JP2010094683A - Diffusion bonding method of aluminum alloy - Google Patents

Diffusion bonding method of aluminum alloy Download PDF

Info

Publication number
JP2010094683A
JP2010094683A JP2008265068A JP2008265068A JP2010094683A JP 2010094683 A JP2010094683 A JP 2010094683A JP 2008265068 A JP2008265068 A JP 2008265068A JP 2008265068 A JP2008265068 A JP 2008265068A JP 2010094683 A JP2010094683 A JP 2010094683A
Authority
JP
Japan
Prior art keywords
aluminum alloy
bonding
diffusion bonding
diffusion
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008265068A
Other languages
Japanese (ja)
Inventor
Mitsunori Taniguchi
光徳 谷口
Shiomi Kikuchi
潮美 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008265068A priority Critical patent/JP2010094683A/en
Publication of JP2010094683A publication Critical patent/JP2010094683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such the problem that diffusion bonding of an aluminum alloy is carried out by using a vacuum furnace, and the cost is increased since a man-hour is required for the bonding. <P>SOLUTION: By heating and pressurizing an aluminum alloy in an atmosphere of nitrogen substitution and the residual amount of oxygen of ≤70 ppm, the oxide film of a bonding surface is broken since a reduction rate by magnesium contained in the aluminum alloy is higher than the oxidation rate of the bonding surface with residual oxygen, and the diffusion bonding is carried out at a low cost. Further, since the diffusion bonding can be carried out at a pressure higher than the normal pressure, the content such as magnesium is hardly evaporated, and the physical properties of a joined article can be stabilized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はアルミニウム合金同士を加熱、加圧により拡散接合する方法に関するものである。   The present invention relates to a method for diffusion bonding of aluminum alloys by heating and pressing.

従来のアルミニウム合金の拡散接合は、その表面に強固な酸化膜があるため、マグネシウムを含む合金を用いて、真空雰囲気内で合金に含まれるマグネシウムにより表面の酸化膜を還元し、酸化膜を破壊することにより、アルミニウム合金同士を直接接触させて拡散接合を行っていた(例えば、特許文献1参照)。この際、マグネシウムの拡散温度で加熱加圧を行っていた。
特公平5−62034号公報
Conventional diffusion bonding of aluminum alloy has a strong oxide film on its surface. Therefore, using an alloy containing magnesium, the oxide film on the surface is reduced by magnesium contained in the alloy in a vacuum atmosphere, and the oxide film is destroyed. As a result, diffusion bonding is performed by bringing aluminum alloys into direct contact with each other (see, for example, Patent Document 1). At this time, heating and pressurization were performed at the diffusion temperature of magnesium.
Japanese Patent Publication No. 5-62034

しかしながら、上記従来の方法では、真空雰囲気を作り出すために真空加熱炉内で接合するため、接合工程がバッチ処理となり、接合に工数がかかるためコストアップになるという課題を有していた。   However, the conventional method has a problem that since the joining is performed in a vacuum heating furnace in order to create a vacuum atmosphere, the joining process becomes a batch process, and the number of man-hours for joining increases the cost.

また、真空中で拡散接合をおこなうため、マグネシウム等の含有物が蒸散してしまい、接合物の物性が安定しないという課題も有していた。   Further, since diffusion bonding is performed in a vacuum, inclusions such as magnesium evaporate, and the physical properties of the bonded material are not stable.

さらに、真空中で拡散接合をおこなうため、マグネシウム等の含有物が蒸散してしまい、表面の酸化膜が還元されにくくなり、接合強度が低下するという課題も有していた。   Furthermore, since diffusion bonding is performed in a vacuum, inclusions such as magnesium evaporate, and the oxide film on the surface becomes difficult to be reduced, resulting in a problem that bonding strength is reduced.

さらに、マグネシウム等の含有物の拡散温度で加熱加圧を行っているため、基材のアルミニウム合金の拡散が進行しにくく、接合強度が弱いという課題も有していた。   Furthermore, since the heating and pressurization is performed at the diffusion temperature of the inclusion such as magnesium, there is a problem that the diffusion of the aluminum alloy of the base material hardly proceeds and the bonding strength is weak.

