JP2010095390A - Mesoporous carbon composite material and secondary battery using the same - Google Patents

Mesoporous carbon composite material and secondary battery using the same Download PDF

Info

Publication number
JP2010095390A
JP2010095390A JP2008264358A JP2008264358A JP2010095390A JP 2010095390 A JP2010095390 A JP 2010095390A JP 2008264358 A JP2008264358 A JP 2008264358A JP 2008264358 A JP2008264358 A JP 2008264358A JP 2010095390 A JP2010095390 A JP 2010095390A
Authority
JP
Japan
Prior art keywords
sulfur
mesoporous carbon
carbon
composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008264358A
Other languages
Japanese (ja)
Inventor
Ryoji Sugano
了次 菅野
Takashi Tatsumi
敬 辰巳
Toshiyuki Yokoi
俊之 横井
Miki Nagao
美紀 長尾
Takeshi Kobayashi
剛 小林
Ryota Watanabe
亮太 渡邉
Yuki Imade
侑希 今出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2008264358A priority Critical patent/JP2010095390A/en
Publication of JP2010095390A publication Critical patent/JP2010095390A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material capable of utilizing sulfur as a positive active material especially for a nonaqueous electrolyte secondary battery as a main component. <P>SOLUTION: The composite material contains a mesoporous carbon composite material which is composed of mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon, wherein the content of sulfur is 5% or more based on the total weight of the mesoporous carbon composite material. The mesoporous carbon composite material can be applied to other battery system electrodes, capacitor electrodes or the like. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、メソポーラス炭素(メソポーラスカーボン)複合材料に関する。より詳しくは、本発明は、メソポーラス炭素と、該メソポーラス炭素のメソ孔内に配置された硫黄とを少なくとも含むメソポーラス炭素複合材料に関する。本発明のメソポーラス炭素複合材料は、例えば、二次電池(非水電解質型二次電池、全固体型二次電池、等)の電極として特に好適に使用可能である。   The present invention relates to a mesoporous carbon (mesoporous carbon) composite material. More specifically, the present invention relates to a mesoporous carbon composite material containing at least mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon. The mesoporous carbon composite material of the present invention can be used particularly suitably as an electrode of, for example, a secondary battery (nonaqueous electrolyte type secondary battery, all solid state secondary battery, etc.).

本発明のメソポーラス炭素複合材料の用途は特に制限されないが、説明の便宜の点から、以下では、二次電池の電極に関連する先行技術に関して、主に説明する。   Although the use of the mesoporous carbon composite material of the present invention is not particularly limited, for the convenience of explanation, the following description will mainly focus on the prior art related to the electrode of the secondary battery.

ハイブリッド自動車(例えば、プラグイン・ハイブリッド自動車)ないし電気自動車の実現には、通常は、高エネルギー密度を有する二次電池が要求される。このような二次電池の一種であるリチウム電池は、従来の鉛蓄電池やニッケル水素電池等の二次電池に比べ、高エネルギー密度、高出力密度を有するエネルギーデバイスである。   In order to realize a hybrid vehicle (for example, a plug-in hybrid vehicle) or an electric vehicle, a secondary battery having a high energy density is usually required. A lithium battery which is a kind of such a secondary battery is an energy device having a high energy density and a high output density as compared with a secondary battery such as a conventional lead storage battery or nickel metal hydride battery.

リチウム電池のエネルギー密度を更に向上させる際の課題は、正極材料のエネルギー密度である。次世代のリチウム電池に検討されている酸化物正極のエネルギー密度は、300〜700 Wh/kg程度であり、更なるエネルギー密度を有する材料の開発が期待されている。   The subject at the time of further improving the energy density of a lithium battery is the energy density of positive electrode material. The energy density of an oxide positive electrode studied for the next-generation lithium battery is about 300 to 700 Wh / kg, and development of a material having a further energy density is expected.

硫黄単体を電極として用いた場合のエネルギー密度は2600 Wh/kgで、極めて大きなエネルギー密度を有している。しかしながら、電解液を用いたリチウム電池で硫黄を正極に用いると、充放電過程に生成した多硫化物が電解液中に溶出するため、電池の寿命は著しく低く、高エネルギー密度を有しながらも二次電池として機能しない。溶液系電池における、硫黄正極の優れた充放電特性の報告は皆無である。   When sulfur alone is used as an electrode, the energy density is 2600 Wh / kg, which is extremely large. However, when sulfur is used for the positive electrode in a lithium battery using an electrolytic solution, the polysulfide produced in the charge / discharge process elutes into the electrolytic solution, so the battery life is extremely low, while having a high energy density. Does not function as a secondary battery. There are no reports of the excellent charge / discharge characteristics of the sulfur positive electrode in solution-based batteries.

更には、全固体電池における硫黄正極は、硫黄の高抵抗がネックとなる。すなわち、単体硫黄は、現行の正極材料に比べて1020倍程度抵抗の高い絶縁体であるため、単体硫黄を固体電池で充放電させることができない。 Furthermore, high resistance of sulfur becomes a bottleneck in the sulfur positive electrode in all solid state batteries. That is, single sulfur is an insulator having a resistance about 10 20 times higher than that of the current positive electrode material, so single sulfur cannot be charged / discharged by a solid state battery.

これまでの固体電池の研究では、銅などの金属と単体硫黄を複合化させた硫化物でのみ、固体電池が作動している。しかしながら、金属との複合化では充放電に関与しない電極重量が増加し、硫黄を用いても既存電池のエネルギー密度と同程度の値に減少する。   In the research of the solid battery so far, the solid battery operates only with a sulfide in which a metal such as copper and elemental sulfur are combined. However, when combined with metal, the weight of the electrode not involved in charging / discharging increases, and even if sulfur is used, the value decreases to the same level as the energy density of existing batteries.

上述したように、硫黄自体の物性は魅力的であるにも拘わらず、その現実の種々の性質の故に、従来技術においては、硫黄を有用な電極材料の主要成分として活用することが実現されていなかった(特許文献1)。   As described above, although the physical properties of sulfur itself are attractive, in the prior art, it has been realized that sulfur is utilized as a main component of useful electrode materials because of its various actual properties. There was not (patent document 1).

特開2004−95243号公報JP 2004-95243 A

本発明の目的は、上記した従来技術の欠点を解消し、硫黄の主要成分としての活用を可能とした複合材料を提供することにある。   An object of the present invention is to provide a composite material that eliminates the above-mentioned drawbacks of the prior art and enables the use of sulfur as a main component.

本発明者は鋭意研究の結果、メソポーラス炭素のメソ孔内に硫黄を配置したメソポーラス炭素複合材料が、上記目的の達成のために極めて効果的なことを見出した。   As a result of diligent research, the present inventor has found that a mesoporous carbon composite material in which sulfur is arranged in mesopores of mesoporous carbon is extremely effective for achieving the above object.

本発明のメソポーラス炭素複合材料は上記知見に基づくものであり、より詳しくは、メソポーラス炭素と、該メソポーラス炭素のメソ孔内に配置された硫黄とを少なくとも含むことを特徴とするものである。   The mesoporous carbon composite material of the present invention is based on the above knowledge, and more specifically, is characterized by containing at least mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon.

本発明によれば、更に、正極と、該正極に対向して配置された負極と、該正極と負極との間に配置された、電解質材料とを少なくとも含む二次電池であって;且つ、前記正極が、メソポーラス炭素と、該メソポーラス炭素のメソ孔内に配置された硫黄とから構成されるメソポーラス炭素複合材料を含むことを特徴とする二次電池が提供される。   According to the present invention, there is further provided a secondary battery including at least a positive electrode, a negative electrode disposed opposite to the positive electrode, and an electrolyte material disposed between the positive electrode and the negative electrode; and A secondary battery is provided in which the positive electrode includes a mesoporous carbon composite material composed of mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon.

上述したように本発明によれば、硫黄の主要成分としての活用を可能としたメソポーラス炭素複合材料が提供される。   As described above, according to the present invention, a mesoporous carbon composite material that can be utilized as a main component of sulfur is provided.

上記構成を有する本発明のメソポーラス炭素複合材料を正極として用いることにより、優れた特性を有する二次電池を得ることができる。   By using the mesoporous carbon composite material of the present invention having the above structure as a positive electrode, a secondary battery having excellent characteristics can be obtained.

本発明のメソポーラス炭素複合材料を用いた場合には、硫黄を可逆的に充放電させるために、溶出の問題がない固体電解質を用いた全固体リチウム電池をも、容易に得ることができる。   When the mesoporous carbon composite material of the present invention is used, an all-solid lithium battery using a solid electrolyte that does not have a problem of elution can be easily obtained in order to reversibly charge and discharge sulfur.

本発明のメソポーラス炭素複合材料は、従来の炭素材料からなる電極に比し、充放電サイクル試験時の初期のサイクルにおける不可逆容量による容量損失の割合の少ない電極を得ることが可能である。このため、二次電池、特に、リチウムイオン二次電池等の非水電解液二次電池に好適に使用でき、また、キャパシター用の電極、燃料電池用の電極にも使用でき、本発明は工業的に極めて有用である。   The mesoporous carbon composite material of the present invention can obtain an electrode with a smaller capacity loss ratio due to irreversible capacity in the initial cycle during the charge / discharge cycle test, as compared with an electrode made of a conventional carbon material. Therefore, it can be suitably used for secondary batteries, particularly non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, and can also be used for electrodes for capacitors and electrodes for fuel cells. It is extremely useful.

以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。   Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantity ratio are based on mass unless otherwise specified.

(メソポーラス炭素複合材料)
本発明のメソポーラス炭素複合材料は、メソポーラス炭素と、該メソポーラス炭素のメソ孔内に配置された硫黄とを少なくとも含むことが特徴である。
(Mesoporous carbon composite material)
The mesoporous carbon composite material of the present invention is characterized in that it contains at least mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon.

(メソ孔内に配置された硫黄)
本発明において、メソポーラス炭素のメソ孔内に配置された硫黄の含有量は、メソポーラス炭素複合材料の全重量を基準として、5%以上であることが好ましい。この「メソ孔内に配置された硫黄の含有量」は、更には10%以上(特に20%以上)であることが好ましく、60%以上であることが最も好ましい(後述する実施例5の三次元メソ孔、および、二次元規則メソ孔炭素CMK−3を参照)。
(Sulfur arranged in mesopores)
In the present invention, the content of sulfur arranged in the mesopores of mesoporous carbon is preferably 5% or more based on the total weight of the mesoporous carbon composite material. The “content of sulfur arranged in the mesopores” is further preferably 10% or more (particularly 20% or more), and most preferably 60% or more (the tertiary of Example 5 described later). Original mesopore and two-dimensional ordered mesopore carbon CMK-3).

本発明において、「メソ孔内に配置された硫黄」の量は、以下の方法で測定することができる。   In the present invention, the amount of “sulfur arranged in mesopores” can be measured by the following method.

(メソ孔内に配置された硫黄の測定方法;硫黄含有量の測定方法)
硫黄の含有量は、ヘリウム雰囲気下において、室温から600°Cまで昇温速度10°C/minで加熱した際の重量変化を測定することで得られる。
(Measurement method of sulfur arranged in mesopores; measurement method of sulfur content)
The sulfur content can be obtained by measuring the change in weight when heated from room temperature to 600 ° C. at a heating rate of 10 ° C./min in a helium atmosphere.

上記測定により得られたグラフの一例を、図5に示す。   An example of the graph obtained by the above measurement is shown in FIG.

上記の硫黄含有量測定において測定される硫黄の量は、メソ孔中の硫黄には限らない。該硫黄が、メソ孔内にも配置されていることを確認するために、本発明においては、後述するような「BET測定」をも行うことが好ましい。   The amount of sulfur measured in the above sulfur content measurement is not limited to sulfur in mesopores. In order to confirm that the sulfur is also disposed in the mesopores, it is preferable to perform “BET measurement” as described later in the present invention.

本発明のメソポーラス炭素複合材料を、リチウム電池の正極として使用した場合には、好適な電流密度を得ることができる。より具体的には、本発明のメソポーラス炭素複合材料を使用した場合には、好ましくは(1.3 mAcm-2)以上の電流密度を得ることができる。この電流密度は、更には(0.13 mAcm-2)以上(特に(0.065 mAcm-2)以上)であることが好ましい。 When the mesoporous carbon composite material of the present invention is used as a positive electrode of a lithium battery, a suitable current density can be obtained. More specifically, when the mesoporous carbon composite material of the present invention is used, a current density of preferably (1.3 mAcm −2 ) or more can be obtained. The current density is preferably (0.13 mAcm −2 ) or more (particularly (0.065 mAcm −2 ) or more).

(充放電測定)
後述する実施例に示すように、メソポーラス炭素複合材料を電流値0.05、0.1、1.0 mA(電流密度0.065 mA/cm2、0.13 mA/cm2、1.3 mA/cm2)で、直径10 mmのセル面積を有する電池に対して、充放電電圧範囲0.5〜3.0 V、充放電温度25℃、充放電休止時間1hでそれぞれ充放電測定を行うことができる。
(Charge / discharge measurement)
As shown in the examples described later, the mesoporous carbon composite material was measured for current values of 0.05, 0.1, and 1.0 mA (current densities of 0.065 mA / cm 2 , 0.13 mA / cm 2 , 1.3 mA / cm < 2 >), and a battery having a cell area of 10 mm in diameter is charged / discharged at a charge / discharge voltage range of 0.5 to 3.0 V, a charge / discharge temperature of 25 [deg.] C., and a charge / discharge pause time of 1 h. It can be carried out.

(容量)
本発明のメソポーラス炭素複合材料を、リチウム電池の正極として使用した場合には、好適な容量を得ることができる。より具体的には、本発明のメソポーラス炭素複合材料を使用した場合には、好ましくは1500以上の容量を得ることができる。この容量は、更には1600以上(特に1800以上)であることが好ましい。
(capacity)
When the mesoporous carbon composite material of the present invention is used as a positive electrode of a lithium battery, a suitable capacity can be obtained. More specifically, when the mesoporous carbon composite material of the present invention is used, a capacity of 1500 or more can be preferably obtained. This capacity is further preferably 1600 or more (particularly 1800 or more).

このような容量は、以下の方法で測定することができる。   Such a capacity can be measured by the following method.

(充放電容量の測定方法)
メソポーラス炭素複合材料を電流値0.1 mA(電流密度0.13 mA/cm2)で、直径10 mmのセル面積を有する電池に対して、充放電電圧範囲0.5〜3.0 V、充放電温度25℃、充放電休止時間1hでそれぞれ充放電測定を行った。
(Measurement method of charge / discharge capacity)
A mesoporous carbon composite material having a current value of 0.1 mA (current density 0.13 mA / cm 2 ) and a battery having a cell area of 10 mm in diameter has a charge / discharge voltage range of 0.5 to 3.0 V, The charge / discharge measurement was performed at a charge / discharge temperature of 25 ° C. and a charge / discharge rest time of 1 h.

(メソポーラス炭素)
本発明に使用する「メソポーラス炭素」とは、いわゆるメソ孔(すなわち、細孔径が2〜50nm程度の孔)を有する炭素材料を言う。本発明の効果をより高める意味で、本発明における炭素材料は、そのBET比表面積が大きいことが好ましい。好ましいBET比表面積が大きい炭素材料としては、メソポーラス炭素を挙げることができる。メソポーラス炭素は、均一なサイズの細孔を三次元的に有し、その細孔が規則的に配列した炭素材料である。炭素材料としてメソポーラス炭素を用いることにより、細孔内の炭素材料表面をも、硫黄で被覆することができる。炭素材料としてメソポーラス炭素を用いることにより得られる炭素複合材料を電極に用いた場合には、電極の高容量化、均一な電極反応が実現可能となる。
(Mesoporous carbon)
The “mesoporous carbon” used in the present invention refers to a carbon material having so-called mesopores (that is, pores having a pore diameter of about 2 to 50 nm). In order to enhance the effect of the present invention, the carbon material in the present invention preferably has a large BET specific surface area. Examples of the carbon material having a large BET specific surface area include mesoporous carbon. Mesoporous carbon is a carbon material having pores of uniform size three-dimensionally and regularly arranging the pores. By using mesoporous carbon as the carbon material, the surface of the carbon material in the pores can also be coated with sulfur. When a carbon composite material obtained by using mesoporous carbon as a carbon material is used as an electrode, it is possible to increase the capacity of the electrode and achieve a uniform electrode reaction.

(細孔)
本発明のメソポーラス炭素複合材料は、細孔を有することが好ましい。この場合、細孔の平均直径は、好ましくは1〜40nm、更には1nm〜10nm(特に好ましくは2nm〜4nm)であることが好ましい。細孔の平均直径を前記のようにすることで、得られる炭素複合材料は、これを電極に用いた場合に、その容量を高めることができる。
(pore)
The mesoporous carbon composite material of the present invention preferably has pores. In this case, the average diameter of the pores is preferably 1 to 40 nm, more preferably 1 nm to 10 nm (particularly preferably 2 nm to 4 nm). By setting the average diameter of the pores as described above, the obtained carbon composite material can increase its capacity when used as an electrode.

