JP2010095469A - Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene - Google Patents

Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene Download PDF

Info

Publication number
JP2010095469A
JP2010095469A JP2008267739A JP2008267739A JP2010095469A JP 2010095469 A JP2010095469 A JP 2010095469A JP 2008267739 A JP2008267739 A JP 2008267739A JP 2008267739 A JP2008267739 A JP 2008267739A JP 2010095469 A JP2010095469 A JP 2010095469A
Authority
JP
Japan
Prior art keywords
solvent
reaction
copper
dialkoxythiophene
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008267739A
Other languages
Japanese (ja)
Inventor
Hirofumi Nobushima
浩文 延嶋
Yasuo Inoue
靖夫 井上
Makoto Muto
真 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Kagaku Kogyo Co Ltd
Original Assignee
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Kagaku Kogyo Co Ltd filed Critical Tama Kagaku Kogyo Co Ltd
Priority to JP2008267739A priority Critical patent/JP2010095469A/en
Publication of JP2010095469A publication Critical patent/JP2010095469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply producing 3,4-dialkoxythiophene in a high quality and high yield. <P>SOLUTION: This method for producing the 3,4-dialkoxythiophene expressed by following general formula 3 or 4 is characterized by performing the decarboxylation reaction of 3,4-dialkoxythiophene dicarboxylic acid expressed by following general formula 1 or 2 under an inert gas atmosphere, and under normal pressure or pressurization in a solvent having a lower boiling point than that of the 3,4-dialkoxythiophene expressed by general formula 3 or 4 by using a divalent copper salt as a catalyst. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、目的物より低沸点の溶媒を用いて、窒素またはアルゴンなどの不活性ガス雰囲気下もしくは不活性ガス雰囲気かつ加圧下、3,4−ジアルコキシ(またはアルキレンジオキシ)−2,5−チオフェンジカルボン酸(以下単に「3,4−ジアルコキシチオフェンジカルボン酸」という)の脱カルボキシル化反応による3,4−ジアルコキシ(またはアルキレンジオキシ)チオフェン(以下単に「3,4−ジアルコキシチオフェン」という)の製造方法に関する。   The present invention uses 3,4-dialkoxy (or alkylenedioxy) -2,5 in an inert gas atmosphere such as nitrogen or argon or under an inert gas atmosphere and pressure using a solvent having a boiling point lower than that of the target product. -3,4-dialkoxy (or alkylenedioxy) thiophene (hereinafter simply referred to as "3,4-dialkoxythiophene") by decarboxylation reaction of thiophene dicarboxylic acid (hereinafter simply referred to as "3,4-dialkoxythiophenedicarboxylic acid") ").

これまで、3,4−ジアルコキシチオフェンジカルボン酸からの脱カルボキシル化反応による3,4−ジアルコキシチオフェンの製造方法では、溶媒としてキノリン(特許文献1)やテトラメチレンスルホン(スルホラン)、ジフェニルスルホン、ポリエチレングリコール(特許文献2)などの、生成物である3,4−ジアルコキシチオフェンよりも高沸点の特殊な溶媒が使用されてきた。また、生成物である3,4−ジアルコキシチオフェンよりも低沸点の溶媒を使用し、酸素が存在する雰囲気で3,4−ジアルコキシチオフェンジカルボン酸の脱カルボキシル化反応を行う方法も知られている(特許文献3)。
米国特許第2453103号明細書 特開2002−19397号公報 米国特許第7,202,369号明細書
Until now, in the method for producing 3,4-dialkoxythiophene by decarboxylation reaction from 3,4-dialkoxythiophenedicarboxylic acid, quinoline (Patent Document 1), tetramethylenesulfone (sulfolane), diphenylsulfone, Special solvents having higher boiling points than the product 3,4-dialkoxythiophene, such as polyethylene glycol (Patent Document 2) have been used. Also known is a method for decarboxylation of 3,4-dialkoxythiophene dicarboxylic acid in an oxygen-containing atmosphere using a solvent having a lower boiling point than the product 3,4-dialkoxythiophene. (Patent Document 3).
U.S. Pat. No. 2,453,103 JP 2002-19397 A US Pat. No. 7,202,369

しかしながら、特許文献1に記載の方法では、反応自体が低収率であることや、残存するキノリンが後続の重合工程において妨害作用を示すことおよびキノリン回収のため、反応後の処理法としてキノリンの酸抽出が必須であった。また、特許文献2に記載の方法では、蒸留時に高真空や高温などの特殊条件が必要であった。また、溶媒の回収なしで次の反応を行うことが可能であるが、タールの蓄積に問題があった。   However, in the method described in Patent Document 1, since the reaction itself is in a low yield, the remaining quinoline exhibits an interfering action in the subsequent polymerization step, and quinoline recovery is performed as a treatment method after the reaction. Acid extraction was essential. Further, the method described in Patent Document 2 requires special conditions such as high vacuum and high temperature during distillation. Moreover, although it is possible to perform the next reaction without recovering the solvent, there was a problem in tar accumulation.

