JP2010100477A - Method for producing phosgene - Google Patents

Method for producing phosgene Download PDF

Info

Publication number
JP2010100477A
JP2010100477A JP2008272996A JP2008272996A JP2010100477A JP 2010100477 A JP2010100477 A JP 2010100477A JP 2008272996 A JP2008272996 A JP 2008272996A JP 2008272996 A JP2008272996 A JP 2008272996A JP 2010100477 A JP2010100477 A JP 2010100477A
Authority
JP
Japan
Prior art keywords
phosgene
prefilter
nickel
pressure loss
solid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008272996A
Other languages
Japanese (ja)
Other versions
JP5222089B2 (en
Inventor
Takuya Mizuno
琢也 水野
Shinichiro Kaneyuki
伸一郎 金行
Masahiro Kuragaki
雅弘 倉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2008272996A priority Critical patent/JP5222089B2/en
Publication of JP2010100477A publication Critical patent/JP2010100477A/en
Application granted granted Critical
Publication of JP5222089B2 publication Critical patent/JP5222089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress, when phosgene is produced, the increase of pressure drop and the deterioration of a solid catalyst due to the deposition of a nickel-containing solid compound on a solid catalyst layer and the clogging of the solid catalyst layer with the compound, so that the renewal frequency of the solid catalyst is reduced, and to provide a method for producing phosgene in a cost-wise advantageous manner with excellent production efficiency. <P>SOLUTION: In the method for producing phosgene by reacting nickel compound-containing carbon monoxide with chlorine using a solid catalyst, a prefilter 5 having a function to catch a nickel-containing solid compound is disposed between a place where carbon monoxide 1 and chlorine 2 join together and a catalyst layer in a phosgene reaction vessel 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はホスゲンの製造方法に関する。更に詳しくは、ホスゲンを製造する際、ニッケルを含有する固体の化合物が、固体触媒上へ堆積することや間隙に詰まることによる固体触媒層の圧力損失上昇、および固体触媒の劣化を抑制し、コスト的に有利で、かつ生産効率に優れたホスゲンの製造方法に関する。   The present invention relates to a method for producing phosgene. More specifically, when phosgene is produced, the solid compound containing nickel is deposited on the solid catalyst or clogged in the gap, thereby suppressing an increase in pressure loss of the solid catalyst layer and deterioration of the solid catalyst. The present invention relates to a process for producing phosgene that is particularly advantageous and has excellent production efficiency.

固体触媒として活性炭を用いて一酸化炭素(CO)と塩素(Cl)とを反応させてホスゲンを製造する方法に関して、種々の製造方法が提案されている。また、工業的にCOを製造する際、コークスを部分酸化する方法が一般に知られている。CO中には様々な不純物が含まれており、幾つかのCO製造(精製)方法が提案されている。 Various production methods have been proposed for producing phosgene by reacting carbon monoxide (CO) and chlorine (Cl 2 ) using activated carbon as a solid catalyst. In addition, when CO is industrially produced, a method of partially oxidizing coke is generally known. Various impurities are contained in CO, and several CO production (purification) methods have been proposed.

例えば、特許文献1〜3にはホスゲン製造用にCOの製造(精製)方法が提案されている。しかしながら、何れの方法においても、CO中のニッケル(Ni)化合物を除去することができず、該COを用いてホスゲンを製造する場合、ニッケルを含有する固体の化合物が、固体触媒層上への堆積や固体触媒層の間隙に詰まることによる圧力損失上昇および固体触媒の劣化が促進され、固体触媒の更新頻度が多くなるため、コスト的に不利で、かつ生産効率が劣るという問題がある。   For example, Patent Documents 1 to 3 propose a method for producing (purifying) CO for producing phosgene. However, in any method, the nickel (Ni) compound in CO cannot be removed, and when phosgene is produced using CO, the solid compound containing nickel is applied to the solid catalyst layer. Increased pressure loss and deterioration of the solid catalyst due to deposition and clogging in the gap between the solid catalyst layers are promoted, and the renewal frequency of the solid catalyst is increased, which is disadvantageous in terms of cost and inferior in production efficiency.

また、特許文献4によれば、固体触媒層の圧力損失上昇の抑制方法として原料流体に物理的な状態変化(温度、圧力、流量)を与える方法が示されているが、ニッケル化合物を含有するCOを用いてホスゲンを製造する方法において、物理的な状態変化を与える方法では圧力損失抑制は困難である。   Further, according to Patent Document 4, a method for giving a physical state change (temperature, pressure, flow rate) to a raw material fluid is shown as a method for suppressing an increase in pressure loss of a solid catalyst layer, but it contains a nickel compound. In a method of producing phosgene using CO, it is difficult to suppress pressure loss by a method of giving a physical change in state.

特開2000−203824号公報JP 2000-203824 A 特開2000−248059号公報JP 2000-248059 A 特開2007−176722号公報JP 2007-176722 A 特開2006−232753号公報JP 2006-232753 A

本発明の目的は、ホスゲンを製造する際、ニッケルを含有する固体の化合物が固体触媒層上への堆積や、固体触媒層の間隙に詰まることによる圧力損失上昇および固体触媒の劣化の促進を抑制し、固体触媒の更新頻度を少なくして、コスト的に有利で、かつ生産効率に優れたホスゲンの製造方法を提供することである。   The object of the present invention is to suppress the increase in pressure loss and the deterioration of the solid catalyst due to the solid compound containing nickel being deposited on the solid catalyst layer or clogging the solid catalyst layer when producing phosgene. The object of the present invention is to provide a method for producing phosgene that reduces the frequency of renewal of the solid catalyst, is advantageous in terms of cost, and has excellent production efficiency.