三次元メソ孔を用いた場合、細孔の平均直径は、好ましくは1〜40nm、更に好ましくは3nm〜20nm(特に好ましくは12nm〜14nm、例えば約12nm)であることが好ましい。後述する実施例5においては、三次元メソ孔の場合、細孔の平均直径が12nmで最良の結果が得られている。なお、該実施例5においては、三次元メソ孔の場合、細孔の平均直径が8nm以下では、細孔壁が薄くなるため容量の低下が見られる傾向がある。三次元メソ孔を用いた場合、最良の構造は、サイズが小さく、カーボン壁が厚い構造を有するものである。   When three-dimensional mesopores are used, the average diameter of the pores is preferably 1 to 40 nm, more preferably 3 to 20 nm (particularly preferably 12 to 14 nm, for example, about 12 nm). In Example 5 to be described later, in the case of three-dimensional mesopores, the best results are obtained when the average diameter of the pores is 12 nm. In Example 5, in the case of three-dimensional mesopores, when the average diameter of the pores is 8 nm or less, the pore walls tend to be thin and the capacity tends to decrease. When three-dimensional mesopores are used, the best structure is one that has a small size and a thick carbon wall.

(BET比表面積)
本発明において、「メソポーラス炭素」のBET比表面積Sa(硫黄の吸着前)は、1.0×1022/g以上であることが好ましい。このBET比表面積Saは、更には、2.0×102〜5.0×1032/g(特に3.0×102〜3.0×1032/g)であることが好ましい。
(BET specific surface area)
In the present invention, the BET specific surface area Sa (before sulfur adsorption) of “mesoporous carbon” is preferably 1.0 × 10 2 m 2 / g or more. The BET specific surface area Sa is further 2.0 × 10 2 to 5.0 × 10 3 m 2 / g (particularly 3.0 × 10 2 to 3.0 × 10 3 m 2 / g). Is preferred.

他方、本発明において、「メソポーラス炭素」のBET比表面積Sb(硫黄の吸着後)は、70m2/g以上であることが好ましい。このBET比表面積Sbは、更には、50〜3.5×1032/g、更には2.0×102〜2×1032/g、特に4.0×102〜2.0×1032/gであることが好ましい。 On the other hand, in the present invention, the BET specific surface area Sb (after sulfur adsorption) of “mesoporous carbon” is preferably 70 m 2 / g or more. This BET specific surface area Sb is further 50 to 3.5 × 10 3 m 2 / g, more preferably 2.0 × 10 2 to 2 × 10 3 m 2 / g, particularly 4.0 × 10 2 to 2. It is preferably 0.0 × 10 3 m 2 / g.

(BET比表面積の比)
一般的に、硫黄の吸着により、「メソポーラス炭素」のBET比表面積は低下する。このようなBET比表面積の比(Sb/Sa)は、0.01〜0.8程度であることが好ましく、更には0.02〜0.6程度(特に0.03〜0.5程度)であることが好ましい。
(BET specific surface area ratio)
In general, the adsorption of sulfur lowers the BET specific surface area of “mesoporous carbon”. Such BET specific surface area ratio (Sb / Sa) is preferably about 0.01 to 0.8, more preferably about 0.02 to 0.6 (particularly about 0.03 to 0.5). It is preferable that

(BET比表面積の測定方法)
本発明において、上記した「BET比表面」は、以下の方法で好適に測定することができる。
(Measurement method of BET specific surface area)
In the present invention, the “BET specific surface” described above can be suitably measured by the following method.

本発明におけるBET比表面積、細孔の平均直径は、サンプル(炭素材料、炭素複合材料)を液体窒素温度下において、サンプルに窒素ガスを吸着して得られる窒素吸着等温線を用いて、求めることができる。具体的には、窒素吸着等温線を用いて、Brenauer-Emmet-Telle(BET)法により、サンプルのBET比表面積を求めることができるし、また、窒素吸着等温線を用いて、Barret-Joyner-Halenda(BJH)法により、サンプルの細孔の平均直径を求めることができる。これらを求めるには、測定装置として、例えば、日本ベル株式会社製自動比表面積/細孔分布測定装置(BELSORP−mini II)を用いて測定すればよい。   The BET specific surface area and average pore diameter in the present invention are determined using a nitrogen adsorption isotherm obtained by adsorbing nitrogen gas to a sample (carbon material, carbon composite material) at a liquid nitrogen temperature. Can do. Specifically, the BET specific surface area of a sample can be determined by the Brenauer-Emmet-Telle (BET) method using a nitrogen adsorption isotherm, and Barret-Joyner- The average diameter of the pores of the sample can be determined by the Halenda (BJH) method. In order to obtain these, measurement may be performed using, for example, an automatic specific surface area / pore distribution measuring device (BELSORP-mini II) manufactured by Nippon Bell Co., Ltd. as a measuring device.

(メソポーラス炭素の態様)
本発明に使用可能なメソポーラス炭素の態様(ないし形態)は、特に制限されない。充放電速度の点からは、このメソポーラス炭素は、「円柱状」の形状を有することが好ましい。また、細孔サイズの制御の点からは、このメソポーラス炭素の細孔は、「球状」の形状を有することが好ましい。
(Mode of mesoporous carbon)
The aspect (or form) of mesoporous carbon that can be used in the present invention is not particularly limited. From the viewpoint of charge / discharge speed, this mesoporous carbon preferably has a “columnar” shape. From the viewpoint of controlling the pore size, the mesoporous carbon pores preferably have a “spherical” shape.

(メソポーラス炭素の製造方法)
本発明に使用可能なメソポーラス炭素の製造方法は特に制限されない。
耐熱性および機械的強度の点からは、このメソポーラス炭素は、例えば、メソポーラス酸化物、すなわち、均一なサイズの細孔を、二次元または三次元的に有し、その細孔が規則的に配列している酸化物(例えば、メソポーラスシリカ等)を基材とし、その細孔に、砂糖、スクロースなどのカーボン源となる有機物質を充填し、これを窒素、希ガスなどの不活性ガス雰囲気中で加熱することにより、前記有機物質を炭化させ、さらに、フッ酸等の酸、水酸化ナトリウム水溶液等のアルカリ水溶液により基材を溶解することにより得ることができる(このようなメソポーラス炭素の製法の詳細に関しては、例えば文献S. J. Sang,S. H. Joo,R. Ryoo,m. Kruk,m. Jaroniec,Z. Liu,T. OtsunAand O. Terasaki,J. Am. Chem. Soc.,122(2000)10712−10713;ないしT. Yokoi,Y. Sakamoto,O. Terasaki,Y. Kubota,T. Okubo,and T. Tatsumi,J. Am. Chem. Soc.,128(2006)13664−13665を参照することができる)。
(Method for producing mesoporous carbon)
The method for producing mesoporous carbon that can be used in the present invention is not particularly limited.
From the viewpoint of heat resistance and mechanical strength, this mesoporous carbon has, for example, mesoporous oxide, that is, pores of uniform size in two or three dimensions, and the pores are regularly arranged. The base material is an oxide (for example, mesoporous silica), and the pores are filled with an organic substance serving as a carbon source such as sugar or sucrose, and this is filled in an inert gas atmosphere such as nitrogen or a rare gas. The organic substance can be carbonized by heating with an acid, and further the base material can be dissolved with an acid such as hydrofluoric acid or an alkali aqueous solution such as an aqueous sodium hydroxide solution (of such a method for producing mesoporous carbon). For details, for example, documents SJ Sang, SH Joo, R. Ryoo, m. Kruk, m. Jaroniec, Z. Liu, T. Otsun Aand O. Terasaki, J. Am. Chem. Soc., 122 (2000) 10712- 10713; Stone T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, and T. Tatsumi, J. Am. Chem. Soc., Reference may be made to the 128 (2006) 13664-13665).

耐熱性および機械的強度の点からは、この二次元メソポーラス炭素は、以下のような方法で製造することが好ましい。   From the viewpoint of heat resistance and mechanical strength, this two-dimensional mesoporous carbon is preferably produced by the following method.

(メソポーラス炭素の好適な製造方法)
(1)界面活性剤を、その並列する構造になる特性を活かして、「棒状」に並べて棒状体にする。
(Preferable production method of mesoporous carbon)
(1) The surfactants are arranged in a “bar shape” to make a rod-like body by taking advantage of the characteristics of the parallel structure.

(2)その棒状体上に、Si(シリコン)を析出させる。
(3)更に焼成して、界面活性剤の棒状体を除去して、メソポーラス孔のあるSi材料を作る。
(2) Si (silicon) is deposited on the rod-shaped body.
(3) Further baking is performed to remove the rod-shaped body of the surfactant, and a Si material having mesoporous holes is produced.

(4)Si材料の孔に炭素を析出させる。
(5)フッ酸によりSiを除去すれば、メソポーラス炭素材料が出来る。
(4) Carbon is deposited in the pores of the Si material.
(5) If Si is removed by hydrofluoric acid, a mesoporous carbon material can be obtained.

(メソポーラス炭素への硫黄の配置方法)
本発明に使用可能なメソポーラス炭素への硫黄の配置方法は特に制限されない。メソ孔への気相堆積(例えば、蒸着)の容易性の点からは、このメソポーラス炭素へは、以下のような方法で硫黄を配置することが好ましい。
(Method of placing sulfur on mesoporous carbon)
The method for arranging sulfur on mesoporous carbon that can be used in the present invention is not particularly limited. From the viewpoint of ease of vapor phase deposition (for example, vapor deposition) in mesopores, it is preferable to arrange sulfur in this mesoporous carbon by the following method.

(メソポーラス炭素複合材料の好適な製造方法)
硫黄を気化させ、メソポーラス炭素上に、硫黄を析出させる。析出した硫黄は、後述する「図5」において、300℃以上で熱放散するもの(ポーラス内の硫黄)と、300℃未満で熱放散するもの(ポーラス外の硫黄)に分けることができる。よって、このよにして得たメソポーラス炭素を電池の正極として用いた場合、後述の実施例に示すように、細孔(ポア)外に存在する硫黄が充放電により凝集する。このような硫黄の放散により、回数を繰り返すことにより、容量が減少する。後述する「図9」では、20回程度で落ち着く。
(Suitable manufacturing method of mesoporous carbon composite material)
Sulfur is vaporized and sulfur is deposited on the mesoporous carbon. In FIG. 5 described later, the precipitated sulfur can be divided into those that dissipate heat at 300 ° C. or higher (sulfur in the porous) and those that dissipate heat below 300 ° C. (sulfur outside the porous). Therefore, when the mesoporous carbon obtained in this way is used as a positive electrode of a battery, sulfur existing outside the pores (pores) aggregates due to charge and discharge, as shown in Examples described later. The capacity is reduced by repeating the number of times due to such sulfur diffusion. In “FIG. 9”, which will be described later, it settles in about 20 times.

ポア外の硫黄を除くためには、この図8におけるように、例えば、210℃で加熱すれば良い。よって、このようにして、ポア外の硫黄と、その他の硫黄(すなわち、ポア内の硫黄)とを区別することができる。   In order to remove the sulfur outside the pores, for example, as shown in FIG. Therefore, in this way, sulfur outside the pore can be distinguished from other sulfur (that is, sulfur inside the pore).

(二次電池)
本発明のメソポーラス炭素複合材料を用いて、優れた特性を有する二次電池を構成することができる。このような二次電池は、正極と、該正極に対向して配置された負極と、該正極と負極との間に配置された、電解質材料とを少なくとも含む二次電池である。該正極が、メソポーラス炭素と、該メソポーラス炭素のメソ孔内に配置された硫黄とから構成されるメソポーラス炭素複合材料を含む。本発明のメソポーラス炭素複合材料が適用可能な二次電池のタイプは、特に制限されない。すなわち
(Secondary battery)
Using the mesoporous carbon composite material of the present invention, a secondary battery having excellent characteristics can be configured. Such a secondary battery is a secondary battery including at least a positive electrode, a negative electrode disposed to face the positive electrode, and an electrolyte material disposed between the positive electrode and the negative electrode. The positive electrode includes a mesoporous carbon composite material composed of mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon. The type of secondary battery to which the mesoporous carbon composite material of the present invention can be applied is not particularly limited. Ie

(二次電池のタイプ)
本発明のメソポーラス炭素複合材料が適用可能な二次電池のタイプは、特に制限されない。すなわち、非水電解質型二次電池、全固体型二次電池、等のいずれのタイプでも良い。
(Secondary battery type)
The type of secondary battery to which the mesoporous carbon composite material of the present invention can be applied is not particularly limited. That is, any type such as a non-aqueous electrolyte type secondary battery or an all solid state secondary battery may be used.

(液系二次電池)
本発明のメソポーラス炭素複合材料を利用した液系二次電池の構成の一例を、図11の模式断面図に示す。
(Liquid secondary battery)
An example of the configuration of a liquid secondary battery using the mesoporous carbon composite material of the present invention is shown in the schematic cross-sectional view of FIG.

(全固体二次電池)
本発明のメソポーラス炭素複合材料を利用した全固体二次電池の構成の一例を、図12の模式断面図に示す。
(All-solid secondary battery)
An example of the configuration of the all-solid-state secondary battery using the mesoporous carbon composite material of the present invention is shown in the schematic cross-sectional view of FIG.

(実施例の全固体二次電池)
後述する実施例で作製した、本発明のメソポーラス炭素複合材料を利用した全固体二次電池の構成の構成を、図11の模式断面図に示す。図11〜13において、固体電解質たる「SE」とは、硫化物系固体電解質の意味である。
(All-solid secondary battery of Example)
A schematic cross-sectional view of FIG. 11 shows a configuration of an all-solid secondary battery using the mesoporous carbon composite material of the present invention, which is manufactured in Examples described later. 11 to 13, “SE”, which is a solid electrolyte, means a sulfide-based solid electrolyte.

(電極)
次に、本発明の炭素複合材料を有する電極について、例として、リチウムイオン二次電池に代表される電池用電極(正極、負極)を挙げて説明する。
(electrode)
Next, the electrode having the carbon composite material of the present invention will be described by taking battery electrodes (positive electrode, negative electrode) typified by a lithium ion secondary battery as an example.

電池用正極は、正極活物質およびバインダーを含む正極合剤を正極集電体に担持させて製造することができる。該正極合剤には、さらに導電助剤が含まれていてもよい。前記導電助材としては炭素材料を用いることができ、炭素材料として黒鉛粉末、カーボンブラック、アセチレンブラックなどを挙げることができる。通常、正極合剤中の導電助材の割合は、1重量%以上30重量%以下である。本発明の炭素複合材料は、前記の正極活物質または導電助剤として用いることができる。   The positive electrode for a battery can be produced by supporting a positive electrode mixture containing a positive electrode active material and a binder on a positive electrode current collector. The positive electrode mixture may further contain a conductive additive. A carbon material can be used as the conductive additive, and examples of the carbon material include graphite powder, carbon black, and acetylene black. Usually, the proportion of the conductive additive in the positive electrode mixture is 1% by weight or more and 30% by weight or less. The carbon composite material of the present invention can be used as the positive electrode active material or the conductive assistant.

(バインダー)
前記バインダーとしては、熱可塑性樹脂を用いることができ、具体的には、ポリフッ化ビニリデン(以下、PVDFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂等が挙げられる。また、これらの二種以上を混合して用いてもよい。前記バインダーの正極合剤に対する割合は、通常、1重量%以上10重量%以下である。
(binder)
As the binder, a thermoplastic resin can be used. Specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVDF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), and four fluorine. Fluoropolymers such as fluorinated ethylene / hexafluoropropylene / vinylidene fluoride copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers, polyethylene, polypropylene, etc. Polyolefin resin and the like. Moreover, you may mix and use these 2 or more types. The ratio of the binder to the positive electrode mixture is usually 1% by weight or more and 10% by weight or less.

(正極集電体)
前記正極集電体としては、Al、Ni、ステンレスなどを用いることができるが、薄膜に加工しやすく、安価であるという点でAlが好ましい。正極集電体に正極合剤を担持させる方法としては、加圧成型する方法、または有機溶媒などを用いてペースト化し、正極集電体上に塗布、乾燥後プレスするなどして固着する方法が挙げられる。ペースト化する場合、正極活物質、導電材、バインダー、有機溶媒からなるスラリーを作製する。有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミン等のアミン系溶媒、テトラヒドロフラン等のエーテル系溶媒、メチルエチルケトン等のケトン系溶媒、酢酸メチル等のエステル系溶媒、ジメチルアセトアミド、1−メチル−2−ピロリドン等のアミド系溶媒等が挙げられる。
(Positive electrode current collector)
As the positive electrode current collector, Al, Ni, stainless steel or the like can be used, but Al is preferable in that it is easily processed into a thin film and is inexpensive. As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of pressure molding, or a method of pasting using an organic solvent or the like, applying onto the positive electrode current collector, drying and pressing to fix the positive electrode current collector. Can be mentioned. In the case of forming a paste, a slurry composed of a positive electrode active material, a conductive material, a binder, and an organic solvent is prepared. Examples of the organic solvent include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine, ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone, ester solvents such as methyl acetate, dimethylacetamide, 1-methyl- Examples include amide solvents such as 2-pyrrolidone.