一方、特許文献3に記載の方法では、反応系に酸素あるいは空気を通気するという特殊操作が必要であった。本発明者らが追試したところ、触媒として銅粉を使用した場合において、反応は進行したものの、触媒として銅塩を使用した場合には、反応の進行はほとんど認められなかった。この結果から、酸素は、銅粉を使用した場合、これを酸化するのに必要であり、銅塩を触媒とする3,4−ジアルコキシチオフェンジカルボン酸の脱炭酸(脱カルボキシル基)においては、反応を阻害することが明らかとなった。一方、生成物であるジアルコキシチオフェンの熱安定性を酸素雰囲気下で調査した結果、着色および分解が激しいことも明らかとなった。
以上のようにこれまでの公知の製造方法を、工業的に実施するにあたっては様々の問題があった。
On the other hand, the method described in Patent Document 3 requires a special operation in which oxygen or air is passed through the reaction system. As a result of a further trial by the present inventors, when copper powder was used as the catalyst, the reaction proceeded, but when the copper salt was used as the catalyst, the progress of the reaction was hardly recognized. From this result, oxygen is necessary to oxidize copper powder when used, and in decarboxylation (decarboxylation group) of 3,4-dialkoxythiophenedicarboxylic acid using copper salt as a catalyst, It was found to inhibit the reaction. On the other hand, as a result of investigating the thermal stability of the product dialkoxythiophene in an oxygen atmosphere, it became clear that coloring and decomposition were intense.
As described above, there have been various problems in industrially implementing the known production methods so far.

本発明の目的は、高品質・高収率で3,4−ジアルコキシチオフェンを簡便に製造する方法を提供することである。   An object of the present invention is to provide a method for easily producing 3,4-dialkoxythiophene with high quality and high yield.

上記目的は以下の本発明によって達成される。すなわち、本発明は、下記一般式1または2で表される3,4−ジアルコキシチオフェンジカルボン酸を、不活性ガス雰囲気下で常圧または加圧下に、下記一般式3または4で表される3,4−ジアルコキシチオフェンよりも沸点の低い溶媒中で、2価の銅塩を触媒として脱カルボキシル化反応を行うことを特徴とする下記一般式3または4で表される3,4−ジアルコキシチオフェンの製造方法を提供する。   The above object is achieved by the present invention described below. That is, the present invention represents a 3,4-dialkoxythiophene dicarboxylic acid represented by the following general formula 1 or 2 represented by the following general formula 3 or 4 under an inert gas atmosphere at normal pressure or under pressure. A 3,4-disilane represented by the following general formula 3 or 4 is characterized in that a decarboxylation reaction is performed using a divalent copper salt as a catalyst in a solvent having a boiling point lower than that of 3,4-dialkoxythiophene. A method for producing alkoxythiophene is provided.

Figure 2010095469
(但し、式中R1、R2およびR3は置換基を有してもよい炭素原子数1〜15の直鎖状原子団(アルキルまたはアルキレン)である。)
Figure 2010095469
(However, in the formula, R 1 , R 2 and R 3 are each a linear atomic group having 1 to 15 carbon atoms (alkyl or alkylene) which may have a substituent.)

本発明によれば、高品質・高収率で3,4−ジアルコキシチオフェンを簡便に製造する方法を提供することができる。   According to the present invention, it is possible to provide a method for easily producing 3,4-dialkoxythiophene with high quality and high yield.

次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。本発明の方法で得られる前記一般式3または4で表される化合物は、導電性ポリチオフェンを製造するための原料であり、代表的には、3,4−エチレンジオキシチオフェン(EDOT、IUPAC名:2,3−ジヒドロチエノ[3,4−b]−1,4−ジオキシン)と呼ばれる化合物である。   Next, the present invention will be described in more detail with reference to preferred embodiments. The compound represented by the general formula 3 or 4 obtained by the method of the present invention is a raw material for producing a conductive polythiophene, typically 3,4-ethylenedioxythiophene (EDOT, IUPAC name) : 2,3-dihydrothieno [3,4-b] -1,4-dioxin).

本発明で原料として使用する前記一般式1または2で表される化合物は公知の化合物であり、下記公知文献1、2に従って製造し、本発明で使用することができる。好ましい化合物は、前記一般式1においては、R1、R2およびR3が置換基を有してもよい炭素原子数1〜15の直鎖状原子団(アルキルまたアルキレン)であり、特に好ましい化合物は、R1、R2およびR3がエチル基(エチレン基)またはメチル基(メチレン基)である化合物である。
文献1:[Synthetic Communication,26(11), 2205 (1996)、Macromolecules,30, 2585(1997)、Tetrahedron,23,2437 (1967)、Chem.Mater.,10,896(1998)]
文献2:[J.Chem.Soc. Perkin Trans.1,2001,2595、J.prakt.Chem.,338,672(1996)、Tetrahedron Lett.,45,6049(2004)]
The compound represented by the general formula 1 or 2 used as a raw material in the present invention is a known compound, and can be produced according to the following known documents 1 and 2 and used in the present invention. In the general formula 1, a preferable compound is a linear atomic group (alkyl or alkylene) having 1 to 15 carbon atoms in which R 1 , R 2 and R 3 may have a substituent, and is particularly preferable. The compound is a compound in which R 1 , R 2 and R 3 are an ethyl group (ethylene group) or a methyl group (methylene group).
Reference 1: [Synthetic Communication, 26 (11), 2205 (1996), Macromolecules, 30, 2585 (1997), Tetrahedron, 23 , 2437 (1967), Chem. Mater., 10,896 (1998)]
Reference 2: [J. Chem. Soc. Perkin Trans. 1, 2001 , 2595, J. prakt. Chem., 338 , 672 (1996), Tetrahedron Lett., 45, 6049 (2004)]

また、本発明の製造方法は、脱カルボキシル化反応を常圧で行う場合と加圧下で行う場合に分けられる。脱カルボキシル化反応を行う場合には、出発物質である3,4−ジアルコキシチオフェンジカルボン酸を、目的物である3,4−ジアルコキシチオフェンよりも低沸点の溶媒に溶解または懸濁して行う。   The production method of the present invention can be divided into a case where the decarboxylation reaction is performed at normal pressure and a case where the decarboxylation reaction is performed under pressure. When carrying out the decarboxylation reaction, the starting material 3,4-dialkoxythiophene dicarboxylic acid is dissolved or suspended in a solvent having a lower boiling point than that of the target 3,4-dialkoxythiophene.

