験等により予め設定された係数である。このように、昇温量算出手段34は、車両重量Wを算出する車両重量算出手段34aとしての機能を有している。
一方、降温量算出手段35は、ブレーキディスク15の冷却時定数bと制動操作が完了してからの経過時間tとに基づき、以下の式2を用いてブレーキ温度Teの低下量Tcを算出する。
Figure 2010104087

この式2中におけるブレーキ温度Teとは、制動操作が完了した時点での温度である。また、図6に示すように、EVECU3の内部には冷却時定数bと車速Vとの対応関係を記述したマップが予め用意されており、このマップを用いて冷却時定数bが求められるようになっている。なお、式2中のk2は試験等により予め設定された係数である。このように、降温量算出手段35は、冷却の時定数bを算出する冷却時定数算出手段35aとしての機能と、制動操作完了時からの経過時間を計測する計時手段35bとしての機能とを有している。
上記の演算により、まず制動操作が完了した時点で、制動操作によって昇温したブレーキ温度Teが算出され、その後の経過時間に応じてブレーキ温度Teが徐々に下降するものとして算出されるようになっている。ここで算出されたブレーキ温度Teは、回生量制御手段31へ入力されている。
[2−2.制動頻度算出手段]
制動頻度算出手段33は、単位走行距離当たりの制動回数をブレーキ頻度f(制動頻度)として算出するものである。ここでは、以下の式3を用いてブレーキ頻度f[回/km]を算出する。
Figure 2010104087