本発明は、上記従来の課題を解決するもので、連続的に安価に接合できるとともに、接合物の物性を安定させ、かつ、接合強度が強いアルミニウム合金の拡散接合法を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a diffusion bonding method of an aluminum alloy that can be continuously and inexpensively bonded, stabilizes the physical properties of a bonded product, and has high bonding strength. To do.

上記従来の課題を解決するために、本発明のアルミニウム合金の拡散接合法は、窒素雰囲気中で加熱、加圧するものである。   In order to solve the above-described conventional problems, the aluminum alloy diffusion bonding method of the present invention heats and pressurizes in a nitrogen atmosphere.

これにより、安価で管理が行いやすい窒素置換雰囲気での接合であるため連続炉で接合が可能となり、安価に拡散接合が行えるとともに、常圧以上で拡散接合できるため、マグネシウム等の含有物が蒸散しにくくなり、接合物の物性を安定させることができる。   This makes it possible to join in a continuous furnace because it is cheap and easy to manage, and can be joined in a continuous furnace, so that diffusion joining can be done at low cost and diffusion joining can be performed at atmospheric pressure or higher. And the physical properties of the bonded product can be stabilized.

本発明のアルミニウム合金の拡散接合法は、真空中でない雰囲気で拡散接合できるため、安価な接合を提供することができるとともに、接合物の物性を安定させ、かつ接合強度を強固にすることができる。   Since the diffusion bonding method of the aluminum alloy of the present invention can be diffusion bonded in an atmosphere not in a vacuum, it can provide inexpensive bonding, stabilize the physical properties of the bonded material, and strengthen the bonding strength. .

請求項1に記載の発明は、アルミニウム合金を拡散接合するに際し、窒素雰囲気中で加熱、加圧するものであり、安価で管理が行いやすい窒素置換雰囲気での接合であるため連続炉で接合が可能となり、安価に拡散接合が行えるとともに、常圧以上で拡散接合できるため、マグネシウム等の含有物が蒸散しにくくなり、接合物の物性を安定させることができ、接合強度を強くすることができる。   The invention according to claim 1 heats and pressurizes in a nitrogen atmosphere when aluminum alloy is diffusion-bonded, and can be bonded in a continuous furnace because it is bonded in a nitrogen-substituted atmosphere that is inexpensive and easy to manage. Thus, diffusion bonding can be performed at low cost, and diffusion bonding can be performed at a pressure higher than normal pressure, so that contents such as magnesium are less likely to evaporate, the physical properties of the bonded product can be stabilized, and the bonding strength can be increased.

請求項2に記載の発明は、請求項1に記載の発明において、2重量%以上マグネシウムを含む合金をインサート材として用いるか、2重量%以上マグネシウムを含む合金を用いたものであり、マグネシウムが蒸散しにくく、表面の酸化膜が還元され易くなり、接合強度が強くなる。   Invention of Claim 2 uses the alloy containing 2 weight% or more of magnesium as an insert material in the invention of Claim 1, or uses the alloy containing 2 weight% or more of magnesium, It is difficult to evaporate, the oxide film on the surface is easily reduced, and the bonding strength is increased.

請求項3に記載の発明は、請求項1または2に記載の発明において、酸素残存量を70ppm以下の雰囲気で、加熱、加圧するものであり、残存酸素による接合面の酸化速度よりもアルミニウム合金に含まれるマグネシウムによる還元速度の方が速いため、接合面の酸化膜が破壊され接合強度が強くできるとともに、残存酸素量が70ppm以下で良く、残存酸素の管理も容易に行えるため、さらに、安価に拡散接合が行える。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the remaining amount of oxygen is heated and pressurized in an atmosphere of 70 ppm or less. The rate of reduction with magnesium contained in the steel is faster, so the oxide film on the bonding surface is broken and the bonding strength can be increased. The residual oxygen amount can be 70 ppm or less, and the residual oxygen can be easily managed. Diffusion bonding can be performed.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、加熱温度は、前記アルミニウム合金の固相線温度から45℃低い温度から固相線温度の間であるものであり、基材のアルミニウムの拡散がより進行し易くなり、強固に短時間で接合できるため、より安価に拡散接合が行える。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the heating temperature is between a temperature lower than the solidus temperature of the aluminum alloy by 45 ° C. and a solidus temperature. In some cases, the diffusion of aluminum in the base material is more likely to proceed, and the bonding can be performed firmly in a short time, so that diffusion bonding can be performed at a lower cost.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、加圧力は、3MPa以上5MPaであることにより、加圧による変形を抑制しながら、圧力が大きくなり密着性が良化することとなり、より拡散が進行し易くなり、強固に短時間で接合できるため、より安価に拡散接合が行える。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the applied pressure is 3 MPa or more and 5 MPa, so that the pressure increases while suppressing deformation due to pressurization. Adhesion is improved, diffusion is more likely to proceed, and since bonding can be performed firmly in a short time, diffusion bonding can be performed at a lower cost.