(塗布方法)
正極合剤を正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等が挙げられる。以上に挙げた方法により、電池用正極を製造することができる。
(Application method)
Examples of the method for applying the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method. The positive electrode for a battery can be manufactured by the method mentioned above.

(二次電池の製造方法)
上記の電池用正極を用いて、次のようにして、電池を製造することができる。すなわち、セパレータ、負極集電体に負極合剤が担持されてなる負極、および上記の正極を、積層および巻回することにより得られる電極群を、電池缶内に収納した後、電解質を含有する有機溶媒からなる電解液を含浸させて製造することができる。
(Method for manufacturing secondary battery)
Using the above battery positive electrode, a battery can be produced as follows. That is, a separator, a negative electrode in which a negative electrode mixture is supported on a negative electrode current collector, and an electrode group obtained by laminating and winding the above positive electrode are housed in a battery can, and then contain an electrolyte. It can be produced by impregnating an electrolytic solution composed of an organic solvent.

(電極群)
前記の電極群の形状としては、例えば、該電極群を巻回の軸と垂直方向に切断したときの断面が、円、楕円、長方形、角がとれたような長方形等となるような形状を挙げることができる。また、電池の形状としては、例えば、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。
(Electrode group)
As the shape of the electrode group, for example, a shape in which the cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, a rectangle with rounded corners, etc. Can be mentioned. In addition, examples of the shape of the battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.

(負極)
前記負極としては、リチウムイオンをドープ・脱ドーブ可能な材料を含む負極合剤を負極集電体に担持したもの、リチウム金属またはリチウム合金などを用いることができ、リチウムイオンをドープ・脱ドーブ可能な材料としては、具体的には、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素材料が挙げられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソポーラスカーボンのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。本発明の炭素複合材料は、前記のリチウムイオンをドープ・脱ドーブ可能な材料として用いることができる。
(Negative electrode)
As the negative electrode, a negative electrode mixture containing a material capable of doping and dedoping lithium ions supported on a negative electrode current collector, lithium metal or lithium alloy, etc. can be used, and lithium ions can be doped and dedoped. Specific examples of such materials include carbon materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds. The shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesoporous carbon, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder. The carbon composite material of the present invention can be used as a material that can be doped / dedoped with the lithium ions.

(ドープ・脱ドーブ可能な材料)
前記のリチウムイオンをドープ・脱ドーブ可能な材料として、酸化物、硫化物等のカルコゲン化合物を用いることもできる。該カルコゲン化合物としては、周期率表の13、14、15族の元素を主体とした結晶質または非晶質の酸化物、硫化物等のカルコゲン化合物が挙げられ、具体的には、スズ酸化物を主体とした非晶質化合物等が挙げられる。前記の電解液が後述のエチレンカーボネートを含有しない場合において、ポリエチレンカーボネートを含有した負極合剤を用いると、得られる二次電池のサイクル特性と大電流放電特性が向上することがある。
(Doped / desorbable material)
Chalcogen compounds such as oxides and sulfides can also be used as the material capable of doping and dedoping with lithium ions. Examples of the chalcogen compound include chalcogen compounds such as crystalline or amorphous oxides and sulfides mainly composed of elements of Groups 13, 14, and 15 of the periodic table, and specifically, tin oxide. And amorphous compounds mainly composed of In the case where the electrolyte solution does not contain ethylene carbonate, which will be described later, when a negative electrode mixture containing polyethylene carbonate is used, the cycle characteristics and large current discharge characteristics of the obtained secondary battery may be improved.

(負極合剤)
前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVDF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン、ポリプロピレンなどを挙げることができる。また、前記の負極合剤は必要に応じて導電材を含有してもよい。本発明の炭素複合材料は、該導電材として用いることができる。
(Negative electrode mixture)
The negative electrode mixture may contain a binder as necessary. Examples of the binder include a thermoplastic resin, and specific examples include PVDF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene. The negative electrode mixture may contain a conductive material as necessary. The carbon composite material of the present invention can be used as the conductive material.

(負極集電体)
前記の負極集電体としては、Cu、Ni、ステンレスなどを挙げることができ、リチウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuを用いればよい。該負極集電体に負極合剤を担持させる方法としては、正極の場合と同様であり、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法等が挙げられる。
(Negative electrode current collector)
Examples of the negative electrode current collector include Cu, Ni, and stainless steel. Cu may be used because it is difficult to form an alloy with lithium and it is easy to process into a thin film. The method of supporting the negative electrode mixture on the negative electrode current collector is the same as in the case of the positive electrode. The method is a method of pressure molding, pasted using a solvent, etc., coated on the negative electrode current collector, dried, pressed and pressed. And the like.

(セパレータ)
前記セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができ、また、これらの材質を2種以上用いたセパレータとしてもよいし、異なる材質からなる2層以上の層を積層した積層セパレータとしてもよい。積層セパレータとしては、含窒素芳香族重合体層およびポリエチレン層を積層した積層セパレータが、二次電池用セパレータとして耐熱性の面、シャットダウンの性能面で好適である。セパレータとしては、例えば特開2000−30686号公報、特開平10−324758号公報等に記載のセパレータを挙げることができる。セパレータの厚みは電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄くした方がよく、通常10〜200μm程度、好ましくは10〜30μm程度である。
(Separator)
As the separator, for example, a material having a form such as a porous membrane, a nonwoven fabric, a woven fabric made of a polyolefin resin such as polyethylene and polypropylene, a fluororesin, a nitrogen-containing aromatic polymer, and the like can be used. Moreover, it is good also as a separator which used these materials 2 or more types, and is good also as a lamination | stacking separator which laminated | stacked two or more layers which consist of a different material. As the laminated separator, a laminated separator obtained by laminating a nitrogen-containing aromatic polymer layer and a polyethylene layer is suitable as a secondary battery separator in terms of heat resistance and shutdown performance. Examples of the separator include separators described in JP 2000-30686 A, JP 10-324758 A, and the like. The thickness of the separator is preferably about 10 to 200 μm, and preferably about 10 to 30 μm, as long as the mechanical strength is maintained because the volume energy density of the battery is increased and the internal resistance is reduced.

(電解液)
前記電解液において、電解質としては、LiClO4、LiPF6、LiAsF6、LiSbF6、LIBF4、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、Li210Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl4などのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。リチウム塩として、通常、これらの中でもフッ素を含むLiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(SO2CF32およびLiC(SO2CF33からなる群から選ばれた少なくとも1種を含むものを用いる。
(Electrolyte)
In the electrolyte, the electrolyte, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LIBF 4, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiC (SO 2 CF 3) 3, Li 2 B 10 Cl 10, lower aliphatic carboxylic acid lithium salts, include lithium salts such as LiAlCl 4, it may be used a mixture of two or more thereof. The lithium salt is usually selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine among these. Those containing at least one selected are used.

(有機溶媒)
また前記電解液において、有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物、または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができるが、通常はこれらのうちの二種以上を混合して用いる。
(Organic solvent)
In the electrolytic solution, examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di ( Carbonates such as methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2-methyl Ethers such as tetrahydrofuran; esters such as methyl formate, methyl acetate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethylacetate Amides such as amides; Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone, or those obtained by further introducing a fluorine substituent into the above organic solvent Usually, two or more of these are mixed and used.

中でも、カーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートの混合溶媒としては、動作温度範囲が広く、負荷特性に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛等の黒鉛材料を用いた場合でも難分解性であるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。また、特に優れた安全性向上効果が得られる点で、LiPF6等のフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル等のフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、大電流放電特性にも優れており、さらに好ましい。 Among these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate or cyclic carbonate and ether is more preferable. The mixed solvent of cyclic carbonate and non-cyclic carbonate has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as the negative electrode active material. In addition, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable. Further, in view of particularly excellent safety improving effect is obtained, it is preferable to use an electrolytic solution containing an organic solvent having a lithium salt and a fluorine substituent containing fluorine such as LiPF 6. A mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate has excellent high-current discharge characteristics, preferable.

(固体電解質)
上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの高分子電解質を用いることができる。また、高分子に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLi2S−SiS2、Li2S−GeS2、Li2S−P25、Li2S−B23などの硫化物電解質、またはLi2S−SiS2−Li3PO4、Li2S−SiS2−Li2SO4などの硫化物を含む無機化合物電解質を用いると、安全性をより高めることができることがある。
(Solid electrolyte)
A solid electrolyte may be used instead of the above electrolytic solution. As the solid electrolyte, for example, a polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound including at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used. Moreover, what is called a gel type which hold | maintained the nonaqueous electrolyte solution in the polymer | macromolecule can also be used. The Li 2 S-SiS 2, Li 2 S-GeS 2, Li 2 S-P 2 S 5, Li 2 sulfide electrolyte such as S-B 2 S 3, or Li 2 S-SiS 2 -Li 3 PO 4 When an inorganic compound electrolyte containing a sulfide such as Li 2 S—SiS 2 —Li 2 SO 4 is used, safety may be further improved.

(他の電極)
上述においては、本発明の炭素複合材料を有する電極として、リチウムイオン二次電池に代表される電池用電極の例を示しているが、他の電極の例としては、ニッケル・カドミウム二次電池、ニッケル・金属水素化物二次電池などの水系電解液二次電池用の電極、キャパシター用の電極、燃料電池用の電極等を挙げることができる。これらの電極は、公知の技術を用いて製造すればよい。すなわち、本発明の炭素複合材料を用いて、例えば、水系電解液二次電池用の電極としては、特開平8−315810号公報、特開2004−014427号公報に開示されているような技術、キャパシター用の電極としては、特開2000−106327号公報に開示されているような技術、燃料電池用の電極としては、特開2006−331786号公報に開示されているような技術を用いることにより、これらの電極を製造することができる。
(Other electrodes)
In the above, an example of a battery electrode represented by a lithium ion secondary battery is shown as an electrode having the carbon composite material of the present invention, but examples of other electrodes include a nickel cadmium secondary battery, Examples thereof include an electrode for an aqueous electrolyte secondary battery such as a nickel / metal hydride secondary battery, an electrode for a capacitor, and an electrode for a fuel cell. What is necessary is just to manufacture these electrodes using a well-known technique. That is, using the carbon composite material of the present invention, for example, as an electrode for an aqueous electrolyte secondary battery, as disclosed in JP-A-8-315810 and JP-A-2004-014427, By using a technique as disclosed in Japanese Patent Application Laid-Open No. 2000-106327 as an electrode for a capacitor and using a technique as disclosed in Japanese Patent Application Laid-Open No. 2006-331786 as an electrode for a fuel cell. These electrodes can be manufactured.

(三次元メソ孔を有する態様)
後述する実施例5において、メソ孔サイズが異なる三次元メソ孔を有するメソポーラス炭素を用いたカーボン/硫黄複合体が得られている。これらのメソ孔サイズは、8nm,12nm,20nm,40nm,および100nmである(図17〜19)。
(Mode with three-dimensional mesopores)
In Example 5 described later, a carbon / sulfur composite using mesoporous carbon having three-dimensional mesopores having different mesopore sizes is obtained. These mesopore sizes are 8 nm, 12 nm, 20 nm, 40 nm, and 100 nm (FIGS. 17-19).

この実施例5においては、以下の傾向が見られた。
電極特性の評価から、メソ孔サイズが12nmのカーボン硫黄複合体が、大きな初期放電容量を与えること、およびメソ孔サイズが大きいほど、容量が減少すること。
In Example 5, the following tendency was observed.
From the evaluation of the electrode characteristics, the carbon sulfur composite having a mesopore size of 12 nm gives a large initial discharge capacity, and the capacity decreases as the mesopore size increases.

小角X散乱等による構造解析から、カーボン中のメソ孔は、球状であること、メソ孔の形状は維持されつつ、硫黄がメソ孔の表面にコートされていること、硫黄はメソ孔の表面のみに存在し、孔の全部を充填しているのではないこと、および容量の大きい12nmのメソ孔の硫黄充填率は、60%以上であること。   From structural analysis by small angle X scattering, etc., the mesopores in carbon are spherical, that the mesopore shape is maintained while sulfur is coated on the surface of the mesopores, and sulfur is only on the mesopore surface. And not filling all of the pores, and the high-capacity 12 nm mesopores have a sulfur filling rate of 60% or more.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
(アセチレンブラックを用いたカーボン/硫黄複合体)
(1)複合体の作製
平均粒経50nm、比表面積66m2/gを有するアセチレンブラック(電気化学工業、デンカブラック)(以下「AB」と略称する場合もある)、硫黄(高純度化学、純度99.99%、粉末)を主原料として用いた。水分1ppm以下のArガス雰囲気で満たされたグローブボックス内で、試料を調整した。アセチレンブラック、硫黄を各々150mgずつ秤量し、半端開の石英管またはパイレックス(登録商標)管(内径8mm、外経10mm)に、それぞれ入れた。液体窒素トラップを備えたロータリーポンプで石英管またはパイレックス(登録商標)管の管内圧を排気し、真空度9.3Paまで減圧した。接続後LNG/O2バーナーで管の長さが約150mmになるように減圧封管した。卓上ガスマッフル炉(デンケン、KDF S−70)に封管を水平から5−10°傾けて設置し、300℃まで1時間で昇温し、2時間保持した。自然冷却により室温まで降温後、グローブボックス中で封管を開管し、カーボン/硫黄複合体を得た。
Example 1
(Carbon / sulfur composite using acetylene black)
(1) Production of Composite Acetylene black (Denka Black, Denki Black) (hereinafter sometimes abbreviated as “AB”), sulfur (high purity chemistry, purity) having an average particle size of 50 nm and a specific surface area of 66 m 2 / g 99.99%, powder) was used as the main raw material. The sample was prepared in a glove box filled with an Ar gas atmosphere having a moisture content of 1 ppm or less. 150 mg each of acetylene black and sulfur was weighed and put into a half-opened quartz tube or Pyrex (registered trademark) tube (inner diameter: 8 mm, outer diameter: 10 mm). The internal pressure of the quartz tube or Pyrex (registered trademark) tube was evacuated by a rotary pump equipped with a liquid nitrogen trap, and the pressure was reduced to a vacuum degree of 9.3 Pa. After the connection, the tube was sealed under reduced pressure with an LNG / O 2 burner so that the length of the tube was about 150 mm. The sealed tube was installed in a tabletop gas muffle furnace (Denken, KDF S-70) at an angle of 5-10 ° from the horizontal, heated to 300 ° C. in 1 hour, and held for 2 hours. After cooling to room temperature by natural cooling, the sealed tube was opened in a glove box to obtain a carbon / sulfur composite.

(2)電極合材の作製
硫黄/アセチレンブラック複合体を用いた電極合材の作製方法を示す。アルゴンガス雰囲気グローブボックス内で、アセチレンブラック/硫黄複合体の110mg、チオリシコンLi3.25Ge0.250.754の110mgをそれぞれ秤量した。熱重量分析、CHNS分析から、これらの重量比は、S:アセチレンブラック:チオリシコン=15:35:50wt.%と判明した。
(2) Production of electrode mixture A method for producing an electrode mixture using a sulfur / acetylene black composite is shown. In an argon gas atmosphere glove box, 110 mg of acetylene black / sulfur complex and 110 mg of thiolithicone Li 3.25 Ge 0.25 P 0.75 S 4 were weighed, respectively. From the thermogravimetric analysis and the CHNS analysis, these weight ratios were S: acetylene black: thiolysicon = 15: 35: 50 wt. % Turned out.

Fritsch社製メノウ製遊星ボールミリングポット(容積45mL)に、試料及びメノウボール(3φ(mm径)10個、5φ 20個)を入れ、密閉式ボールミリング用容器にポットを入れた。遊星ボールミリング装置(Fritsch社製 FritschP−7型)で混合し、正極合材を得た。遊星ボールミリングの運転条件は、回転数480rpmで、時間30分とした。   A sample and agate balls (3φ (mm diameter) 10 pieces, 5φ 20 pieces) were placed in a planetary ball milling pot (capacity 45 mL) manufactured by Fritsch, and the pot was placed in a sealed ball milling container. The mixture was mixed with a planetary ball milling device (Fritsch type P-7 manufactured by Fritsch) to obtain a positive electrode mixture. The operating conditions for planetary ball milling were a rotation speed of 480 rpm and a time of 30 minutes.

また硫黄を気化させずに固相の硫黄/アセチレンブラック複合体を用いた正極合材(機械混合)を作製した。アルゴンガス雰囲気グローブボックス内で、硫黄の105mg、アセチレンブラックの105mg、チオリシコンLi3.25Ge0.250.754の210mgをそれぞれ秤量した(総重量420mg)(重量比は、S:アセチレンブラック:チオリシコン=25:25:50wt.%)。 Further, a positive electrode mixture (mechanical mixture) using a solid-phase sulfur / acetylene black composite was produced without vaporizing sulfur. In an argon gas atmosphere glove box, 105 mg of sulfur, 105 mg of acetylene black, and 210 mg of thiolithicone Li 3.25 Ge 0.25 P 0.75 S 4 were weighed (total weight 420 mg) (weight ratio was S: acetylene black: thiolysicon = 25). : 25: 50 wt.%).