本発明の製造方法を不活性ガス雰囲気かつ常圧下で行う場合、溶媒としては、常圧での沸点が120℃以上であることが好ましい。好ましい溶媒は、アミド系溶媒であり、例えば、1−メチル−2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、2−ピロリジノン、ε−カプロラクタム、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロパンアミドなどが使用できるが、特にN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが望ましい。   When the production method of the present invention is carried out under an inert gas atmosphere and normal pressure, the solvent preferably has a boiling point of 120 ° C. or higher at normal pressure. Preferred solvents are amide solvents, such as 1-methyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N-methylformamide, N, N -Dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and the like can be used, and N, N-dimethylformamide and N, N-dimethylacetamide are particularly preferable.

また、本発明の製造方法を不活性ガス雰囲気かつ加圧下で行う場合には、加圧下での沸点が120℃以上となる溶媒、例えば、水、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、ニトリル系溶媒などの極性溶媒が使用できる。アルコール系溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブタノール、tert−ブタノールなどが、ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、ジエチルケトン、エチルプロピルケトン、エチルイソプロピルケトン、ジプロピルケトン、プロピルイソプロピルケトン、ジイソプロピルケトンなどが、エステル系溶媒・ニトリル系溶媒としては、酢酸メチル、酢酸エチル、アセトニトリルなどが望ましい。また、これらの溶媒を組み合わせて使用しても構わない。出発物質である3,4−ジアルコキシチオフェンジカルボン酸が水性ペーストの場合でも、乾燥或いは共沸脱水による水の除去等の特別な操作は必要なく、そのまま本反応に使用できる。   Further, when the production method of the present invention is carried out under an inert gas atmosphere and under pressure, a solvent having a boiling point of 120 ° C. or higher under pressure, such as water, alcohol solvent, ketone solvent, ester solvent, Polar solvents such as nitrile solvents can be used. Examples of alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, and tert-butanol. Examples of ketone solvents include acetone, methyl ethyl ketone, methyl propyl ketone, and methyl. Isopropyl ketone, diethyl ketone, ethyl propyl ketone, ethyl isopropyl ketone, dipropyl ketone, propyl isopropyl ketone, diisopropyl ketone, and the like are preferable as the ester solvent / nitrile solvent, such as methyl acetate, ethyl acetate, and acetonitrile. Further, these solvents may be used in combination. Even when 3,4-dialkoxythiophene dicarboxylic acid as a starting material is an aqueous paste, no special operation such as drying or removal of water by azeotropic dehydration is required, and it can be used in this reaction as it is.

このような低沸点溶媒を使用する場合には、反応の圧力は、使用する溶媒によっても異なるが、反応温度が120℃以上となるように調整すればよく、反応の進行に順って炭酸ガスの発生により圧力が上昇するので、適当な圧力に調節してもよい。   When such a low-boiling solvent is used, the reaction pressure varies depending on the solvent used, but it may be adjusted so that the reaction temperature becomes 120 ° C. or higher. Since the pressure rises due to the occurrence of this, it may be adjusted to an appropriate pressure.

反応は溶液または懸濁液で行うことができるが、出発原料である3,4−ジアルコキシチオフェンジカルボン酸の溶媒に対する溶解度が極めて小さいことから、経済性を考慮すると、混合が可能な懸濁状態を維持できる溶媒量が好ましい。   The reaction can be carried out in solution or suspension, but since the solubility of 3,4-dialkoxythiophene dicarboxylic acid, which is the starting material, in the solvent is extremely small, in consideration of economy, it can be mixed in a suspended state. The amount of solvent that can maintain the above is preferable.

本発明における3,4−ジアルコキシチオフェンジカルボン酸の脱カルボキシル反応は、2価の銅塩を触媒として行われ、触媒としては炭酸銅、硫酸銅、酸化銅、水酸化銅、酢酸銅などを用いることができる。触媒の使用量は、出発原料である3,4−ジアルコキシチオフェンジカルボン酸に対して、100モル%未満であればよく、一般的には20モル%以下である。生産性および経済性を考慮すると、10モル%以下が好ましい。   In the present invention, the decarboxylation reaction of 3,4-dialkoxythiophene dicarboxylic acid is performed using a divalent copper salt as a catalyst, and copper carbonate, copper sulfate, copper oxide, copper hydroxide, copper acetate, or the like is used as the catalyst. be able to. The usage-amount of a catalyst should just be less than 100 mol% with respect to the 3, 4- dialkoxy thiophene dicarboxylic acid which is a starting material, and is generally 20 mol% or less. Considering productivity and economy, it is preferably 10 mol% or less.

本発明の3,4−ジアルコキシチオフェンジカルボン酸の脱カルボキシル化の反応温度は、120〜170℃の範囲が好ましく、特に125〜150℃が望ましい。反応温度が120℃未満では、脱カルボキシル化反応が遅く、一方、反応温度が170℃を超えると、副反応に起因すると思われるタール分が発生する畏れがある。   The reaction temperature for the decarboxylation of the 3,4-dialkoxythiophene dicarboxylic acid of the present invention is preferably in the range of 120 to 170 ° C, particularly preferably 125 to 150 ° C. If the reaction temperature is less than 120 ° C., the decarboxylation reaction is slow. On the other hand, if the reaction temperature exceeds 170 ° C., a tar component that may be caused by a side reaction may be generated.

本発明の3,4−ジアルコキシチオフェンジカルボン酸の脱カルボキシル化反応は、窒素またはアルゴンなどの不活性ガス雰囲気下で行い、反応系に空気もしくは酸素を存在させないことが特徴である。反応系に空気もしくは酸素が存在すると、後記比較例に記載のように脱カルボキシル化反応が遅く、酸化反応に基づくと思われるタール分の発生により、収率が低下する畏れがある。   The decarboxylation reaction of 3,4-dialkoxythiophene dicarboxylic acid of the present invention is carried out in an inert gas atmosphere such as nitrogen or argon, and is characterized in that air or oxygen does not exist in the reaction system. When air or oxygen is present in the reaction system, the decarboxylation reaction is slow as described in Comparative Examples below, and the yield may decrease due to the generation of a tar component that is thought to be based on the oxidation reaction.