以下、本発明に至った実験結果を示し、詳細に説明を行う。   Hereinafter, experimental results that led to the present invention will be shown and described in detail.

(実施の形態1)
接合材料としてA5052を使用し、拡散接合を行った。A5052はマグネシウム系アルミニウム合金であり、マグネシウム含有量は2.2から2.8重量%であり、固相線温度は約607℃である。
(Embodiment 1)
A5052 was used as a bonding material, and diffusion bonding was performed. A5052 is a magnesium-based aluminum alloy, the magnesium content is 2.2 to 2.8% by weight, and the solidus temperature is about 607 ° C.

実験に使用した材料は、市販の板厚18mmのアルミニウム合金板(ブロック材)と板厚3mmのアルミニウム合金板(板材)である。試料サイズはそれぞれブロック材が横20mm×縦40mm、板材が横25mm×縦50mmである。   The materials used in the experiment were a commercially available aluminum alloy plate (block material) having a thickness of 18 mm and an aluminum alloy plate (plate material) having a thickness of 3 mm. The sample size is 20 mm wide × 40 mm long for the block material and 25 mm wide × 50 mm long for the plate material.

実験方法は、接合材料を有機溶媒で洗浄後、ブロック材、板材、ブロック材の順に重ね合わせる。これを炉に入れ、炉内を残酸素量が70ppmとなるように排気した後、窒素を充填し、加熱する。加熱条件は、固相線温度よりも45℃低い562℃と、固相線温度よりも30℃低い577℃と、の2条件である。所定の温度まで加熱した後、5〜10分程度放置し、加圧を開始した。加圧力は、3MPaと、4MPaと、の2条件である。60〜90分加圧した後、徐加し、炉冷によって室温付近になった後で試料を炉内から取り出した。   In the experimental method, after the bonding material is washed with an organic solvent, the block material, the plate material, and the block material are superposed in this order. This is put into a furnace, the inside of the furnace is evacuated so that the amount of residual oxygen becomes 70 ppm, then filled with nitrogen and heated. There are two heating conditions: 562 ° C., which is 45 ° C. lower than the solidus temperature, and 577 ° C., which is 30 ° C. lower than the solidus temperature. After heating to a predetermined temperature, it was left for about 5 to 10 minutes, and pressurization was started. The applied pressure is two conditions of 3 MPa and 4 MPa. After pressurizing for 60 to 90 minutes, the pressure was gradually increased, and the sample was taken out from the furnace after the temperature became near room temperature by furnace cooling.

接合した試料を放電加工機によって、ブロック材を引張試験機のチャックに装着可能な形状に切断し、両端のブロック材を引張速度0.5mm/minで引っ張り、破断までの応力を測定した。   The joined sample was cut with an electric discharge machine into a shape that allows the block material to be attached to the chuck of the tensile tester, the block material at both ends was pulled at a tensile rate of 0.5 mm / min, and the stress until breakage was measured.

