JP2010095762A - Electroplating method - Google Patents

Electroplating method Download PDF

Info

Publication number
JP2010095762A
JP2010095762A JP2008267707A JP2008267707A JP2010095762A JP 2010095762 A JP2010095762 A JP 2010095762A JP 2008267707 A JP2008267707 A JP 2008267707A JP 2008267707 A JP2008267707 A JP 2008267707A JP 2010095762 A JP2010095762 A JP 2010095762A
Authority
JP
Japan
Prior art keywords
plated
plating
opening
electroplating
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008267707A
Other languages
Japanese (ja)
Inventor
Norifumi Yamada
教文 山田
Masaharu Edo
雅晴 江戸
Yoshikiyo Usui
吉清 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008267707A priority Critical patent/JP2010095762A/en
Publication of JP2010095762A publication Critical patent/JP2010095762A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroplating method which can form a plated film having uniform film thickness, when plating a plurality of articles to be plated using the same holder. <P>SOLUTION: A holder for plating fixes/holds a plurality of the articles to be plated on/in the same plane, and has through holes at positions corresponding to the respective articles to be plated, in a shielding plate that is arranged between an anode and the article to be plated which is a cathode. The article to be plated has a polygonal shape. The through hole of the shielding plate has a shape of which each corner of the polygonal shape is chamfered so as to form a curve. The electroplating method includes: determining a relationship between normal positions of one article to be plated and the through hole corresponding to the article from the relationships between the plated film thickness at a predetermined position in a test electroplating process and a distance from the predetermined position to the center of the article to be plated; and electroplating the article to be plated at the determined normal position. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気めっき方法に関する。より詳しくは、めっき膜厚が均一な電着ができるめっき治具と遮蔽板を使用する電気めっき方法に関する。   The present invention relates to an electroplating method. More specifically, the present invention relates to an electroplating method using a plating jig capable of performing electrodeposition with a uniform plating film thickness and a shielding plate.

従来より、電気めっきにおいては、エッジ効果などにより被めっき物の周辺部に電流が集中し、該周辺部におけるめっきの成長速度が被めっき物中央部より速くなり、該周辺部におけるめっきのめっき膜厚が厚くなる問題が知られている。このような問題に対し、遮蔽板により電流集中を緩和する技術が開示されている。   Conventionally, in electroplating, the current concentrates on the periphery of the object to be plated due to the edge effect, etc., and the growth rate of plating in the peripheral part is faster than the central part of the object to be plated. The problem of increasing thickness is known. In order to solve such a problem, a technique for reducing current concentration by a shielding plate is disclosed.

例えば、特許文献1では、陽極と被めっき基板の間に多数の孔部を有する遮蔽板を設けて電気めっきを行っている。この多数の孔部を有する遮蔽板として、周囲部と中央部で孔径を変化させた物を用いることによりめっき膜厚を均一にする技術が開示されている。   For example, in Patent Document 1, electroplating is performed by providing a shielding plate having a large number of holes between an anode and a substrate to be plated. As this shielding plate having a large number of holes, a technique is disclosed in which the plating film thickness is made uniform by using a material whose hole diameter is changed between the peripheral part and the central part.

即ち、被めっき基板の中央部に対向する領域に形成される孔部の面積を被めっき基板の周辺部に対向する領域に形成される孔部の面積よりも大きくすることで、被めっき基板の中央部における電流密度と被めっき基板の周辺部における電流密度を均一にしようとするものである。   That is, by making the area of the hole formed in the region facing the central portion of the substrate to be plated larger than the area of the hole formed in the region facing the peripheral portion of the substrate to be plated, It is intended to make the current density in the central part uniform and the current density in the peripheral part of the substrate to be plated.

また、特許文献2では、遮蔽板として、円形の被めっき基板に対し、その直径より所定の長さだけ小さい直径の開口部を1つ有する板を設けて電気めっきを行っている。この開口部の寸法と被めっき基板の寸法差を所定の値とすることで被めっき基板全面に於けるめっき厚を均一にできるとしている。   In Patent Document 2, as a shielding plate, electroplating is performed on a circular substrate to be plated by providing a plate having one opening having a diameter smaller than the diameter by a predetermined length. It is said that the plating thickness on the whole surface of the substrate to be plated can be made uniform by setting the difference between the size of the opening and the size of the substrate to be plated to a predetermined value.

即ち、遮蔽板として開口部を1つ有する板を設けて電気めっきを行うと、遮蔽板の開口部の外側にある陽極からの電気力線が開口部エッジ近傍に集中することで、開口部エッジ直下の膜厚が厚くなりやすくなる。そこで、開口部エッジを被めっき基板の周辺部より内側にもってくると、開口部エッジで一旦集中した電気力線が開口部外側の被めっき基板に向かってばらけるため、不均一性が解消される。   That is, when a plate having one opening is provided as a shielding plate and electroplating is performed, the lines of electric force from the anode outside the opening of the shielding plate are concentrated in the vicinity of the opening edge. The film thickness immediately below tends to be thick. Therefore, if the edge of the opening is brought inward from the periphery of the substrate to be plated, the electric lines of force once concentrated at the edge of the opening are scattered toward the substrate to be plated outside the opening, so the non-uniformity is eliminated. The

特開2000−54000号公報JP 2000-54000 A 特開2003−34893号公報JP 2003-34893 A

これら従来の技術では、めっき治具に配置される被めっき物が1個の場合には効果を発揮するが、複数の被めっき物を同一治具でめっきする場合には、めっき膜厚バラツキの低減の効果が小さいという問題があった。すなわち、被めっき物が複数の場合でも、治具の周囲部に電流が集中するのは同じだが、被めっき物が複数の場合には、1つの被めっき物とその隣の被めっき物との間に陰極ではない部分があるために、治具中央部でも電流が集中する箇所が発生する。   These conventional techniques are effective when there is only one workpiece to be placed on the plating jig. However, when plating a plurality of workpieces with the same jig, there is no variation in the plating film thickness. There was a problem that the effect of reduction was small. That is, even when there are a plurality of objects to be plated, it is the same that the current concentrates around the jig, but when there are a plurality of objects to be plated, there is a difference between one object to be plated and the object to be plated next to it. Since there is a portion that is not a cathode between them, a portion where current is concentrated occurs in the center portion of the jig.

特許文献1のように、遮蔽板として多数の孔部を有し、かつ、被めっき物部分とそれ以外の部分で孔径を変化させた物を用いる方法では、変化させるパラメータが膨大であり、設計・製作が困難となり、作製できたとしても非常に時間がかかるという問題があった。   As in Patent Document 1, in the method using a material having a large number of holes as a shielding plate and having a hole diameter changed in the part to be plated and other parts, the parameters to be changed are enormous, and the design・ Manufacturing becomes difficult, and even if it can be manufactured, there is a problem that it takes a very long time.

特許文献2のように遮蔽板の開口部が1つのみである場合、これを複数の被めっき物を同一治具でめっきする場合に用いると、被めっき物間の隙間により発生する電流集中を緩和することができない。   When there is only one opening of the shielding plate as in Patent Document 2, if this is used when plating a plurality of objects to be plated with the same jig, the current concentration generated by the gaps between the objects to be plated is reduced. It cannot be mitigated.

本発明はこのような状況に鑑み、なされたもので、本発明は基板状の複数の被めっき物を同一治具で行うめっき処理において、めっき膜厚を均一に形成できる電気めっき方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and the present invention provides an electroplating method capable of uniformly forming a plating film thickness in a plating process in which a plurality of substrate-like objects are plated with the same jig. For the purpose.