式3中におけるCBとは、ブレーキペダル9の踏み込み回数(例えば、電気自動車10のメインキースイッチをオンにした時点からの累積回数)を示すカウンタ(ペダルスイッチカウンタ)であり、ここではブレーキペダルSW6bからオン信号を受信した回数カウントすることによってこの踏み込み回数を把握している。また、Ss,S0はそれぞれ、制動操作開始時の走行距離及び走行開始時の走行距離である。つまり、制動頻度算出手段33は、制動操作開始時にASCU5から入力される累計走行距離SをSsとして記憶するようになっている。このように、制動頻度算出手段33では実際に走行した距離(S0が記憶された地点からの走行距離)に対する制動回数が算出されている。
なお、本電気自動車10のメインキースイッチをオンにしたときの累積走行距離SをSとして記憶し、メインキースイッチをオフにしたときにS0をリセットする構成とすれば、トリップ毎のブレーキ頻度fが算出されることになる。
[2−3.回生量制御手段]
回生量制御手段31は、ブレーキ温度算出手段32で算出されたブレーキ温度Teが高温であるほどモータ14での回生トルク量Nを増大させるべく、回生特性を変更するものである。まず、回生量制御手段31には、図7に示すように、予め三種類の回生特性が設定されている。
初期回生特性とは、内燃機関を動力とする車両におけるエンジンブレーキに相当する大きさの回生トルク量Nが設定される回生特性である。初期回生特性では、図7に示すように、走行時(制動時を含む)の車速Vが予め設定された所定速度V0以上であるときに回生トルク量Nの大きさがN0となる。また、車速Vが所定速度V0未満になると回生トルク量Nの大きさも徐々に減少し、車速V=0のときに回生トルク量Nも0になる設定となっている。なお、所定速度V0の値は例えば20[km/h]や30[km/h]といったように、任意に設定することができる。
第一回生特性及び第二回生特性は、初期回生特性よりも大きい回生トルク量Nが設定されたものである。車速Vが所定速度V0以上である場合の回生トルク量Nの大きさは、それぞれN2,N1(ただし、N0<N1<N2)となっている。何れの回生特性においても、車速Vが小さくなるほど回生トルク量Nが減少している。
回生量制御手段31は、以下の条件〔1〕〜〔3〕が全て成立した場合に、モータ14の回生特性として第一回生特性を選択する。また、条件〔1〕及び〔2〕がともに成立し、条件〔3〕が不成立の場合には、モータ14の回生特性として第二回生特性を選択する。
〔1〕制動操作完了時におけるブレーキ温度Teが所定温度T0[℃]以上である
〔2〕ASCU5で車輪11の横滑りが検出(ASC制御が実施)されていない
〔3〕ブレーキ頻度fが予め設定された所定頻度f0[回/km]以上である
図7に示すように、第一回生特性は第二回生特性よりも回生量が大きめに設定されており、換言すれば、モータ14における回生トルク量Nの増分が大きく設定されている。したがって、ブレーキ温度Teが高いほど、あるいはブレーキ頻度fが高いほど、回生トルク量Nの増分が大きく設定されることになる。なお、条件〔1〕に係る所定温度T0の具体例しては、300[℃]程度とすることが考えられる。
一方、条件〔1〕又は〔2〕の少なくとも何れか一方が不成立の場合には、モータ14の回生特性として初期回生特性を選択する。
さらに、回生量制御手段31は、ブレーキペダル9が踏み込まれると、選択された回生特性と車速Vとに基づいてモータ14の回生トルク量Nを制御する。本実施形態における回生トルク量Nの設定内容は以下の式4〜式9で与えられる。
Figure 2010104087
[3.フローチャート]
図3及び図4を用いて、本回生制御装置における制御手順を説明する。これらのフローは、電気自動車10のメインキースイッチをオンにする毎に繰り返し実施されている。なお、図3中のA,Bへ進むステップはそれぞれ図4中に示されたA,Bのステップへ進むことを意味しており、また、図4中のCへ進むステップは図3中のCのステップへ進むことを意味している。
まず、ステップA10では、モータ14の回生特性の初期値として初期回生特性が設定される。続くステップA20では、制動頻度算出手段33においてペダルスイッチカウンタCBが0にリセットされるとともに、走行距離S0が記憶される。これらのフローは、本発明に係る回生制御の初期化に係るステップである。なお、本実施形態では、ステップA10,20が全フローを通して一回のみ実施されるようになっているが、例えばメインキースイッチのオン操作毎に実施する構成としてもよいし、あるいは、任意のタイミングで再度これらのフローを実施する構成としてもよい。
続くステップA30では、回生制御に係る情報として外気温Ta,車速V,制動圧力P,減速度D,ブレーキペダルSW信号,ASC制御の作動信号がEVECU3へ入力される。また、ブレーキ温度予測値Teが算出されている場合には、その値が読み込まれる。
ステップA40では、ブレーキ温度予測値Teが外気温Ta以上であるか否かが判定される。ここでTe≧Taである場合(すなわち、ディスクブレーキ15の表面が熱を持っている場合)には、ステップA50へ進み、ブレーキ温度予測値Teがそのまま保持される。一方、Te<Taである場合(すなわち、ディスクブレーキ15の表面が冷えている場合)には、ステップA60へ進み、外気温Taがブレーキ温度予測値Teとして設定される。
続くステップA70では、ブレーキペダルSW6bからオン信号を受信しているか否か(すなわち、ブレーキペダル9が踏み込まれているか否か)が判定される。ブレーキペダル9が踏み込まれている(制動操作がなされている)場合にはステップA80へ進む。一方、踏み込まれていない(制動操作がなされていない)場合には、図4のBへ進む。
ステップA80〜150は主に制動操作中の制御内容である。まずステップA80では、その時点での制動圧力P及び減速度Dが記憶される。これらの情報は、車両重量算出手段34aにおける車両重量Wの算出に用いられるものである。また、ステップA90では、その時点での車速Vが制動操作開始時の車速Vsとして記憶される。車速Vsは、昇温量算出部34におけるブレーキ温度Teの上昇量Tbの算出に用いられるものである。さらに、ステップA100では、その時点での累計走行距離Sが制動操作開始時の走行距離Sとして記憶される。走行距離Sは制動頻度算出手段33におけるブレーキ頻度fの演算に用いられるものである。