その結果、加熱温度562℃、加圧4MPaで接合面の引っ張り強度は94MPaであった。このように窒素置換雰囲気での接合であるため連続炉で接合が可能となる。また、窒素は安価で、管理がし易いガスである。これらにより、安価に拡散接合が行えるとともに、常圧以上で拡散接合ができるため、マグネシウム等の含有物が蒸散しにくくなり、接合物の物性が安定する。また、マグネシウムが蒸散しにくいため、酸素残存量が70ppmであっても、残存酸素による酸化速度よりもマグネシウムによる酸化膜還元速度の方が速く、強固に拡散接合が可能となる。また、好ましい加熱温度としては、固相線温度を基準として、固相線温度よりも45℃低い温度で接合することにより、アルミニウム自体の拡散が促進されより強い接合が得られる。   As a result, the tensile strength of the joint surface was 94 MPa at a heating temperature of 562 ° C. and a pressure of 4 MPa. Thus, since it is joining in nitrogen substitution atmosphere, joining becomes possible in a continuous furnace. Nitrogen is an inexpensive and easy-to-manage gas. As a result, diffusion bonding can be performed at low cost, and diffusion bonding can be performed at normal pressure or higher, so that contents such as magnesium are less likely to evaporate, and the physical properties of the bonded article are stabilized. In addition, since magnesium does not easily evaporate, even if the residual oxygen amount is 70 ppm, the rate of oxide film reduction with magnesium is faster than the rate of oxidation with residual oxygen, and strong diffusion bonding is possible. Further, as a preferable heating temperature, by bonding at a temperature lower by 45 ° C. than the solidus temperature on the basis of the solidus temperature, diffusion of aluminum itself is promoted and stronger bonding can be obtained.

ただし、固相線温度に近づくほどアルミニウム合金は柔らかくなるため、加熱温度を上げすぎると接合強度は強くなるが、形状の変形が大きくなる。加熱温度が固相線温度よりも45℃低い562℃の場合、変形率(接合前後のブロックと板材の重ね合わせた高さ差/接合前の高さ)は約15%で、加熱温度が固相線温度よりも30℃低い577℃では、約40%と大きくなり、これ以上では変形量が大幅に増えるため、より好ましい加熱温度としては、固相線温度よりも45℃〜30℃低い温度で拡散接合するのが良い。すなわち、加熱温度がアルミニウム合金の固相線温度から30℃から45℃低い温度であることにより、拡散接合の強度が強くなるとともに、加熱加圧による変形を小さくおさえることができる。   However, since the aluminum alloy becomes softer as it approaches the solidus temperature, if the heating temperature is increased too much, the bonding strength increases, but the deformation of the shape increases. When the heating temperature is 562 ° C., which is 45 ° C. lower than the solidus temperature, the deformation rate (height difference between the block and the plate before and after joining / height before joining) is about 15%, and the heating temperature is fixed. At 577 ° C., which is 30 ° C. lower than the phase line temperature, increases to about 40%, and beyond this, the amount of deformation greatly increases. Therefore, a more preferable heating temperature is 45 ° C. to 30 ° C. lower than the solidus temperature. It is good to do diffusion bonding with. That is, when the heating temperature is lower by 30 ° C. to 45 ° C. than the solidus temperature of the aluminum alloy, the strength of diffusion bonding can be increased and deformation due to heating and pressing can be suppressed.

また、大気中で同様の拡散接合を試みたが接合はできなかった。   In addition, similar diffusion bonding was attempted in the atmosphere, but bonding was not possible.

また、マグネシウムの含有量が少ない、A6061(マグネシウム含有量は0.8から1.2重量%)、A1050(マグネシウム含有量0.05重量%以下)を用いて、同様の実験を行ったが、いずれも接合強度がきわめて小さかった。   In addition, the same experiment was performed using A6061 (magnesium content is 0.8 to 1.2% by weight) and A1050 (magnesium content 0.05% by weight or less) with a low magnesium content. In all cases, the bonding strength was extremely low.

また、接合温度を固相線温度よりも60℃低い547℃で接合を試みたが、接合できなかった。   Further, the bonding was attempted at 547 ° C., which is 60 ° C. lower than the solidus temperature, but the bonding could not be performed.