即ち、本発明の電気めっき方法は、複数の被めっき物を同一めっき治具で同時にめっきを行う電気めっき方法において、前記めっき治具が複数の被めっき物を同一面内に固定保持する治具であり、陰極である被めっき物と陽極の間に配置される遮蔽板に前記被めっき物のそれぞれに対応する位置にそれぞれ貫通開口が設けられており、前記被めっき物が多角形であり、前記遮蔽板の貫通開口の形状が貫通開口の形状が多角形の各角が曲線で面取りされてなる形状であって、前記めっき治具と前記遮蔽板の位置関係を固定し、被めっき物の中心位置iから、多角形の各辺におろした垂線の足の位置をa1,a2,・・・,anとし、被めっき物の中心位置と被めっき物の各角を結ぶ直線と貫通開口とが交差する位置をb1,b2,・・・,bnとし、テスト電気めっき(ためしに行う電気めっきのこと。以下、単にテストめっきとも記す。)もしくはそのシミュレーションを行い、前記iとa1〜anの2箇所以上、b1〜bnの2箇所以上に対応する位置での被めっき物のめっき厚を測定し、a1〜anの測定箇所におけるめっき厚がiにおけるめっき厚よりも厚い場合はその位置とiとの直線距離が短くなるように、薄い場合にはその位置とiとの直線距離が長くなるように被めっき物と貫通開口の相対位置を変化させ、b1〜bnの測定箇所については、前記a1〜anの位置の変化とともに、貫通開口の多角形の角の曲線形状を変化させることで、b1〜bnの測定箇所におけるめっき厚がiにおけるめっき厚よりも厚い場合はその位置とiとの直線距離が短くなるように、薄い場合にはその位置とiとの直線距離が長くなるように前記iとa1〜an、b1〜bnの位置を調整することにより、1つの被めっき物とそれに対応する貫通開口の正規の位置関係を決定し、該正規の位置関係で電気めっきを行うことを特徴とする。   That is, the electroplating method of the present invention is a method of plating a plurality of objects to be plated simultaneously with the same plating jig, wherein the plating jig fixes and holds the plurality of objects to be plated in the same plane. Through holes are provided at positions corresponding to each of the objects to be plated in the shielding plate disposed between the object to be plated and the anode, and the objects to be plated are polygonal, The shape of the through-opening of the shielding plate is a shape formed by chamfering each corner of the through-opening with a polygon, and fixing the positional relationship between the plating jig and the shielding plate, From the center position i, the positions of the legs of the perpendicular lines drawn from the sides of the polygon are a1, a2,..., An, and the straight line connecting the center position of the object to be plated and each corner of the object to be plated and the through opening B1, b2, ..., bn Then, test electroplating (referred to as electroplating; hereinafter, also simply referred to as test plating) or simulation thereof, corresponding to two or more of i and a1 to an and two or more of b1 to bn. When the plating thickness of the object to be plated at the position to be measured is measured, and the plating thickness at the measurement points a1 to an is thicker than the plating thickness at i, the linear distance between the position and i is short so that it is thin Changes the relative position of the object to be plated and the through-opening so that the linear distance between the position and i becomes long. For the measurement points b1 to bn, as the position of a1 to an changes, the number of through-openings increases. By changing the curved shape of the square corner, when the plating thickness at the measurement points b1 to bn is thicker than the plating thickness at i, the linear distance between the position and i is shortened. In the case where the position of i and a1 to an and b1 to bn are adjusted so that the linear distance between the position and i is long, the normal position of one object to be plated and the corresponding through opening is adjusted. The relationship is determined, and electroplating is performed with the regular positional relationship.

すなわち、めっき厚がiにおけるめっき厚よりも厚い場合は、陽極からの電気力線がその部分にまだ集中しているということなので、その位置とiとの直線距離が短くして、陰極に相当する非メッキ物のうち貫通開口の外側にある部分を大きくして電気力線の集中を緩和させるのである。また、めっき厚がiにおけるめっき厚より薄い場合は、その逆を行う。   That is, when the plating thickness is thicker than the plating thickness at i, the electric lines of force from the anode are still concentrated on that portion, so that the linear distance between the position and i is shortened and corresponds to the cathode. The portion of the non-plated material that is outside the through opening is enlarged to reduce the concentration of the electric lines of force. On the other hand, when the plating thickness is thinner than the plating thickness in i, the reverse is performed.

また、前記iとa1〜an、b1〜bnの位置を調整した後、再びテスト電気めっきもしくはそのシミュレーションを行って前記a〜iに対応する位置での被めっき物のめっき厚を測定し、i、a1〜anの測定箇所、b1〜bnの測定箇所のめっき厚のばらつきが所定範囲内であればその被めっき物と貫通開口の相対位置を正規の相対位置と定め、i、a1〜anの測定箇所、b1〜bnの測定箇所のめっき厚のばらつきが所定範囲内に納まらない場合は再度上述の方法で被めっき物と貫通開口の相対位置及び貫通開口の多角形の各角のうち所望の角の曲線形状を変化させることでi、a1〜anの測定箇所、b1〜bnの測定箇所のめっき厚のばらつきが所定範囲内に納まったときの被めっき物と貫通開口の相対位置を前記正規の位置関係とするようにしてもよい。   In addition, after adjusting the positions of i and a1 to an and b1 to bn, test electroplating or simulation thereof is performed again to measure the plating thickness of the object to be plated at the positions corresponding to a to i. If the variation in plating thickness at the measurement points a1 to an and the measurement points b1 to bn is within a predetermined range, the relative position of the plated object and the through-opening is determined as a normal relative position, and i, a1 to an When the variation of the plating thickness at the measurement locations b1 to bn does not fall within the predetermined range, the desired position is again selected from the relative positions of the workpiece and the through-opening and the polygonal corners of the through-opening by the above-described method. By changing the corner curve shape, the relative positions of the plated object and the through-opening when the variation in plating thickness at the measurement points i and a1 to an and the measurement points b1 to bn are within a predetermined range are set to the normal values. Position It may be set to.

本発明によれば、複数の被めっき物を同一めっき治具で同時にめっきを行う電気めっき方法において、めっき膜厚を均一にする効果を簡便に得ることができる。   According to the present invention, in the electroplating method of simultaneously plating a plurality of objects to be plated with the same plating jig, an effect of making the plating film thickness uniform can be easily obtained.

本発明の電気めっき方法においては、複数の被めっき物を同一面内に固定保持するめっき治具を用いて複数の被めっき物に対して同時にめっきを行う。   In the electroplating method of the present invention, plating is simultaneously performed on a plurality of objects to be plated using a plating jig that fixes and holds the plurality of objects to be plated in the same plane.

図2は、本発明の電気めっき方法を実施するための電気めっき装置の1例を示す模式図である。図2の例ではめっき治具の両側に遮蔽板を介して陽極が設けられており、被めっき物の両面に電気めっきを行うための装置となっている。被めっき物の片面にのみ電気めっきをする場合には、めっき治具の一方の側の遮蔽板と陽極があればよい。   FIG. 2 is a schematic view showing an example of an electroplating apparatus for carrying out the electroplating method of the present invention. In the example of FIG. 2, anodes are provided on both sides of the plating jig via shielding plates, which is an apparatus for performing electroplating on both surfaces of the object to be plated. When electroplating is performed only on one side of the object to be plated, it is only necessary to have a shielding plate and an anode on one side of the plating jig.

以下の説明においては、めっき治具として、4つの被めっき物を同一面内に固定保持するめっき治具の例を用いて説明するが、被めっき物の数を4つに限定するものではなく、2つ以上であれば特に限定されるものではないが、2〜12個であることが好ましい。   In the following description, an example of a plating jig for fixing and holding four objects to be plated in the same plane will be described as the plating jig, but the number of objects to be plated is not limited to four. Although it will not specifically limit if it is one or more, it is preferable that it is 2-12 pieces.

被めっき物と遮蔽板との間隔を、5〜40mmにすると、めっき液流動性と回り込み電流抑制を両立でき、より高い効果が得られるので好ましい。被めっき物と遮蔽板との間隔が上記範囲より小さすぎると非開口部分でめっき液の流動阻害が発生し、間隔が上記範囲よりより大きすぎると遮蔽板の外側から電流が回り込み、電流集中が発生する。   It is preferable to set the distance between the object to be plated and the shielding plate to 5 to 40 mm since both the plating solution fluidity and the sneak current can be suppressed, and higher effects can be obtained. If the distance between the object to be plated and the shielding plate is less than the above range, the flow of the plating solution will be inhibited in the non-opening portion. If the distance is larger than the above range, current will flow from the outside of the shielding plate, resulting in current concentration. appear.

図3は本発明の電気めっき方法に用いられるめっき治具の一例を示す模式平面図である。   FIG. 3 is a schematic plan view showing an example of a plating jig used in the electroplating method of the present invention.