続くステップA110では、その時点で設定されている回生特性及び車速Vに基づき、モータ14の回生量が設定され、回生制御がなされる。なお、本実施形態では、制動操作が完了した後に、次回の制動操作時に採用される回生特性が設定されるようになっているため、第一回生特性及び第二回生特性に基づく回生制御がなされるのは、二回目以降の制動操作時である。
ステップA120では、車速Vが0以下であるか否かが判定される。ここでは、制動操作による車両の停止を判定している。ここでV≦0である場合にはステップA130へ進み、制動操作完了時の車速VeとしてVe=0を記憶し、図4のAへと進む。一方、V>0である場合(すなわち、車両が停止していない場合)にはステップA140へと進む。
ステップA140では、ブレーキペダルSW6bからオフ信号を受信しているか否かが判定される。ブレーキペダル9が踏み込まれている(制動操作がなされている)場合にはステップA110へ進み、回生制御が継続される。一方、ブレーキペダル9が踏み込まれていない場合には制動操作が完了したことになるため、ステップA150へ進み、その時点での車速Vを制動操作完了時の車速Veとして記憶し、図4のAへと進む。
図4に示すフローは、主に制動操作がなされていない状態での制御内容である。ステップB10〜B50は制動操作によるブレーキ温度Teの上昇量Tbを算出するステップであり、ステップB60〜B120は回生特性の設定に係るステップであり、ステップB130〜B160は放熱によるブレーキ温度Teの低下量Tcを算出するステップである。
ステップB10では、計時手段35bにおいてタイマtが0にリセットされ、計測が開始される。タイマtは制動操作完了時からの経過時間を示すものである。また、制動頻度算出手段33においてペダルスイッチカウンタCBにCB+1が代入されてブレーキペダル9の踏み込み回数がカウントされる。
ステップB30では、ステップA80で記憶した制動時の制動圧力P及び減速度Dに基づき、車両重量算出手段34aにおいて図5に示すマップから車両重量Wが推定される。また、ステップB40では、昇温量算出手段34において式1に基づきブレーキ温度Teの上昇量Tbが算出される。そして続くステップB50では、ブレーキ温度TeにTe+Tbが代入されて昇温後のブレーキ温度Teが算出される。ブレーキ温度Teは、車両重量Wが大きいほど、制動操作開始時の車速Vsが高速であるほど、あるいは制動操作完了時の車速Veが低速であるほど、高温となる。
続くステップB60では、条件〔1〕に係るブレーキ温度Teが所定温度T0以上であるか否かが判定される。ここでTe≧T0である場合には、ブレーキ温度Teが高温であると見なされてステップB70へ進み、一方、Te<T0である場合にはブレーキ温度Teがそれほど高温ではないと見なされてステップB120へ進み、モータ14の回生特性として、式4及び式5で定義された初期回生特性が設定される。
ステップB70では、条件〔2〕に係る車輪11の横滑りがASCU5で検出されているか否かが判定される。横滑りが検出されている場合には、無闇に制動力を増大させないために、ステップB120で初期回生特性が設定される。一方、横滑りが検出されていない場合には、回生量を増大させるべくステップB80へ進む。
ステップB80では、制動頻度算出手段33において式3によりブレーキ頻度fが算出される。そして続くステップB90では、回生量制御手段31において条件〔3〕に係るブレーキ頻度fが所定頻度f0以上であるか否かが判定される。ここで、ブレーキ頻度f≧f0である場合にはステップB100へ進み、回生特性が式8及び式9で定義された第一回生特性に設定される。この場合、本実施形態では回生トルク量Nの増分が最も大きく設定されることになる。一方、ブレーキ頻度f<f0である場合には、ステップB110へ進み、回生特性が式6及び式7で定義された第二回生特性に設定される。
ステップB100〜B120の何れかのステップで回生設定がなされると、続いてブレーキ温度Teの低下量Tcを推定算出するステップ130以降へと進む。まずステップB130では、ステップB10でカウントを開始したタイマtが読み込まれ、続くステップB140では、冷却時定数算出手段35aにおいてその時点の車速Vに応じて図6に示すようなマップからディスクブレーキ15の冷却時定数bが算出される。
また、ステップB150では降温量算出手段35において式2に基づきブレーキ温度Teの低下量Tcが算出される。そして続くステップB160では、ブレーキ温度TeにTe−Tcが代入されて降温後のブレーキ温度Teが算出される。その後、ステップA30へ進み、繰り返し制御が実施される。
その後、制動操作がなされなければ、ステップA70からステップB60へ進んで回生特性の設定及びブレーキ温度Teの低下量Tcの算出が繰り返されることになる。例えば、ブレーキ温度Teが所定温度T0未満まで低下すれば、回生特性が初期回生特性に設定され直される。制動操作がなされるまでは実際の回生制御は実施されないが、回生特性の設定は随時変更されることになる。
[4.作用,効果]
このように、本回生制御装置によれば、ブレーキ温度Teが所定温度T0以上まで高温になると回生トルク量Nが増大するように回生特性が変更されるため、ディスクブレーキ15に付与されるブレーキトルクに関して、熱による摩擦制動トルク成分の低下を電気回生トルク成分の増分でカバーすることができ、全体としてのブレーキトルクを確保することができる。これにより、制動距離の増大を抑制することができる。
また、本回生制御装置では、ブレーキ温度Teが所定温度T0以上である場合にブレーキ頻度fが高いほどモータ14による回生量が増大するように回生特性が設定されるため、ディスクブレーキ15におけるブレーキ回転体からの熱伝導が抑制され、ブレーキフルードの昇温による劣化や沸騰が生じにくくなる。したがって、制動力の低下を防止することができ、ディスクブレーキ15の制動性能を確保することができる。
なお、本回生制御装置の制御によれば、ディスクブレーキ15がモータ14によって保護されることになり、ディスクブレーキ15の摩耗を抑制することができる。