反応終了後、通常は溶媒を留去するが、回収される溶媒を脱カルボキシル化反応へ再利用することも可能である。また、生成物である3,4−ジアルコキシチオフェンの精製法としては、反応溶媒を除くための抽出、水洗、色や不純物を除くための活性炭処理や蒸留などがあり、これらの組み合わせにより望む純度のジアルコキシチオフェンを得ることが可能である。   After completion of the reaction, the solvent is usually distilled off, but the recovered solvent can be reused for the decarboxylation reaction. In addition, purification methods of the product 3,4-dialkoxythiophene include extraction to remove the reaction solvent, washing with water, activated carbon treatment to remove color and impurities, and distillation, etc. It is possible to obtain dialkoxythiophene.

上記の抽出操作を行う場合には、より沸点が低いジエチルエーテル、ジイソプロピルエーテルなどのエーテル系溶媒や酢酸エチルなどのエステル系溶媒、ヘキサンやトルエンなどの炭化水素系溶媒が使用できる。   When performing the above extraction operation, ether solvents such as diethyl ether and diisopropyl ether having a lower boiling point, ester solvents such as ethyl acetate, and hydrocarbon solvents such as hexane and toluene can be used.

次に比較例および実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。
なお、原料となる3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸は下記に示す公知文献1に記載の方法を参考にして合成した。
文献1:[Synthetic Communication,26(11), 2205 (1996)、Macromolecules,30, 2585(1997)、Tetrahedron,23,2437 (1967)、Chem.Mater.,10,896(1998)]
また、3,4−ジメトキシ−2,5−チオフェンジカルボン酸は、下記に示す公知文献2に記載の方法を参考にして合成した。
文献2:[J.Chem.Soc. Perkin Trans.1,2001,2595、J.prakt.Chem.,338,672(1996)、Tetrahedron Lett.,45,6049(2004)]
Next, although a comparative example and an Example are given and this invention is demonstrated further more concretely, this invention is not limited to these examples.
In addition, 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid as a raw material was synthesized with reference to the method described in publicly known document 1 shown below.
Reference 1: [Synthetic Communication, 26 (11), 2205 (1996), Macromolecules, 30, 2585 (1997), Tetrahedron, 23 , 2437 (1967), Chem. Mater., 10,896 (1998)]
In addition, 3,4-dimethoxy-2,5-thiophenedicarboxylic acid was synthesized with reference to the method described in publicly known document 2 shown below.
Reference 2: [J. Chem. Soc. Perkin Trans. 1, 2001 , 2595, J. prakt. Chem., 338 , 672 (1996), Tetrahedron Lett., 45, 6049 (2004)]

比較例1[銅粉を用いる反応]
酸素雰囲気下および窒素気流下にて3,4−エチレンジオキシチオフェンジカルボン酸の脱カルボキシル化反応を実施した。100gのDMSO(ジメチルスルホキシド)に、40gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および4.0gの銅粉末を加え、内温125〜135℃で加温し、撹拌した。各反応時間でのEDOT(3,4−エチレンジオキシチオフェン)、中間体および原料の反応率を下記表1に示す。
Comparative Example 1 [Reaction using copper powder]
Decarboxylation reaction of 3,4-ethylenedioxythiophene dicarboxylic acid was carried out under an oxygen atmosphere and a nitrogen stream. To 100 g of DMSO (dimethyl sulfoxide), 40 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 4.0 g of copper powder were added, and the mixture was heated at an internal temperature of 125 to 135 ° C. and stirred. Table 1 below shows the reaction rates of EDOT (3,4-ethylenedioxythiophene), intermediates, and raw materials at each reaction time.

Figure 2010095469
表中の数値は、高速液体クロマトグラフィー(HPLC)による分析チャートの面積%である。
Figure 2010095469
The numerical value in a table | surface is the area% of the analysis chart by a high performance liquid chromatography (HPLC).

上記表1を参照すると触媒として銅粉を用いた場合には、3.0時間反応後において、酸素雰囲気下ではEDOTが有意に生成するが、窒素雰囲気化ではEDOTは殆ど生成しない。この結果は、触媒として銅粉を用いる場合には、銅粉を酸化するために酸素が必要であることを示している。   Referring to Table 1 above, when copper powder is used as a catalyst, EDOT is significantly generated in an oxygen atmosphere after reaction for 3.0 hours, but EDOT is hardly generated in a nitrogen atmosphere. This result has shown that oxygen is required in order to oxidize copper powder, when using copper powder as a catalyst.

比較例2[銅塩(酸化銅)を用いる反応]
酸素雰囲気下および窒素気流下にて3,4−エチレンジオキシチオフェンジカルボン酸の脱カルボキシル化反応を実施した。50mLのDMF(ジメチルホルムアミド)に、20gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および0.36gの酸化銅を加え、内温125〜135℃で加温し、撹拌した。各条件でのEDOT反応率を下記表2に示す。あわせて、各反応時間でのEDOT、中間体および原料の反応率も下記表2に示す。
Comparative Example 2 [Reaction Using Copper Salt (Copper Oxide)]
Decarboxylation reaction of 3,4-ethylenedioxythiophene dicarboxylic acid was carried out under an oxygen atmosphere and a nitrogen stream. To 50 mL of DMF (dimethylformamide), 20 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.36 g of copper oxide were added, and the mixture was heated at an internal temperature of 125 to 135 ° C. and stirred. The EDOT reaction rate under each condition is shown in Table 2 below. In addition, Table 2 also shows the reaction rates of EDOT, intermediates, and raw materials at each reaction time.