このめっき治具としては、例えば、被めっき物を収納できる開口を、保持する被めっき物の数だけ有し、その開口内に被めっき物を収納、保持、固定できる治具を例示できる。図3では、被めっき物として四角形の基板を用い、貫通開口を四角とした例を示している。   As this plating jig, for example, there can be exemplified a jig that has the same number of openings as the number of objects to be plated to hold the object to be plated, and can accommodate, hold, and fix the objects to be plated in the opening. FIG. 3 shows an example in which a rectangular substrate is used as an object to be plated and the through-opening is square.

また、図1は本発明の電気めっき方法に用いられる遮蔽板の平面模式図であり、遮蔽板の貫通開口と被めっき基板の投影位置、すなわち、陽極側から見た貫通開口と被めっき基板の相対位置を示している。この貫通開口は四角形の4つの角が曲線で面取りされてなる形状となっている。   FIG. 1 is a schematic plan view of a shielding plate used in the electroplating method of the present invention. The through-opening of the shielding plate and the projection position of the substrate to be plated, that is, the through-opening and the substrate to be plated as viewed from the anode side. The relative position is shown. This through-opening has a shape in which four corners of a quadrangle are chamfered with a curve.

次に、図3に示すめっき治具を用いて1つの被めっき物とそれに対応する貫通開口の正規の位置関係を決定する方法につき説明する。この正規の位置関係とは、後述のi、a1〜a4、b1〜b4に対応する被めっき物の位置におけるめっき厚のばらつきが所定の範囲内にあるときの位置関係を言う。このばらつきの所定の範囲とは、その範囲内であればばらつきがあっても電気的特性に実質的に悪影響を与えないような範囲を意味し、形成する基板の用途、搭載電子部品の密度、要求性能等により若干異なるものの、通常、中心膜厚±20%、即ち、中心膜厚が50μmのとき、膜厚が40〜60μmの範囲内であることを意味する。   Next, a method for determining the normal positional relationship between one object to be plated and the corresponding through opening using the plating jig shown in FIG. 3 will be described. This regular positional relationship refers to a positional relationship when variations in plating thickness at the positions of the objects to be plated corresponding to i, a1 to a4, and b1 to b4 described later are within a predetermined range. The predetermined range of the variation means a range that does not substantially adversely affect the electrical characteristics even if there is variation within the range, the use of the substrate to be formed, the density of the mounted electronic components, Although it varies slightly depending on the required performance, etc., it usually means that the central film thickness is ± 20%, that is, when the central film thickness is 50 μm, the film thickness is in the range of 40 to 60 μm.

図5に示すように、被めっき物の中心位置iから、四角形の各辺におろした垂線の足の位置をa1,a2,a3,a4とし、被めっき物の中心位置と被めっき物の4つの角を結ぶ直線と貫通開口とが交差する位置をb1,b2,b3,b4とする。   As shown in FIG. 5, the positions of the legs of the perpendicular lines extending from the center position i of the object to be plated to each side of the quadrangle are a1, a2, a3, a4, and the center position of the object to be plated and 4 of the object to be plated. The positions where the straight line connecting the two corners intersects the through opening are defined as b1, b2, b3, and b4.

まず、図6に示すように、貫通開口の中心と被めっき物の中心を一致させ、被めっき物と貫通開口の各辺が平行になるようにした状態でテスト電気めっきを行い、前記i、a1〜a4、b1〜b4に対応する位置での被めっき物のめっき厚を測定し、iとa1〜a4、b1〜b4に対応する位置の被めっき物のめっき厚を比較する。なお、最終的なiとa1〜a4、b1〜b4の位置について推定できる場合は、貫通開口の中心と被めっき物の中心を一致させずに、推定した位置を初期値としてもよい。   First, as shown in FIG. 6, test electroplating is performed in a state where the center of the through opening and the center of the object to be plated are aligned, and the sides of the object to be plated and the through opening are parallel, The plating thicknesses of the objects to be plated at the positions corresponding to a1 to a4 and b1 to b4 are measured, and the plating thicknesses of the objects to be plated at the positions corresponding to i and a1 to a4 and b1 to b4 are compared. In addition, when it can estimate about the final i and the position of a1-a4, b1-b4, it is good also considering the estimated position as an initial value, without making the center of a through-opening and the center of a to-be-plated object correspond.

a1〜a4におけるめっき厚がiにおけるめっき厚よりも厚い場合はその位置とiとの直線距離が短くなるように、薄い場合にはその位置とiとの直線距離が長くなるように被めっき物と貫通開口の相対位置を変化させる。この変化については、中心位置(i)の移動および/または貫通開口の縦横部分の位置を変化させることが含まれる。   When the plating thickness at a1 to a4 is thicker than the plating thickness at i, the linear distance between the position and i is shortened, and when thin, the linear distance between the position and i is increased. And the relative position of the through opening is changed. This change includes moving the center position (i) and / or changing the position of the vertical and horizontal portions of the through opening.

また、b1〜b4については、前記a1〜a4の位置の変化とともに、貫通開口の四角形の4つの角の曲線形状(例えば曲率半径であるが、曲率半径に限るわけではない。)を変化させることで、b1〜b4におけるめっき厚がiにおけるめっき厚よりも厚い場合はその位置とiとの直線距離が短くなるように、薄い場合にはその位置とiとの直線距離が長くなるように前記i、a1〜a4、b1〜b4の位置を調整する。図8は曲線形状の変化を曲率半径のRの変化としたときの例であり、図8から、Rが小さいとiとb1〜b4の直線距離は長くなり、Rが大きいほどiとb1〜b4の直線距離が短くなることがわかる。   As for b1 to b4, along with the change of the positions of a1 to a4, the curved shapes of the four corners of the through-opening square (for example, the radius of curvature is not limited to the radius of curvature) are changed. Thus, when the plating thickness at b1 to b4 is thicker than the plating thickness at i, the linear distance between the position and i is shortened, and when thin, the linear distance between the position and i is increased. The positions of i, a1 to a4, and b1 to b4 are adjusted. FIG. 8 shows an example in which the change in the curve shape is a change in the radius of curvature R. From FIG. 8, the smaller the R, the longer the linear distance between i and b1 to b4. It can be seen that the linear distance of b4 is shortened.

前記a1〜a4、b1〜b4とiの変化の幅は適宜選択してよい。   You may select suitably the width | variety of the change of said a1-a4, b1-b4, and i.

このようにして設定した相対位置で再びテストめっきを行って前記i、a1〜a4の2箇所以上、b1〜b4の2箇所以上に対応する位置での被めっき物のめっき厚を測定し、iとa1〜a4、b1〜b4に対応する位置の被めっき物のめっき厚を比較する。   Test plating is performed again at the relative positions set in this manner, and the plating thicknesses of the objects to be plated at the positions corresponding to two or more of i and a1 to a4 and two or more of b1 to b4 are measured. And the plating thicknesses of the objects to be plated at the positions corresponding to a1 to a4 and b1 to b4 are compared.

i、a1〜a4、b1〜b4のめっき厚のばらつきが所定範囲内であればその状態における被めっき物と貫通開口の相対位置を正規の相対位置と定め、i、a1〜a4、b1〜b4のめっき厚のばらつきが所定範囲内に納まらない場合は再度上述の方法で被めっき物と貫通開口の相対位置及び貫通開口の四角形の4つの角の曲線形状を変化させてこの相対位置で再びテストめっきを行って前記i、a1〜a4の2箇所以上、b1〜b4の2箇所以上に対応する位置での被めっき物のめっき厚を測定し、iとa1〜a4、b1〜b4に対応する位置の被めっき物のめっき厚を比較する。   If the variation of the plating thickness of i, a1 to a4, b1 to b4 is within a predetermined range, the relative position of the object to be plated and the through-opening in that state is determined as the normal relative position, i, a1 to a4, b1 to b4. If the variation in plating thickness does not fall within the specified range, the relative position of the object to be plated and the through-opening and the curve shape of the four corners of the square of the through-opening are changed again by the above method, and the test is performed again at this relative position. Plating is performed to measure the plating thickness of the object to be plated at positions corresponding to two or more of i and a1 to a4 and two or more of b1 to b4, and corresponding to i and a1 to a4 and b1 to b4. Compare the plating thickness of the object to be plated at the position.