また、車輪11に横滑りが生じている状態、すなわち、ASC制御が実施されているような車体挙動が不安定な状況下での回生トルク量Tを減少させて初期状態に戻すことで、回生トルク量Tを確保しつつ車体挙動を安定化させることができる。
さらに、本回生制御装置では、上記の式4〜式9に定義されたように、車両が停止する寸前の車速域では各回生特性における回生トルク量Nを車速に対応させて徐々に低減させている。したがって、車両停止時のショックを低減させることができ、回生制御に係るブレーキフィーリングを向上させることができる。
また、本回生制御装置では、ブレーキ温度Teを把握するための構成として、ブレーキ温度Teの推定値を演算する昇温量検出手段34及び降温量算出手段35を備えているため、ディスクブレーキ15の表面温度を直接計測するような構成と比較して構成が簡素であり、コストを低減させることができる。また、ブレーキ温度Teを昇温させる要素と降温させる要素とを分離してそれぞれ別途演算することにより、シンプルな演算モデルを適用することができる。これにより、演算構成を容易に簡素化することができ、正確にブレーキ温度Teを算出することができる。
このように、本発明によれば、ブレーキトルクの制御における電気回生トルク成分と機械的な摩擦制動トルク成分との良好なバランスを実現することができる。
[5.その他]
以上、本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上述の実施形態ではブレーキ温度Teに係る条件〔1〕が第一回生特性又は第二回生特性の選択条件とはなっていないが、ブレーキ温度Teに応じた大きさの回生トルク量Nが得られるように制御を変更してもよい。この場合、ブレーキ温度Teが高温であるほど回生トルク量Nが増大するように回生特性を設定すれば、熱による摩擦制動トルク成分の低下をより正確に補償することが可能となる。
なお、上述の実施形態では、図7に示すように三段階の回生特性が予め設定されているが、より多段階の回生特性を設定しておけば、ブレーキ頻度fやブレーキ温度Teに応じてより細かく回生特性を設定することが可能となり、ディスクブレーキ15の熱的劣化を効果的に防止することができる。
また、上述の実施形態では、車両重量算出手段34aにおける車両重量Wの算出に際し、制動時の制動圧力P及び減速度Dを用いて車体の慣性質量を推定しているが、制動圧力Pの代わりにブレーキペダル9の踏み込みのストロークやペダル踏力を用いることも可能である。
また、上述の実施形態では、MCU4で算出された車速を制動時の車速VとしてEVECU3での制御に用いているが、これの代わりに図示しない車速センサで検出された車速を用いてもよく、あるいは減速度Dの積分値を用いてもよい。
また、加速度センサ1の代わりにブレーキペダル9のストロークを検出するストロークセンサやブレーキマスターシリンダー8の液圧の大きさを検出する圧力センサ,ブレーキ踏力を検出するひずみゲージ等を用いて、減速度Dに相当するパラメータを検出又は算出する構成としてもよい。あるいは、車速Vの微分値を用いてもよい。
また、モータ14の回生特性に係る条件に関しては、上記の条件〔1〕〜〔3〕のみに限定されるものではない。これらの条件の何れかを変更又は省略してもよいし、あるいは、車両のヨーレイトや操舵角といった車両の安定性を評価するための条件を適用することも考えられる。すなわち、各車輪11の横滑りだけでなく、車体のヨー挙動やロール挙動が不安定な状態下では、安定した状態下よりも回生トルクの増加量を抑制する構成としてもよい。例えば、ABSやTCLの作動時には回生トルク量Nを増大させない(あるいは、回生トルク量Nの増分をやや小さめに設定する)構成としてもよい。
なお、上述の実施形態では、条件〔1〕及び〔2〕がともに成立する場合にモータ14での回生トルク量Nを増大させているが、何れか一方が成立する場合に回生トルク量Nを増大させる構成とすることも可能である。また、例えばブレーキ温度Teに応じて条件〔2〕に係るブレーキ頻度fの閾値(所定頻度f0)を変更する構成や、ブレーキ頻度fに応じて条件〔1〕に係る閾値(所定温度T0)を変更する構成としてもよい。
また、上述の実施形態では、ブレーキペダル9の踏み込み回数CB及び走行距離(Ss−S0)を用いてブレーキ頻度fを算出しているが、制動圧力Pを考慮してブレーキ頻度fを算出する構成とすることも考えられる。つまり、制動圧力Pの相違による熱伝導量の増減量を推定することで、より正確な制御が期待できるものと考えられる。
なお、上述の実施形態における回生トルク量N0,N1,N2,所定車速V0,所定温度T0等といった具体的な設定値は任意である。また、本発明に係る制御は、トランスミッションのシフト位置に依らずに実施することが可能である。例えば、シフト位置がDレンジであってもNレンジであっても、モータ14での回生トルク量を増大させることができる。
また、上述の実施形態では、本発明の回生制御装置を電気自動車10に適用したものを例示したが、ハイブリッド電気自動車(HEV)や燃料電池車(FCV)等、モータ14(モータ・ジェネレータ)で車輪11を駆動する車両であって、かつ、機械的なブレーキ装置を備えた車両であれば好適に適用することができる。
本発明の一実施形態に係る電気自動車の回生制御装置が適用された車両の全体構成を示す模式図である。 本回生制御装置の構成を示すブロック図である。 本回生制御装置の制御手順を説明するためのフローチャートである。 本回生制御装置の制御手順を説明するためのフローチャートである。 本回生制御装置での車両重量の推定に用いられるマップである。 本回生制御装置に設定されている冷却の時定数を示すマップである。 本回生制御装置で設定される回生特性を示すグラフである。
符号の説明
1 加速度センサ
2 外気温センサ
3 EVECU
4 MCU
5 ASCU(車速検出手段)
6a ブレーキ液圧センサ
6b ブレーキペダルSW
7 ブレーキブースター
8 ブレーキマスターシリンダー
9 ブレーキペダル
10 電気自動車
11 車輪
12 ギヤボックス
13 速度センサ
14 モータ(電動機)
15 ディスクブレーキ(摩擦制動装置)
16 H/U
31 回生量制御手段
32 ブレーキ温度算出手段
33 制動頻度算出手段
34 昇温量算出手段
34a 車両重量算出手段
35 降温量算出手段
35a 冷却時定数算出手段
35b 計時手段