本発明者らは、上記目的を達成せんと鋭意研究した結果、圧力損失の上昇は、CO中に含まれるニッケル化合物が、Clと反応して固体の化合物を発生し、この固体の化合物が圧力損失の上昇に大きく寄与していたことが分かり、かかる固体の化合物をCOとClとの合流箇所と反応槽の触媒層との間に1個以上のプレフィルターを設置し、ニッケルを含有する固体の化合物を捕集することで、上記目的を達成することを見出し、本発明に到達した。 As a result of intensive research that the present inventors have achieved the above object, the increase in pressure loss is caused by the fact that the nickel compound contained in CO reacts with Cl 2 to generate a solid compound. It was found that it contributed greatly to the increase in pressure loss, and one or more pre-filters were installed between the confluence of CO and Cl 2 and the catalyst layer of the reaction tank to contain such solid compounds and contained nickel. The present inventors have found that the above object can be achieved by collecting a solid compound to achieve the present invention.

すなわち、本発明によれば、
1.固体触媒を用いて、ニッケル化合物を含有する一酸化炭素と塩素とを反応させてホスゲンを製造する方法において、一酸化炭素と塩素の合流箇所とホスゲン反応槽の触媒層との間にニッケルを含有する固体の化合物を捕集する機能を有したプレフィルターを設置することを特徴とするホスゲンの製造方法、および
2.プレフィルターは、フィルターおよび/または充填物を有するプレフィルターである前項1記載のホスゲンの製造方法、が提供される。
That is, according to the present invention,
1. In a method for producing phosgene by reacting carbon monoxide containing nickel compound with chlorine using a solid catalyst, nickel is contained between the junction of carbon monoxide and chlorine and the catalyst layer of the phosgene reactor. 1. A method for producing phosgene, characterized in that a prefilter having a function of collecting a solid compound to be collected is installed, and The method for producing phosgene according to item 1 above, wherein the prefilter is a prefilter having a filter and / or a filler.

本発明で使用するCOは、コークスと酸素とを反応させて得られたCOが好ましく使用される。また、得られたCOは苛性ソーダ水溶液と接触させた後、冷却させ、次に活性アルミナ充填槽を通気させて、硫黄化合物を1ppm以下にすることが好ましい。   As the CO used in the present invention, CO obtained by reacting coke and oxygen is preferably used. The obtained CO is preferably brought into contact with an aqueous caustic soda solution and then cooled, and then the activated alumina filling tank is vented to reduce the sulfur compound to 1 ppm or less.

コークスと酸素とを反応させて得られるCO中にはニッケル化合物が含まれる。CO中に含まれるニッケル化合物はニッケルカルボニル(Ni(CO))等であり、本発明で使用されるCO中には通常0.01〜20ppm程度存在する。該CO中に含まれるニッケルカルボニル等のニッケル化合物はClと反応し塩化ニッケル等のニッケルを含有する固体の化合物となる。なお、CO中に含まれるニッケル化合物の濃度は、COガス100Lを、ガス洗浄瓶に入れたヨウ素を溶解させたエタノール、希塩酸および希硝酸(3種類の吸収液を使用)に吸収させて、ICP発光分析法より濃度を測定される。また、圧力損失上昇の原因となるニッケルを含有する固体の化合物の分析はXMA分析より同定される。 Nickel compounds are contained in CO obtained by reacting coke and oxygen. The nickel compound contained in CO is nickel carbonyl (Ni (CO) 4 ) or the like, and is usually present in an amount of about 0.01 to 20 ppm in CO used in the present invention. The nickel compound such as nickel carbonyl contained in the CO reacts with Cl 2 and becomes a solid compound containing nickel such as nickel chloride. The concentration of the nickel compound contained in CO is determined by absorbing 100 L of CO gas into ethanol, diluted hydrochloric acid and diluted nitric acid (using three types of absorbing liquid) dissolved in iodine in a gas cleaning bottle. The concentration is measured by luminescence analysis. The analysis of the solid compound containing nickel that causes an increase in pressure loss is identified by XMA analysis.

本発明に用いる固体触媒として活性炭やゼオライトがあり、活性炭が好ましく使用される。活性炭触媒は市販されているものでよい。通常活性炭触媒は、その比表面積が200〜1500m/gで、平均粒径が0.5〜10mm程度のものが使用される。特に触媒の平均粒径が0.5mm〜5mmと小さい場合、触媒層間隙にニッケルを含有する固体の化合物が詰まり易く、圧力損失の上昇が大きくなり易い。活性炭の具体例としては、例えば日本エンバイロケミカルズ社製白鷺C2x6/8、等が挙げられる。 Examples of the solid catalyst used in the present invention include activated carbon and zeolite, and activated carbon is preferably used. The activated carbon catalyst may be a commercially available one. Usually, an activated carbon catalyst having a specific surface area of 200 to 1500 m 2 / g and an average particle diameter of about 0.5 to 10 mm is used. In particular, when the average particle diameter of the catalyst is as small as 0.5 mm to 5 mm, a solid compound containing nickel is likely to be clogged in the gap between the catalyst layers, and the increase in pressure loss tends to be large. Specific examples of the activated carbon include, for example, Hakuho C 2x 6/8 manufactured by Nippon Enviro Chemicals.

本発明で使用するプレフィルターはニッケルを含有する固体の化合物をろ過等により捕集する機能を有していれば、構造や形状は特に制限されない。
ニッケルを含有する固体の化合物を捕集する方法として、例えば超音波集塵機、サイクロン、電気集塵機を用いる方法、バグフィルター方式、カートリッジフィルター方式、(充填物を有する)充填材方式、コアレッサー方式によるろ過方式等の方法があり、本発明のホスゲンの製造方法においては、これらの機能を有する装置(プレフィルター)が設置される。なかでも、プレフィルターとして、バグフィルター方式、カートリッジフィルター方式、充填材方式等によるろ過装置が好ましく採用される。
The prefilter used in the present invention is not particularly limited in its structure and shape as long as it has a function of collecting a solid compound containing nickel by filtration or the like.
Methods for collecting nickel-containing solid compounds include, for example, ultrasonic dust collectors, cyclones, methods using an electric dust collector, bag filter methods, cartridge filter methods, filler materials (with fillers), and coalescer methods. There are methods such as methods, and in the phosgene production method of the present invention, an apparatus (prefilter) having these functions is installed. Among these, as a pre-filter, a filtration device using a bag filter system, a cartridge filter system, a filler material system, or the like is preferably employed.