この相対位置の設定方法は、移動幅を何の考えもなしに設定すれば、テストめっきを多数回繰り返さなければ正規の相対位置に到達できないが、得られためっき厚のばらつきが大きい場合は移動幅を大きめにし、ばらつきが所定範囲の最大幅より少しだけ大きい場合は移動幅を小さくするようにすれば正規の相対位置に比較的早く到達することができ、さらに、それまでにテストめっきを繰り返していれば、移動幅をどの程度の大きさにすればよいかは感覚として認識できるようになり、一度の移動で正規の相対位置に到達する可能性も高くなり、二度目の移動で正規の相対位置に到達する可能性はさらに高いものとなる。   In this relative position setting method, if the movement width is set without any thought, it is not possible to reach the normal relative position unless the test plating is repeated many times. If the width is increased and the variation is slightly larger than the maximum width of the specified range, the normal relative position can be reached relatively quickly by reducing the moving width, and test plating is repeated until then. If so, it will be possible to recognize how much the movement width should be set as a sensation, and there is a high possibility that the movement will reach the normal relative position in one movement. The possibility of reaching the relative position is even higher.

また、めっきに関するシミュレーションを実施できる場合は、少なくとも最初もしく途中までのテストめっきをシミュレーションによって代替してもよい。この場合、シミュレーションで前記i、a1〜a4、b1〜b4のおよその位置を決定してからテストめっきを実施すれば、テストめっきの回数を減らすことができる。精度の高いシミュレーションであれば、テストメッキを1回で終了させることも可能である。   In addition, when simulation relating to plating can be performed, at least the test plating at the beginning or halfway may be replaced by simulation. In this case, if test plating is performed after the approximate positions of i, a1 to a4 and b1 to b4 are determined by simulation, the number of test platings can be reduced. If the simulation is highly accurate, the test plating can be completed once.

本発明の電気めっき方法は、被めっき物が複数の電子部品を搭載する基板である場合により好適である。即ち、被めっき物が基板状で複数の電子部品の集合体である場合には、広いめっき範囲においてより均一なめっき膜厚が要求されるため、本発明の電気めっき方法によれば、より大きな効果が得られる。   The electroplating method of the present invention is more suitable when the object to be plated is a substrate on which a plurality of electronic components are mounted. That is, when the object to be plated is an aggregate of a plurality of electronic components in the form of a substrate, a more uniform plating film thickness is required in a wide plating range. An effect is obtained.

また、図4に示すように、めっき治具の、被めっき物が配置されるさらに外側にダミー電極を設けることが好ましい。ダミー電極は導電性の素材からなり、めっき時には電圧が印加されて同様にめっきされるが、その後取り外し可能なものをいう。ダミー電極の設置により遮蔽板の外側からの回り込み電流を阻害でき、めっき膜厚バラツキをさらに低減できる。   Moreover, as shown in FIG. 4, it is preferable to provide a dummy electrode on the outer side of the plating jig where the object to be plated is disposed. The dummy electrode is made of a conductive material, and is applied with a voltage during plating to be similarly plated, but it can be removed thereafter. By installing the dummy electrode, the sneak current from the outside of the shielding plate can be inhibited, and the plating film thickness variation can be further reduced.

また、本発明の電気めっき方法は、被めっき物表面にめっき回路パターンを形成するためのレジストパターンが形成されている場合により好適である。即ち、被めっき物表面にレジストパターンが形成されていると、被めっき物表面にフォトレジストによる凹凸が存在するため、めっき液の流動が阻害されてめっき膜厚のばらつきが生じ易くなる。そのため、本発明の電気めっき方法によれば、より大きな効果が得られる。   In addition, the electroplating method of the present invention is more suitable when a resist pattern for forming a plating circuit pattern is formed on the surface of an object to be plated. That is, when a resist pattern is formed on the surface of the object to be plated, unevenness due to the photoresist exists on the surface of the object to be plated, so that the flow of the plating solution is hindered and the plating film thickness tends to vary. Therefore, according to the electroplating method of the present invention, a greater effect can be obtained.

また、本発明の電気めっき方法は、めっき膜厚が30μm以上と厚い場合により効果を発揮する。すなわち、めっき初期でめっき膜厚が薄い場合は、フォトレジストによりめっき液の流動が阻害されてめっき析出速度は遅いが、めっき膜厚が厚くなってくるとフォトレジストの残り厚みが薄くなるためにめっき液の流動性が良くなる。従って、30μm以上の厚めっきの場合はめっき時間が長いため薄い箇所と厚い箇所の差がさらに顕著になる傾向があり、本発明の方法により大きな効果を得ることができる。   The electroplating method of the present invention is more effective when the plating film thickness is as thick as 30 μm or more. In other words, when the plating film thickness is thin at the initial stage of plating, the flow of the plating solution is hindered by the photoresist and the plating deposition rate is slow. However, as the plating film thickness increases, the remaining photoresist thickness decreases. The fluidity of the plating solution is improved. Therefore, in the case of thick plating of 30 μm or more, since the plating time is long, the difference between the thin portion and the thick portion tends to become more prominent, and a great effect can be obtained by the method of the present invention.

本発明の電気めっき方法は、図9に示すように被めっき物の両表面にめっき回路パターンを形成するためのレジストパターンが形成されており、被めっき物にはその両表面にめっき回路パターンが形成されたときに両表面のめっき回路パターンが連通できる位置にスルーホールが形成されている場合により効果が高い。すなわち、両面の被めっきパターンがスルーホールにより電気的に接続されている場合には、表裏面でのパターンの違いやスルーホール配置の不均一などにより、電流分布が均一にならない。従って、本発明の電気めっき方法でより大きな効果を得ることができる。また、スルーホール内のめっき膜厚も均一にできる効果も得られる。   In the electroplating method of the present invention, as shown in FIG. 9, a resist pattern for forming a plating circuit pattern is formed on both surfaces of the object to be plated, and the plating circuit pattern is formed on both surfaces of the object to be plated. When the through holes are formed at positions where the plated circuit patterns on both surfaces can communicate with each other when formed, the effect is higher. That is, when the patterns to be plated on both sides are electrically connected through through holes, the current distribution is not uniform due to the difference in the patterns on the front and back surfaces and the non-uniform arrangement of the through holes. Therefore, a greater effect can be obtained with the electroplating method of the present invention. Moreover, the effect that the plating film thickness in the through hole can be made uniform can also be obtained.

以下に、本発明の電気めっき方法を、図面を参照しながら実施例を用いてさらに説明する。   Below, the electroplating method of this invention is further demonstrated using an Example, referring drawings.

<実施例1>
まず、被めっき物としてスルーホールが形成された120mm×120mmサイズのセラミック基板を用意し、フォトリソグラフィにより基板両面に図9に示すようなめっきパターンを形成した。この際、80μm厚のフォトレジストを使用した。
<Example 1>
First, a 120 mm × 120 mm size ceramic substrate having through holes formed as an object to be plated was prepared, and a plating pattern as shown in FIG. 9 was formed on both surfaces of the substrate by photolithography. At this time, an 80 μm thick photoresist was used.

図2に本実施例に使用しためっきシステムの全体図を示す。図3に示すようにめっき治具は4枚の基板を保持した構造、即ち、その中にそれぞれ基板を収納保持した4つの開口部を有しているものを使用した。遮蔽板は図1に示すような形状であり、めっき治具の4つの開口部のそれぞれに対応する位置にそれぞれ貫通開口が設けられており、前記被めっき物が四角形であり、前記遮蔽板の貫通開口の形状が貫通開口の形状が四角形の4つの角が曲線で面取りされてなる形状となっている。めっき治具と遮蔽板の間隔は20mmとした。   FIG. 2 shows an overall view of the plating system used in this example. As shown in FIG. 3, the plating jig used had a structure in which four substrates were held, that is, one having four openings in each of which the substrates were stored and held. The shielding plate has a shape as shown in FIG. 1, and through-openings are provided at positions corresponding to the four openings of the plating jig, the object to be plated is square, The shape of the through-opening is a shape in which the four corners of the through-opening are square and chamfered with curves. The distance between the plating jig and the shielding plate was 20 mm.