このように、安価で管理がし易い窒素置換雰囲気中で接合できるため、連続炉の使用が可能となり、安価に接合することができる。さらに、酸素残存量も70ppm以下で残存酸素によるアルミニウム表面の酸化速度よりもマグネシウムによる還元作用の方が早くできるため強固な拡散接合ができるとともに、酸素残存量の管理も行いやすく、安価に接合することができ、工業的な汎用性が高く、連続生産に適するものである。   Thus, since it can join in a nitrogen-substituted atmosphere that is inexpensive and easy to manage, it is possible to use a continuous furnace, and it is possible to join at a low cost. Furthermore, since the residual oxygen amount is 70 ppm or less, the reduction action by magnesium can be faster than the oxidation rate of the aluminum surface by residual oxygen, so that strong diffusion bonding can be performed and the residual oxygen amount can be easily managed, so that bonding can be performed at low cost. It has high industrial versatility and is suitable for continuous production.

また、窒素置換雰囲気中で接合を行うため、真空中のような負圧下ではなく常圧以上で接合を行うため、マグネシウムのような飛散しやすい含有物の飛散を抑制でき、安定した物性の接合物が得られるとともに、マグネシウムには酸化アルミニウムに対する還元剤としての機能があるため、拡散を進行し易くでき、短時間で強固な拡散接合が可能となる。   In addition, since bonding is performed in a nitrogen-substituted atmosphere, bonding is performed under normal pressure rather than under a negative pressure as in vacuum, so that scattering of easily diffusing contents such as magnesium can be suppressed and bonding with stable physical properties is possible. In addition to obtaining a product, since magnesium has a function as a reducing agent for aluminum oxide, diffusion can easily proceed and strong diffusion bonding can be achieved in a short time.

また、加熱温度は、従来のようにマグネシウム等の含有物の拡散温度で管理するものではなく、アルミニウム合金の固相線温度で管理する、具体的には、アルミニウム合金の固相線温度から45℃低い温度から固相線温度までの間で拡散接合を行うことにより、従来のマグネシウムの拡散温度での接合とは異なり、基材のアルミニウム合金の拡散が進行し易くでき、より強固な接合が可能となる。特に、固相線温度よりも30℃〜45℃低い温度で拡散接合を行うと加熱加圧による変形も小さく抑えることができる。   The heating temperature is not controlled by the diffusion temperature of inclusions such as magnesium as in the prior art, but is controlled by the solidus temperature of the aluminum alloy. Specifically, the heating temperature is 45 to 45 from the solidus temperature of the aluminum alloy. Unlike conventional bonding at the diffusion temperature of magnesium, diffusion bonding between the low temperature and the solidus temperature can facilitate the diffusion of the aluminum alloy of the base material, resulting in a stronger bond. It becomes possible. In particular, when diffusion bonding is performed at a temperature 30 ° C. to 45 ° C. lower than the solidus temperature, deformation due to heat and pressure can be suppressed to a small level.

なお、本実施の形態では、アルミニウム合金同士を重ね合わせことを示したが、インサート材として2重量%以上マグネシウムを含む合金をアルミニウム合金の間に挟んで接合してもよい。   Note that in the present embodiment, the aluminum alloys are shown to be overlapped with each other, but an alloy containing 2% by weight or more of magnesium as an insert material may be sandwiched and joined between the aluminum alloys.

なお、本実施の形態では、金属材料として、アルミニウム合金を用いて説明したが、純アルミニウムを用いても、同様の作用効果が得られるものである。   In the present embodiment, an aluminum alloy is used as the metal material, but the same effect can be obtained even if pure aluminum is used.

本実施の形態で示したアルミニウム合金の拡散接合を用いて製作されるものとしては、積層タイプの熱交換器があげられる。積層タイプの熱交換器には、冷媒が流れる細かな流路などがあるため、ロウ付けではロウ材が流れ出し流路を塞ぐおそれがあるため、拡散接合で製作するのが望ましい。また、熱交換器であるため素材の熱伝導率は高い方がよく、安価で熱伝導率の高いアルミニウムやアルミニウム合金は最適な材料である。   As a thing manufactured using the diffusion joining of the aluminum alloy shown in this Embodiment, a laminated type heat exchanger is mention | raise | lifted. Since the laminated type heat exchanger has a fine flow path through which the refrigerant flows, brazing material may flow out and block the flow path in brazing, so it is desirable to manufacture by diffusion bonding. Moreover, since it is a heat exchanger, it is better that the material has a high thermal conductivity, and aluminum and aluminum alloys that are inexpensive and have a high thermal conductivity are optimal materials.