プレフィルターとしてフィルターろ過装置を単独で用いる場合は、フィルターのろ過面積は特に制限はないが、フィルターの目詰まりによる更新頻度を考慮して、ろ過面積を決定することが好ましい。   When a filter filtration device is used alone as the prefilter, the filtration area of the filter is not particularly limited, but it is preferable to determine the filtration area in consideration of the renewal frequency due to clogging of the filter.

フィルターでろ過する方法としては特に制約は無く公知の方法を使用できる。例えばバグフィルター方式(粉体技術ポケットブック 編者林恒美 参照)やカートリッジフィルター方式(化学装置・機器の実務知識 編者化学装置研究会 参照)が好ましく採用される。材質は金属製、プラスチック製、セラミック製、ガラス製、不織布製、布製、紙製等が挙げられるが、洗浄再利用および耐薬品性から金属製、プラスチック製、セラミック製、ガラス製、不織布製、布製が好ましく採用される。カートリッジフィルター方式の形状はポーラス、スクリーンメッシュ型、繊維成形型、ワイント゛型、不織布プリーツ型が例示される。   There is no restriction | limiting in particular as a method of filtering with a filter, A well-known method can be used. For example, the bug filter system (see the powder technology pocket book, editor Tsunemi Hayashi) and the cartridge filter system (see chemical equipment / working knowledge editor, chemical equipment research group) are preferably used. Materials include metal, plastic, ceramic, glass, non-woven fabric, cloth, paper, etc., but metal, plastic, ceramic, glass, non-woven fabric, cleaning, reuse and chemical resistance, Fabric is preferably employed. Examples of the shape of the cartridge filter system include a porous type, a screen mesh type, a fiber molding type, a wind type, and a non-woven pleat type.

フィルターの公称ろ過精度は0.0005〜2.0mmが好ましく、0.001〜1.5mmがより好ましい。公称ろ過精度が0.0005mm未満の場合は単位面積当たりの圧力損失が大きくなるので、圧力損失を小さくするにはろ過面積を大きくする必要があり、ろ過面積を大きくすると設備が極大化するので好ましくない。2.0mmを超える場合は捕集率が十分でなく、圧力損失の上昇を抑制する効果が向上しないので好ましくない。またろ過精度の異なる2種以上から構成されたフィルターを用いることもできる。   The nominal filtration accuracy of the filter is preferably 0.0005 to 2.0 mm, more preferably 0.001 to 1.5 mm. When the nominal filtration accuracy is less than 0.0005 mm, the pressure loss per unit area increases, so it is necessary to increase the filtration area to reduce the pressure loss, and increasing the filtration area is preferable because the equipment will be maximized. Absent. If it exceeds 2.0 mm, the collection rate is not sufficient, and the effect of suppressing an increase in pressure loss is not improved, which is not preferable. Moreover, the filter comprised from 2 or more types from which filtration accuracy differs can also be used.

プレフィルターとして充填物を有するろ過装置を用いる場合は、プレフィルターのろ過面積は活性炭触媒層の断面積の1倍以上が好ましく、1〜500倍がより好ましく、1〜200倍がさらに好ましく、1〜100倍が特に好ましい。かかる範囲であると、圧力損失の上昇抑制効果が大きく、小さな設備で対応可能であり好ましい。   When using a filtration device having a packing as the prefilter, the filtration area of the prefilter is preferably 1 or more times the cross-sectional area of the activated carbon catalyst layer, more preferably 1 to 500 times, even more preferably 1 to 200 times. ˜100 times is particularly preferable. Within such a range, the effect of suppressing an increase in pressure loss is great, and it is possible to cope with small equipment, which is preferable.

充填物の形状については特に制限はないが、例えば球状、円筒状、円柱状、繊維状の形状が好ましい。球状充填材としてはセラミックボールや金属球、円筒状充填材としてはラッシヒリング、円柱状充填材としてはセラミック製ペレット、繊維状充填材としてはスチールウールなどが挙げられ、これらを併用して用いることもできる。またプレフィルターのフィルターの材質については金属製、プラスチック製、布製、紙製の材質が挙げられ、これら併用して用いることもできる。また充填材とフィルターとを併用することもできる。   Although there is no restriction | limiting in particular about the shape of a filler, For example, a spherical shape, a cylindrical shape, a column shape, and a fibrous shape are preferable. Examples of spherical fillers include ceramic balls and metal spheres, cylindrical fillers include rasch rings, cylindrical fillers include ceramic pellets, and fibrous fillers include steel wool. These may be used in combination. it can. Examples of the filter material of the pre-filter include metal, plastic, cloth, and paper materials, which can be used in combination. Moreover, a filler and a filter can also be used together.

充填物は単一形状でもよいが、形状の異なる充填物を複数使用してもよい。また、単一形状でも粒径・大きさの異なるものを混合して用いても、複層にして充填しても良い。複層にする場合は、金網やフィルターを使って層を分けるなどの方法も採用できる。   The filling may have a single shape, but a plurality of fillings having different shapes may be used. Further, a single shape or a mixture of different particle sizes / sizes may be used, or multiple layers may be filled. In the case of multiple layers, a method such as separating layers using a wire mesh or a filter can also be adopted.