Fritsch社製メノウ製遊星ボールミリングポット(容積45mL)に、試料及びメノウボール(3φ 10個、5φ 20個)を入れ、密閉式ボールミリング用容器にポットを入れた。遊星ボールミリング装置(Fritsch社製FritschP−7型)で混合し正極合材を得た。遊星ボールミリングの運転条件は、回転数480rpmで、時間30分とした。   Samples and agate balls (3φ10, 5φ20) were placed in an agate planetary ball milling pot (volume: 45 mL) manufactured by Fritsch, and the pot was placed in a sealed ball milling container. The mixture was mixed with a planetary ball milling device (Fritsch type P-7 manufactured by Fritsch) to obtain a positive electrode mixture. The operating conditions for planetary ball milling were a rotation speed of 480 rpm and a time of 30 minutes.

(3)全固体電池の作製
アルゴン雰囲気グローブボックス内で、PET管(内径10mm、外径30mm、高さ20mm)及び炭素工具鋼S45Cアンビルからなる粉末成型治具を用いて、以下の操作で固体電池を作製した。
(3) Production of all-solid-state battery In an argon atmosphere glove box, using a powder molding jig consisting of a PET tube (inner diameter 10 mm, outer diameter 30 mm, height 20 mm) and carbon tool steel S45C anvil, A battery was produced.

1)チオリシコン70mgを秤量し、これをPET管に入れた。
2)これを10tプレス機(理研精機社P−6(ラム断面積14.72 cm2))を用い、表示圧力8mPa(成型圧力150mPa)で成型した。
1) 70 mg of thiolysicon was weighed and placed in a PET tube.
2) This was molded at a display pressure of 8 mPa (molding pressure of 150 mPa) using a 10-ton press (RIKEN Seiki P-6 (ram cross-sectional area: 14.72 cm 2 )).

3)化学輸送法で気相を通じてアセチレンブラック上に硫黄を析出させた、または機械的に混合した硫黄/アセチレンブラック複合体を用いた正極合材を5mg秤量し、これをPET管に入れた。   3) 5 mg of a positive electrode mixture using sulfur / acetylene black composite in which sulfur was deposited on acetylene black through a gas phase by a chemical transport method or mechanically mixed, was put into a PET tube.

4)正極側にAlmesh(桂田グレイチング0.1Al0.15−M10、厚み100μm)、Al板(ニラコAl板013323、99%、厚み100μm)を、負極側にAl板(ニラコAl板013323、99%、厚み100μm)をそれぞれPET管に入れた。   4) Almesh (Katsuta grating 0.1Al0.15-M10, thickness 100 μm), Al plate (Niraco Al plate 013323, 99%, thickness 100 μm) on the positive electrode side, and Al plate (Nilaco Al plates 013323, 99 on the negative electrode side) %, Thickness 100 μm) was put in each PET tube.

5)これを表示圧力30mPa(成型圧力560mPa)で成型した。
6)リチウム金属Li(本城金属、純度99.9%、厚み300μm)表面をスパチュラを用いて金属光沢が現れるまで磨き、ベルトポンチで直径8mmの円盤状に加工した。
5) This was molded at a display pressure of 30 mPa (molding pressure 560 mPa).
6) The surface of lithium metal Li (Honjo Metal, purity 99.9%, thickness 300 μm) was polished with a spatula until metallic luster appeared, and processed into a disk shape having a diameter of 8 mm with a belt punch.

7)この円盤状リチウムを、Cumesh(桂田グレイチング0.1Cu0.15−M19F、厚み100μm)に貼り付け、これを負極のAl板上に設けた後、表示圧力0.5mPa(成型圧力9.4mPa)で成型した。   7) This disc-shaped lithium was affixed to Cumesh (Katsuta grating 0.1Cu0.15-M19F, thickness 100 μm) and provided on the Al plate of the negative electrode, and then the display pressure 0.5 mPa (molding pressure 9.. 4 mPa).

8)この電池を密閉式カプセルに入れ、密閉した。   8) The battery was placed in a sealed capsule and sealed.

(4)充放電特性
化学輸送法で気相を介したS/アセチレンブラック複合体(化学輸送法の複合体)、気相を介せず固体のまま機械的に複合化した複合体(機械混合の複合体)を用いた全固体電池の充放電曲線を図1に示す。電流密度0.13mA/cm2、充放電電位範囲0.5−2.7V、充放電温度25℃で定電流充放電試験を行った。充放電容量は、硫黄活物質の重量で換算した電気量を示す。化学輸送法のS/アセチレンブラック複合体では初期放電容量600mAh/g、初期充電容量400mAh/gを示し、初期不可逆容量200mAh/gになった。その後のサイクルでは、不可逆容量は抑制され、可逆容量400mAh/gを示した。このアセチレンブラック/S電池では、電流密度0.1mA/cm2程度で理論容量の約40%を達成した。機械混合したS/アセチレンブラック複合体では、初期放電容量は120mAh/gを示したが、その後のサイクルで可逆容量40mAh/gを示し、極めて低い硫黄利用率を示した。
(4) Charging / discharging characteristics S / acetylene black complex (composite of chemical transport method) via gas phase by chemical transport method, complex (mechanical mixture) mechanically complexed as solid without gas phase FIG. 1 shows a charge / discharge curve of an all-solid-state battery using the composite. A constant current charge / discharge test was conducted at a current density of 0.13 mA / cm 2 , a charge / discharge potential range of 0.5-2.7 V, and a charge / discharge temperature of 25 ° C. The charge / discharge capacity indicates the amount of electricity converted by the weight of the sulfur active material. The chemical transport S / acetylene black composite exhibited an initial discharge capacity of 600 mAh / g and an initial charge capacity of 400 mAh / g, and an initial irreversible capacity of 200 mAh / g. In subsequent cycles, the irreversible capacity was suppressed, indicating a reversible capacity of 400 mAh / g. In this acetylene black / S battery, about 40% of the theoretical capacity was achieved at a current density of about 0.1 mA / cm 2 . The mechanically mixed S / acetylene black composite showed an initial discharge capacity of 120 mAh / g, but a reversible capacity of 40 mAh / g in subsequent cycles, indicating a very low sulfur utilization.

電池の導電助材として代表的な炭素材料であるアセチレンブラックに、硫黄を気相から析出させる手法を用いてアセチレンブラック/S複合体を作製すると、全固体電池で硫黄単体電極Sの充放電が可能であることを初めて報告した。気相を介した単体硫黄/カーボン複合体の複合化技術は、単体硫黄の電気化学活性の向上に有効であり、またこの技術は、他の異なるカーボンにも展開できる高い汎用性、かつ平易な技術である(T. Kobayashi,Y. Imade,D. Shishihara,K. Homma,R. Watanabe,T. Yokoi,A. Yamada,R. Kanno,and T. Tatsumi,Journal ofPower Sources,Accepted(2008))。   When an acetylene black / S composite is produced by using a technique in which sulfur is deposited from a gas phase on acetylene black, which is a typical carbon material as a battery conductivity aid, the charge and discharge of the single sulfur electrode S is performed in an all-solid battery. Reported for the first time that it was possible. The elemental sulfur / carbon composite technology via the gas phase is effective in improving the electrochemical activity of elemental sulfur, and this technology is highly versatile and easy to apply to other different carbons. Technology (T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, R. Watanabe, T. Yokoi, A. Yamada, R. Kanno, and T. Tatsumi, Journal of Power Sources, Accepted (2008)) .

(5)電気化学特性
化学輸送、機械混合の硫黄/アセチレンブラック複合体を用いた電池の交流インピーダンス測定を行い、インピーダンスプロットを図2に示す。測定条件は、AC印加電圧10mV、周波数1MHz〜10mHz、測定温度25℃で行なった。DC電圧1.5Vを30分間印加し電流を減衰させ平衡に達した後、測定を開始した。化学輸送、機械混合の複合体ともに、半円弧は高周波数領域、中周波数領域、低周波数領域で観測できた。これまでにチオリシコンの両端をLi−Al複合体で挟んだ対称セルのインピーダンスを測定し、高周波数領域、中周波数領域の半円弧は、負極界面に形成された被膜抵抗、界面での電荷移動抵抗に起因することが判明している(R. Kanno,m.murayama,T. Inada,T. Kobayashi,K. Sakamoto,n. Sonoyama,A. Yamada,and S. Kondo,Electrochem. Solid-State Lett.,7,A455−A458(2004))。
(5) Electrochemical characteristics The AC impedance measurement of the battery using the sulfur / acetylene black composite of chemical transport and mechanical mixing was performed, and the impedance plot is shown in FIG. The measurement conditions were AC applied voltage 10 mV, frequency 1 MHz to 10 mHz, and measurement temperature 25 ° C. A DC voltage of 1.5 V was applied for 30 minutes to attenuate the current and reached equilibrium, and then the measurement was started. Semicircular arcs were observed in the high frequency, medium frequency, and low frequency regions for both chemical transport and mechanical mixed composites. So far, the impedance of a symmetric cell in which both ends of thiolithicone are sandwiched between Li-Al composites has been measured, and the semi-arcs in the high and medium frequency regions are the film resistance formed at the negative electrode interface and the charge transfer resistance at the interface. (R. Kanno, m. Murayama, T. Inada, T. Kobayashi, K. Sakamoto, n. Sonoyama, A. Yamada, and S. Kondo, Electrochem. Solid-State Lett. 7, A455-A458 (2004)).

そのため、低周波数領域で観測された半円弧は、正極の電極抵抗に起因することを明らかにした。この電極抵抗には、界面抵抗、電極内の拡散抵抗が含まれている。グラフ作成・解析ソフトウェアZview(Solartron社製)(ZPLOT and ZVIEW for Windows(登録商標),Scribner Associates Inc.,north Carolina,USA)を用い、正極の電極抵抗を算出した。機械混合した複合体では、電極抵抗が14.8kΩであったのに対し、化学輸送の複合体では、電極抵抗が2.7kΩであった。化学輸送の複合体の電極抵抗が機械混合に比べ五分の一程度になり、電極活性が向上したことが明らかになった。   Therefore, it was clarified that the semicircular arc observed in the low frequency region was caused by the electrode resistance of the positive electrode. This electrode resistance includes interfacial resistance and diffusion resistance in the electrode. The electrode resistance of the positive electrode was calculated using graph creation / analysis software Zview (manufactured by Solartron) (ZPLOT and ZVIEW for Windows (registered trademark), Scribner Associates Inc., North Carolina, USA). In the mechanically mixed composite, the electrode resistance was 14.8 kΩ, whereas in the chemical transport composite, the electrode resistance was 2.7 kΩ. It was revealed that the electrode resistance of the chemical transport composite was about one-fifth that of mechanical mixing, and the electrode activity was improved.

(6)複合体の同定および形態観察
機械混合、化学輸送のS/アセチレンブラック複合体の粉末X線回折測定を行い、両者ともにα−硫黄が存在することを確認した。
(6) Identification and morphology observation of complex The powder X-ray diffraction measurement of the S / acetylene black complex of mechanical mixing and chemical transport was performed, and it was confirmed that α-sulfur was present in both.

化学輸送の硫黄/アセチレンブラック複合体、アセチレンブラックの熱重量分析を行った。測定条件は、窒素雰囲気で、室温から600℃まで昇温速度10℃/minで行なった。アセチレンブラックでは、600℃まで加熱しても2wt.%の重量減少が観察された。硫黄/アセチレンブラック複合体では、280℃で27wt.%の重量減少が確認された。アセチレンブラック、硫黄/アセチレンブラック複合体のCHNS分析を行い、硫黄/アセチレンブラック複合体には硫黄が27wt.%存在することがわかった。   Thermogravimetric analysis of chemical transport sulfur / acetylene black complex and acetylene black was performed. The measurement conditions were a nitrogen atmosphere and a temperature increase rate of 10 ° C./min from room temperature to 600 ° C. For acetylene black, 2 wt. % Weight loss was observed. For the sulfur / acetylene black composite, 27 wt. % Weight loss was confirmed. CHNS analysis of acetylene black and sulfur / acetylene black composite was conducted, and the sulfur / acetylene black composite contained 27 wt. % Was found to exist.

300℃に加熱したアセチレンブラックの窒素吸着等温線を測定した。これらの等温線からBET解析を行い、アセチレンブラックの比表面積66m2/g、硫黄/アセチレンブラック複合体の比表面積27m2/gであった。 The nitrogen adsorption isotherm of acetylene black heated to 300 ° C. was measured. BET analysis was performed from these isotherms, and the specific surface area of acetylene black was 66 m 2 / g and the specific surface area of sulfur / acetylene black composite was 27 m 2 / g.

機械混合、化学輸送の硫黄/アセチレンブラック複合体のSEMを観察した。前者では二次粒子5−10μmの硫黄粒子が確認でき、後者ではアセチレンブラック粒子以外にSEMで観察できなかった。硫黄粒子がアセチレンブラック表面を覆っていると考えられる。   SEM of the sulfur / acetylene black composite with mechanical mixing and chemical transport was observed. In the former, sulfur particles having secondary particles of 5 to 10 μm could be confirmed, and in the latter, other than acetylene black particles, no SEM could be observed. It is thought that sulfur particles cover the acetylene black surface.

(7)アセチレンブラック/S複合体のまとめ
300℃で硫黄を化学輸送法によってアセチレンブラック上に析出させてS/アセチレンブラック複合体を作製した。硫黄粒子が気相を介して析出することによって微粒子化し、作成したS/アセチレンブラック複合体の電極抵抗は、固相法で混合した複合体よりも一桁近く小さくなった。硫黄の微粒子化と、アセチレンブラックとの複合化による電極構造体中の電子伝導性の向上により、単体硫黄が充放電挙動を示したものと考えられる。本研究では、無機系固体電池で初めて硫黄の可逆的な充放電挙動を観測した。
(7) Summary of Acetylene Black / S Composite Sulfur was deposited on acetylene black at 300 ° C. by a chemical transport method to produce an S / acetylene black composite. The electrode resistance of the S / acetylene black composite that was made fine by the precipitation of sulfur particles through the gas phase was about an order of magnitude lower than that of the composite mixed by the solid phase method. It is considered that single sulfur showed charge / discharge behavior due to the improvement of the electron conductivity in the electrode structure by the fine particle formation of sulfur and the combination with acetylene black. In this study, we observed the reversible charge and discharge behavior of sulfur for the first time in an inorganic solid state battery.

実施例2
(二次元規則メソ孔構造を有するCMK−3を用いたカーボン/硫黄複合体)
(1)複合体の作製
硫黄S(高純度化学製、純度99.99%、粉末)60mg、細孔径4nm、比表面積400m2/gを有する二次元規則メソポーラス炭素CMK−3 140mg(S. J. Sang,S. H. Joo,R. Ryoo,m. Kruk,m. Jaroniec,Z. Liu,T. OtsunAand O. Terasaki,J. Am. Chem. Soc.,122(2000)10712−10713)を、水分1ppm以下のArガス雰囲気で満たされたグローブボックス内で秤量した。半端開の石英管またはパイレックス(登録商標)管(内径8mm、外経10mm)に、これらをそれぞれ入れ、液体窒素トラップを備えたロータリーポンプで石英管またはパイレックス(登録商標)管の管内圧を排気し、真空度9.3Paまで減圧した。
Example 2
(Carbon / sulfur composite using CMK-3 having a two-dimensional ordered mesopore structure)
(1) Production of composite 140 mg of two-dimensional ordered mesoporous carbon CMK-3 having a sulfur S (manufactured by high purity chemical, purity 99.99%, powder) 60 mg, pore diameter 4 nm, specific surface area 400 m 2 / g (SJ Sang, SH Joo, R. Ryoo, m. Kruk, m. Jaroniec, Z. Liu, T. Otsun A and O. Terasaki, J. Am. Chem. Soc., 122 (2000) 10712-10713) with an Ar content of 1 ppm or less. Weighed in a glove box filled with a gas atmosphere. Put these into a half-opened quartz tube or Pyrex (registered trademark) tube (inner diameter 8 mm, outer diameter 10 mm), and exhaust the internal pressure of the quartz tube or Pyrex (registered trademark) tube with a rotary pump equipped with a liquid nitrogen trap. The pressure was reduced to a vacuum of 9.3 Pa.

接続後LNG/O2バーナーで管の長さが約150mmになるように減圧封管した。卓上ガスマッフル炉(デンケン、KDF S−70)に封管を水平から5−10°傾けて設置し、300℃まで1時間で昇温し、2時間保持した。自然冷却により室温まで降温後、グローブボックス中で封管を開管し、カーボン/硫黄複合体を得た。 After the connection, the tube was sealed under reduced pressure with an LNG / O 2 burner so that the length of the tube was about 150 mm. The sealed tube was installed in a tabletop gas muffle furnace (Denken, KDF S-70) at an angle of 5-10 ° from the horizontal, heated to 300 ° C. in 1 hour, and held for 2 hours. After cooling to room temperature by natural cooling, the sealed tube was opened in a glove box to obtain a carbon / sulfur composite.