Claims (6)

  1. 車輪に回生駆動される電動機及び該車輪を制動する摩擦制動装置を有する電気自動車において、該電動機の回生トルク量を制御する回生制御装置であって、
    該摩擦制動装置のブレーキ温度を算出するブレーキ温度算出手段と、
    所定走行距離当たりの制動回数を制動頻度として算出する制動頻度算出手段と、
    該ブレーキ温度算出手段で算出された該ブレーキ温度及び該制動頻度算出手段で算出された該制動頻度に基づいて、該電動機の回生トルク量を制御する回生量制御手段とを備えた
    ことを特徴とする、電気自動車の回生制御装置。
  2. 該回生量制御手段が、該ブレーキ温度が予め設定された所定温度以上であり、かつ、該制動頻度が予め設定された所定頻度以上である場合に、該電動機の回生トルク量を増大させる回生トルク量増大制御を実施する
    ことを特徴とする、請求項1記載の電気自動車の回生制御装置。
  3. 該ブレーキ温度算出手段が、該ブレーキ温度の上昇量を算出する昇温量算出手段と、該ブレーキ温度の低下量を算出する降温量算出手段とを有する
    ことを特徴とする、請求項1又は2記載の電気自動車の回生制御装置。
  4. 車速を検出する車速検出手段と、
    車両重量を算出する車両重量算出手段とをさらに備え、
    該昇温量算出手段が、制動操作開始時及び制動操作完了時のそれぞれの該車速及び該車両重量に基づいて、該ブレーキ温度の上昇量を算出する
    ことを特徴とする、請求項3記載の電気自動車の回生制御装置。
  5. 該回生量制御手段が、制動操作中において該車速が小さくなるほど該回生トルク量を減少させる
    ことを特徴とする、請求項4記載の電気自動車の回生制御装置。
  6. 該摩擦制動装置における冷却の時定数を算出する冷却時定数算出手段と、
    制動操作完了時からの経過時間を計測する計時手段とをさらに備え、
    該降温量算出手段が、該時定数及び該経過時間に基づいて、該ブレーキ温度の低下量を算出する
    ことを特徴とする、請求項3〜5の何れか1項に記載の電気自動車の回生制御装置。
JP2008271089A 2008-10-21 2008-10-21 電気自動車の回生制御装置 Active JP5287134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271089A JP5287134B2 (ja) 2008-10-21 2008-10-21 電気自動車の回生制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271089A JP5287134B2 (ja) 2008-10-21 2008-10-21 電気自動車の回生制御装置