Figure 2010095469
表中の数値は、HPLCによる分析チャートの面積%である。
上記表2を参照すると触媒として酸化銅を用いた場合には、3.0時間反応後において、酸素雰囲気ではEDOTの生成率は低く、実用性がないが、窒素雰囲気下ではEDOTの生成率が高いことを示している。
Figure 2010095469
The numerical values in the table are the area% of the analysis chart by HPLC.
Referring to Table 2 above, when copper oxide is used as the catalyst, after 3.0 hours of reaction, the EDOT production rate is low in an oxygen atmosphere and is not practical, but under a nitrogen atmosphere, the EDOT production rate is low. It is high.

比較例3[銅塩(塩基性炭酸銅)を用いる反応]
酸素雰囲気下および窒素気流下にて3,4−エチレンジオキシチオフェンジカルボン酸の脱カルボキシル化反応を実施した。50mLのDMFに、20gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および0.25gの塩基性炭酸銅を加え、内温125〜135℃で加温し、撹拌した。各反応時間でのEDOT、中間体および原料の反応率を下記表3に示す。
Comparative Example 3 [Reaction Using Copper Salt (Basic Copper Carbonate)]
Decarboxylation reaction of 3,4-ethylenedioxythiophene dicarboxylic acid was carried out under an oxygen atmosphere and a nitrogen stream. To 50 mL of DMF, 20 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.25 g of basic copper carbonate were added, and the mixture was heated at an internal temperature of 125 to 135 ° C. and stirred. Table 3 below shows the reaction rates of EDOT, intermediates, and raw materials at each reaction time.

Figure 2010095469
表中の数値は、HPLCによる分析チャートの面積%である。
上記表3を参照すると、比較例1と同様に触媒として塩基性炭酸銅を用いた場合には、3.0時間反応後において、酸素雰囲気ではEDOTの生成率は低く、実用性がないが、窒素雰囲気下ではEDOTの生成率が高いことを示している。
Figure 2010095469
The numerical values in the table are the area% of the analysis chart by HPLC.
Referring to Table 3 above, when basic copper carbonate was used as a catalyst as in Comparative Example 1, the EDOT production rate was low in an oxygen atmosphere after 3.0 hours of reaction, and there was no practicality. It shows that the generation rate of EDOT is high under a nitrogen atmosphere.

実施例1
2.5mLのN,N−ジメチルホルムアミド(DMF)に、1.0gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸と下記に示す銅触媒(Cuとして5モル%)を加え、窒素雰囲気下、135℃の油浴で15時間加熱撹拌した。それぞれの3,4−エチレンジオキシチオフェン(EDOT)生成率を下記表4に示す。
Example 1
To 2.5 mL of N, N-dimethylformamide (DMF), 1.0 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and the copper catalyst shown below (5 mol% as Cu) were added, The mixture was heated and stirred in a 135 ° C. oil bath for 15 hours under a nitrogen atmosphere. The respective 4,4-ethylenedioxythiophene (EDOT) production rates are shown in Table 4 below.

Figure 2010095469
Figure 2010095469

実施例2
2.5mLのN,N−ジメチルホルムアミド(DMF)に、1.0gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸と塩基性炭酸銅25mgを加え、アルゴン雰囲気下、135℃の油浴で15時間加熱撹拌したところ、生成率88.9%でEDOTを得た。
Example 2
To 2.5 mL of N, N-dimethylformamide (DMF), 1.0 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 25 mg of basic copper carbonate were added, and 135 ° C. under an argon atmosphere. When heated and stirred in an oil bath for 15 hours, EDOT was obtained with a production rate of 88.9%.

実施例3
50mLのDMFに、15gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および0.38gの塩基性炭酸銅を加え、窒素雰囲気下、内温125〜135℃15時間加熱撹拌した。室温に冷却し、不溶物を濾去後、溶媒を減圧下に濃縮し、残渣18.5gを得た。これに100mLのジエチルエーテルと1.0gの活性炭を加え、室温下30分間撹拌後、不溶物を濾去した。濾液に20mLの水を加え、抽出操作を行った。有機層の溶媒を減圧下に留去し、7.4gのEDOTを得た。
Example 3
To 50 mL of DMF, 15 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.38 g of basic copper carbonate were added, and the mixture was heated and stirred for 15 hours at an internal temperature of 125 to 135 ° C. in a nitrogen atmosphere. After cooling to room temperature and removing insolubles by filtration, the solvent was concentrated under reduced pressure to obtain 18.5 g of a residue. To this, 100 mL of diethyl ether and 1.0 g of activated carbon were added, and the mixture was stirred at room temperature for 30 minutes. 20 mL of water was added to the filtrate, and extraction operation was performed. The solvent of the organic layer was distilled off under reduced pressure to obtain 7.4 g of EDOT.

実施例4
50mLのN,N−ジメチルアセトアミド(DMAc)に15gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および0.38gの塩基性炭酸銅を加え、窒素雰囲気下、内温125〜135℃で撹拌しながら、15時間加温した。室温に冷却し、不溶物を濾去後、溶媒を減圧下に濃縮し、残渣17.8gを得た。これに100mLのジエチルエーテルと1.0gの活性炭を加え、室温下30分間撹拌後、活性炭を濾去した。濾液に20mLの水を加え、抽出操作を行った。有機層の溶媒を減圧下に留去し、5.7gのEDOTを得た。
Example 4
To 50 mL of N, N-dimethylacetamide (DMAc), 15 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.38 g of basic copper carbonate are added, and the internal temperature is 125 to 135 under a nitrogen atmosphere. The mixture was warmed for 15 hours while stirring at ° C. After cooling to room temperature and removing insolubles by filtration, the solvent was concentrated under reduced pressure to obtain 17.8 g of a residue. To this, 100 mL of diethyl ether and 1.0 g of activated carbon were added, and the mixture was stirred at room temperature for 30 minutes, and then the activated carbon was removed by filtration. 20 mL of water was added to the filtrate, and extraction operation was performed. The solvent of the organic layer was distilled off under reduced pressure to obtain 5.7 g of EDOT.