(2)電極合材の作製
上述したアセチレンブラック/硫黄複合体の場合(実施例1)と同様な方法で、CMK−3/硫黄複合体を用いて全固体電池を作製した。
(2) Production of electrode mixture An all-solid-state battery was produced using CMK-3 / sulfur composite in the same manner as in the case of the acetylene black / sulfur composite (Example 1) described above.

(3)充放電特性
CMK−3/S複合体を用いた固体電池の充放電曲線を図3(b)に示す。電流密度0.13mA/cm2、充放電範囲0.5−2.7V、測定温度25℃で定電流充放電試験を行なった。電流密度0.13mA/cm2で充放電を行うと、初期放電容量は理論容量1672mAh/g、初期充電容量900mAh/gを示し、15回目の可逆容量670mAh/gを示した。一方アセチレンブラック/S複合体を用いた電池の充放電曲線を図3(a)に示す。初期放電容量600mAh/gを示し、その後のサイクルでは充放電容量が徐々に低下し、15回の充放電容量100mAh/gを示した。CMK−3を用いた充放電特性は、アセチレンブラックよりも高い電極活性、高い寿命特性に寄与した。
(3) Charge / Discharge Characteristics FIG. 3B shows a charge / discharge curve of a solid battery using the CMK-3 / S composite. A constant current charge / discharge test was conducted at a current density of 0.13 mA / cm 2 , a charge / discharge range of 0.5-2.7 V, and a measurement temperature of 25 ° C. When charging / discharging was performed at a current density of 0.13 mA / cm 2 , the initial discharge capacity showed a theoretical capacity of 1672 mAh / g, an initial charge capacity of 900 mAh / g, and a 15th reversible capacity of 670 mAh / g. On the other hand, the charge / discharge curve of the battery using the acetylene black / S composite is shown in FIG. The initial discharge capacity was 600 mAh / g, and in the subsequent cycles, the charge / discharge capacity gradually decreased to show 15 charge / discharge capacity of 100 mAh / g. The charge / discharge characteristics using CMK-3 contributed to higher electrode activity and higher life characteristics than acetylene black.

CMK−3/S複合体を用いた電池の電流密度に依存した初期放電容量、可逆容量を表したレート特性を図4に示す。電流密度1.3mA/cm2で充放電させると、初期放電容量は680mAh/g、5回目の放電容量200mAh/gを示した。電気導電率10-30 S/cmを示す絶縁体である硫黄が固体電池において、1mA/cm2を超える電流密度で充放電することに成功した。 FIG. 4 shows rate characteristics representing initial discharge capacity and reversible capacity depending on the current density of the battery using the CMK-3 / S composite. When charging / discharging at a current density of 1.3 mA / cm 2 , the initial discharge capacity was 680 mAh / g, and the fifth discharge capacity was 200 mAh / g. Sulfur, which is an insulator having an electric conductivity of 10 -30 S / cm, was successfully charged and discharged at a current density exceeding 1 mA / cm 2 in a solid state battery.

(4)複合体の同定および細孔径分布
アセチレンブラック、アセチレンブラック/S複合体、CMK−3、CMK−3/S複合体の熱重量分析を行った曲線を図5に示す。測定条件は、ヘリウムガス雰囲気、昇温速度10℃/minで行なった。600℃まで加熱するとアセチレンブラック、CMK−3はともにH2Oの蒸発と考えられる3−4wt.%の重量減少したものの、大きな重量減少は確認できなかった。アセチレンブラック/S複合体では、210℃で27wt.%の重量減少が確認できた。一方CMK−3/S複合体では、210℃と280℃の二段階の重量減少が確認できた。210℃で重量減少が始まり、280℃までに20wt.%の重量減少がおこった。また280℃から重量減少は450℃まで見られ、約7wt.%の重量減少が確認できた。
(4) Identification of composite and pore size distribution Curves obtained by thermogravimetric analysis of acetylene black, acetylene black / S composite, CMK-3, and CMK-3 / S composite are shown in FIG. The measurement conditions were a helium gas atmosphere and a heating rate of 10 ° C./min. When heated to 600 ° C., both acetylene black and CMK-3 are considered to be evaporation of H 2 O 3-4 wt. % Weight reduction, but no significant weight loss could be confirmed. For the acetylene black / S composite, 27 wt. % Weight reduction was confirmed. On the other hand, in the CMK-3 / S composite, a two-stage weight reduction at 210 ° C. and 280 ° C. was confirmed. Weight loss starts at 210 ° C. and 20 wt. % Weight loss occurred. Moreover, the weight reduction from 280 ° C. to 450 ° C. was observed, and about 7 wt. % Weight reduction was confirmed.

CMK−3、CMK−3/S複合体のCHNS測定を行い、CMK−3にはカーボン、CMK−3/S複合体にはカーボン、硫黄が存在していた。   The CHNS measurement of CMK-3 and CMK-3 / S complex was performed, and carbon was present in CMK-3, and carbon and sulfur were present in CMK-3 / S complex.

CMK−3/S複合体は、アセチレンブラック/S複合体と異なる熱安定性を示したので、CMK−3内での硫黄の熱安定性が異なると考えられる。真空雰囲気下300℃で加熱したCMK−3、上記のCMK−3/S複合体、210℃で加熱したCMK−3/S複合体、300℃で加熱したCMK−3/S複合体について測定した窒素吸着等温線を図6(a)に示す。   Since the CMK-3 / S composite showed different thermal stability from the acetylene black / S composite, it is considered that the thermal stability of sulfur in CMK-3 is different. CMK-3 heated at 300 ° C. in a vacuum atmosphere, the above CMK-3 / S composite, CMK-3 / S composite heated at 210 ° C., CMK-3 / S composite heated at 300 ° C. were measured. The nitrogen adsorption isotherm is shown in FIG.

CMK−3では相対圧P/P0=0.5近傍で吸着量Vaの立ち上がりが確認でき、メソ孔を有するメソポーラス材料の典型的な挙動を示した。CMK−3に硫黄を吸着させるとメソ孔に由来する吸着量の立ち上がりはブロードとなり、ほとんど確認できなかった。これは、CMK−3の重量率が減少するとともに、メソ孔内に硫黄が吸着し細孔容積が減少したためと考えられる。CMK−3/S複合体を210℃で加熱してもメソ孔に由来する立ち上がりはブロードのままで、吸着量の絶対値が上昇した。メソ孔内に吸着した硫黄は気化せずに、メソ孔外に吸着した硫黄が気化し、CMK−3の重量率が増加したためと考えられる。210℃で加熱した複合体を280℃で加熱すると、硫黄複合化前のCMK−3と同様なメソ孔由来の立ち上がりが見られた。 In CMK-3, the rising of the adsorption amount Va was confirmed in the vicinity of the relative pressure P / P 0 = 0.5, indicating a typical behavior of a mesoporous material having mesopores. When sulfur was adsorbed on CMK-3, the rise in the amount of adsorption derived from the mesopores was broad and could hardly be confirmed. This is probably because the weight ratio of CMK-3 decreased and sulfur was adsorbed in the mesopores to reduce the pore volume. Even when the CMK-3 / S composite was heated at 210 ° C., the rise from the mesopores remained broad, and the absolute value of the adsorption amount increased. This is probably because the sulfur adsorbed inside the mesopores was not vaporized, but the sulfur adsorbed outside the mesopores was vaporized and the weight ratio of CMK-3 was increased. When the composite heated at 210 ° C. was heated at 280 ° C., the rise from mesopores similar to that of CMK-3 before sulfur composite formation was observed.

これは280℃で、メソ孔内外の硫黄が気化して硫黄重量率が大幅に減るとともに、メソ孔の窒素吸着領が増加したため立ち上がりが観測されたと考えられる。これらの比表面積をBET法で算出し、表1に示す。またこれらのメソ孔の細孔径分布をBJH法(E.P. Barrett,L. G. Joyner,andP.P. Halenda,J. Amer. Chem. Soc.73(1951)373)で算出した。測定結果を、図6(b)、表1に示す。   At 280 ° C., sulfur inside and outside the mesopores is vaporized, the sulfur weight ratio is greatly reduced, and the nitrogen adsorption region of the mesopores is increased. These specific surface areas were calculated by the BET method and are shown in Table 1. The pore size distribution of these mesopores was calculated by the BJH method (E.P. Barrett, L. G. Joyner, and P.P. Halenda, J. Amer. Chem. Soc. 73 (1951) 373). The measurement results are shown in FIG.

(表1:CMK−3(1)、CMK−3/S(2)、210℃で加熱したCMK−3/S、300℃で加熱したCMK−3/Sの比表面積、細孔径容積、細孔径) (Table 1: CMK-3 (1), CMK-3 / S (2), CMK-3 / S heated at 210 ° C, CMK-3 / S heated at 300 ° C, specific surface area, pore volume, fine Hole diameter)

Figure 2010095390
Figure 2010095390

上記の表1に示したように、CMK−3の平均細孔径は3.3nmであり、2−3.5nmの細孔径分布であった。硫黄を吸着すると平均細孔径3.1nmになり、2−3.5nmの細孔径分布は大きく減少した。   As shown in Table 1 above, the average pore size of CMK-3 was 3.3 nm, and the pore size distribution was 2-3.5 nm. When sulfur was adsorbed, the average pore size was 3.1 nm, and the pore size distribution at 2-3.5 nm was greatly reduced.

210℃で加熱すると、平均細孔径3.1nmは変化しなかった。この複合体を300℃で加熱すると、その平均細孔径は硫黄複合前の3.3nm、また細孔径分布も複合化前にほぼ戻った。このことから、メソ孔内に硫黄分子が1nmオーダーで被覆していた。これは硫黄原子がメソ内のカーボンと均一に結合して、バルク硫黄粒子の熱力学安定性と異なり、CMK−3/S複合体では二段階の熱重量減少が見られたと考えられる。硫黄原子が凝集せずCMK−3内に極めて均一に存在し、そのカーボン−硫黄結合の接合性が高いと考えられる。   When heated at 210 ° C., the average pore size of 3.1 nm did not change. When this composite was heated at 300 ° C., its average pore size was 3.3 nm before the sulfur composite, and the pore size distribution almost returned to that before the composite. From this, the mesopores were covered with sulfur molecules on the order of 1 nm. This is because sulfur atoms are uniformly bonded to the carbon in the meso, and unlike the thermodynamic stability of the bulk sulfur particles, it is considered that the CMK-3 / S composite showed a two-stage thermogravimetric decrease. It is considered that sulfur atoms do not aggregate and are present in CMK-3 very uniformly, and the bonding property of the carbon-sulfur bond is high.

CMK−3とCMK−3/S複合体の小角X線散乱図形を図7に示す。CMK−3のQ=0.07−0.14 Å(オングストロ−ム)-1付近の反射は、散乱体の干渉による反射である。この反射位置は二次元格子、つまり円柱の10,11,20面からの反射であり、この散乱がカーボンに起因し、円柱の間隔は89 Åであることがわかった。Q=0.2−0.4Å-1付近の傾きは、この散乱体の構造を示す。CMK−3の傾きは、−2.4で、球体、円盤、棒状の傾きはそれぞれ−4、−2、−1に対応するので、この散乱体の構造は円盤に近く、−2を下回っていることから円盤にふくらみがあると推測される。これらの結果は、CMK−3のSEM画像とも一致した。Q=0.4−0.7 Å-1の傾きから、この円柱の表面状態が得られる。傾きが−2.3であり、フラクタル次元は3.7である。3次元を超えているので、CMK−3の表面は凹凸があり、厚みを有することがわかった。Q=1.6 Å-1付近の反射は002面のBragg反射であり、その面間隔は3.9 Åであった。 A small angle X-ray scattering pattern of CMK-3 and CMK-3 / S composite is shown in FIG. The reflection of CMK-3 in the vicinity of Q = 0.07-0.14 ス ト ロ (angstrom) −1 is the reflection due to the interference of the scatterer. This reflection position is a reflection from the two-dimensional lattice, that is, the 10, 11, and 20 planes of the cylinder, and it was found that this scattering is caused by carbon, and the interval between the cylinders is 89 mm. The slope near Q = 0.2−0.4Å− 1 indicates the structure of this scatterer. The inclination of CMK-3 is -2.4, and the inclinations of the sphere, disk, and bar correspond to -4, -2, and -1, respectively. It is estimated that there is a bulge in the disk. These results were consistent with the SEM image of CMK-3. The surface state of this cylinder can be obtained from the inclination of Q = 0.4−0.7 円 柱−1 . The slope is -2.3 and the fractal dimension is 3.7. Since it exceeds three dimensions, it was found that the surface of CMK-3 has irregularities and has a thickness. The reflection in the vicinity of Q = 1.6 -1 -1 was a 002 surface Bragg reflection, and the surface separation was 3.9 Å.

硫黄を複合化させるとQ=0.07 Å-1付近の反射が消滅し、Q=0.3−0.7 Å-1付近の傾きが減少した。この反射の消滅は、炭素ロッドの向きのばらつき、またはロッド間に硫黄が入り境界消滅を表している。傾きの減少は、ロッド表面の複雑化を表しており、カーボンの表面に硫黄が付着したと考えられる。Q=0.14 Å-1付近の反射は、CMK−3の11、20の反射と同様な場所に現れた。 When conjugating the sulfur Q = 0.07 Å -1 reflections near disappears, the slope in the vicinity of Q = 0.3-0.7 Å -1 was reduced. This disappearance of the reflection represents the variation in the orientation of the carbon rods, or the disappearance of the boundary due to sulfur entering between the rods. The decrease in inclination represents the complexity of the rod surface, and it is thought that sulfur adhered to the carbon surface. The reflection in the vicinity of Q = 0.14Å- 1 appeared in the same place as the reflection of CMK-3 at 11 and 20.

210℃でCMK−3/S複合体を加熱した複合体を用いて作製した固体電池の充放電特性を図8に示す。硫黄活物質の重量あたりの充放電容量は、CMK−3への硫黄複合率27wt.%で算出し、気化した硫黄量は考慮していない。初期放電容量は、理論容量に近い値1480mAh/gを示し、その後数サイクルを経て可逆容量700mAh/gを得た。210℃の加熱により電池のサイクル特性が向上したと考えられる。   FIG. 8 shows the charge / discharge characteristics of a solid state battery manufactured using a composite obtained by heating a CMK-3 / S composite at 210 ° C. The charge / discharge capacity per weight of the sulfur active material was 27 wt. %, And the amount of vaporized sulfur is not considered. The initial discharge capacity was 1480 mAh / g, which was close to the theoretical capacity, and after several cycles, a reversible capacity of 700 mAh / g was obtained. It is considered that the cycle characteristics of the battery were improved by heating at 210 ° C.

(5)まとめ
CMK−3/S複合体では、アセチレンブラック/S複合体をはるかに超える可逆容量623mAh/gまで充放電が可能であった。また、1mA/cm2を超える電流密度において、容量175mAh/gで充放電できる高出力特性を示した。これは、CMK−3がもつロッドの隙間に存在するメソ孔に硫黄が析出し、集電体であるカーボンと硫黄との間の電荷交換が高速化することによる。絶縁体の硫黄がはじめて高出力で充放電が可能になった。
(5) Summary With the CMK-3 / S composite, it was possible to charge and discharge to a reversible capacity of 623 mAh / g far exceeding that of the acetylene black / S composite. Moreover, the high output characteristic which can be charged / discharged with the capacity | capacitance of 175 mAh / g in the current density over 1 mA / cm < 2 > was shown. This is because sulfur is deposited in the mesopores existing in the gap between the rods of CMK-3, and charge exchange between the current collector carbon and sulfur is accelerated. Insulator sulfur can be charged and discharged at high output for the first time.

実施例3
(三次元メソ孔規則構造を有するメソポーラス炭素を用いたカーボン/硫黄複合体)
(1)カーボン/硫黄複合体の作製
三次元メソ孔規則構造を有するメソポーラス炭素は、単一微粒子であるシリカ粒子を鋳型として作製した(T. Yokoi,Y. Sakamoto,O. Terasaki,Y. Kubota,T. Okubo,and T. Tatsumi,J. Am. Chem. Soc.,128(2006)13664−13665)。細孔径は約7nmで、比表面積2500m2/gの三次元メソ孔規則構造を有するメソポーラス炭素、硫黄(高純度化学、純度99.99%、粉末)を主原料として用いた。水分1ppm以下のArガス雰囲気で満たされたグローブボックス内で、試料を調整した。メソポーラス炭素 140mg、硫黄 60mgを秤量し、半端開の石英管またはパイレックス(登録商標)管(内径8mm、外経10mm)に、それぞれ入れた。液体窒素トラップを備えたロータリーポンプで石英管またはパイレックス(登録商標)管の管内圧を排気し、真空度9.3Paまで減圧した。接続後LNG/O2バーナーで管の長さが約150mmになるように減圧封管した。卓上ガスマッフル炉(デンケン、KDF S−70)に封管を水平から5−10°傾けて設置し、300℃まで1時間で昇温し、2時間保持した。自然冷却により室温まで降温後、グローブボックス中で封管を開管し、カーボン/硫黄複合体を得た。
Example 3
(Carbon / sulfur composite using mesoporous carbon with a three-dimensional mesopore regular structure)
(1) Production of carbon / sulfur composites Mesoporous carbon having a three-dimensional mesopore ordered structure was produced using silica particles as single templates (T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota). , T. Okubo, and T. Tatsumi, J. Am. Chem. Soc., 128 (2006) 13664-13665). Mesoporous carbon and sulfur (high purity chemistry, purity 99.99%, powder) having a pore size of about 7 nm and a three-dimensional ordered mesopore structure with a specific surface area of 2500 m 2 / g were used as main raw materials. The sample was prepared in a glove box filled with an Ar gas atmosphere having a moisture content of 1 ppm or less. 140 mg of mesoporous carbon and 60 mg of sulfur were weighed and put into a half-opened quartz tube or a Pyrex (registered trademark) tube (inner diameter: 8 mm, outer diameter: 10 mm), respectively. The internal pressure of the quartz tube or Pyrex (registered trademark) tube was evacuated by a rotary pump equipped with a liquid nitrogen trap, and the pressure was reduced to a vacuum degree of 9.3 Pa. After the connection, the tube was sealed under reduced pressure with an LNG / O 2 burner so that the length of the tube was about 150 mm. The sealed tube was installed in a tabletop gas muffle furnace (Denken, KDF S-70) at an angle of 5-10 ° from the horizontal, heated to 300 ° C. in 1 hour, and held for 2 hours. After cooling to room temperature by natural cooling, the sealed tube was opened in a glove box to obtain a carbon / sulfur composite.