以上のように、本発明にかかるアルミニウム合金の拡散接合法は、真空中でない雰囲気で拡散接合できるため、安価な接合を提供することができるとともに、接合物の物性を安定させ、かつ接合強度を強固にすることが可能となるので、冷蔵庫や自動販売機などの冷凍冷蔵機器、ルームエアコン、パーケージエアコンや自動車用などの空調機器、給湯器、自動車用のラジエータ、電子機器の冷却などに用いられる熱交換器や、廃熱回収機器等の用途に適用できる。   As described above, the diffusion bonding method of the aluminum alloy according to the present invention can perform diffusion bonding in an atmosphere not in a vacuum, so that it can provide inexpensive bonding, stabilize the physical properties of the bonded material, and increase the bonding strength. Because it can be solidified, it is used for refrigerator / refrigerator equipment such as refrigerators and vending machines, room air conditioners, packaged air conditioners, air conditioners for automobiles, water heaters, radiators for automobiles, electronic devices, etc. It can be applied to applications such as heat exchangers and waste heat recovery equipment.

Claims (5)

アルミニウム合金を拡散接合するに際し、窒素雰囲気中で加熱、加圧するアルミニウム合金の拡散接合法。   A diffusion bonding method of aluminum alloy in which aluminum alloy is heated and pressurized in a nitrogen atmosphere when diffusion bonding is performed. 2重量%以上マグネシウムを含む合金をインサート材として用いるか、2重量%以上マグネシウムを含むアルミニウム合金を用いた請求項1に記載のアルミニウム合金の拡散接合法。   2. The aluminum alloy diffusion bonding method according to claim 1, wherein an alloy containing 2% by weight or more of magnesium is used as an insert material, or an aluminum alloy containing 2% by weight or more of magnesium is used. 酸素残存量を70ppm以下の雰囲気で、加熱、加圧する請求項1または2に記載のアルミニウム合金の拡散接合法。   The aluminum alloy diffusion bonding method according to claim 1 or 2, wherein the oxygen remaining amount is heated and pressurized in an atmosphere of 70 ppm or less. 加熱温度は、前記アルミニウム合金の固相線温度から45℃低い温度から固相線温度の間である請求項1から3のいずれか一項に記載のアルミニウム合金の拡散接合法。   4. The aluminum alloy diffusion bonding method according to claim 1, wherein the heating temperature is between a temperature lower than the solidus temperature of the aluminum alloy by 45 ° C. and a solidus temperature. 5. 加圧力は、3MPa以上5MPaである請求項1から4のいずれか一項に記載のアルミニウム合金の拡散接合法。   The aluminum alloy diffusion bonding method according to any one of claims 1 to 4, wherein the applied pressure is 3 MPa or more and 5 MPa.
JP2008265068A 2008-10-14 2008-10-14 Diffusion bonding method of aluminum alloy Pending JP2010094683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265068A JP2010094683A (en) 2008-10-14 2008-10-14 Diffusion bonding method of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265068A JP2010094683A (en) 2008-10-14 2008-10-14 Diffusion bonding method of aluminum alloy

Publications (1)

Publication Number Publication Date
JP2010094683A true JP2010094683A (en) 2010-04-30

Family

ID=42256744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265068A Pending JP2010094683A (en) 2008-10-14 2008-10-14 Diffusion bonding method of aluminum alloy

Country Status (1)