Publications (2)

Publication Number Publication Date
JP2010104087A true JP2010104087A (ja) 2010-05-06
JP5287134B2 JP5287134B2 (ja) 2013-09-11

Family

ID=42294202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271089A Active JP5287134B2 (ja) 2008-10-21 2008-10-21 電気自動車の回生制御装置

Country Status (1)

Country Link
JP (1) JP5287134B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187477A1 (ja) * 2012-06-13 2013-12-19 株式会社 アドヴィックス 車両の走行支援装置
JP2015044470A (ja) * 2013-08-28 2015-03-12 アイシン精機株式会社 ハイブリッド車両用変速制御装置
KR20210116246A (ko) * 2020-03-11 2021-09-27 콘티넨탈 테베스 아게 운트 코. 오하게 차량의 종방향 동역학을 제어하기 위한 방법
CN113978258A (zh) * 2021-11-11 2022-01-28 摩拜(北京)信息技术有限公司 一种电动车辆的制动方法、装置及电动车辆
US11590848B2 (en) * 2017-04-07 2023-02-28 Brembo S.P.A. Method and system for controlling the regenerative braking torque of a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191904A (ja) * 1992-01-13 1993-07-30 Honda Motor Co Ltd 電動車両のモータ制御装置
JPH10164708A (ja) * 1996-11-29 1998-06-19 Mitsubishi Motors Corp 電気自動車の回生制動制御装置
JP2005067508A (ja) * 2003-08-27 2005-03-17 Toyota Motor Corp ブレーキパッドの磨耗警報システム
JP2007182180A (ja) * 2006-01-10 2007-07-19 Toyota Motor Corp ブレーキパッド温度が個別に把握される車輌