CMK−3/S複合体と同様に硫黄の複合体を作製した。
(2)電極合材の作製
硫黄/メソポーラス炭素複合体を用いた電極合材の作製方法を示す。アルゴンガス雰囲気グローブボックス内で、メソポーラス炭素/硫黄複合体を110mg、チオリシコンLi3.25Ge0.250.754の110mgをそれぞれ秤量した。(CHNS分析からこれらの重量比は、S:アセチレンブラック:チオリシコン=25:25:50wt.%)。Fritsch社製メノウ製遊星ボールミリングポット(容積45mL)に、試料及びメノウボール(3φ 10個、5φ 20個)を入れ、密閉式ボールミリング用容器にポットを入れた。遊星ボールミリング装置(Fritsch社製 FritschP−7型)で混合し、正極合材を得た。遊星ボールミリングの運転条件は、回転数480rpmで、時間30分とした。
A sulfur complex was prepared in the same manner as the CMK-3 / S complex.
(2) Production of electrode mixture A method for producing an electrode mixture using a sulfur / mesoporous carbon composite is shown. In an argon gas atmosphere glove box, 110 mg of mesoporous carbon / sulfur complex and 110 mg of thiolithicone Li 3.25 Ge 0.25 P 0.75 S 4 were weighed. (From CHNS analysis, these weight ratios are S: acetylene black: thiolysicon = 25: 25: 50 wt.%). Samples and agate balls (3φ10, 5φ20) were placed in an agate planetary ball milling pot (volume: 45 mL) manufactured by Fritsch, and the pot was placed in a sealed ball milling container. The mixture was mixed with a planetary ball milling device (Fritsch type P-7 manufactured by Fritsch) to obtain a positive electrode mixture. The operating conditions for planetary ball milling were a rotation speed of 480 rpm and a time of 30 minutes.

(3)全固体電池の作製
CMK−3を使用した場合(実施例2)と同様に全固体電池を作製した。
(3) Production of all-solid battery An all-solid battery was produced in the same manner as in the case of using CMK-3 (Example 2).

(4)電池特性
三次元メソ孔規則構造を有するメソポーラス炭素/S複合体を用いた固体電池の充放電曲線を図9(b)に示す。電流密度0.13mA/cm2、充放電範囲0.5−3.0V、測定温度25℃で定電流充放電試験を行なった。電流密度0.13mA/cm2で充放電を行うと、初期放電容量は1840mAh/g、初期充電容量720mAh/gを示し、不可逆容量1100mAh/gを示した。15回目の可逆容量500mAh/gを示した。一方CMK−3/S複合体を用いた電池の充放電曲線を図9(a)に示す。サイクルを繰り返すごとに容量劣化は著しく起り、15回目の充放電容量430mAh/gを示した。メソ孔外の硫黄を除去する熱処理はどちらの複合体においても行なっていない。三次元規則構造を有するメソポーラス炭素を用いた電池は、二次元規則構造を有するメソポーラス炭素CMK−3よりサイクル特性が優れていることがわかった。三次元メソ孔構造カーボンでメソ孔外表面に吸着した硫黄を除去することにより、高い容量、寿命特性が得られると期待される。
(4) Battery characteristics FIG. 9B shows a charge / discharge curve of a solid battery using a mesoporous carbon / S composite having a three-dimensional ordered mesopore structure. A constant current charge / discharge test was conducted at a current density of 0.13 mA / cm 2 , a charge / discharge range of 0.5-3.0 V, and a measurement temperature of 25 ° C. When charging / discharging was performed at a current density of 0.13 mA / cm 2 , the initial discharge capacity was 1840 mAh / g, the initial charge capacity was 720 mAh / g, and the irreversible capacity was 1100 mAh / g. The 15th reversible capacity was 500 mAh / g. On the other hand, the charge / discharge curve of the battery using the CMK-3 / S composite is shown in FIG. As the cycle was repeated, the capacity deteriorated remarkably, indicating the 15th charge / discharge capacity of 430 mAh / g. Heat treatment to remove sulfur outside the mesopores is not performed in either composite. It was found that a battery using a mesoporous carbon having a three-dimensional ordered structure has better cycle characteristics than the mesoporous carbon CMK-3 having a two-dimensional ordered structure. By removing sulfur adsorbed on the outer surface of the mesopores with the three-dimensional mesopore structure carbon, it is expected that high capacity and life characteristics can be obtained.

(5)細孔径分布
メソポーラス炭素、硫黄(カーボン:S=50:50wt.%)を充填した複合体の窒素吸着等温線を図10(a)に示す。硫黄複合化の有無にかかわらず、P/P0=0.5近傍でメソ孔由来の吸着量Vaの立ち上がりが確認できた。そのため硫黄を複合化させてもメソポーラス炭素のメソ孔規則構造を維持できるとわかる。BJH法(前述の文献を参照)を用いて算出した比表面積、細孔径分布を表2、図10(b)に示す。硫黄を複合化させる前のカーボンでは、細孔径6.3nm、細孔容積3.5 cm3/g、細比表面積2470m2/gであった。硫黄を複合化させると、細孔径5.5nm、 細孔容積2.0 cm3/g、比表面積1440m2/gとなった。これは数原子分の硫黄がメソポーラス炭素のメソ孔内に吸着できることを示している。
(5) Pore size distribution FIG. 10A shows a nitrogen adsorption isotherm of a composite filled with mesoporous carbon and sulfur (carbon: S = 50: 50 wt.%). Regardless of the presence or absence of sulfur complexation, the rise of the adsorption amount Va derived from mesopores was confirmed near P / P 0 = 0.5. Therefore, it is understood that the mesoporous ordered structure of mesoporous carbon can be maintained even when sulfur is combined. The specific surface area and pore size distribution calculated using the BJH method (see the above-mentioned document) are shown in Table 2 and FIG. In the carbon before complexing with sulfur, the pore diameter was 6.3 nm, the pore volume was 3.5 cm 3 / g, and the fine specific surface area was 2470 m 2 / g. When sulfur was combined, the pore diameter was 5.5 nm, the pore volume was 2.0 cm 3 / g, and the specific surface area was 1440 m 2 / g. This indicates that several atomic sulfur can be adsorbed in mesoporous carbon mesopores.

(表2:三次元規則構造を有するメソポーラス炭素(1)、メソポーラス炭素/S複合体(2)の比表面積、細孔容積、細孔径) (Table 2: Specific surface area, pore volume, pore diameter of mesoporous carbon (1) having a three-dimensional ordered structure and mesoporous carbon / S composite (2))

Figure 2010095390
Figure 2010095390

(6)まとめ
三次元規則構造を有するカーボンのメソ孔内に硫黄を析出させた。細孔径に応じた硫黄充填量が可能であり、細孔径は7−100nmまで変化した。三次元的に配列したメソ孔内に硫黄を均一に析出させた電極構造体は、二次元的に配列したメソ孔構造体よりも高い電池特性を示す可能性を示した。
(6) Summary Sulfur was deposited in the mesopores of carbon having a three-dimensional ordered structure. Sulfur loading according to the pore diameter was possible and the pore diameter varied from 7 to 100 nm. The electrode structure in which sulfur is uniformly deposited in the three-dimensionally arranged mesopores has the potential to exhibit higher battery characteristics than the two-dimensionally arranged mesoporous structure.

上述したように、カーボンの規則構造が硫黄の充放電のサイクル特性、出力特性に貢献し、カーボンの規則構造を制御することが電池特性の改善に寄与することを明らかにした。   As described above, it has been clarified that the regular structure of carbon contributes to the cycle characteristics and output characteristics of charge and discharge of sulfur, and that the control of the regular structure of carbon contributes to the improvement of battery characteristics.

実施例4
電流密度の測定方法
メソポーラス炭素複合材料を電流値0.05、0.1、1.0 mA(電流密度0.065 mA/cm2、0.13 mA/cm2、1.3 mA/cm2)で、直径10 mmのセル面積を有する電池に対して、充放電電圧範囲0.5〜3.0 V、充放電温度25℃、充放電休止時間1hでそれぞれ充放電測定を行った。各電流密度に対して得られた放電容量を、サイクルごとに下記表3にまとめた。
Example 4
Measuring method of current density A mesoporous carbon composite material was measured with a current value of 0.05, 0.1, 1.0 mA (current density: 0.065 mA / cm 2 , 0.13 mA / cm 2 , 1.3 mA / cm 2 Then, charge / discharge measurements were performed on a battery having a cell area of 10 mm in diameter at a charge / discharge voltage range of 0.5 to 3.0 V, a charge / discharge temperature of 25 ° C., and a charge / discharge rest time of 1 h. The discharge capacity obtained for each current density is summarized in Table 3 below for each cycle.

Figure 2010095390
Figure 2010095390

実施例5
(メソ孔サイズの異なる三次元メソ孔規則構造を有するメソポーラス炭素を用いたカーボン/硫黄複合体)
Example 5
(Carbon / sulfur composite using mesoporous carbon with three-dimensional mesopore regular structure with different mesopore sizes)

(1)カーボン/硫黄複合体の作成
上記した三次元メソ孔規則構造を有するメソポーラスカーボン/硫黄複合体(実施例3)と同様な方法で、サイズの異なるメソポーラスカーボンを作成し、更にカーボン/硫黄複合体を作成した。
(1) Preparation of carbon / sulfur composites Mesoporous carbons having different sizes were prepared in the same manner as the mesoporous carbon / sulfur composite (Example 3) having the above-described three-dimensional mesopore ordered structure. A complex was created.

(2)電極合剤の作成
上記した三次元メソ孔規則構造/硫黄複合体の場合(実施例3)と同様な方法で、三次元メソ孔規則構造を有するメソポーラスカーボン/硫黄複合体を用いて電極合剤を作成した。
(2) Preparation of electrode mixture Using a mesoporous carbon / sulfur composite having a three-dimensional mesopore ordered structure in the same manner as in the case of the above-described three-dimensional mesopore ordered structure / sulfur composite (Example 3) An electrode mixture was prepared.

(3)全固体電池の作成
CMK−3を使用した場合(実施例2)と同様に全固体電池を作成した。
(4)三次元メソ孔規則構造の構造解析
図14に三次元メソ構造体(40nm)の小角散乱図形(カーボンレプリカ(40nm)、カーボンレプリカ(40nm)/硫黄複合体の小角散乱図形)を示すQ=0.015−0.07Å(オングストロ−ム)-1の反射は、カーボンの中のメソ孔が球体であることを表し、その球体間の干渉による反射であることが判明した。Q=0.12−0.35 Å-1の傾きは孔の表面状態を表し、その傾きからその表面は厚みを持つことが判明した。複合化によりQ=0.015−0.07 Å-1の反射位置は変化せず、Q=0.12−0.35 Å-1の傾きが減少した。これより、メソ孔の形状が維持されつつ、メソ孔の表面を硫黄がコーティングするが、孔の全てを硫黄で充填しているわけではないことも判明した。
(3) Preparation of all-solid-state battery The all-solid-state battery was created similarly to the case where CMK-3 was used (Example 2).
(4) Structural analysis of three-dimensional mesopore regular structure FIG. 14 shows a small-angle scattering pattern (carbon replica (40 nm), carbon replica (40 nm) / sulfur complex small-angle scattering pattern) of a three-dimensional mesostructure (40 nm). A reflection of Q = 0.015−0.07Å (angstrom) −1 indicates that the mesopores in the carbon are spheres, and it was found that the reflection was due to interference between the spheres. The inclination of Q = 0.12−0.35Å− 1 represents the surface state of the hole, and it was found from the inclination that the surface has a thickness. The reflection position of Q = 0.015-0.07Å- 1 was not changed by the combination, and the slope of Q = 0.12-0.35Å- 1 was reduced. From this, it was also found that while the shape of the mesopores was maintained, the surface of the mesopores was coated with sulfur, but not all of the pores were filled with sulfur.

図15に孔のサイズの異なるカーボンレプリカ(20、40、100nm)並びにそのカーボン/硫黄複合体の小角散乱図形を示す(三次元メソ構造体カーボンレプリカの小角散乱図形;(a)複合化前、(b) 複合化後)。図16に、それらのBJHプロット(細孔径分布;カーボンレプリカとその硫黄複合体の細孔径分布)を示す。小角散乱図形より、全てのサイズのカーボンにおいてピーク位置に違いが見られず、硫黄を蒸着しても孔の間隔を維持することが判明した。また、硫黄蒸着により、Q=0.12−0.35 Å-1の傾きは均一化され、孔表面の状態が均一化されたことが判明した。硫黄蒸着によって細孔径分布のピークは低径側へシフトした。これは、メソ孔の半径が減少したことを表している。以上のことから、硫黄の気相混合は、孔の表面のみに硫黄が存在することが判明した。 FIG. 15 shows carbon replicas (20, 40, 100 nm) having different pore sizes and small angle scattering patterns of the carbon / sulfur composites (small angle scattering patterns of three-dimensional mesostructured carbon replicas; (B) After compounding. FIG. 16 shows their BJH plots (pore size distribution; pore size distribution of carbon replica and its sulfur composite). From the small-angle scattering pattern, it was found that there was no difference in the peak positions in all sizes of carbon, and that the pore spacing was maintained even when sulfur was deposited. Further, it was found that the slope of Q = 0.12−0.35 −1 was made uniform by sulfur deposition, and the state of the hole surface was made uniform. The peak of the pore diameter distribution shifted to the lower diameter side by sulfur deposition. This represents a decrease in the mesopore radius. From the above, it has been found that sulfur is present only on the surface of the pores in the gas phase mixing of sulfur.

(5)電極特性
図17〜19に、孔のサイズの異なる三次元メソ構造体メソポーラスカーボン/硫黄複合体を用いた全固体電池の初期放電容量(a)(図17)、BJHプロット(b)(図18;細孔径分布)、およびメソ孔と初期放電容量の関係(c)(図19)を示す。初期放電容量の大きな複合体は、S/CMK−3とS/カーボンレプリカ12nmであった。容量の減少は8nmを除き、孔のサイズが増加に対応した。8nmのカーボンレプリカは、サイズが近いカーボンレプリカに比べ、比表面積が大きい。これは1g当たりの孔の数が多いことを示している。つまり、1g当たり多くの孔を持つためには、孔の周りのカーボン壁の厚さは薄いことになる。以上のことから、有用な電極材料のメソ孔は、サイズが小さく、整った形状を持ち、カーボン壁が厚い構造であることが判明した。
(5) Electrode characteristics FIGS. 17 to 19 show initial discharge capacity (a) (FIG. 17), BJH plot (b) of an all-solid-state battery using a three-dimensional mesostructured mesoporous carbon / sulfur composite having different pore sizes. (FIG. 18; pore size distribution) and the relationship between mesopores and initial discharge capacity (c) (FIG. 19) are shown. The composite having a large initial discharge capacity was S / CMK-3 and S / carbon replica 12 nm. The decrease in volume corresponded to an increase in pore size except for 8 nm. An 8 nm carbon replica has a larger specific surface area than a carbon replica of a similar size. This indicates that the number of holes per gram is large. That is, in order to have many holes per gram, the thickness of the carbon wall around the holes is thin. From the above, it was found that the mesopores of the useful electrode material have a small size, a well-shaped shape, and a thick carbon wall.

更に、容量の大きいS/CMK−3、S/カーボンレプリカ12nmのメソ孔の硫黄充填率は60%以上であり、この点も有用な電極材料の指針の1つであった。   Furthermore, the sulfur filling rate of mesopores of S / CMK-3 and S / carbon replica 12 nm with large capacities was 60% or more, and this point was also one of the guidelines for useful electrode materials.