実施例5
125mLのDMFに、37.5gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および0.94gの塩基性炭酸銅を加え、窒素雰囲気下、内温125〜135℃で撹拌しながら15時間加温した。室温に冷却し、不溶物を濾去後、溶媒を減圧下に濃縮し、残渣55.4gを得た。これに250mLの酢酸エチルと2.5gの活性炭を加え、室温下30分間撹拌後、活性炭を濾去した。濾液に50mLの水を加え、抽出操作を行った。有機層の溶媒を減圧下に留去し、21.5gのEDOTを得た。
Example 5
To 125 mL of DMF, 37.5 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.94 g of basic copper carbonate are added and stirred at an internal temperature of 125 to 135 ° C. in a nitrogen atmosphere. Warmed for 15 hours. After cooling to room temperature, insolubles were removed by filtration, and the solvent was concentrated under reduced pressure to obtain 55.4 g of a residue. To this were added 250 mL of ethyl acetate and 2.5 g of activated carbon, and the mixture was stirred at room temperature for 30 minutes, and then the activated carbon was filtered off. 50 mL of water was added to the filtrate, and extraction operation was performed. The solvent of the organic layer was distilled off under reduced pressure to obtain 21.5 g of EDOT.

実施例6
3.4LのDMFを攪拌機つきのフラスコに入れ、2.0kgの湿体の3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸(乾体換算:1.5kg)および36gの炭酸銅を加えた。混合物を加熱し、窒素雰囲気下、内温60〜75℃、内圧160〜40torrで共沸脱水を行い、水約550gを留出させた。留出した量のDMF342mLを補充後、反応温度を125〜138℃とし、混合物を13時間攪拌した。反応液を室温に冷却後、不溶物を濾去後、内温75〜100℃、内圧40〜19torrで溶媒を留去した。内圧を1.6〜0.9torrとし、内温48〜100℃で蒸留を行い、留出分723g(EDOTとしての純度88%)を得た。得られた液体を725mLで2回、362mLで1回水洗を行い、EDOT粗体614g(純度98%)を得た。EDOT粗体をさらに蒸留し、580gの精製EDOT(純度99%)を得た。
Example 6
Place 3.4 L of DMF in a flask with a stirrer and add 2.0 kg of wet 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid (dry body equivalent: 1.5 kg) and 36 g of copper carbonate. It was. The mixture was heated and subjected to azeotropic dehydration under a nitrogen atmosphere at an internal temperature of 60 to 75 ° C. and an internal pressure of 160 to 40 torr to distill about 550 g of water. After supplementing 342 mL of the distilled amount of DMF, the reaction temperature was 125 to 138 ° C., and the mixture was stirred for 13 hours. The reaction solution was cooled to room temperature, insolubles were filtered off, and the solvent was distilled off at an internal temperature of 75 to 100 ° C. and an internal pressure of 40 to 19 torr. Distillation was conducted at an internal temperature of 1.6 to 0.9 torr and an internal temperature of 48 to 100 ° C. to obtain 723 g of a distillate (purity 88% as EDOT). The obtained liquid was washed with water twice at 725 mL and once at 362 mL to obtain 614 g (purity 98%) of an EDOT crude product. The crude EDOT was further distilled to obtain 580 g of purified EDOT (purity 99%).

実施例7(3,4−ジメトキシチオフェンへの適用)
2.5mLのN,N−ジメチルホルムアミド(DMF)に、1.0gの3,4−ジメトキシチオフェンジカルボン酸と塩基性炭酸銅25mgを加え、窒素雰囲気下、135℃の油浴で15時間加熱撹拌したところ、生成率58.8%で3,4−ジメトキシチオフェンを得た。
Example 7 (Application to 3,4-dimethoxythiophene)
To 2.5 mL of N, N-dimethylformamide (DMF), 1.0 g of 3,4-dimethoxythiophenedicarboxylic acid and 25 mg of basic copper carbonate are added, and the mixture is heated and stirred in an oil bath at 135 ° C. for 15 hours under a nitrogen atmosphere. As a result, 3,4-dimethoxythiophene was obtained with a production rate of 58.8%.

実施例8
100mLの下記表5の溶媒に、30.0gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸と塩基性炭酸銅0.75gを加え、窒素加圧6.0kg/cm2とした後に、加温し内温135〜140℃で撹拌を行った。反応の進行とともに二酸化炭素が発生し、圧力が上昇したので、内圧が7.0kg/cm2に到達した時点で圧力を放出して6.0kg/cm2に調整する操作を繰り返し行った。検討溶媒のそれぞれの反応時間におけるEDOT生成率を下記表5に示す。
Example 8
To 100 mL of the solvent shown in Table 5 below, 30.0 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.75 g of basic copper carbonate were added to obtain a nitrogen pressure of 6.0 kg / cm 2 . Thereafter, the mixture was heated and stirred at an internal temperature of 135 to 140 ° C. Carbon dioxide is generated as the reaction proceeds, since the pressure is increased, the internal pressure was repeated operation for adjusting the 6.0 kg / cm 2 by releasing pressure when it reaches the 7.0 kg / cm 2. Table 5 below shows the EDOT production rate in each reaction time of the studied solvents.