一種の充填物を充填する場合、または複数の充填物を混合する場合、充填物の厚みは5mm以上が好ましく、10〜1000mmがより好ましく、50〜1000mmがさらに好ましく、100〜500mmが特に好ましい。充填厚みが5mm未満の場合はニッケルを含有する固体の化合物の捕集効率が激減し、圧力損失の上昇を抑制する効果が殆ど無い。1000mmを超えると設備が極大化し、コスト高となる割には圧力損失の上昇を抑制する効果が向上しない。また、充填物を複層にする場合は、全ての層の厚みを5mm以上積層させることが好ましい。   When filling one kind of filler or mixing a plurality of fillers, the thickness of the filler is preferably 5 mm or more, more preferably 10 to 1000 mm, further preferably 50 to 1000 mm, and particularly preferably 100 to 500 mm. When the filling thickness is less than 5 mm, the collection efficiency of the solid compound containing nickel is drastically reduced, and there is almost no effect of suppressing an increase in pressure loss. If it exceeds 1000 mm, the facility becomes maximal, and the effect of suppressing the increase in pressure loss is not improved for an increase in cost. Moreover, when making a filler into a multilayer, it is preferable to laminate | stack the thickness of all the layers 5 mm or more.

プレフィルターの充填物はCO、Clおよびホスゲンに実質的に不活性な材料で、熱安定性に優れたものを使用することが好ましい。球状、円筒状、円柱状の充填物の大きさは径および長さがそれぞれ0.3〜4mm程度のものが好ましい。0.3mm未満の場合は圧力損失が大きくなるため好ましくない。4mmを超えるとニッケルを含有する固体の化合物を捕集することが出来ないので本発明の目的が達成できない。本発明に用いる充填材として陶磁器製ラシヒリング、セラミックボール、ガラスビーズや金属球等が挙げられる。さらに、ニッケルを含有する固体の化合物を捕集した充填物は水洗浄することで再利用が可能である。 The prefilter packing is preferably a material that is substantially inert to CO, Cl 2 and phosgene and has excellent thermal stability. The size of the spherical, cylindrical, and columnar packing is preferably about 0.3 to 4 mm in diameter and length. If it is less than 0.3 mm, the pressure loss increases, which is not preferable. If it exceeds 4 mm, a solid compound containing nickel cannot be collected, and therefore the object of the present invention cannot be achieved. Examples of the filler used in the present invention include ceramic Raschig rings, ceramic balls, glass beads, and metal balls. Furthermore, the packing containing the solid compound containing nickel can be reused by washing with water.

また、充填物を充填する際は支持器を用いることが好ましい。かかる支持器はフィルターを兼ねることもできる。フィルターの目開きは充填物が通り抜けないサイズであれば問題ないが好ましくは上記フィルターの公称ろ過精度の範囲内とすることが好ましい。
また、支持器の材質は特に制限はないが耐食性の素材が好ましく、例えばSUS316L製が使用される。
Moreover, it is preferable to use a supporter when filling the filler. Such a support can also serve as a filter. The opening of the filter is not a problem as long as the packing does not pass through, but is preferably within the range of the nominal filtration accuracy of the filter.
The material of the support is not particularly limited, but a corrosion-resistant material is preferable. For example, SUS316L is used.

プレフィルターは、COとClとの合流箇所とホスゲン反応槽の触媒層との間に設置される。COとClとの混合ガスは全てプレフィルターを通過してからホスゲン反応槽の触媒層に流れる構造とする。プレフィルターの設置場所はCOとClの合流箇所から活性炭を充填した反応槽の触媒層との間であればどこでもよい。通常、COとClの合流箇所から反応槽の間にあり、フィルターの数は単一でも複数でもよい。 The pre-filter is installed between the confluence of CO and Cl 2 and the catalyst layer of the phosgene reaction tank. The mixed gas of CO and Cl 2 passes through the prefilter and then flows into the catalyst layer of the phosgene reactor. The place for installing the prefilter may be anywhere between the point where CO and Cl 2 are joined and the catalyst layer of the reaction tank filled with activated carbon. Usually, it exists between the reaction point from the confluence of CO and Cl 2 , and the number of filters may be single or plural.

例えば、プレフィルターの配置は、図1のように反応槽の中にプレフィルターを設置する方法は設備が簡単でありコストおよび運転の面で有利である。ただし、プレフィルターの大きさに限りがあり、運転中に更新することは安全上困難である。   For example, as for the arrangement of the prefilter, the method of installing the prefilter in the reaction vessel as shown in FIG. 1 is advantageous in terms of cost and operation because the equipment is simple. However, the size of the pre-filter is limited, and it is difficult to update it during operation.

図2のようにCOとClの合流箇所と反応槽との間に単一もしくは複数個を並列に設置すると、触媒断面積に比べてプレフィルターろ過面積を大きくすることが容易で、COとClとの混合ガスの空塔速度を小さくすることが可能。そのため、圧力損失上昇を抑制する効果が大きい。また、運転しながらプレフィルターの更新が可能であり、好ましい。なお、反応槽の中にプレフィルターを設置してもしなくても良い。 As shown in FIG. 2, when a single or a plurality of CO and Cl 2 are combined in parallel between the reaction point and the reaction vessel, it is easy to increase the prefilter filtration area compared to the catalyst cross-sectional area. They are possible to reduce the superficial velocity of a gas mixture of Cl 2. For this reason, the effect of suppressing an increase in pressure loss is great. Further, the prefilter can be updated while driving, which is preferable. Note that a prefilter may or may not be installed in the reaction vessel.

図3のように、プレフィルターをCOとClの合流箇所と反応槽との間に複数個を直列に設置することもできる。この場合、プレフィルターに充填する充填物の形状や粒径を変えることで、粒径の異なるニッケルを含有する固体の化合物を分散して捕集することが可能であり、好ましい。なお、反応槽の中にプレフィルターを設置してもしなくても良い。 As shown in FIG. 3, a plurality of prefilters can be installed in series between the confluence of CO and Cl 2 and the reaction vessel. In this case, it is possible to disperse and collect solid compounds containing nickel having different particle diameters by changing the shape and particle diameter of the filler to be filled in the prefilter, which is preferable. Note that a prefilter may or may not be installed in the reaction vessel.