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191904A (ja) * 1992-01-13 1993-07-30 Honda Motor Co Ltd 電動車両のモータ制御装置
JPH10164708A (ja) * 1996-11-29 1998-06-19 Mitsubishi Motors Corp 電気自動車の回生制動制御装置
JP2005067508A (ja) * 2003-08-27 2005-03-17 Toyota Motor Corp ブレーキパッドの磨耗警報システム
JP2007182180A (ja) * 2006-01-10 2007-07-19 Toyota Motor Corp ブレーキパッド温度が個別に把握される車輌

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187477A1 (ja) * 2012-06-13 2013-12-19 株式会社 アドヴィックス 車両の走行支援装置
US9298187B2 (en) 2012-06-13 2016-03-29 Advics Co., Ltd. Vehicle travel assist apparatus
JP2015044470A (ja) * 2013-08-28 2015-03-12 アイシン精機株式会社 ハイブリッド車両用変速制御装置
US11590848B2 (en) * 2017-04-07 2023-02-28 Brembo S.P.A. Method and system for controlling the regenerative braking torque of a vehicle
KR20210116246A (ko) * 2020-03-11 2021-09-27 콘티넨탈 테베스 아게 운트 코. 오하게 차량의 종방향 동역학을 제어하기 위한 방법
KR102659776B1 (ko) 2020-03-11 2024-04-24 콘티넨탈 오토모티브 테크놀로지스 게엠베하 차량의 종방향 동역학을 제어하기 위한 방법
CN113978258A (zh) * 2021-11-11 2022-01-28 摩拜(北京)信息技术有限公司 一种电动车辆的制动方法、装置及电动车辆
CN113978258B (zh) * 2021-11-11 2024-02-02 摩拜(北京)信息技术有限公司 一种电动车辆的制动方法、装置及电动车辆

Also Published As

Publication number Publication date
JP5287134B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
US10967840B2 (en) System and method of controlling braking of electric vehicle
CN109591622B (zh) 一种纯电动汽车驻车和起步控制方法及其控制***
US7206682B2 (en) Uphill start-up assistance device for motor vehicle
CN105683009B (zh) 制动力控制***
JP4413931B2 (ja) 自動車及び自動車の制御装置
US8504238B2 (en) Vehicle stability and steerability control via electronic torque distribution
EP2172378B1 (en) A method and device for regenerative braking in a vehicle
US8504273B2 (en) Coefficient of friction based limitation of the torque of a vehicle control loop
US20100250083A1 (en) Vehicle Dynamics Control Device
JP5287134B2 (ja) 電気自動車の回生制御装置
US8649929B2 (en) Motor vehicle with all-wheel drive
JP6526667B2 (ja) ハイブリッド車両の動的減速制御
JP5309136B2 (ja) 車両用の支援装置
EP2543566B1 (en) Vehicle control device
WO2013062124A1 (ja) ハイブリッド車両の制御装置
KR20120054033A (ko) 휠 제동 슬립의 폐쇄 루프 제어를 수행하는 방법 및 전기 구동부를 갖는 차량을 위한 휠 제동 슬립 제어 시스템
EP1837263A2 (en) Vehicle control unit and vehicle
US10166970B2 (en) Control of torque transmitted to the driving wheel of a hybrid motor vehicle
CA2588092A1 (en) Regeneration and brake management system
US9604624B2 (en) Method for controlling four wheel driving of vehicle
US8494702B2 (en) Method and driveline stability control system for a vehicle
CN112477862B (zh) 一种实现车辆上坡起步辅助控制的方法及装置
JP5120297B2 (ja) 電気自動車の回生制動制御装置
JP5766240B2 (ja) 車両用制動装置
JP5018732B2 (ja) 電気自動車の回生制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5287134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350