Country Link
JP (1) JP2010094683A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152556A1 (en) * 2010-06-04 2011-12-08 古河スカイ株式会社 Method of joining aluminum alloys
WO2013065160A1 (en) * 2011-11-02 2013-05-10 古河スカイ株式会社 Method for manufacturing aluminum alloy cladding material
WO2013077455A2 (en) * 2011-11-27 2013-05-30 古河スカイ株式会社 Bonding method for aluminium members, and aluminium structure bonded by means of said bonding method
WO2013080833A1 (en) * 2011-11-30 2013-06-06 古河スカイ株式会社 Metal molding method and molded product thereof
WO2015194861A1 (en) * 2014-06-17 2015-12-23 한국에너지기술연구원 Thin plate bonding method and thin plate assembly
WO2016167217A1 (en) * 2015-04-16 2016-10-20 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2016208010A (en) * 2015-04-16 2016-12-08 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
CN107755911A (en) * 2017-09-11 2018-03-06 中国科学院合肥物质科学研究院 A kind of method for oxide dispersion intensifying steel Solid-phase welding
CN108436212A (en) * 2018-06-04 2018-08-24 哈尔滨沃丁科技开发有限公司 The welding method of aluminium alloy panel
CN113195146A (en) * 2018-12-21 2021-07-30 日本发条株式会社 Bonding method and bonded body
CN114951944A (en) * 2022-06-08 2022-08-30 上海航天设备制造总厂有限公司 Diffusion welding method for high-magnesium-content aluminum alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228092A (en) * 1985-07-31 1987-02-06 Hitachi Ltd Manufacture of laminated heat exchanger
JPH06114544A (en) * 1992-10-02 1994-04-26 Mitsubishi Alum Co Ltd Heat exchanger and production thereof
JPH11770A (en) * 1997-06-09 1999-01-06 Showa Aircraft Ind Co Ltd Aluminum honeycomb and its manufacture
JP2006239698A (en) * 2005-02-28 2006-09-14 Calsonic Kansei Corp Heat exchanger made of aluminum
JP2006255746A (en) * 2005-03-16 2006-09-28 Calsonic Kansei Corp Method and tool for manufacturing laminated heat exchanger
JP2007192500A (en) * 2006-01-20 2007-08-02 Calsonic Kansei Corp Multilayered heat exchanger
JP2007245219A (en) * 2006-03-17 2007-09-27 Taiheiyo Cement Corp Joining method of aluminum radical composite material and joined body of aluminum radical composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228092A (en) * 1985-07-31 1987-02-06 Hitachi Ltd Manufacture of laminated heat exchanger
JPH06114544A (en) * 1992-10-02 1994-04-26 Mitsubishi Alum Co Ltd Heat exchanger and production thereof
JPH11770A (en) * 1997-06-09 1999-01-06 Showa Aircraft Ind Co Ltd Aluminum honeycomb and its manufacture
JP2006239698A (en) * 2005-02-28 2006-09-14 Calsonic Kansei Corp Heat exchanger made of aluminum
JP2006255746A (en) * 2005-03-16 2006-09-28 Calsonic Kansei Corp Method and tool for manufacturing laminated heat exchanger
JP2007192500A (en) * 2006-01-20 2007-08-02 Calsonic Kansei Corp Multilayered heat exchanger
JP2007245219A (en) * 2006-03-17 2007-09-27 Taiheiyo Cement Corp Joining method of aluminum radical composite material and joined body of aluminum radical composite material