本発明によれば、ホスゲンを製造する際、圧力損失の上昇を抑え、ホスゲンの生産量の低減を回避することができ、その奏する工業的効果は格別なものである。   According to the present invention, when producing phosgene, it is possible to suppress an increase in pressure loss and to avoid a reduction in the production amount of phosgene, and the industrial effect produced by the phosgene is exceptional.

以下に本発明の実施例を示して更に説明するが、本発明はその要旨を超えない限りこれらの実施例に限定されるものではない。なお、一酸化炭素(CO)の露点、CO中の硫黄含有量およびニッケル化合物含有量は、下記の方法により測定した。   Examples of the present invention will be further described below, but the present invention is not limited to these examples unless it exceeds the gist. The dew point of carbon monoxide (CO), the sulfur content in CO, and the nickel compound content were measured by the following methods.

(1)COの露点測定;露点計(桜測器(株)製WTY180)を用いて測定した。
(2)CO中の硫黄含有量;ガスクロマトグラフ装置(日立製作所製)にCOを注入し測定した。
(3)CO中のニッケル化合物含有量;ニッケルカルボニル分析は以下の方法で実施した。まず、COガス100Lを、ガス洗浄瓶に入れたヨウ素−エタノールに通した後、乾固させた。これを純水に溶解させてJIS K−0083に記載の方法に従って測定した。その他のCO中のニッケル化合物はJIS K−0083に記載の方法で試料採取および分析を行った。
(1) CO dew point measurement: Measured using a dew point meter (WTY180 manufactured by Sakura Sokki Co., Ltd.).
(2) Sulfur content in CO: CO was injected into a gas chromatograph (manufactured by Hitachi, Ltd.) and measured.
(3) Nickel compound content in CO; nickel carbonyl analysis was carried out by the following method. First, 100 L of CO gas was passed through iodine-ethanol in a gas washing bottle and then dried. This was dissolved in pure water and measured according to the method described in JIS K-0083. Other nickel compounds in CO were sampled and analyzed by the method described in JIS K-0083.

(一酸化炭素(CO)の製造)
コークスと酸素を反応させて得られたCOを苛性ソーダ水溶液と向流接触させた後、熱交換器を用いて5℃に冷却させ、次に活性アルミナ充填槽を通気させた。得られたCOの純度は98.5%、COの露点は−45℃以下、CO中の硫黄濃度は0.2ppm以下、CO中のニッケル化合物(Ni(CO))濃度は0.15ppmであった。
(Production of carbon monoxide (CO))
The CO obtained by reacting coke with oxygen was brought into countercurrent contact with an aqueous caustic soda solution, then cooled to 5 ° C. using a heat exchanger, and then the activated alumina filling tank was vented. Purity 98.5% of the resulting CO, dew point of CO is -45 ° C. or less, the sulfur concentration in the CO 0.2ppm or less, nickel compounds in the CO (Ni (CO) 4) concentration was 0.15ppm there were.

[実施例1]
図1に示す装置を用いた。ホスゲン反応槽として反応熱を除去する機能を有した多管式反応槽のシェル側に35℃の冷却水を通水し、チューブ側に活性炭(比表面積1300m/g、平均径2.7±0.3mm、平均長さ5.5±0.5mmの日本エンバイロケミカルズ社製白鷺C2X6/8)を充填した。この多管式反応槽の上部に設置したプレフィルターに充填材支持器として目開き1.0mmのSUS316L製金網を使用し、その支持器の上に平均粒径1.6mmφのセラミックボールを厚さ100mmとなるよう充填した。上記の方法により得られたCO1モルに対しCl0.97モルの混合ガスを、プレフィルター内の空塔速度は0.18m/sec、触媒層に入る時の空塔速度は0.5m/secとなるように連続的に通気し、ホスゲンを100t生産した。なお、空塔速度は充填物の存在を考えず、COとClの混合ガス流量を断面積で割った値とした。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 1]
The apparatus shown in FIG. 1 was used. As a phosgene reaction tank, cooling water of 35 ° C. is passed through the shell side of a multitubular reaction tank having a function of removing reaction heat, and activated carbon (specific surface area 1300 m 2 / g, average diameter 2.7 ± on the tube side). Shirakaba C 2X 6/8) manufactured by Nippon Environment Chemicals Co., Ltd. having an average length of 0.3 mm and an average length of 5.5 ± 0.5 mm was filled. A SUS316L metal mesh with a mesh opening of 1.0 mm is used as a filler support for the prefilter installed at the top of this multitubular reactor, and ceramic balls with an average particle diameter of 1.6 mmφ are thickened on the support. Filled to 100 mm. A mixed gas of 0.92 mol of Cl 2 with respect to 1 mol of CO obtained by the above method, the superficial velocity in the prefilter was 0.18 m / sec, and the superficial velocity when entering the catalyst layer was 0.5 m / sec. The aeration was continuously performed so that the time became sec, and 100 t of phosgene was produced. The superficial velocity was determined by dividing the flow rate of the mixed gas of CO and Cl 2 by the cross-sectional area without considering the presence of the packing. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to when phosgene production was started.

[実施例2]
図2に示す装置を用いた。なお、プレフィルター14は3基中2基並列で使用した。ただし、ホスゲン反応槽内のプレフィルター15は使用しなかった。2基のプレフィルターの充填物は平均粒径1.6mmφのセラミックボールを厚さ100mmとなるよう充填した。上記の方法により得られたCO1モルに対しCl0.97モルの混合ガスを、並列に設置したプレフィルター内の空塔速度は0.09m/sec、触媒層に入る時の空塔速度は0.5m/secとなるように連続的に通気し、ホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.2kPa上昇した。
[Example 2]
The apparatus shown in FIG. 2 was used. Two prefilters 14 were used in parallel among the three. However, the prefilter 15 in the phosgene reaction tank was not used. The two prefilters were filled with ceramic balls having an average particle diameter of 1.6 mmφ to a thickness of 100 mm. The superficial velocity in the prefilter in which 0.92 mol of Cl 2 was mixed in parallel with 1 mol of CO obtained by the above method was 0.09 m / sec, and the superficial velocity when entering the catalyst layer was Aeration was continuously carried out so as to be 0.5 m / sec to produce 100 t of phosgene. As a result, the pressure loss of gas from the inlet of the mixer to the outlet of the phosgene reaction vessel increased by 0.2 kPa compared to when phosgene production was started.