Figure 2010095469
上記表5の結果からして、低沸点溶媒としてはアセトニトリルが最も優れていることが分かる。
Figure 2010095469
From the results of Table 5 above, it can be seen that acetonitrile is the best low boiling solvent.

実施例9
100mLのIPAに、30gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および0.75gの塩基性炭酸銅を加え、窒素加圧6.0kg/cm2とした後、撹拌下、内温140℃で加温した。内圧6.0〜7.0kg/cm2を維持しながら19時間反応を行い、室温に冷却後、反応液に2.0gの活性炭を加え、室温下30分間撹拌した。活性炭を濾去後、溶媒を減圧下に濃縮し、EDOT1.49gを得た。
Example 9
To 100 mL of IPA, 30 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.75 g of basic copper carbonate were added, and the pressure of nitrogen was adjusted to 6.0 kg / cm 2 . The internal temperature was 140 ° C. The reaction was carried out for 19 hours while maintaining an internal pressure of 6.0 to 7.0 kg / cm 2, and after cooling to room temperature, 2.0 g of activated carbon was added to the reaction solution and stirred at room temperature for 30 minutes. After the activated carbon was filtered off, the solvent was concentrated under reduced pressure to obtain 1.49 g of EDOT.

実施例10
100mLのアセトニトリルに、30gの3,4−エチレンジオキシ−2,5−チオフェンジカルボン酸および0.75gの塩基性炭酸銅を加え、窒素加圧6.0kg/cm2とした後、撹拌下、内温140℃で加温した。内圧6.0〜7.0kg/cm2を維持しながら10時間反応を行い、室温に冷却した。不溶物を濾去後、溶媒を減圧下に濃縮し、EDOT16.2gを得た。
Example 10
To 100 mL of acetonitrile, 30 g of 3,4-ethylenedioxy-2,5-thiophenedicarboxylic acid and 0.75 g of basic copper carbonate were added, and the pressure of nitrogen was adjusted to 6.0 kg / cm 2 . The internal temperature was 140 ° C. While maintaining an internal pressure of 6.0 to 7.0 kg / cm 2 , the reaction was performed for 10 hours, and the mixture was cooled to room temperature. The insoluble material was removed by filtration, and the solvent was concentrated under reduced pressure to obtain 16.2 g of EDOT.

実施例11
100mLのアセトニトリルに、10.0gの3,4−ジメトキシチオフェンジカルボン酸と塩基性炭酸銅0.25gを加え、窒素加圧6.0kg/cm2とした後、撹拌下、内温140℃で加温した。内圧6.0〜7.0kg/cm2を維持しながら10時間反応を行ったところ、生成率53.7%で3,4−ジメトキシチオフェンを得た。
なお、上記においてEDOTの純度および3,4−ジメトキシチオフェンの生成率の測定は、HPLCによる絶対検量線法で行った。
Example 11
To 100 mL of acetonitrile, 10.0 g of 3,4-dimethoxythiophenedicarboxylic acid and 0.25 g of basic copper carbonate are added to adjust the nitrogen pressure to 6.0 kg / cm 2, and then the mixture is heated at an internal temperature of 140 ° C. with stirring. Warm up. When the reaction was carried out for 10 hours while maintaining the internal pressure of 6.0 to 7.0 kg / cm 2 , 3,4-dimethoxythiophene was obtained with a production rate of 53.7%.
In the above, the purity of EDOT and the production rate of 3,4-dimethoxythiophene were measured by the absolute calibration curve method by HPLC.

本発明によれば、高品質・高収率でジアルコキシチオフェンを簡便に製造する方法を提供することができる。本発明の特長は、ジアルコキシチオフェンより低沸点の溶媒の使用することにある。なお、本発明で得られるジアルコキシチオフェンは導電性ポリマーであるポリチオフェンの原料として有用である。   According to the present invention, a method for easily producing dialkoxythiophene with high quality and high yield can be provided. The feature of the present invention resides in the use of a solvent having a lower boiling point than dialkoxythiophene. The dialkoxythiophene obtained in the present invention is useful as a raw material for polythiophene which is a conductive polymer.

Claims (7)

下記一般式1または2で表される3,4−ジアルコキシ(またはアルキレンジオキシ)−2,5−チオフェンジカルボン酸を、不活性ガス雰囲気下で常圧または加圧下に、下記一般式3または4で表される3,4−ジアルコキシ(またはアルキレンジオキシ)チオフェンよりも沸点の低い溶媒中で、2価の銅塩を触媒として脱カルボキシル化反応を行うことを特徴とする下記一般式3または4で表される3,4−ジアルコキシ(またはアルキレンジオキシ)チオフェンの製造方法。
Figure 2010095469
(但し、式中R1、R2およびR3は置換基を有してもよい炭素原子数1〜15の直鎖状原子団(アルキルまたはアルキレン)である。)
3,4-dialkoxy (or alkylenedioxy) -2,5-thiophenedicarboxylic acid represented by the following general formula 1 or 2 is reacted under the following general formula 3 or Wherein the decarboxylation reaction is carried out using a divalent copper salt as a catalyst in a solvent having a boiling point lower than that of the 3,4-dialkoxy (or alkylenedioxy) thiophene represented by Or a method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene represented by 4.
Figure 2010095469
(However, in the formula, R 1 , R 2 and R 3 are each a linear atomic group having 1 to 15 carbon atoms (alkyl or alkylene) which may have a substituent.)
一般式4の3,4−アルキレンジオキシチオフェンが、3,4−エチレンジオキシチオフェンである請求項1に記載の製造方法。   The production method according to claim 1, wherein the 3,4-alkylenedioxythiophene of the general formula 4 is 3,4-ethylenedioxythiophene. 銅触媒が、炭酸銅、硫酸銅、酸化銅、水酸化銅および酢酸銅から選ばれる少なくとも1種である請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the copper catalyst is at least one selected from copper carbonate, copper sulfate, copper oxide, copper hydroxide, and copper acetate. 反応温度が120℃以上である請求項1に記載の製造方法。   The process according to claim 1, wherein the reaction temperature is 120 ° C or higher. 常圧下において使用する溶媒が、アミド系溶媒である請求項1に記載の製造方法。   The process according to claim 1, wherein the solvent used under normal pressure is an amide solvent. 溶媒が、N,N−ジメチルホルムアミドまたはN,N−ジメチルアセトアミドである請求項5に記載の製造方法。   The production method according to claim 5, wherein the solvent is N, N-dimethylformamide or N, N-dimethylacetamide. 加圧下において使用する溶媒が、水、アルコール系溶媒、ケトン系溶媒、エステル系溶媒またはニトリル系溶媒である請求項1に記載の製造方法。   The production method according to claim 1, wherein the solvent used under pressure is water, an alcohol solvent, a ketone solvent, an ester solvent or a nitrile solvent.
JP2008267739A 2008-10-16 2008-10-16 Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene Pending JP2010095469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267739A JP2010095469A (en) 2008-10-16 2008-10-16 Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267739A JP2010095469A (en) 2008-10-16 2008-10-16 Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene

Publications (1)

Publication Number Publication Date
JP2010095469A true JP2010095469A (en) 2010-04-30

Family

ID=42257421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267739A Pending JP2010095469A (en) 2008-10-16 2008-10-16 Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene

Country Status (1)

Country Link
JP (1) JP2010095469A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633811A (en) * 2012-05-04 2012-08-15 苏州大学 Purification method for preparing high-purity 3,4-ethylenedioxythiophene
CN103254169A (en) * 2013-04-18 2013-08-21 青岛和成医药化工有限公司 Process for synthesizing 3, 4-dimethoxythiophene
JP2013533216A (en) * 2010-05-18 2013-08-22 コーニング インコーポレイテッド Process for producing condensed thiophene
CN106366094A (en) * 2016-08-31 2017-02-01 贝利化学(张家港)有限公司 Decarboxylation method of thieno[3,4-b]-1,4-dioxa-5,7-dicarboxylic acid
CN112209945A (en) * 2020-11-10 2021-01-12 湖北吉和昌化工科技有限公司 Synthesis process of 3, 4-ethylenedioxythiophene
CN112979927A (en) * 2019-12-17 2021-06-18 深圳新宙邦科技股份有限公司 Composition, polymer for capacitor and capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533216A (en) * 2010-05-18 2013-08-22 コーニング インコーポレイテッド Process for producing condensed thiophene
CN102633811A (en) * 2012-05-04 2012-08-15 苏州大学 Purification method for preparing high-purity 3,4-ethylenedioxythiophene
CN103254169A (en) * 2013-04-18 2013-08-21 青岛和成医药化工有限公司 Process for synthesizing 3, 4-dimethoxythiophene
CN106366094A (en) * 2016-08-31 2017-02-01 贝利化学(张家港)有限公司 Decarboxylation method of thieno[3,4-b]-1,4-dioxa-5,7-dicarboxylic acid
CN112979927A (en) * 2019-12-17 2021-06-18 深圳新宙邦科技股份有限公司 Composition, polymer for capacitor and capacitor
CN112209945A (en) * 2020-11-10 2021-01-12 湖北吉和昌化工科技有限公司 Synthesis process of 3, 4-ethylenedioxythiophene

Similar Documents

Publication Publication Date Title
JP2010095469A (en) Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene
US6369239B2 (en) Process for the preparation of dialkylthiophenes and alkylenedioxythiophenes
KR100525977B1 (en) Method for producing 3,4-alkylenedioxythiophenes and 3,4-dialkoxythiophenes
JP5816262B2 (en) Method for producing dithiintetracarboximides
FR3008409A1 (en) PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST
CN108299245B (en) Synthesis process of N, N&#39; -bis (3-dimethylaminopropyl) urea
KR20180116371A (en) Process for producing 4-alkoxy-3-hydroxypicolic acid
CN107814757B (en) Method for synthesizing polysubstituted pyrrole derivative
FI101535B (en) Process for the preparation of (4-amino-3,5-dichloro-6-fluoro-2-pyridinyloxy) acetic acid ester
CN112094189B (en) Synthesis method of dimethyl succinylsuccinate
TWI791708B (en) The production method of diol
JP2010132571A (en) Method for producing 3,4-dioxythiophene
CN111269149A (en) Production process of 5- (3,3-dimethylguanidino) -2-oxopentanoic acid
ITMI20062450A1 (en) PROCEDURE FOR THE PREPARATION OF ENTACAPONE
JP2005343837A (en) Method for producing 1,3-dioxolane-4,6-dione compound
US20150051409A1 (en) Process for preparing benzo[1,2-b;4,5-b&#39;]dithiophene-4,8-dicarboxylic acid or its 2,3-dihydro derivative
CN114450261A (en) Process for producing trione compound
CN113999186B (en) C5 arylformyl oxazole compound and preparation method thereof
CN101987842A (en) Method for preparing 2-methyl thiophene derivatives
WO2010127575A1 (en) One-step synthesis method of 2,9-dimethyl-4,7-diphenyl-1,10- phenanthroline
JP2018108978A (en) Method for producing intermediate of biotin, and method for producing biotin
JP2010143845A (en) Method for producing dialkoxythiophene, and alkylenedioxythiophene
KR20100113893A (en) Process for the preparation of dialkoxythiophenes and alkylenedioxythiophenes
CN108341771B (en) Preparation method of 3-cyano-2, 6-dihydroxypyridine sodium hydrate
JP6858011B2 (en) Method for producing hexyl 4-hydroxybenzoate