また、以下のめっきにおける具体的条件を下記に示す。
めっき液 :硫酸銅100g/L水溶液
基板と陽極との間の距離:150mm
平均電流密度 :1.0A/dm
Moreover, the specific conditions in the following plating are shown below.
Plating solution: Copper sulfate 100 g / L aqueous solution Distance between substrate and anode: 150 mm
Average current density: 1.0 A / dm 2

まず、図6に示すように、貫通開口の中心と基板の中心を一致させ基板と貫通開口の各辺が平行になるようにした状態でテスト電気めっきを行い、図6に示すa1〜a4、b1〜b4およびiに対応する位置での被めっき物のめっき厚を測定した。その結果を表1の開口形状(調整前)の欄に示す。このめっき厚のばらつきはσで7.5μm、最小膜厚/最大膜厚が45μm/67μmであり、ばらつきが大きすぎる。   First, as shown in FIG. 6, test electroplating was performed in a state where the center of the through-opening and the center of the substrate were aligned so that the sides of the substrate and the through-opening were parallel, and a1 to a4 shown in FIG. The plating thickness of the object to be plated at the positions corresponding to b1 to b4 and i was measured. The result is shown in the column of the opening shape (before adjustment) in Table 1. The variation of the plating thickness is 7.5 μm in σ, and the minimum film thickness / maximum film thickness is 45 μm / 67 μm, which is too large.

そこで、a1i間距離を49mmに、a2i間距離を62mmに、a3i間距離を55mmに、a4i間距離を42mmに、b1i間距離を58.3mm(R6mmをR12mm)に、b2i間距離を70mm(R6mmをR12mm)に、b4i間距離を61.0mm(R6mmをR20mm)に変更し、b3i間距離は77.8mm(局率半径Rは6mmのまま)としてテストめっきを行った。その結果を表1の(開口形状(1))の欄に示す。このめっき厚のばらつきはσで4.4μm、最小膜厚/最大膜厚が47μm/60μmであり、ばらつきは所定範囲内に入っており、この位置は正規の相対位置となっていることがわかった。   Therefore, the distance between a1i is 49 mm, the distance between a2i is 62 mm, the distance between a3i is 55 mm, the distance between a4i is 42 mm, the distance between b1i is 58.3 mm (R6 mm is R12 mm), and the distance between b2i is 70 mm ( R6 mm was changed to R12 mm), the distance between b4i was changed to 61.0 mm (R6 mm was changed to R20 mm), and the distance between b3i was changed to 77.8 mm (the locality radius R was still 6 mm). The result is shown in the column of (Opening shape (1)) in Table 1. The variation of the plating thickness is 4.4 μm in σ, and the minimum film thickness / maximum film thickness is 47 μm / 60 μm. The variation is within a predetermined range, and it is understood that this position is a normal relative position. It was.

また、b1i間距離を50.7mm(R12mmをR32mm)に、b2i間距離を66.0mm(R12mmをR26mm)に変更した以外は開口形状(1)と同様の距離にしてテストめっきを行った。その結果を表1の(開口形状(2))の欄に示す。このめっき厚のばらつきはσで3.0μm、最小膜厚/最大膜厚が47μm/56μmであり、ばらつきは所定範囲内に入っており、この位置はさらによい結果を与える正規の相対位置となっていることがわかった。   Further, the test plating was performed at the same distance as the opening shape (1) except that the distance between b1i was changed to 50.7 mm (R12 mm was R32 mm) and the distance between b2i was changed to 66.0 mm (R12 mm was R26 mm). The results are shown in the column (Opening shape (2)) in Table 1. The variation in the plating thickness is 3.0 μm in σ, and the minimum film thickness / maximum film thickness is 47 μm / 56 μm. The variation is within a predetermined range, and this position is a normal relative position that gives a better result. I found out.

Figure 2010095762
Figure 2010095762

<実施例2>
めっき治具と遮蔽板の間隔を5mmとした以外は実施例1と同様にして貫通開口の中心と基板の中心を一致させ基板と貫通開口の各辺が平行になるようにした状態でテスト電気めっきを行い、図6に示すi、a1〜a4、b1〜b4に対応する位置での被めっき物のめっき厚を測定した。その結果を表2の実施例2の開口形状(調整前)の欄に示す。この場合は、たまたま60.0mmが最適寸法に近かったため、ばらつきは小さい結果となった。ただし、さらに最適化することにより以下のようにばらつきをコントロールすることが出来る。
<Example 2>
Except that the distance between the plating jig and the shielding plate was set to 5 mm, the test electricity was obtained in the same manner as in Example 1 with the center of the through-opening and the center of the substrate being aligned so that the sides of the substrate and the through-opening were parallel. Plating was performed, and the plating thickness of the object to be plated at the positions corresponding to i, a1 to a4, and b1 to b4 shown in FIG. 6 was measured. The result is shown in the column of the opening shape (before adjustment) of Example 2 in Table 2. In this case, since 60.0 mm happened to be close to the optimum size, the variation was small. However, the variation can be controlled as follows by further optimization.

そこで、a1i間距離を59mmに、a2i間距離を62mmに、a3i間距離を62mmに、a4i間距離を59mmに、b1i間距離を77.6mm(R6mmをR14mm)に、b2i間距離を83.4mm(R6mmをR2mm)に、b3i間距離を86.9mm(R6mmをR2mm)に、b4i間距離を83.4mm(R6mmをR2mm)に変更し、テストめっきを行った。その結果を表2の実施例2(開口形状(調整後))の欄に示す。このめっき厚のばらつきはσで2.4μm、最小膜厚/最大膜厚が46μm/54μmであり、開口形状(調整前)のσで4.3μm、最小膜厚/最大膜厚が43μm/55μmに比べてばらつきはさらに小さくなり、この位置はより良好な相対位置となっていることがわかった。   Therefore, the distance between a1i is 59 mm, the distance between a2i is 62 mm, the distance between a3i is 62 mm, the distance between a4i is 59 mm, the distance between b1i is 77.6 mm (R6 mm is R14 mm), and the distance between b2i is 83. Test plating was performed by changing the distance between b3i to 4mm (R6mm to R2mm), the distance between b3i to 86.9mm (R6mm to R2mm), and the distance between b4i to 83.4mm (R6mm to R2mm). The result is shown in the column of Example 2 (opening shape (after adjustment)) of Table 2. The variation of the plating thickness is 2.4 μm in σ, the minimum film thickness / maximum film thickness is 46 μm / 54 μm, the opening shape (before adjustment) is 4.3 μm, and the minimum film thickness / maximum film thickness is 43 μm / 55 μm. The variation was further reduced compared to, and this position was found to be a better relative position.

<実施例3>
めっき治具と遮蔽板の間隔を40mmとした以外は実施例1と同様にして貫通開口の中心と基板の中心を一致させ基板と貫通開口の各辺が平行になるようにした状態でテスト電気めっきを行い、図6に示すi、a1〜a4、b1〜b4に対応する位置での被めっき物のめっき厚を測定した。その結果を表2の実施例3の開口形状(調整前)の欄に示す。このめっき厚のばらつきはσで9.4μm、最小膜厚/最大膜厚が47μm/71μmであり、ばらつきが大きすぎる。
<Example 3>
Except that the distance between the plating jig and the shielding plate was set to 40 mm, the test electricity was obtained in the same manner as in Example 1 with the center of the through-opening and the center of the substrate being aligned so that the sides of the substrate and the through-opening were parallel. Plating was performed, and the plating thickness of the object to be plated at the positions corresponding to i, a1 to a4, and b1 to b4 shown in FIG. 6 was measured. The result is shown in the column of the opening shape (before adjustment) of Example 3 in Table 2. The variation of the plating thickness is 9.4 μm in σ, and the minimum film thickness / maximum film thickness is 47 μm / 71 μm, which is too large.