[実施例3]
図2に示す装置を用い、プレフィルター14は3基中3基並列で使用した。ただし、ホスゲン反応槽内のプレフィルター15は使用しなかった。3基のプレフィルターの充填物は平均粒径1.6mmφのセラミックボールを厚さ100mmとなるよう充填した。上記の方法により得られたCO1モルに対しCl0.97モルの混合ガスを、並列に設置したプレフィルター内の空塔速度は0.06m/sec、触媒層に入る時の空塔速度は0.5m/secとなるように連続的に通気し、ホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.1kPa上昇した。
[Example 3]
Using the apparatus shown in FIG. 2, three prefilters 14 were used in parallel. However, the prefilter 15 in the phosgene reaction tank was not used. The three prefilters were filled with ceramic balls having an average particle diameter of 1.6 mmφ to a thickness of 100 mm. The CO1 mol Cl 2 0.97 moles mixed gas obtained by the above method, the superficial velocity in the pre-filter installed in parallel 0.06 m / sec, superficial velocity when entering the catalyst layer Aeration was continuously carried out so as to be 0.5 m / sec to produce 100 t of phosgene. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.1 kPa compared to when phosgene production was started.

[実施例4]
図3に示す装置を用い、プレフィルター24、25を直列で使用した。ただし、ホスゲン反応槽内のプレフィルター26は使用しなかった。2基のプレフィルターの充填物は平均粒径1.6mmφのセラミックボールを厚さ100mmとなるよう充填した。上記の方法により得られたCO1モルに対しCl0.97モルの混合ガスを、直列に設置したプレフィルター内の空塔速度は0.18m/sec、触媒層に入る時の空塔速度は0.5m/secとなるように連続的に通気し、ホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 4]
Using the apparatus shown in FIG. 3, prefilters 24 and 25 were used in series. However, the prefilter 26 in the phosgene reaction tank was not used. The two prefilters were filled with ceramic balls having an average particle diameter of 1.6 mmφ to a thickness of 100 mm. The superficial velocity in a prefilter in which 0.92 mol of Cl 2 is mixed in series with respect to 1 mol of CO obtained by the above method is 0.18 m / sec, and the superficial velocity when entering the catalyst layer is Aeration was continuously carried out so as to be 0.5 m / sec to produce 100 t of phosgene. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to when phosgene production was started.

[実施例5]
充填材支持器として目開き0.2mmのSUS製金網を使用し、その支持器の上にプレフィルター充填物として平均粒径0.3mmφのセラミックボールを充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 5]
The same method as in Example 1 except that a SUS metal mesh having a mesh opening of 0.2 mm was used as a filler support, and ceramic balls having an average particle diameter of 0.3 mmφ were filled as a prefilter on the support. 100 t of phosgene was produced. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to when phosgene production was started.

[実施例6]
充填材支持器として目開き1.0mmのSUS製金網を使用し、その支持器の上にプレフィルター充填物として平均粒径3.0mmφのセラミックボールを充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて1.3kPa上昇した。
[Example 6]
The same method as in Example 1 was used except that a SUS metal mesh with an opening of 1.0 mm was used as a filler support, and ceramic balls having an average particle diameter of 3.0 mmφ were filled as a prefilter on the support. 100 t of phosgene was produced. As a result, the pressure loss of gas from the mixer inlet to the phosgene reactor outlet increased by 1.3 kPa compared to when phosgene production was started.

[実施例7]
プレフィルター充填物として直径2mm×長さ2mmのラッシヒリングを充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて1.3kPa上昇した。
[Example 7]
100 t of phosgene was produced in the same manner as in Example 1 except that a rasch ring having a diameter of 2 mm and a length of 2 mm was filled as a prefilter filling. As a result, the pressure loss of gas from the mixer inlet to the phosgene reactor outlet increased by 1.3 kPa compared to when phosgene production was started.

[実施例8]
プレフィルター充填物として直径2mm×長さ2mmのセラミック製円柱(ペレット)を充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて1.2kPa上昇した。
[Example 8]
100 t of phosgene was produced in the same manner as in Example 1 except that a ceramic cylinder (pellet) having a diameter of 2 mm and a length of 2 mm was filled as a prefilter filling. As a result, the pressure loss of gas from the mixer inlet to the phosgene reactor outlet increased by 1.2 kPa compared to when phosgene production was started.

[実施例9]
プレフィルター充填物としてスチールウール(繊維状)を充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.5kPa上昇した。
[Example 9]
100 t of phosgene was produced in the same manner as in Example 1 except that steel wool (fibrous) was filled as a prefilter filling. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.5 kPa compared to when phosgene production was started.

[実施例10]
プレフィルター充填物として平均粒径1.6mmφガラスビーズを充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 10]
100 t of phosgene was produced in the same manner as in Example 1 except that glass beads having an average particle diameter of 1.6 mmφ were filled as the prefilter packing. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to when phosgene production was started.

[実施例11]
プレフィルター充填物として平均粒径1.6mmφSUS316製の球を充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 11]
100 t of phosgene was produced in the same manner as in Example 1 except that spheres having an average particle diameter of 1.6 mmφSUS316 were filled as the prefilter packing. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to when phosgene production was started.