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174303B2 (en) 2010-06-04 2015-11-03 Furukawa-Sky Aluminum Corp. Method of bonding aluminum alloy materials to each other
JP5021097B2 (en) * 2010-06-04 2012-09-05 古河スカイ株式会社 Joining method of aluminum alloy material
CN102917833A (en) * 2010-06-04 2013-02-06 古河Sky株式会社 Method of joining aluminum alloys
WO2011152556A1 (en) * 2010-06-04 2011-12-08 古河スカイ株式会社 Method of joining aluminum alloys
CN102917833B (en) * 2010-06-04 2016-08-31 株式会社Uacj The joint method of aluminum alloy materials
WO2013065160A1 (en) * 2011-11-02 2013-05-10 古河スカイ株式会社 Method for manufacturing aluminum alloy cladding material
US9802273B2 (en) 2011-11-02 2017-10-31 Uacj Corporation Method for manufacturing aluminum alloy cladding material
JP5284542B1 (en) * 2011-11-02 2013-09-11 古河スカイ株式会社 Method for producing aluminum alloy clad material
WO2013077455A3 (en) * 2011-11-27 2013-08-08 古河スカイ株式会社 Bonding method for aluminium members, and aluminium structure bonded by means of said bonding method
WO2013077455A2 (en) * 2011-11-27 2013-05-30 古河スカイ株式会社 Bonding method for aluminium members, and aluminium structure bonded by means of said bonding method
WO2013080833A1 (en) * 2011-11-30 2013-06-06 古河スカイ株式会社 Metal molding method and molded product thereof
US9662741B2 (en) 2011-11-30 2017-05-30 Uacj Corporation Metal forming method and formed product
WO2015194861A1 (en) * 2014-06-17 2015-12-23 한국에너지기술연구원 Thin plate bonding method and thin plate assembly
US10112255B2 (en) 2014-06-17 2018-10-30 Korea Institute Of Energy Research Plate bonding method and plate assembly
JP2016208010A (en) * 2015-04-16 2016-12-08 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
WO2016167217A1 (en) * 2015-04-16 2016-10-20 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10319664B2 (en) 2015-04-16 2019-06-11 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10410951B2 (en) 2015-04-16 2019-09-10 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
CN107755911A (en) * 2017-09-11 2018-03-06 中国科学院合肥物质科学研究院 A kind of method for oxide dispersion intensifying steel Solid-phase welding
CN108436212A (en) * 2018-06-04 2018-08-24 哈尔滨沃丁科技开发有限公司 The welding method of aluminium alloy panel
CN113195146A (en) * 2018-12-21 2021-07-30 日本发条株式会社 Bonding method and bonded body
US20220009022A1 (en) * 2018-12-21 2022-01-13 Nhk Spring Co., Ltd. Joining method and joined body
EP3900867A4 (en) * 2018-12-21 2022-09-28 NHK Spring Co., Ltd. Joining method and joint body
CN114951944A (en) * 2022-06-08 2022-08-30 上海航天设备制造总厂有限公司 Diffusion welding method for high-magnesium-content aluminum alloy
CN114951944B (en) * 2022-06-08 2024-01-12 上海航天设备制造总厂有限公司 Diffusion welding method for aluminum alloy with high magnesium content

Similar Documents

Publication Publication Date Title
JP2010094683A (en) Diffusion bonding method of aluminum alloy
JP6865172B2 (en) Metal laminate and its manufacturing method
JP6381944B2 (en) Method for producing metal laminate
Nagaoka et al. Joint strength of aluminum ultrasonic soldered under liquidus temperature of Sn–Zn hypereutectic solder
CN106112167B (en) A kind of diffusion in vacuum soldering processes of molybdenum-copper and nickel base superalloy
WO2017057698A1 (en) Metal laminate material, and production method therefor
JP2012025654A (en) Process for joining carbon steel and zirconia ceramic and composite article made by the same
JP6082866B2 (en) Method of joining stainless steel members and stainless steel
CN105382406B (en) The connection method of TiAl Ni dissimilar metals
JP2018506639A (en) Clad sheet for heat exchanger
Shi et al. Laser micro-welding technology for Cu–Al dissimilar metals and mechanisms of weld defect formation
JP4061170B2 (en) Method for producing sandwich structure made of aluminum foam
CN101695785A (en) Vacuum welding method for titanium alloy and stainless steel
JP2008229995A (en) Method of manufacturing laminate
CN101954539B (en) Friction welding process for copper material and aluminum alloy material
US9764418B1 (en) Joining of metallic glasses in air
WO2002039046A1 (en) Hollow laminate and heat sink using the same
JP2007245219A (en) Joining method of aluminum radical composite material and joined body of aluminum radical composite material
JP2008006445A (en) Method for joining titanium alloy and aluminum material
CN103978277A (en) Method for diffusing and brazing SiCp/Al composite material by virtue of Al/Cu/Al composite foil
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
TW201008422A (en) Method of manufacturing single-sided oxide layer metal, method of forming composite board by using the single-sided oxide layer metal and ceramic, and composite board thereof
JP2010131631A (en) Joining method of member and joined body
JP2006334658A (en) Aluminum alloy tailored blank for superplastic forming
KR20130009066A (en) Method for forming cold bend of magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106