アセチレンブラックと硫黄の機械混合、アセチレンブラックと硫黄蒸気の混合した複合体の充放電曲線を示すグラフである(電流密度0.13mA/cm2で充放電させた場合)。It is a graph which shows the charging / discharging curve of the composite in which acetylene black and sulfur were mixed mechanically, and acetylene black and sulfur vapor were mixed (when charged and discharged at a current density of 0.13 mA / cm 2 ). 機械混合、化学輸送のアセチレンブラック/S複合体を用いた電池のインピーダンスプロットを示すグラフである。It is a graph which shows the impedance plot of the battery using the acetylene black / S composite of mechanical mixing and chemical transport. 300℃で硫黄を化学輸送したアセチレンブラック/S複合体(a)、CMK−3/S複合体を用いた全固体電池(b)の充放電曲線を示すグラフである(電流密度0.13mA/cm2、電位範囲0.5−2.7V、測定温度25℃で充放電を行なった場合)。It is a graph which shows the charge / discharge curve of the acetylene black / S composite (a) which chemically transported sulfur at 300 degreeC, and the all-solid-state battery (b) using the CMK-3 / S composite (current density 0.13mA / cm 2 , potential range of 0.5 to 2.7 V, measurement temperature of 25 ° C.) 電流密度0.13−1.3mA/cm2で充放電したCMK−3/S複合体を用いた電池の出力特性を示すグラフである。It is a graph which shows the output characteristic of the battery using the CMK-3 / S composite charged / discharged with the current density of 0.13-1.3 mA / cm 2 . アセチレンブラック(a)、CMK−3(b)、アセチレンブラック/S複合体(c)、CMK−3/S複合体(d)の熱重量曲線を示すグラフである(室温から600℃まで昇温速度10℃/minで、ヘリウム雰囲気で行なった場合)。It is a graph which shows the thermogravimetric curve of acetylene black (a), CMK-3 (b), acetylene black / S composite (c), and CMK-3 / S composite (d) (temperature rising from room temperature to 600 degreeC) (When performed in a helium atmosphere at a rate of 10 ° C./min). CMK−3(1)、CMK−3/S(2)、210℃で加熱したCMK−3/S(3)、300℃で加熱したCMK−3/S(4)の窒素吸着等温線(a)、細孔径分布(b)を示すグラフである。Nitrogen adsorption isotherms of CMK-3 (1), CMK-3 / S (2), CMK-3 / S (3) heated at 210 ° C., CMK-3 / S (4) heated at 300 ° C. (a ) And a pore size distribution (b). CMK−3、CMK−3/S複合体の小角X線散乱図形を示すグラフである。It is a graph which shows the small angle X-ray-scattering figure of CMK-3 and CMK-3 / S composite. 210℃で加熱したCMK−3/S複合体を用いた全固体電池の充放電曲線を示すグラフである(電流密度0.13mA/cm2で、電位範囲0.5−2.7V、測定温度25℃で充放電させた場合)。It is a graph which shows the charging / discharging curve of the all-solid-state battery using the CMK-3 / S composite body heated at 210 degreeC (Current density is 0.13 mA / cm < 2 >, Potential range is 0.5-2.7V, Measurement temperature. When charging / discharging at 25 ° C.). 未熱処理の二次元メソ孔規則構造CMK−3(a)、三次元メソ孔規則構造(b)を用いたカーボン/硫黄複合体の充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve of the carbon / sulfur composite using unheat-treated 2D mesopore ordered structure CMK-3 (a) and 3D mesopore ordered structure (b). 硫黄複合化前後の三次元規則構造を有するメソポーラス炭素の窒素吸着等温線(a)と細孔径分布(b)を示すグラフである。It is a graph which shows the nitrogen adsorption isotherm (a) and pore diameter distribution (b) of the mesoporous carbon which has a three-dimensional regular structure before and behind sulfur compounding. 本発明のメソポーラス炭素複合材料を利用した液系二次電池の構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of a structure of the liquid type secondary battery using the mesoporous carbon composite material of this invention. 本発明のメソポーラス炭素複合材料を利用した全固体二次電池の構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of a structure of the all-solid-state secondary battery using the mesoporous carbon composite material of this invention. 本発明の実施例で作製した、メソポーラス炭素複合材料を利用した全固体二次電池の構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of a structure of the all-solid-state secondary battery using the mesoporous carbon composite material produced in the Example of this invention. 本発明の実施例で作製した、三次元メソ構造体(40nm)の小角散乱図形の一例を示すグラフである。It is a graph which shows an example of the small angle scattering figure of the three-dimensional mesostructure (40 nm) produced in the Example of this invention. 本発明の実施例で作製した、孔のサイズの異なるカーボンレプリカ(20、40、100nm)並びにそのカーボン/硫黄複合体の小角散乱図形の一例を示すグラフである。It is a graph which shows an example of the small angle scattering figure of the carbon replica (20, 40, 100 nm) from which the size of the hole produced in the Example of this invention differs, and its carbon / sulfur composite. 図15のグラフに対応する、それらのBJHプロット(細孔径分布)の一例を示すグラフである。It is a graph which shows an example of those BJH plots (pore diameter distribution) corresponding to the graph of FIG. 本発明の実施例で作製した、孔のサイズの異なる三次元メソ構造体メソポーラスカーボン/硫黄複合体を用いた全固体電池の初期放電容量(a)の一例を示すグラフである。It is a graph which shows an example of the initial stage discharge capacity (a) of the all-solid-state battery using the three-dimensional mesostructure mesoporous carbon / sulfur composite from which the hole size produced in the Example of this invention differs. 図17のグラフに対応する、それらのBJHプロット(b)の一例を示すグラフである。It is a graph which shows an example of those BJH plots (b) corresponding to the graph of FIG. 図17のグラフに対応する、それらのメソ孔と初期放電容量の関係(c)の一例を示すグラフである。It is a graph which shows an example of the relationship (c) of those mesopores and initial stage discharge capacity corresponding to the graph of FIG.

Claims (9)

メソポーラス炭素と、該メソポーラス炭素のメソ孔内に配置された硫黄とを少なくとも含むことを特徴とするメソポーラス炭素複合材料。   A mesoporous carbon composite material comprising at least mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon. 前記メソポーラス炭素のメソ孔内に配置された硫黄の含有量が、メソポーラス炭素複合材料の全重量を基準として、5%以上である請求項1に記載のメソポーラス炭素複合材料。   2. The mesoporous carbon composite material according to claim 1, wherein the content of sulfur arranged in the mesopores of the mesoporous carbon is 5% or more based on the total weight of the mesoporous carbon composite material. BET比表面積が400m2/g〜2000m2/gである請求項1または2に記載のメソポーラス炭素複合材料。 Mesoporous carbon composite material according to claim 1 or 2 BET specific surface area of 400m 2 / g~2000m 2 / g. 前記炭素複合材料が細孔を有し、その細孔の平均直径が1nm〜40nmである請求項1〜3のいずれかに記載のメソポーラス炭素複合材料。   The mesoporous carbon composite material according to any one of claims 1 to 3, wherein the carbon composite material has pores, and the average diameter of the pores is 1 nm to 40 nm. 正極と、該正極に対向して配置された負極と、該正極と負極との間に配置された、電解質材料とを少なくとも含む二次電池であって;且つ、
前記正極が、メソポーラス炭素と、該メソポーラス炭素のメソ孔内に配置された硫黄とから構成されるメソポーラス炭素複合材料を含むことを特徴とする二次電池。
A secondary battery comprising at least a positive electrode, a negative electrode disposed opposite the positive electrode, and an electrolyte material disposed between the positive electrode and the negative electrode; and
A secondary battery, wherein the positive electrode includes a mesoporous carbon composite material composed of mesoporous carbon and sulfur arranged in mesopores of the mesoporous carbon.
前記電解質材料が非水電解質であり、且つ、該非水電解質中にセパレータが配置されている請求項5に記載の二次電池。   The secondary battery according to claim 5, wherein the electrolyte material is a non-aqueous electrolyte, and a separator is disposed in the non-aqueous electrolyte. 前記電解質材料が固体電解質である請求項5に記載の二次電池。   The secondary battery according to claim 5, wherein the electrolyte material is a solid electrolyte. 正極と、該正極に対向して配置された負極と、該正極と負極との間に配置された、電解質材料とを少なくとも含む、全固体型である請求項7に記載の二次電池。   The secondary battery according to claim 7, wherein the secondary battery is an all-solid-state battery including at least a positive electrode, a negative electrode disposed opposite to the positive electrode, and an electrolyte material disposed between the positive electrode and the negative electrode. 正極および負極の少なくとも一方が、Al板を含む請求項5〜8のいずれかに記載の全二次電池。   All the secondary batteries in any one of Claims 5-8 in which at least one of a positive electrode and a negative electrode contains Al plate.
JP2008264358A 2008-09-16 2008-10-10 Mesoporous carbon composite material and secondary battery using the same Pending JP2010095390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264358A JP2010095390A (en) 2008-09-16 2008-10-10 Mesoporous carbon composite material and secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008237115 2008-09-16
JP2008264358A JP2010095390A (en) 2008-09-16 2008-10-10 Mesoporous carbon composite material and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2010095390A true JP2010095390A (en) 2010-04-30

Family

ID=42257354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264358A Pending JP2010095390A (en) 2008-09-16 2008-10-10 Mesoporous carbon composite material and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2010095390A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028804A2 (en) * 2009-09-02 2011-03-10 Ut-Battelle, Llc Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
JP2011181260A (en) * 2010-02-26 2011-09-15 Osaka Prefecture Univ Cathode of all-solid lithium secondary battery, and method of manufacturing the same
WO2012086196A1 (en) * 2010-12-24 2012-06-28 出光興産株式会社 Positive electrode material for lithium ion batteries, and lithium ion battery
WO2012102037A1 (en) 2011-01-27 2012-08-02 出光興産株式会社 Composite material of alkali metal sulfide and conducting agent
JP2012204332A (en) * 2011-03-28 2012-10-22 Tokyo Univ Of Agriculture & Technology Positive electrode material for lithium-sulfur battery, lithium-sulfur battery, and composite and method for manufacturing the same
WO2012165884A3 (en) * 2011-05-31 2013-03-28 한양대학교 산학협력단 Method for manufacturing a carbon-sulfur composite, carbon-sulfur composite manufactured thereby, and lithium-sulfur battery including same
JP2013080637A (en) * 2011-10-04 2013-05-02 Idemitsu Kosan Co Ltd Composite electrode material and method for producing the same, and lithium battery manufactured using the composite electrode material
WO2013076955A1 (en) 2011-11-24 2013-05-30 出光興産株式会社 Electrode material and lithium ion battery using same
JP2013143297A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
JP2013143298A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
JP2013214503A (en) * 2012-03-09 2013-10-17 Toray Ind Inc Carbon-sulfur complex, electrochemical element using the same, and lithium ion battery
KR101329627B1 (en) 2011-09-26 2013-11-15 경상대학교산학협력단 A composite electrode material, composite electrode, battery and manufacturing method thereof
JP2013254620A (en) * 2012-06-06 2013-12-19 Idemitsu Kosan Co Ltd Positive electrode mixture slurry and electrode sheet
JP2014007022A (en) * 2012-06-22 2014-01-16 Idemitsu Kosan Co Ltd Positive electrode mixture slurry and electrode sheet
JP2014502405A (en) * 2010-11-09 2014-01-30 コーネル・ユニバーシティー Sulfur-containing nanoporous materials, nanoparticles, methods and applications
JP2014017240A (en) * 2012-06-13 2014-01-30 Nagase Chemtex Corp Thin film sulfur-coated conductive carbon, positive electrode mixture and all-solid-state lithium sulfur battery
JP2014017241A (en) * 2012-06-13 2014-01-30 Nagase Chemtex Corp Method of producing thin film sulfur-coated conductive carbon, thin film sulfur-coated conductive carbon, positive electrode mixture and all-solid-state lithium sulfur battery
JP2014511816A (en) * 2011-04-08 2014-05-19 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト POROUS CARBON PRODUCT HAVING LAYER BONDED STRUCTURE, PROCESS FOR PRODUCING THE SAME AND METHOD OF USING THE SAME
WO2014103480A1 (en) * 2012-12-27 2014-07-03 ソニー株式会社 Electrode material for secondary batteries, method for producing same, and secondary battery
WO2014112401A1 (en) * 2013-01-18 2014-07-24 ソニー株式会社 Composite material for electrodes, method for producing same, and secondary battery
WO2014162693A1 (en) 2013-04-02 2014-10-09 出光興産株式会社 Composite material
JP2015507340A (en) * 2012-02-16 2015-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Sulfur-containing composite material used for lithium-sulfur battery, electrode material including the same, and lithium-sulfur battery
KR20150035574A (en) 2012-06-29 2015-04-06 이데미쓰 고산 가부시키가이샤 Positive electrode mix
WO2016009936A1 (en) * 2014-07-15 2016-01-21 東レ株式会社 Electrode material, lithium-sulfur battery electrode, lithium-sulfur battery and battery material production method
JP2016506044A (en) * 2012-12-19 2016-02-25 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Electrode structure and manufacturing method thereof
WO2016075916A1 (en) * 2014-11-13 2016-05-19 株式会社Gsユアサ Sulfur-carbon composite, nonaqueous electrolyte cell having electrode containing sulfur-carbon composite, and method for producing sulfur-carbon composite
JPWO2015030053A1 (en) * 2013-09-02 2017-03-02 三菱瓦斯化学株式会社 All-solid battery and method for producing electrode active material
JP2017521823A (en) * 2014-06-12 2017-08-03 ダイムラー・アクチェンゲゼルシャフトDaimler AG Electrode material for electrochemical storage device, method for producing electrode material, and electrochemical energy storage device
WO2018163778A1 (en) 2017-03-08 2018-09-13 学校法人 関西大学 Electrolyte solution for alkali metal-sulfur-based secondary battery, and alkali metal-sulfur-based secondary battery
WO2018225619A1 (en) 2017-06-05 2018-12-13 積水化学工業株式会社 Sulfur-carbon material composite body, positive electrode material for lithium sulfur secondary batteries, and lithium sulfur secondary battery
WO2019212905A1 (en) * 2018-04-30 2019-11-07 Lyten, Inc. Lithium ion battery and battery materials
US10490846B2 (en) 2015-03-11 2019-11-26 Ricoh Company, Ltd. Non-aqueous electrolyte electricity-storage element
WO2020090986A1 (en) * 2018-11-01 2020-05-07 株式会社Gsユアサ Rechargeable battery with nonaqueous electrolyte
JP2020161288A (en) * 2019-03-26 2020-10-01 東京電力ホールディングス株式会社 Sulfur positive electrode mixture and manufacturing method thereof, sulfur positive electrode, and lithium-sulfur solid-state battery
US11127941B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Carbon-based structures for incorporation into lithium (Li) ion battery electrodes
US11127942B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Systems and methods of manufacture of carbon based structures incorporated into lithium ion and lithium sulfur (li s) battery electrodes
US11133495B2 (en) 2019-10-25 2021-09-28 Lyten, Inc. Advanced lithium (LI) ion and lithium sulfur (LI S) batteries
WO2021201127A1 (en) 2020-03-31 2021-10-07 日亜化学工業株式会社 Positive electrode composition for lithium sulfur batteries, positive electrode for lithium sulfur batteries, and lithium sulfur battery
WO2021241749A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Carbon–silicon composite
US11198611B2 (en) 2019-07-30 2021-12-14 Lyten, Inc. 3D self-assembled multi-modal carbon-based particle
US11309545B2 (en) 2019-10-25 2022-04-19 Lyten, Inc. Carbonaceous materials for lithium-sulfur batteries
US11342561B2 (en) 2019-10-25 2022-05-24 Lyten, Inc. Protective polymeric lattices for lithium anodes in lithium-sulfur batteries
JP2022083978A (en) * 2020-11-25 2022-06-06 ネッチュ トロッケンマールテヒニク ゲーエムベーハー Method for producing homogenized mixture of carbon, sulfur and ptfe
US11367895B1 (en) 2021-07-23 2022-06-21 Lyten, Inc. Solid-state electrolyte for lithium-sulfur batteries
US11398622B2 (en) 2019-10-25 2022-07-26 Lyten, Inc. Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery
US11404692B1 (en) 2021-07-23 2022-08-02 Lyten, Inc. Lithium-sulfur battery cathode formed from multiple carbonaceous regions
WO2022186151A1 (en) 2021-03-01 2022-09-09 株式会社Gsユアサ Non-aqueous electrolyte power storage element and method for manufacturing same
US11489161B2 (en) 2019-10-25 2022-11-01 Lyten, Inc. Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
WO2022230835A1 (en) 2021-04-28 2022-11-03 株式会社Gsユアサ Nonaqueous-electrolyte electricity storage element
US11508966B2 (en) 2019-10-25 2022-11-22 Lyten, Inc. Protective carbon layer for lithium (Li) metal anodes
US11539074B2 (en) 2019-10-25 2022-12-27 Lyten, Inc. Artificial solid electrolyte interface (A-SEI) cap layer including graphene layers with flexible wrinkle areas
US11600876B2 (en) 2021-07-23 2023-03-07 Lyten, Inc. Wound cylindrical lithium-sulfur battery including electrically-conductive carbonaceous materials
US11621417B2 (en) 2017-11-22 2023-04-04 Gs Yuasa International Ltd. Lithium ion secondary battery
US11631893B2 (en) 2019-10-25 2023-04-18 Lyten, Inc. Artificial solid electrolyte interface cap layer for an anode in a Li S battery system
US11670826B2 (en) 2021-07-23 2023-06-06 Lyten, Inc. Length-wise welded electrodes incorporated in cylindrical cell format lithium-sulfur batteries
US11735745B2 (en) 2021-06-16 2023-08-22 Lyten, Inc. Lithium-air battery
US11870063B1 (en) 2022-10-24 2024-01-09 Lyten, Inc. Dual layer gradient cathode electrode structure for reducing sulfide transfer
WO2024028627A1 (en) * 2022-08-05 2024-02-08 日産自動車株式会社 Positive electrode material and secondary battery using same
US11901580B2 (en) 2020-01-10 2024-02-13 Lyten, Inc. Selectively activated metal-air battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275313A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275313A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013024813; J.Wang, et al.: 'Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium' Carbon Vol.46/No.2, 200802, pp.229-235 *
JPN6013024814; Jingsong Huang, et al.: 'A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon M' Chemistry A European Journal Vol.14/No.22, 20080728, pp.6614-6626 *

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028804A3 (en) * 2009-09-02 2011-07-21 Ut-Battelle, Llc Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
WO2011028804A2 (en) * 2009-09-02 2011-03-10 Ut-Battelle, Llc Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
JP2011181260A (en) * 2010-02-26 2011-09-15 Osaka Prefecture Univ Cathode of all-solid lithium secondary battery, and method of manufacturing the same
JP2014502405A (en) * 2010-11-09 2014-01-30 コーネル・ユニバーシティー Sulfur-containing nanoporous materials, nanoparticles, methods and applications
CN103262308A (en) * 2010-12-24 2013-08-21 出光兴产株式会社 Positive electrode material for lithium ion battery and lithium ion battery
WO2012086196A1 (en) * 2010-12-24 2012-06-28 出光興産株式会社 Positive electrode material for lithium ion batteries, and lithium ion battery
EP2658011A4 (en) * 2010-12-24 2016-01-13 Idemitsu Kosan Co Positive electrode material for lithium ion batteries, and lithium ion battery
US9620772B2 (en) 2010-12-24 2017-04-11 Idemitsu Kosan Co., Ltd. Positive electrode material containing a composite of sulfur and a porous conductive substance, and glass or glass ceramic particles for lithium ion batteries, and lithium ion battery
JP5856979B2 (en) * 2010-12-24 2016-02-10 出光興産株式会社 Positive electrode material for lithium ion battery and lithium ion battery
WO2012102037A1 (en) 2011-01-27 2012-08-02 出光興産株式会社 Composite material of alkali metal sulfide and conducting agent
JP2012204332A (en) * 2011-03-28 2012-10-22 Tokyo Univ Of Agriculture & Technology Positive electrode material for lithium-sulfur battery, lithium-sulfur battery, and composite and method for manufacturing the same
JP2014511816A (en) * 2011-04-08 2014-05-19 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト POROUS CARBON PRODUCT HAVING LAYER BONDED STRUCTURE, PROCESS FOR PRODUCING THE SAME AND METHOD OF USING THE SAME
WO2012165884A3 (en) * 2011-05-31 2013-03-28 한양대학교 산학협력단 Method for manufacturing a carbon-sulfur composite, carbon-sulfur composite manufactured thereby, and lithium-sulfur battery including same
KR101384198B1 (en) 2011-05-31 2014-04-25 한양대학교 산학협력단 Manufacturing method of carbon sulfur complex, carbon sulfur complex made by the same, lithium sulfur battery including the same
US9397333B2 (en) 2011-05-31 2016-07-19 Industry-University Cooperation Foundation Hanyang University Method for manufacturing carbon-sulfur composite, carbon-sulfur composite manufactured thereby, and lithium-sulfur battery
KR101329627B1 (en) 2011-09-26 2013-11-15 경상대학교산학협력단 A composite electrode material, composite electrode, battery and manufacturing method thereof
JP2013080637A (en) * 2011-10-04 2013-05-02 Idemitsu Kosan Co Ltd Composite electrode material and method for producing the same, and lithium battery manufactured using the composite electrode material
JP2013110051A (en) * 2011-11-24 2013-06-06 Idemitsu Kosan Co Ltd Electrode material and lithium ion battery manufactured using the same
CN103947018A (en) * 2011-11-24 2014-07-23 出光兴产株式会社 Electrode material and lithium ion battery using same
WO2013076955A1 (en) 2011-11-24 2013-05-30 出光興産株式会社 Electrode material and lithium ion battery using same
JP2013143298A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
JP2013143297A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
JP2015507340A (en) * 2012-02-16 2015-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Sulfur-containing composite material used for lithium-sulfur battery, electrode material including the same, and lithium-sulfur battery
JP2013214503A (en) * 2012-03-09 2013-10-17 Toray Ind Inc Carbon-sulfur complex, electrochemical element using the same, and lithium ion battery
JP2013254620A (en) * 2012-06-06 2013-12-19 Idemitsu Kosan Co Ltd Positive electrode mixture slurry and electrode sheet
JP2014017240A (en) * 2012-06-13 2014-01-30 Nagase Chemtex Corp Thin film sulfur-coated conductive carbon, positive electrode mixture and all-solid-state lithium sulfur battery
JP2014017241A (en) * 2012-06-13 2014-01-30 Nagase Chemtex Corp Method of producing thin film sulfur-coated conductive carbon, thin film sulfur-coated conductive carbon, positive electrode mixture and all-solid-state lithium sulfur battery
JP2014007022A (en) * 2012-06-22 2014-01-16 Idemitsu Kosan Co Ltd Positive electrode mixture slurry and electrode sheet
US9859562B2 (en) 2012-06-29 2018-01-02 Idemitsu Kosan Co., Ltd. Positive electrode mix
KR20150035574A (en) 2012-06-29 2015-04-06 이데미쓰 고산 가부시키가이샤 Positive electrode mix
JP2016506044A (en) * 2012-12-19 2016-02-25 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Electrode structure and manufacturing method thereof
US10147938B2 (en) 2012-12-27 2018-12-04 Murata Manufacturing Co., Ltd. Electrode material for secondary batteries and manufacturing method thereof, and secondary battery
WO2014103480A1 (en) * 2012-12-27 2014-07-03 ソニー株式会社 Electrode material for secondary batteries, method for producing same, and secondary battery
JPWO2014103480A1 (en) * 2012-12-27 2017-01-12 ソニー株式会社 Electrode material for secondary battery, method for producing the same, and secondary battery
JP2018088420A (en) * 2013-01-18 2018-06-07 株式会社村田製作所 Composite material for electrode and secondary battery
JPWO2014112401A1 (en) * 2013-01-18 2017-01-19 ソニー株式会社 COMPOSITE MATERIAL FOR ELECTRODE, PROCESS FOR PRODUCING THE SAME AND SECONDARY BATTERY
CN105122519A (en) * 2013-01-18 2015-12-02 索尼公司 Composite material for electrodes, method for producing same, and secondary battery
WO2014112401A1 (en) * 2013-01-18 2014-07-24 ソニー株式会社 Composite material for electrodes, method for producing same, and secondary battery
WO2014162693A1 (en) 2013-04-02 2014-10-09 出光興産株式会社 Composite material
JPWO2015030053A1 (en) * 2013-09-02 2017-03-02 三菱瓦斯化学株式会社 All-solid battery and method for producing electrode active material
JP2017521823A (en) * 2014-06-12 2017-08-03 ダイムラー・アクチェンゲゼルシャフトDaimler AG Electrode material for electrochemical storage device, method for producing electrode material, and electrochemical energy storage device
WO2016009936A1 (en) * 2014-07-15 2016-01-21 東レ株式会社 Electrode material, lithium-sulfur battery electrode, lithium-sulfur battery and battery material production method
JPWO2016009936A1 (en) * 2014-07-15 2017-04-27 東レ株式会社 Electrode material, lithium-sulfur battery electrode, lithium-sulfur battery, and method for producing electrode material
WO2016075916A1 (en) * 2014-11-13 2016-05-19 株式会社Gsユアサ Sulfur-carbon composite, nonaqueous electrolyte cell having electrode containing sulfur-carbon composite, and method for producing sulfur-carbon composite
US10164247B2 (en) 2014-11-13 2018-12-25 Gs Yuasa International Ltd. Sulfur-carbon composite, nonaqueous electrolyte battery including electrode containing sulfur-carbon composite, and method for producing sulfur-carbon composite
US10833358B2 (en) 2015-03-11 2020-11-10 Ricoh Company, Ltd. Porous carbon having connecting mesopores and electrode
US10490846B2 (en) 2015-03-11 2019-11-26 Ricoh Company, Ltd. Non-aqueous electrolyte electricity-storage element
KR20190110602A (en) 2017-03-08 2019-09-30 더 스쿨 코포레이션 칸사이 유니버시티 Electrolyte for alkali metal-sulfur secondary battery and alkali metal-sulfur secondary battery
WO2018163778A1 (en) 2017-03-08 2018-09-13 学校法人 関西大学 Electrolyte solution for alkali metal-sulfur-based secondary battery, and alkali metal-sulfur-based secondary battery
US11862765B2 (en) 2017-03-08 2024-01-02 The School Corporation Kansai University Electrolyte solution for alkali metal-sulfur-based secondary battery, and alkali metal-sulfur-based secondary battery
WO2018225619A1 (en) 2017-06-05 2018-12-13 積水化学工業株式会社 Sulfur-carbon material composite body, positive electrode material for lithium sulfur secondary batteries, and lithium sulfur secondary battery
KR20200014720A (en) 2017-06-05 2020-02-11 세키스이가가쿠 고교가부시키가이샤 Sulfur-carbon material composite, positive electrode material for lithium sulfur secondary battery and lithium sulfur secondary battery
US11489152B2 (en) 2017-06-05 2022-11-01 Sekisui Chemical Co., Ltd. Sulfur-carbon material composite body, positive electrode material for lithium sulfur secondary batteries, and lithium sulfur secondary battery
US11621417B2 (en) 2017-11-22 2023-04-04 Gs Yuasa International Ltd. Lithium ion secondary battery
WO2019212905A1 (en) * 2018-04-30 2019-11-07 Lyten, Inc. Lithium ion battery and battery materials
US10734653B2 (en) 2018-04-30 2020-08-04 Lyten, Inc. Lithium ion battery and battery materials
JP2021523547A (en) * 2018-04-30 2021-09-02 ライテン・インコーポレイテッド Lithium-ion batteries and battery materials
WO2020090986A1 (en) * 2018-11-01 2020-05-07 株式会社Gsユアサ Rechargeable battery with nonaqueous electrolyte
JP2020161288A (en) * 2019-03-26 2020-10-01 東京電力ホールディングス株式会社 Sulfur positive electrode mixture and manufacturing method thereof, sulfur positive electrode, and lithium-sulfur solid-state battery
JP7283657B2 (en) 2019-03-26 2023-05-30 東京電力ホールディングス株式会社 Sulfur positive electrode mixture and manufacturing method thereof, sulfur positive electrode, lithium sulfur solid state battery
US11299397B2 (en) 2019-07-30 2022-04-12 Lyten, Inc. 3D self-assembled multi-modal carbon-based particles integrated into a continuous electrode film layer
US11198611B2 (en) 2019-07-30 2021-12-14 Lyten, Inc. 3D self-assembled multi-modal carbon-based particle
US11508966B2 (en) 2019-10-25 2022-11-22 Lyten, Inc. Protective carbon layer for lithium (Li) metal anodes
US11735740B2 (en) 2019-10-25 2023-08-22 Lyten, Inc. Protective carbon layer for lithium (Li) metal anodes
US11539074B2 (en) 2019-10-25 2022-12-27 Lyten, Inc. Artificial solid electrolyte interface (A-SEI) cap layer including graphene layers with flexible wrinkle areas
US11127941B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Carbon-based structures for incorporation into lithium (Li) ion battery electrodes
US11309545B2 (en) 2019-10-25 2022-04-19 Lyten, Inc. Carbonaceous materials for lithium-sulfur batteries
US11398622B2 (en) 2019-10-25 2022-07-26 Lyten, Inc. Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery
US11127942B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Systems and methods of manufacture of carbon based structures incorporated into lithium ion and lithium sulfur (li s) battery electrodes
US11133495B2 (en) 2019-10-25 2021-09-28 Lyten, Inc. Advanced lithium (LI) ion and lithium sulfur (LI S) batteries
US11631893B2 (en) 2019-10-25 2023-04-18 Lyten, Inc. Artificial solid electrolyte interface cap layer for an anode in a Li S battery system
US11489161B2 (en) 2019-10-25 2022-11-01 Lyten, Inc. Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US11342561B2 (en) 2019-10-25 2022-05-24 Lyten, Inc. Protective polymeric lattices for lithium anodes in lithium-sulfur batteries
US11901580B2 (en) 2020-01-10 2024-02-13 Lyten, Inc. Selectively activated metal-air battery
WO2021201127A1 (en) 2020-03-31 2021-10-07 日亜化学工業株式会社 Positive electrode composition for lithium sulfur batteries, positive electrode for lithium sulfur batteries, and lithium sulfur battery
WO2021241749A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Carbon–silicon composite
JP2022083978A (en) * 2020-11-25 2022-06-06 ネッチュ トロッケンマールテヒニク ゲーエムベーハー Method for producing homogenized mixture of carbon, sulfur and ptfe
JP7307780B2 (en) 2020-11-25 2023-07-12 ネッチュ トロッケンマールテヒニク ゲーエムベーハー Method for producing a homogenized mixture of carbon, sulfur and PTFE
WO2022186151A1 (en) 2021-03-01 2022-09-09 株式会社Gsユアサ Non-aqueous electrolyte power storage element and method for manufacturing same
WO2022230835A1 (en) 2021-04-28 2022-11-03 株式会社Gsユアサ Nonaqueous-electrolyte electricity storage element
US11735745B2 (en) 2021-06-16 2023-08-22 Lyten, Inc. Lithium-air battery
US11670826B2 (en) 2021-07-23 2023-06-06 Lyten, Inc. Length-wise welded electrodes incorporated in cylindrical cell format lithium-sulfur batteries
US11404692B1 (en) 2021-07-23 2022-08-02 Lyten, Inc. Lithium-sulfur battery cathode formed from multiple carbonaceous regions
US11600876B2 (en) 2021-07-23 2023-03-07 Lyten, Inc. Wound cylindrical lithium-sulfur battery including electrically-conductive carbonaceous materials
US11367895B1 (en) 2021-07-23 2022-06-21 Lyten, Inc. Solid-state electrolyte for lithium-sulfur batteries
WO2024028627A1 (en) * 2022-08-05 2024-02-08 日産自動車株式会社 Positive electrode material and secondary battery using same
US11870063B1 (en) 2022-10-24 2024-01-09 Lyten, Inc. Dual layer gradient cathode electrode structure for reducing sulfide transfer

Similar Documents

Publication Publication Date Title
JP2010095390A (en) Mesoporous carbon composite material and secondary battery using the same
KR102591512B1 (en) Negative active material, lithium secondary battery including the material, and method for manufacturing the material
Zhang et al. Urchin-like Li 4 Ti 5 O 12–carbon nanofiber composites for high rate performance anodes in Li-ion batteries
KR101513820B1 (en) Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
Oh et al. Low temperature synthesis of graphene-wrapped LiFePO 4 nanorod cathodes by the polyol method
CN109155408B (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
EP3878032A1 (en) Electroactive materials for metal-ion batteries
CN108292748B (en) Negative electrode active material, lithium ion secondary battery and method for producing same, mixed negative electrode active material, negative electrode
TWI714753B (en) Anode active material, mixed anode active material material, and manufacturing method of anode active material (3)
KR20170076485A (en) Lithium secondary battery
CN108352522B (en) Negative electrode active material, lithium ion secondary battery, and method for producing same
KR20100051674A (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
KR102304885B1 (en) The immobilization selenium, and the use of the immobilization selenium in the manufacturing method thereof and recharging battery
US10886531B2 (en) Negative electrode composition for electric storage device, negative electrode including the composition, electric storage device, and method for producing negative electrode for electric storage device
Zhao et al. Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries
JP6861565B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
KR101820867B1 (en) Manufacturing sulfur-carbon composites with high sulfur dispersion
CN109075331B (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6213980B2 (en) Electrochemical cell
CN109155409B (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
Hawkins et al. Vertically oriented TiS 2− x nanobelt arrays as binder-and carbon-free intercalation electrodes for Li-and Na-based energy storage devices
Huang et al. Two-dimensional Ga2O3/C nanosheets as durable and high-rate anode material for lithium ion batteries
Angulakshmi et al. The suppression of lithium dendrites by a triazine-based porous organic polymer-laden PEO-based electrolyte and its application for all-solid-state lithium batteries
Li et al. In situ formed lithium ionic conductor thin film on the surface of high-crystal-layered LiCoO 2 as a high-voltage cathode material
JP6862091B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and negative electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029