[実施例12]
図2に示す装置を用いた。なお、プレフィルター14は3基中1基を使用した。ただし、ホスゲン反応槽内のプレフィルター15は使用しなかった。3基中1基のプレフィルターは充填材の代わりに公称ろ過精度15μmのSUS316L製のカートリッジフィルター(日本ポール株式会社製 製品NoP24106M150)10本(ろ過面積2800cm/本×10本=28000cm)で構成した装置を使用し、カートリッジフィルター通過時のCOとCl混合ガスの空塔速度は0.0004m/sec、触媒層に入る時の空塔速度は0.5m/secとなるように連続的に通気し、ホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.1kPa上昇した。
[Example 12]
The apparatus shown in FIG. 2 was used. In addition, the prefilter 14 used 1 group in 3 groups. However, the prefilter 15 in the phosgene reaction tank was not used. In prefilter 1 group in 3 groups SUS316L-made cartridge filter of nominal filtration accuracy 15μm in place of the filler (Nihon Pall Ltd. products NoP24106M150) 10 present (filtration area 2800 cm 2 / present × 10 present = 28000cm 2) Using the configured apparatus, the superficial velocity of the CO and Cl 2 mixed gas when passing through the cartridge filter is 0.0004 m / sec, and the superficial velocity when entering the catalyst layer is 0.5 m / sec continuously. And 100 t of phosgene was produced. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.1 kPa compared to when phosgene production was started.

[実施例13]
プレフィルター充填物の厚さが50mmとなるように充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.8kPa上昇した。
[Example 13]
100 t of phosgene was produced in the same manner as in Example 1 except that the prefilter packing was filled to a thickness of 50 mm. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.8 kPa compared to when phosgene production was started.

[実施例14]
プレフィルター充填物の厚さが400mmとなるように充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 14]
100 t of phosgene was produced in the same manner as in Example 1 except that the prefilter packing was filled to a thickness of 400 mm. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to when phosgene production was started.

[実施例15]
実施例1において、プレフィルター内の上部に平均粒径1.6mmφセラミックボールを充填物の厚さが50mmとなるように、下部に平均粒径0.6mmφセラミックボールを充填物の厚さが50mmとなるように充填した。なお、その中間における充填物の混合を防止する為、金網を設置した。それ以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.2kPa上昇した。
[Example 15]
In Example 1, an average particle diameter of 1.6 mmφ ceramic balls is filled in the upper part of the pre-filter so that the thickness of the filler is 50 mm, and an average particle diameter of 0.6 mmφ ceramic balls is filled in the lower part of the prefilter at a thickness of 50 mm. It filled so that it might become. In order to prevent mixing of the filler in the middle, a wire mesh was installed. Otherwise, 100 t of phosgene was produced in the same manner as in Example 1. As a result, the pressure loss of gas from the inlet of the mixer to the outlet of the phosgene reaction vessel increased by 0.2 kPa compared to when phosgene production was started.

[実施例16]
実施例1において、プレフィルター内に平均粒径1.6mmφセラミックボールと平均粒径0.6mmφセラミックボールとを体積比率1対1で混合し、充填物の厚さが100mmとなるように充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.3kPa上昇した。
[Example 16]
In Example 1, ceramic balls having an average particle diameter of 1.6 mmφ and an average particle diameter of 0.6 mmφ were mixed in the prefilter at a volume ratio of 1: 1, and filled so that the thickness of the packing became 100 mm. Except for this, 100 t of phosgene was produced in the same manner as in Example 1. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.3 kPa compared to when phosgene production was started.

[実施例17]
実施例1において、プレフィルター内に平均粒径1.6mmφセラミックボールと直径2mm×長さ2mmのラッシヒリングとを体積比率1対1で混合し、充填物の厚さが100mmとなるように充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて0.6kPa上昇した。
[Example 17]
In Example 1, the pre-filter was mixed with ceramic balls having an average particle diameter of 1.6 mmφ and a rasch ring having a diameter of 2 mm and a length of 2 mm in a volume ratio of 1: 1, and filled so that the thickness of the packing became 100 mm. Except for this, 100 t of phosgene was produced in the same manner as in Example 1. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 0.6 kPa compared to when phosgene production was started.

[比較例1]
プレフィルターを設置しない以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて1.5kPa上昇した。
[Comparative Example 1]
100 t of phosgene was produced in the same manner as in Example 1 except that no prefilter was installed. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 1.5 kPa compared to when phosgene production was started.

[参考例1]
充填材支持器として目開き1.0mmのSUS製金網を使用し、その支持器の上にプレフィルター充填物として平均粒径5mmφのセラミックボールを充填した以外は実施例1と同じ方法でホスゲンを100t生産した。その結果、混合器の入口からホスゲン反応槽出口までのガスの圧力損失は、ホスゲン生産開始時と比べて1.5kPa上昇した。
[Reference Example 1]
The phosgene was used in the same manner as in Example 1 except that a SUS metal mesh with an opening of 1.0 mm was used as a filler support, and ceramic balls having an average particle diameter of 5 mmφ were filled as a prefilter on the support. 100 tons were produced. As a result, the pressure loss of the gas from the mixer inlet to the phosgene reactor outlet increased by 1.5 kPa compared to when phosgene production was started.

[参考例2]
充填材支持器として目開き0.08mmのSUS製金網を使用し、その支持器の上にプレフィルター充填物として平均粒径0.1mmφのセラミックボールを充填した以外は実施例1と同じ方法で行った。プレフィルターの圧力損失が大きく、COとClを充分に通気することができず、ホスゲン製造を途中で中止した。
[Reference Example 2]
The same method as in Example 1 except that a SUS metal mesh having an opening of 0.08 mm was used as a filler support, and ceramic balls having an average particle diameter of 0.1 mmφ were filled as a prefilter on the support. went. The pressure loss of the prefilter was large, and CO and Cl 2 could not be sufficiently ventilated, and phosgene production was stopped midway.

Figure 2010100477
Figure 2010100477

本発明で使用される装置の一態様を示した図である。It is the figure which showed the one aspect | mode of the apparatus used by this invention. 本発明で使用される装置の一態様を示した図である。It is the figure which showed the one aspect | mode of the apparatus used by this invention. 本発明で使用される装置の一態様を示した図である。It is the figure which showed the one aspect | mode of the apparatus used by this invention.