そこで、a1i間距離を42mmに、a2i間距離を60mmに、a3i間距離を60mmに、a4間距離を36mmに、b1i間距離を40mm(R6mmをR36mm)に、b2i間距離を56.9mm(R6mmをR30mm)に、b3i間距離を79.9mm(R6mmをR12mm)に、b4i間距離を50.6mm(R6mmをR28mm)に変更し、テストめっきを行った。その結果を表2の実施例3(開口形状(調整後))の欄に示す。このめっき厚のばらつきはσで4.5μm、最小膜厚/最大膜厚が48μm/60μmであり、ばらつきは所定範囲内に入っており、この位置は正規の相対位置となっていることがわかった。   Therefore, the distance between a1i is 42 mm, the distance between a2i is 60 mm, the distance between a3i is 60 mm, the distance between a4 is 36 mm, the distance between b1i is 40 mm (R6 mm is R36 mm), and the distance between b2i is 56.9 mm ( R6 mm was changed to R30 mm, the distance between b3i was changed to 79.9 mm (R6 mm was R12 mm), and the distance between b4i was changed to 50.6 mm (R6 mm was R28 mm), and test plating was performed. The results are shown in the column of Example 3 (opening shape (after adjustment)) in Table 2. The variation of the plating thickness is 4.5 μm in σ, and the minimum film thickness / maximum film thickness is 48 μm / 60 μm. The variation is within a predetermined range, and it is understood that this position is a normal relative position. It was.

<実施例4>
図4に示すように実施例1で用いためっき治具に固定された基板の外側にダミー電極を設置しためっき治具を用いた以外は実施例1と同様にして貫通開口の中心と基板の中心を一致させ基板と貫通開口の各辺が平行になるようにした状態でテスト電気めっきを行い、図6に示すi、a1〜a4、b1〜b4に対応する位置での被めっき物のめっき厚を測定した。その結果を表2の実施例2の開口形状(調整前)の欄に示す。このめっき厚のばらつきはσで6.6μm、最小膜厚/最大膜厚が44μm/64μmであり、ばらつきが大きすぎる。
<Example 4>
As shown in FIG. 4, the center of the through-opening and the substrate are formed in the same manner as in Example 1 except that a plating jig in which a dummy electrode is installed outside the substrate fixed to the plating jig used in Example 1 is used. Test electroplating is performed in a state where the centers are aligned and the sides of the substrate and the through-opening are parallel, and plating of the object to be plated at positions corresponding to i, a1 to a4, and b1 to b4 shown in FIG. The thickness was measured. The result is shown in the column of the opening shape (before adjustment) of Example 2 in Table 2. The variation of the plating thickness is 6.6 μm in σ, and the minimum film thickness / maximum film thickness is 44 μm / 64 μm, which is too large.

そこで、a1i間距離を49mmに、a2i間距離を62mmに、a3i間距離を55mmに、a4i間距離を42mmに、b1i間距離を510.7mm(R6mmをR32mm)に、b2i間距離を66.4mm(R6mmをR26mm)に、b3i間距離を78.5mm(R6mmをR6mm)に、b4i間距離を58.1mm(R6mmをR20mm)に変更し、テストめっきを行った。その結果を表2の実施例4(開口形状(調整後))の欄に示す。このめっき厚のばらつきはσで2.0μm、最小膜厚/最大膜厚が46μm/53μmであり、ばらつきは所定範囲内に入っており、この位置は正規の相対位置となっていることがわかった。   Therefore, the distance between a1i is 49 mm, the distance between a2i is 62 mm, the distance between a3i is 55 mm, the distance between a4i is 42 mm, the distance between b1i is 510.7 mm (R6 mm is R32 mm), and the distance between b2i is 66. The test plating was performed by changing the distance between b3i to 4mm (R6mm to R26mm), the distance between b3i to 78.5mm (R6mm to R6mm), and the distance between b4i to 58.1mm (R6mm to R20mm). The results are shown in the column of Example 4 (opening shape (after adjustment)) in Table 2. The variation in the plating thickness is 2.0 μm in σ, and the minimum film thickness / maximum film thickness is 46 μm / 53 μm. The variation is within a predetermined range, and it is understood that this position is a normal relative position. It was.

Figure 2010095762
Figure 2010095762

<比較例1>
実施例1で用いたと同様の基板及びめっき治具を用い、図2に本実施例に使用しためっきシステムにおいて、遮蔽板を用いずに電気めっきを行った。その結果を表3に示す。
<Comparative Example 1>
Using the same substrate and plating jig as used in Example 1, electroplating was performed without using a shielding plate in the plating system used in this example in FIG. The results are shown in Table 3.

<比較例2>
めっき治具と遮蔽板の間隔を1mmとした以外は実施例1と同様にして貫通開口の中心と基板の中心を一致させ基板と貫通開口の各辺が平行になるようにした状態でテスト電気めっきを行い、図6に示すi、a1〜a4、b1〜b4に対応する位置での被めっき物のめっき厚を測定した。その結果を表3の比較例2の開口形状(調整前)の欄に示す。このめっき厚のばらつきはσで5.3μm、最小膜厚/最大膜厚が33μm/50μmであり、ばらつきが大きすぎる。
<Comparative example 2>
Except that the distance between the plating jig and the shielding plate was set to 1 mm, the test electricity was obtained in the same manner as in Example 1 with the center of the through-opening and the center of the substrate being aligned so that the sides of the substrate and the through-opening were parallel. Plating was performed, and the plating thickness of the object to be plated at the positions corresponding to i, a1 to a4, and b1 to b4 shown in FIG. 6 was measured. The result is shown in the column of the opening shape (before adjustment) of Comparative Example 2 in Table 3. The variation of the plating thickness is 5.3 μm in σ, and the minimum film thickness / maximum film thickness is 33 μm / 50 μm, which is too large.

調整前の結果では、a1〜a4におけるめっき厚がiにおけるめっき厚よりも薄いため、可能な限り開口a1〜a4を大きくなるよう調整したが、表3の比較例2(調整後)に見られるように十分めっき厚を厚くすることができず、また、遮蔽板の強度が低下するため、これ以上開口を大きくすることもできなかった。   In the result before adjustment, since the plating thickness in a1 to a4 is thinner than the plating thickness in i, the openings a1 to a4 were adjusted to be as large as possible, but can be seen in Comparative Example 2 (after adjustment) in Table 3. Thus, the plating thickness could not be sufficiently increased, and the strength of the shielding plate was lowered, so that the opening could not be increased further.

<比較例3>
めっき治具と遮蔽板の間隔を45mmとした以外は実施例1と同様にして貫通開口の中心と基板の中心を一致させ基板と貫通開口の各辺が平行になるようにした状態でテスト電気めっきを行い、図6に示すi、a1〜a4、b1〜b4に対応する位置での被めっき物のめっき厚を測定した。その結果を表3の比較例3の開口形状(調整前)の欄に示す。このめっき厚のばらつきはσで11.0μm、最小膜厚/最大膜厚が47μm/74μmであり、ばらつきが大きすぎる。
<Comparative Example 3>
Except that the distance between the plating jig and the shielding plate was set to 45 mm, the test electricity was obtained in the same manner as in Example 1 with the center of the through-opening and the center of the substrate being aligned so that the sides of the substrate and the through-opening were parallel. Plating was performed, and the plating thickness of the object to be plated at the positions corresponding to i, a1 to a4, and b1 to b4 shown in FIG. 6 was measured. The result is shown in the column of the opening shape (before adjustment) of Comparative Example 3 in Table 3. The variation of the plating thickness is 11.0 μm in σ, and the minimum film thickness / maximum film thickness is 47 μm / 74 μm, which is too large.

調整前の結果では、a1、a4におけるめっき厚がiにおけるめっき厚よりも厚いため、極端にa1、a4を小さくしたが、めっき厚を充分薄くすることができなかった。これは遮蔽板を回りこむ電流が支配的のためであり、遮蔽板の開口寸法で制御できる範囲外であることを意味すると考えられた。   In the results before adjustment, the plating thicknesses at a1 and a4 were thicker than the plating thickness at i, so a1 and a4 were extremely reduced, but the plating thickness could not be sufficiently reduced. This is because the current flowing around the shielding plate is dominant, and it is considered that it is outside the range that can be controlled by the opening size of the shielding plate.

Figure 2010095762
Figure 2010095762

上記の実施例1と比較例1から、本発明の電気めっき方法におけるように、遮蔽板を用いることで、均一なめっき膜厚を得ることが可能であることがわかる。   From Example 1 and Comparative Example 1 above, it can be seen that a uniform plating film thickness can be obtained by using a shielding plate as in the electroplating method of the present invention.

また、実施例1〜3と比較例2、3から、被めっき物と遮蔽板との距離を5mm以上40mm以下とすることで均一なめっき膜厚を得ることが可能であることがわかる。   Moreover, from Examples 1 to 3 and Comparative Examples 2 and 3, it can be seen that a uniform plating film thickness can be obtained by setting the distance between the object to be plated and the shielding plate to 5 mm or more and 40 mm or less.

また、実施例1と実施例4から、めっき治具の周囲部にダミー電極を配置することにより、より大きな効果を得ることが可能であることもわかる。   Further, it can be seen from Example 1 and Example 4 that a larger effect can be obtained by arranging dummy electrodes around the plating jig.

以上、この発明の実施例を紹介したが、この発明の実施例は以上のものに限られるわけではない。例えば、めっき治具に設置される基板数は2枚以上であればよい。さらに、実施例および比較例では四角形の被めっき物について説明したが、本発明は四角形に限定されず、被メッキ物は一般的にn角形(n3以上の正数)であればよい。また、上記実施例では銅めっきの場合を例にとり説明したが、銅めっき以外のめっき処理においても本発明の電気めっき方法は同様の効果を発揮することができる。   As mentioned above, although the Example of this invention was introduced, the Example of this invention is not necessarily restricted to the above. For example, the number of substrates installed in the plating jig may be two or more. Further, in the examples and comparative examples, the rectangular object to be plated has been described. However, the present invention is not limited to a rectangle, and the object to be plated may generally be an n-gon (n3 or more positive number). Moreover, although the said Example demonstrated and demonstrated the case of copper plating, the electroplating method of this invention can exhibit the same effect also in plating processes other than copper plating.

本発明によれば、めっき膜厚のバラツキを抑制することにより、より高性能の電子部品などのめっき製品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, plating products, such as a higher performance electronic component, can be provided by suppressing the dispersion | variation in plating film thickness.

本発明に係る電気めっき方法に用いられる遮蔽板の模式的な平面図である。It is a typical top view of the shielding board used for the electroplating method which concerns on this invention. 本発明に係る電気めっき方法を表す模式図である。It is a schematic diagram showing the electroplating method which concerns on this invention. 本発明に係る電気めっき方法に用いられるめっき治具の模式的な平面図である。It is a typical top view of the plating jig used for the electroplating method concerning the present invention. 本発明に係る電気めっき方法に用いられるめっき治具とダミー電極の模式的な平面図である。It is a schematic plan view of a plating jig and a dummy electrode used in the electroplating method according to the present invention. 被めっき物の中心位置iと、iから各辺におろした垂線の足(a1,a2,a3,a4)と、iと被めっき物の4つの角を結ぶ直線と貫通開口との交差位置(b1,b2,b3,b4)を表す模式図である。The intersection position of the center position i of the object to be plated, the legs (a1, a2, a3, a4) of the perpendicular line extending from i to each side, and the straight line connecting i and the four corners of the object to be plated ( It is a schematic diagram showing b1, b2, b3, b4). 調整前の相対位置とi、a1〜a4、b1〜b4の各位置を示す平面模式図である。It is a plane schematic diagram which shows the relative position before adjustment and each position of i, a1-a4, b1-b4. めっき厚測定箇所を示す模式図である。It is a schematic diagram which shows a plating thickness measurement location. 開口形状のRを変更したときのiと被めっき物の4つの角を結ぶ直線と貫通開口との交差位置の変化を示す図である。It is a figure which shows the change of the crossing position of the straight line which connects i and four corners of a to-be-plated object, and through-opening when R of opening shape is changed. スルーホールを有する被めっき基板の一例を表す模式図である。It is a schematic diagram showing an example of the to-be-plated board | substrate which has a through hole.

Claims (8)

複数の被めっき物を同一めっき治具で同時にめっきを行う電気めっき方法において、前記めっき治具が複数の被めっき物を同一面内に固定保持する治具であり、陰極である被めっき物と陽極の間に配置される遮蔽板に前記被めっき物のそれぞれに対応する位置にそれぞれ貫通開口が設けられており、前記被めっき物が多角形であり、前記遮蔽板の貫通開口の形状が多角形の各角が曲線で面取りされてなる形状であって、
前記めっき治具と前記遮蔽板の位置関係を固定し、被めっき物の中心位置iから、多角形の各辺におろした垂線の足の位置をa1,a2,・・・,anとし、被めっき物の中心位置と被めっき物の各角を結ぶ直線と貫通開口とが交差する位置をb1,b2,・・・,bnとし、テスト電気めっきもしくはそのシミュレーションを行い、前記iとa1〜anの2箇所以上、b1〜bnの2箇所以上に対応する位置での被めっき物のめっき厚を測定し、a1〜anの測定箇所におけるめっき厚がiにおけるめっき厚よりも厚い場合はその位置とiとの直線距離が短くなるように、薄い場合にはその位置とiとの直線距離が長くなるように被めっき物と貫通開口の相対位置を変化させ、b1〜bnの測定箇所については、前記a1〜anの位置の変化とともに、貫通開口の多角形の角の曲線形状を変化させることで、b1〜bnの測定箇所におけるめっき厚がiにおけるめっき厚よりも厚い場合はその位置とiとの直線距離が短くなるように、薄い場合にはその位置とiとの直線距離が長くなるように前記iとa1〜an、b1〜bnの位置を調整することにより、
1つの被めっき物とそれに対応する貫通開口の正規の位置関係を決定し、該正規の位置関係で電気めっきを行うことを特徴とする電気めっき方法。
In the electroplating method of simultaneously plating a plurality of objects to be plated with the same plating jig, the plating jig is a jig for fixing and holding a plurality of objects to be plated in the same plane, The shielding plate disposed between the anodes is provided with through openings at positions corresponding to the objects to be plated, the objects to be plated are polygonal, and the shape of the through holes of the shielding plate is many. Each corner of the square is a shape that is chamfered with a curve,
The positional relationship between the plating jig and the shielding plate is fixed, and the positions of the legs of the perpendicular lines extending from the center position i of the object to be plated to each side of the polygon are a1, a2,. B1, b2,..., Bn are the positions where the straight line connecting the center position of the plated object and each corner of the object to be plated intersects with the through opening, and test electroplating or simulation thereof is performed. If the plating thickness of the object to be plated is measured at positions corresponding to two or more of b1 to bn and two or more of b1 to bn, and the plating thickness at the measurement of a1 to an is thicker than the plating thickness of i, In order to shorten the linear distance with i, when it is thin, the relative position of the plated object and the through-opening is changed so that the linear distance between the position and i is long. Changes in the positions a1 to an At the same time, by changing the curve shape of the polygonal corner of the through-opening, when the plating thickness at the measurement points b1 to bn is thicker than the plating thickness at i, the linear distance between the position and i is shortened. In the case of thin, by adjusting the positions of i and a1 to an and b1 to bn so that the linear distance between the position and i becomes long,
An electroplating method comprising: determining a normal positional relationship between one object to be plated and a corresponding through-opening, and performing electroplating with the normal positional relationship.
前記iとa1〜an、b1〜bnの位置を調整した後、再びテスト電気めっきもしくはそのシミュレーションを行って前記a〜iに対応する位置での被めっき物のめっき厚を測定し、i、a1〜anの測定箇所、b1〜bnの測定箇所のめっき厚のばらつきが所定範囲内であればその被めっき物と貫通開口の相対位置を正規の相対位置と定め、i、a1〜anの測定箇所、b1〜bnの測定箇所のめっき厚のばらつきが所定範囲内に納まらない場合は再度上述の方法で被めっき物と貫通開口の相対位置及び貫通開口の多角形の各角のうち所望の角の曲線形状を変化させることでi、a1〜anの測定箇所、b1〜bnの測定箇所のめっき厚のばらつきが所定範囲内に納まったときの被めっき物と貫通開口の相対位置を前記正規の位置関係とすることを特徴とする請求項1記載の電気めっき方法。   After adjusting the positions of i and a1 to an and b1 to bn, test electroplating or simulation is performed again to measure the plating thickness of the object to be plated at the positions corresponding to a to i, i, a1 If the variation of the plating thickness at the measurement location of ~ an and the measurement locations of b1 to bn is within a predetermined range, the relative position of the object to be plated and the through-opening is determined as the normal relative position, and the measurement locations of i and a1 to an If the variation in the plating thickness at the measurement points b1 to bn does not fall within the predetermined range, the relative position of the object to be plated and the through-opening and the polygonal corner of the through-opening by the above-mentioned method again. By changing the shape of the curve, the relative positions of the object to be plated and the through-opening when the variation in plating thickness at the measurement points i and a1 to an and the measurement points b1 to bn are within a predetermined range are the normal positions. Relationship Electroplating method according to claim 1, wherein a. 被めっき物と遮蔽板とが5〜40mmの間隔をあけて設置された状態で電気めっきを行うことを特徴とする請求項1または2に記載の電気めっき方法。   3. The electroplating method according to claim 1 or 2, wherein the electroplating is performed in a state where the object to be plated and the shielding plate are installed with an interval of 5 to 40 mm. 前記めっき治具の面内に固定された被めっき物の外側にダミー電極が設置されていることを特徴とする請求項1〜3のいずれか1項に記載の電気めっき方法。   The electroplating method according to any one of claims 1 to 3, wherein a dummy electrode is installed outside a workpiece to be plated fixed within the surface of the plating jig. 電気めっきにより、めっき膜厚30μm以上となるように電気めっきすることを特徴とする請求項1〜4のいずれか1項に記載の電気めっき方法。   The electroplating method according to any one of claims 1 to 4, wherein the electroplating is performed by electroplating so as to have a plating film thickness of 30 µm or more. 被めっき物が複数の電子部品を搭載する基板であることを特徴とする請求項1〜5のいずれか1項に記載の電気めっき方法。   The electroplating method according to claim 1, wherein the object to be plated is a substrate on which a plurality of electronic components are mounted. 被めっき物表面にめっき回路パターンを形成するためのレジストパターンが形成されていることを特徴とする請求項6記載の電気めっき方法。   7. The electroplating method according to claim 6, wherein a resist pattern for forming a plating circuit pattern is formed on the surface of the object to be plated. 被めっき物の両表面にめっき回路パターンを形成するためのレジストパターンが形成されており、被めっき物にはその両表面にめっき回路パターンが形成されたときに両表面のめっき回路パターンが連通できる位置にスルーホールが形成されていることを特徴とする請求項7記載の電気めっき方法。   A resist pattern for forming a plating circuit pattern is formed on both surfaces of the object to be plated, and the plating circuit pattern on both surfaces can communicate with the object when the plating circuit pattern is formed on both surfaces of the object to be plated. The electroplating method according to claim 7, wherein a through hole is formed at a position.
JP2008267707A 2008-10-16 2008-10-16 Electroplating method Pending JP2010095762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267707A JP2010095762A (en) 2008-10-16 2008-10-16 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267707A JP2010095762A (en) 2008-10-16 2008-10-16 Electroplating method

Publications (1)

Publication Number Publication Date
JP2010095762A true JP2010095762A (en) 2010-04-30

Family

ID=42257646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267707A Pending JP2010095762A (en) 2008-10-16 2008-10-16 Electroplating method

Country Status (1)

Country Link
JP (1) JP2010095762A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027591A1 (en) * 2011-08-25 2013-02-28 三洋電機株式会社 Solar cell and solar cell module
CN104087980A (en) * 2014-07-24 2014-10-08 隆昌山川精密焊管有限责任公司 Method for improving precision of working cylinder end of double-headed chamfering machine processing shock absorber
JP2016180148A (en) * 2015-03-24 2016-10-13 京セラ株式会社 Electrolytic plating apparatus
CN109753676A (en) * 2017-11-07 2019-05-14 株式会社荏原制作所 Plating analytic method, plating resolution system and the computer readable storage medium for plating parsing
CN110184639A (en) * 2018-02-22 2019-08-30 株式会社荏原制作所 Electroplanting device
CN110219038A (en) * 2018-03-01 2019-09-10 株式会社荏原制作所 Blender, plater and coating method
US11330718B2 (en) 2017-07-26 2022-05-10 Sumitomo Electric Industries, Ltd. Printed wiring board production method and printed wiring board production apparatus
CN115323470A (en) * 2022-10-11 2022-11-11 之江实验室 Device for realizing electroplating of multiple wafers

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027591A1 (en) * 2011-08-25 2013-02-28 三洋電機株式会社 Solar cell and solar cell module
JPWO2013027591A1 (en) * 2011-08-25 2015-03-19 三洋電機株式会社 Solar cell and solar cell module
CN104087980A (en) * 2014-07-24 2014-10-08 隆昌山川精密焊管有限责任公司 Method for improving precision of working cylinder end of double-headed chamfering machine processing shock absorber
CN104087980B (en) * 2014-07-24 2016-06-22 隆昌山川精密焊管有限责任公司 The method improving the precision of Dual-head chamfering machining shock absorber working cylinder end
JP2016180148A (en) * 2015-03-24 2016-10-13 京セラ株式会社 Electrolytic plating apparatus
US11330718B2 (en) 2017-07-26 2022-05-10 Sumitomo Electric Industries, Ltd. Printed wiring board production method and printed wiring board production apparatus
US11672082B2 (en) 2017-07-26 2023-06-06 Sumitomo Electric Industries, Ltd. Printed wiring board production method and printed wiring board production apparatus
CN109753676A (en) * 2017-11-07 2019-05-14 株式会社荏原制作所 Plating analytic method, plating resolution system and the computer readable storage medium for plating parsing
CN109753676B (en) * 2017-11-07 2023-08-18 株式会社荏原制作所 Plating analysis method, plating analysis system, and computer-readable storage medium for plating analysis
CN110184639A (en) * 2018-02-22 2019-08-30 株式会社荏原制作所 Electroplanting device
CN110184639B (en) * 2018-02-22 2022-07-26 株式会社荏原制作所 Electroplating device
CN110219038A (en) * 2018-03-01 2019-09-10 株式会社荏原制作所 Blender, plater and coating method
CN110219038B (en) * 2018-03-01 2021-07-27 株式会社荏原制作所 Stirrer, plating device and plating method
CN115323470A (en) * 2022-10-11 2022-11-11 之江实验室 Device for realizing electroplating of multiple wafers
CN115323470B (en) * 2022-10-11 2023-03-10 之江实验室 Device for realizing electroplating of multiple wafers

Similar Documents

Publication Publication Date Title
JP2010095762A (en) Electroplating method
US6896784B2 (en) Method for controlling local current to achieve uniform plating thickness
CN103619125A (en) PCB electroplating method for improving electroplating uniformity
KR20070041227A (en) Jig for electroplating and electroplating equipments comprising the same
JP5649591B2 (en) Electroplating holder and electroplating apparatus using the holder
CN201212065Y (en) Slice type electroplating clamper of integrated circuit lead frame
KR102515885B1 (en) Method for determining feed point arrangement in electroplating device and electroplating device for plating a rectangular substrate
KR20180060312A (en) Mother plate and producing method of the same, and producing method of the same
JP2010093074A (en) Flexible printed wiring board sheet and method for manufacturing the same
JP2007308783A (en) Apparatus and method for electroplating
JP2015086444A (en) Electrolytic plating apparatus
CN110892095B (en) Method and apparatus for manufacturing printed wiring board
KR101198005B1 (en) Electroplating apparatus
JP2013095968A (en) Method of manufacturing plating film
KR101832988B1 (en) Mother plate and producing method of the same, and producing method of the same
JP2006310705A (en) Process for manufacturing planar coil
KR20010010788A (en) Electroplating technology using magnetic fields
JP2008297586A (en) Electrolytic plating apparatus
KR20060004594A (en) Electrolytic plating apparatus
US20230092346A1 (en) Electroplating co-planarity improvement by die shielding
US9867293B1 (en) Method and system of controlling alloy composition during electroplating
WO2020162031A1 (en) Cellular potential measurement substrate, method for producing same, and cell culture substrate
CN110139474B (en) Substrate circuit structure convenient for gold plating
TWI404833B (en) Electroplate system and method for using the same
JP2015229775A (en) Contact jig for electroplating, semiconductor production apparatus and production method of semiconductor device