符号の説明Explanation of symbols

1:一酸化炭素(CO)
2:塩素(Cl
3:圧力計
4:混合器
5:プレフィルター
6:チューブ(活性炭層)
7:ホスゲン反応槽
8:圧力計
9:ホスゲン
10:一酸化炭素(CO)
11:塩素(Cl
12:圧力計
13:混合器
14:プレフィルター
15:プレフィルター
16:ホスゲン反応槽
17:チューブ(活性炭層)
18:圧力計
19:ホスゲン
20:一酸化炭素(CO)
21:塩素(Cl
22:圧力計
23:混合器
24:プレフィルター
25:プレフィルター
26:プレフィルター
27:ホスゲン反応槽
28:チューブ(活性炭層)
29:圧力計
30:ホスゲン
1: Carbon monoxide (CO)
2: Chlorine (Cl 2 )
3: Pressure gauge 4: Mixer 5: Pre-filter 6: Tube (activated carbon layer)
7: Phosgene reactor 8: Pressure gauge 9: Phosgene 10: Carbon monoxide (CO)
11: Chlorine (Cl 2 )
12: Pressure gauge 13: Mixer 14: Prefilter 15: Prefilter 16: Phosgene reaction tank 17: Tube (activated carbon layer)
18: Pressure gauge 19: Phosgene 20: Carbon monoxide (CO)
21: Chlorine (Cl 2 )
22: Pressure gauge 23: Mixer 24: Prefilter 25: Prefilter 26: Prefilter 27: Phosgene reactor 28: Tube (activated carbon layer)
29: Pressure gauge 30: Phosgene

Claims (2)

固体触媒を用いて、ニッケル化合物を含有する一酸化炭素と塩素とを反応させてホスゲンを製造する方法において、一酸化炭素と塩素の合流箇所とホスゲン反応槽の触媒層との間にニッケルを含有する固体の化合物を捕集する機能を有したプレフィルターを設置することを特徴とするホスゲンの製造方法。   In a method for producing phosgene by reacting carbon monoxide containing nickel compound with chlorine using a solid catalyst, nickel is contained between the junction of carbon monoxide and chlorine and the catalyst layer of the phosgene reactor. A pre-filter having a function of collecting a solid compound to be collected is installed. プレフィルターは、フィルターおよび/または充填物を有するプレフィルターである請求項1記載のホスゲンの製造方法。   The method for producing phosgene according to claim 1, wherein the prefilter is a prefilter having a filter and / or a filler.
JP2008272996A 2008-10-23 2008-10-23 Method for producing phosgene Expired - Fee Related JP5222089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272996A JP5222089B2 (en) 2008-10-23 2008-10-23 Method for producing phosgene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272996A JP5222089B2 (en) 2008-10-23 2008-10-23 Method for producing phosgene

Publications (2)

Publication Number Publication Date
JP2010100477A true JP2010100477A (en) 2010-05-06
JP5222089B2 JP5222089B2 (en) 2013-06-26

Family

ID=42291473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272996A Expired - Fee Related JP5222089B2 (en) 2008-10-23 2008-10-23 Method for producing phosgene

Country Status (1)

Country Link
JP (1) JP5222089B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092713A (en) * 2010-12-13 2011-06-15 甘肃银光聚银化工有限公司 Method for continuously preparing phosgene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157206A (en) * 1994-12-01 1996-06-18 Idemitsu Petrochem Co Ltd Production of phosgene
JP2000211911A (en) * 1999-01-22 2000-08-02 Teijin Chem Ltd Production of phosgene
JP2007176722A (en) * 2005-12-27 2007-07-12 Mitsubishi Chemicals Corp Method for producing carbon monoxide and method for producing phosgene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157206A (en) * 1994-12-01 1996-06-18 Idemitsu Petrochem Co Ltd Production of phosgene
JP2000211911A (en) * 1999-01-22 2000-08-02 Teijin Chem Ltd Production of phosgene
JP2007176722A (en) * 2005-12-27 2007-07-12 Mitsubishi Chemicals Corp Method for producing carbon monoxide and method for producing phosgene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092713A (en) * 2010-12-13 2011-06-15 甘肃银光聚银化工有限公司 Method for continuously preparing phosgene

Also Published As

Publication number Publication date
JP5222089B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
CN205323397U (en) Gas purifier
EP2229372B1 (en) Wet scrubbing for removing particulate solids from oxygen supply line
JP2008168262A (en) Gas-liquid contact device
US6730215B2 (en) Apparatus for treating waste water
JP2009525257A (en) Separation of light gases from halogens
JP4489304B2 (en) Production of vinyl acetate in a catalytic reactor with filter and distribution bed
JP2008132482A (en) Method for separation of gas
JP5222089B2 (en) Method for producing phosgene
CN1498851A (en) Refining method of inert gas
EP1390293B1 (en) Process for the preparation of ammonia oxidation
CN101863803B (en) Purification method of byproduct hydrochloric acid
JP5084576B2 (en) Mist filter
US2226149A (en) Method for reacting gas mixtures by means of precious metal catalysts
EA005795B1 (en) Process for the production of liquid hydrocarbons
JP2006512198A (en) Intra-system filtration draft tube reactor system
JP2004142987A (en) Method for purifying ammonia
WO2011094938A1 (en) Dry dust removal method in organic chlorosilane production
CN102815670B (en) Dry recovery system and method of reduction tail gas produced in polysilicon production process
JP6766942B1 (en) Palladium recovery method
TWI330631B (en) Operation of a continuous heterogeneously catalyzed gas phase partial oxidation of at least one organic compound
JP2002037624A (en) Method for purifying ammonia
CN211513994U (en) Carbon dioxide acid gas purification system containing impurities
US20130118997A1 (en) Fluid purification media and cartridge
CN203170306U (en) Fluidized-bed-type membrane reactor for producing organic silicon monomer
CN107321171A (en) A kind of Phosphine gas purifier

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees