JP2010094095A - Method for saccharifying wood material - Google Patents

Method for saccharifying wood material Download PDF

Info

Publication number
JP2010094095A
JP2010094095A JP2008268973A JP2008268973A JP2010094095A JP 2010094095 A JP2010094095 A JP 2010094095A JP 2008268973 A JP2008268973 A JP 2008268973A JP 2008268973 A JP2008268973 A JP 2008268973A JP 2010094095 A JP2010094095 A JP 2010094095A
Authority
JP
Japan
Prior art keywords
wood
enzyme
carbon dioxide
treatment
saccharification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008268973A
Other languages
Japanese (ja)
Inventor
Yasuyuki Matsushita
泰幸 松下
Kazuhiko Fukushima
和彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2008268973A priority Critical patent/JP2010094095A/en
Publication of JP2010094095A publication Critical patent/JP2010094095A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple pre-treatment in the saccharification of cellulose and hemicellulose contained in wood-based biomass by an enzyme treatment, using less energy and without requiring neutralization process. <P>SOLUTION: The method for saccharifying a wood material includes cutting the wood materials, pre-treating by immersing them in carbon dioxide-dissolved water under heating and pressurizing under previously set conditions, and then saccharifying the resulting material by the enzyme. In this method, it is preferable that the pre-treating temperature is 175 to 200°C, and the pre-treating time is 60 to 240 min. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、木本植物の糖化方法に関し、特には、二酸化炭素溶解水による木材の前処理工程を有する木材の酵素糖化方法に関する。   The present invention relates to a method for saccharification of woody plants, and more particularly, to a method for enzymatic saccharification of wood having a pretreatment step of wood with carbon dioxide-dissolved water.

我々人類は産業革命以後化石資源を消費することにより、発展を遂げ、生活を営んできたといっても過言ではない。しかしながら、化石資源が無限でないことは明らかであり、また、化石資源を燃焼することにより放出される二酸化炭素などが地球の温暖化を引き起こすことからも、化石資源に代わる新たなエネルギーの開発が急務である。
バイオマスは光合成による二酸化炭素の固定化を通してつくられるため、再生可能な資源であることに加え、正味の二酸化炭素排出量がゼロの「カーボンニュートラル」という特徴を持つことから、バイオマスの利用は地球温暖化ガスの排出削減に大きく貢献することが考えられている。バイオマスの利活用による持続可能な発展を目指して、農水省等関係省庁が策定した基本戦略「バイオマスニッポン総合戦略」が2002年12月に制定され、今後バイオマスをより有効に利用していく動きが大きくなっている。特に、バイオマスをエネルギーに転換して得られるバイオエネルギー開発が行われている。バイオマス転換の方法としては、多数の著書(非特許文献1〜3)に示されているように、熱分解、ガス化、嫌気性発酵などが広く行なわれているが、その中でも、バイオマスに含まれる糖質を発酵することによりエタノールを得る方法が広く研究されている。エタノールは液体燃料として、特に輸送用燃料として利用することが可能であり、既にアメリカやブラジルではトウモロコシやサトウキビから得られるデンプンや砂糖を原料としてバイオエタノールを製造するプロセスが実用化されている。しかしながら、これらの原料はもともと食料であり、燃料用に流用されることによる問題が指摘されている。従って、食料と競合しないバイオマスとして、木質系バイオマスに大きな期待が寄せられている。樹木は山岳地域や低降水地域でも生育し、また、豊富な生産量(バイオマス全体の約9割)や伐採時期を選ばないことから安定供給が可能である。また、稲ワラやバガスなどの草本系バイオマスと比較すると、単位体積当たりの重量が高く、輸送に有利である。
It is no exaggeration to say that we have developed and lived by consuming fossil resources since the Industrial Revolution. However, it is clear that fossil resources are not infinite, and the development of new energy to replace fossil resources is urgent because carbon dioxide released by burning fossil resources causes global warming. It is.
Biomass is created through the fixation of carbon dioxide by photosynthesis, so in addition to being a renewable resource, it has the characteristic of “carbon neutral” with no net carbon dioxide emissions. It is considered to make a significant contribution to reducing gas emissions. Aiming for sustainable development through the use of biomass, the basic strategy “Biomass Nippon Comprehensive Strategy” formulated by related ministries and agencies such as the Ministry of Agriculture and Water was enacted in December 2002, and there is a significant movement to use biomass more effectively in the future. It has become. In particular, bioenergy development obtained by converting biomass into energy is being carried out. As a method of biomass conversion, as shown in many books (Non-Patent Documents 1 to 3), pyrolysis, gasification, anaerobic fermentation, etc. are widely performed. Methods for obtaining ethanol by fermenting saccharides are widely studied. Ethanol can be used as a liquid fuel, particularly as a transportation fuel. In the United States and Brazil, a process for producing bioethanol using starch or sugar obtained from corn or sugar cane as a raw material has already been put into practical use. However, these raw materials are originally food, and problems due to diversion to fuel have been pointed out. Therefore, great expectations are placed on woody biomass as biomass that does not compete with food. Trees grow in mountainous areas and low precipitation areas, and can be supplied stably because they do not choose abundant production (about 90% of the total biomass) and cutting time. Moreover, compared with herbaceous biomass such as rice straw and bagasse, the weight per unit volume is high, which is advantageous for transportation.

木質系バイオマスを組織的に大別すると木部と樹皮に区別される。伐採後、樹皮は林地もしくは加工工場などで剥離され、木部は木材として流通される。木質系バイオマスのうち木材として利用できる割合は、近年のパルプ用植林を例に取ると、約80〜90%である。化学的に見ると木質系バイオマスは主にセルロース、ヘミセルロース、リグニンから構成されており、そのうち、多糖成分であるセルロースとヘミセルロースがエタノールへと変換できるが、リグニンはポリフェノール物質であり、エタノールの原料とはならない。また、リグニンの化学構造は非特許文献4に示されているように、針葉樹と広葉樹とでは大きく異なり、広葉樹のリグニンは針葉樹のそれに比べ、化学反応性が高いことが知られている。   When woody biomass is systematically divided, it is divided into xylem and bark. After felling, the bark is peeled off at the forest or processing plant, and the xylem is distributed as wood. The ratio of woody biomass that can be used as wood is about 80 to 90% when taking a recent pulp plantation as an example. From a chemical viewpoint, woody biomass is mainly composed of cellulose, hemicellulose, and lignin. Among them, cellulose and hemicellulose, which are polysaccharide components, can be converted into ethanol, but lignin is a polyphenolic substance, Must not. Further, as shown in Non-Patent Document 4, the chemical structure of lignin is greatly different between conifers and broadleaf trees, and it is known that lignin of broadleaf trees has higher chemical reactivity than that of conifers.

木質系バイオマスからエタノールを得る方法は、前述の成書(非特許文献1〜3)で述べられているように、大きく分けて2つ存在する。一つは鉱酸を用いた方法であり、酸加水分解により糖成分を単糖まで分解した後(糖化工程)、エタノール醗酵を行うプロセスである(特許文献1および2)。今までに種々の酸加水分解法プロセスが知られており、最近では、更なる改良が加えられ、パイロットプラントなどで実証が行われている。しかしながら、この方法では、使用した鉱酸の処理が問題となってくる。希硫酸を用いた場合、中和処理によりセッコウに変換して処分するが、このセッコウが産業廃棄物となる。濃硫酸を用いた場合は回収・再利用されるが、設備費がかなり膨大となる。   There are roughly two methods for obtaining ethanol from woody biomass, as described in the above-mentioned books (Non-Patent Documents 1 to 3). One is a method using a mineral acid, which is a process in which a sugar component is decomposed to monosaccharides by acid hydrolysis (saccharification step) and then ethanol fermentation is performed (Patent Documents 1 and 2). Various acid hydrolysis processes have been known so far, and recently, further improvements have been made and demonstrated in pilot plants and the like. However, in this method, the treatment of the used mineral acid becomes a problem. When dilute sulfuric acid is used, it is converted into gypsum by a neutralization treatment and disposed of, but this gypsum becomes industrial waste. When concentrated sulfuric acid is used, it is recovered and reused, but the equipment costs are considerably large.

木質系バイオマスからエタノールを得るもう一つの方法は、酵素を用いた加水分解により単糖を得て、エタノール醗酵を行うものである。しかしながら、木質バイオマス中では、セルロースやヘミセルロースはリグニンに胞埋された形で存在しており、そのままでは酵素がこれら多糖成分にアタックすることが難しい。これを解決する方法として、軽い前処理を行ない、リグニンの一部を変質または取り除くことにより、酵素と多糖類との接触頻度を向上させる方法が考え出されている。例えば、非特許文献4〜6のようなアンモニア処理や非特許文献7〜9に示されている二酸化硫黄を用いた処理が挙げられる。さらには、特許文献3に示されるようにアルカリ剤を用いる方法も考え出されている。ただし、これら前処理は、薬品を用いていることから、後に続く酵素糖化や醗酵などのために、薬品除去や中和反応といった工程を加えなければならない。このほかにも、特許文献4に示されているように、微粉砕化を行い、多糖類を被覆しているリグニンの一部を破壊し、酵素が多糖類に接触させる頻度を向上させる方法や、さらに、特許文献5〜7に記載されているように、加圧熱水処理や蒸煮・爆砕処理なども考え出されている。   Another method for obtaining ethanol from woody biomass is to obtain a monosaccharide by hydrolysis using an enzyme and perform ethanol fermentation. However, in woody biomass, cellulose and hemicellulose exist in a form embedded in lignin, and it is difficult for the enzyme to attack these polysaccharide components as it is. As a method for solving this, a method has been devised in which a light pretreatment is performed to alter or remove a part of lignin to improve the contact frequency between the enzyme and the polysaccharide. For example, ammonia treatment as described in Non-Patent Documents 4 to 6 and treatment using sulfur dioxide shown in Non-Patent Documents 7 to 9 can be mentioned. Furthermore, as shown in Patent Document 3, a method using an alkali agent has been devised. However, since these pretreatments use chemicals, steps such as chemical removal and neutralization must be added for subsequent enzymatic saccharification and fermentation. In addition to this, as shown in Patent Document 4, a method of performing pulverization, destroying a part of lignin covering the polysaccharide, and improving the frequency with which the enzyme contacts the polysaccharide, Furthermore, as described in Patent Documents 5 to 7, pressurized hot water treatment, steaming / explosion treatment, and the like have been devised.

飯塚尭介ら「ウッドケミカルスの最新技術」p6〜34、CMC出版、2001年10月発行Keisuke Iizuka et al. “Latest Technology of Wood Chemicals” p6-34, published by CMC, October 2001 湯川英明ら「バイオマスエネルギー利用の最新技術」各論編II−1章、CMC出版、2001年8月発行Hideaki Yukawa et al. “Latest Biomass Energy Utilization”, Chapter II-1, CMC Publishing, August 2001 坂志朗ら「バイオマス・エネルギー・環境」 第4、5章、アイピーシー、2001年7月発行Shiro Saka et al. “Biomass / Energy / Environment”, Chapters 4 and 5, IPC, July 2001 Dale, B.E., Weaver, J., Byers, F.M., 1999. Extrusion processing for ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol.77-79, 35-45.Dale, B.E., Weaver, J., Byers, F.M., 1999. Extrusion processing for ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 77-79, 35-45. Kim, T.H., Lee, Y.Y., Sunwoo, C., Kim, J.S., 2006. Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl. Biochem. Biotechnol.113, 41-57.Kim, T.H., Lee, Y.Y., Sunwoo, C., Kim, J.S., 2006. Pretreatment of corn stover by low-liquid ammonia recycle percolation process.Appl. Biochem. Biotechnol. 113, 41-57. Kim, H.K., Lee, Y.Y., 2007. Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl. Biochem. Biotechnol.136-140, 81-92.Kim, H.K., Lee, Y.Y., 2007. Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures.Appl.Biochem.Biotechnol.136-140, 81-92. Mok, W.S.-L., Antal, M.J., Jr., 1992. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng.Chem. Res. 31, 1157-1161.Mok, W.S.-L., Antal, M.J., Jr., 1992. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng. Chem. Res. 31, 1157-1161. Allen, S.G., Schulman, D., Lichwa, J., Antal, M.J., Jr., Laser, M., Lynd, L.R., 2001. A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem. Res. 40, 2934-2941.Allen, SG, Schulman, D., Lichwa, J., Antal, MJ, Jr., Laser, M., Lynd, LR, 2001. A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem Res. 40, 2934-2941. Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J., Jr., Lynd, L.R., 2002. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour. Technol. 81, 33-34.Laser, M., Schulman, D., Allen, SG, Lichwa, J., Antal, MJ, Jr., Lynd, LR, 2002. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour. Technol. 81, 33-34. 特開2006−75007号公報JP 2006-75007 A 特開2006−246711号公報JP 2006-246711 A 特開昭59−192093JP 59-1919933 特開平2−156894JP-A-2-156894 特開2005−168335JP-A-2005-168335 特開2006−136263JP 2006-136263 A 特公平7−1219637-12963

木質系バイオマスを原料として、酵素による糖化を行うためには、リグニンの一部を破壊、除去し、多糖成分と酵素との接触効率を向上させる前処理が必要である。本発明は、上記従来技術の問題点に鑑み、木質系バイオマスの中でも最も豊富に存在する木材に含まれるセルロースおよびヘミセルロースを酵素処理によって糖化することを可能ならしめる簡便な前処理工程を含む木材の糖化方法を提供するものである。   In order to carry out saccharification with an enzyme using woody biomass as a raw material, a pretreatment for destroying and removing a part of lignin and improving the contact efficiency between the polysaccharide component and the enzyme is required. In view of the above-mentioned problems of the prior art, the present invention provides a simple pretreatment step that makes it possible to saccharify cellulose and hemicellulose contained in wood that is most abundant among woody biomass by enzymatic treatment. A saccharification method is provided.

本発明者らは、上記の課題を解決するために鋭意検討した結果、木材おいて、二酸化炭素を溶解した熱水中に高圧で所定時間浸漬するという前処理を行うことによって、酵素糖化が極めて容易になることを見いだした。本発明の方法は、以下の技術的手段から選択される手段を採用して構成される。
(1) 木材を切断し、加熱・加圧下において二酸化炭素溶解水に浸漬して木材中のリグニンの一部を破壊、除去する前処理をし、次いで、該前処理済み木材を酵素により糖化する。
(2) 前記前処理が、前記木材を175〜200℃の温度で二酸化炭素溶解水に浸漬する処理である。
(3) 前記前処理の時間が60分〜240分の間、二酸化炭素溶解水に浸漬する処理である。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have achieved extremely high enzymatic saccharification by pre-treating wood for a predetermined time under high pressure in hot water in which carbon dioxide is dissolved. I found it easier. The method of the present invention is configured by adopting means selected from the following technical means.
(1) Cut wood, immerse it in carbon dioxide-dissolved water under heating and pressurization to destroy and remove part of the lignin in the wood, and then saccharify the pretreated wood with an enzyme .
(2) The pretreatment is a treatment of immersing the wood in carbon dioxide-dissolved water at a temperature of 175 to 200 ° C.
(3) The pretreatment time is 60 minutes to 240 minutes soaking in carbon dioxide-dissolved water.

本発明により、低濃度の薬品使用により環境負荷が少なく、短時間でかつ少ない投入エネルギーで、豊富な木質系バイオマスである木材を酵素によって糖化することが可能な方法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method capable of saccharifying wood, which is an abundant woody biomass, with an enzyme with a low environmental load by using a low concentration of chemicals, in a short time and with a small input energy.

以下に本発明の実施形態を具体的に説明する。
本発明は木質系バイオマスとして木材を採用し、切断または破砕された木材を二酸化炭素溶解水に浸漬した状態で加熱・加圧する前処理を行い、前処理された木材を酵素糖化するものである。
Embodiments of the present invention will be specifically described below.
The present invention employs wood as woody biomass, and performs pretreatment by heating and pressurizing the cut or crushed wood in a state of being immersed in carbon dioxide-dissolved water, and enzymatically saccharifies the pretreated wood.

使用する木材は、どのような樹木から採取した木材でも使用可能である。
本発明の前処理に供するため、上記木材は切断しておく必要がある。即ち、前処理装置にベルトコンベアやスクリューフィーダーなどの装置で供給できる大きさにする必要があり、また、二酸化炭素溶解水との接触を良好にする必要がある。
切断は通常のカッターによる切断、または粉砕機による粗粉砕により行う。カッターとしてはギロチン型、回転刃型のいずれでも良い。ディスク型チッパー、ハンマーミルなどを用いても良い。大きさとしては、おおむね0.5〜20mm程度にすれば良い。また、鉋屑のような幅広で厚さの薄い木材でも全く問題なく使用できる。
The wood to be used can be any wood collected from any tree.
In order to use for the pretreatment of the present invention, it is necessary to cut the wood. That is, it is necessary to have a size that can be supplied to the pretreatment device by a device such as a belt conveyor or a screw feeder, and it is necessary to make good contact with the carbon dioxide-dissolved water.
Cutting is performed by cutting with a normal cutter or rough pulverization with a pulverizer. The cutter may be either a guillotine type or a rotary blade type. A disk-type chipper, a hammer mill, or the like may be used. The size may be about 0.5 to 20 mm. Also, wide and thin wood such as sawdust can be used without any problem.

前処理は、加熱・加圧下で行うため、前処理装置として、耐圧密閉容器が必要である。この装置は、オートクレーブのようなバッチ方式であっても良いし、パルプ製造用の連続蒸解釜のような連続供給方式であっても良い。
温度を上げることにより木材が軟化するとともに、系内の圧により二酸化炭素溶解水が組織内に浸透し、リグニンの一部の破壊、除去が早まるものと推定される。ただし、温度を上げ過ぎると、装置に要求される耐圧強度が大きくなることや、糖の過分解が起きるため175〜200℃が良い。
Since the pretreatment is performed under heating and pressurization, a pressure-resistant sealed container is required as a pretreatment device. This apparatus may be a batch system such as an autoclave or a continuous supply system such as a continuous digester for pulp production.
It is presumed that the wood is softened by raising the temperature, and carbon dioxide-dissolved water penetrates into the tissue due to the pressure in the system, so that the destruction and removal of a part of lignin is accelerated. However, if the temperature is raised too much, the pressure strength required for the apparatus increases and excessive decomposition of sugar occurs.

前処理装置内に二酸化炭素を供給する手段としては、ガスボンベやコンプレッサーなどの系外装置から配管により系内に加圧二酸化炭素を供給する方式が好ましいが、バッチ方式であれば、ドライアイスを予め水と共に系内に配置し、密閉してから加熱することも可能である。二酸化炭素量は木材の乾燥質量に対して0.2〜300質量%使用することが好ましい。   As a means for supplying carbon dioxide into the pretreatment apparatus, a system in which pressurized carbon dioxide is supplied into the system by piping from an external apparatus such as a gas cylinder or a compressor is preferable. It is also possible to dispose it in the system together with water and heat it after sealing it. The amount of carbon dioxide is preferably 0.2 to 300% by mass based on the dry mass of wood.

ガスボンベによる二酸化炭素供給、あるいはドライアイスによる二酸化炭素供給のいずれの場合でも、系内の圧力は0.5〜10MPaに設定する。0.5MPa未満では、二酸化炭素溶解水を樹皮に浸透させる効果が低く、前処理効果が充分でない可能性がある。また、10MPaを越える圧力としても、効果は頭打ちで、装置に対する負担が大きくなり過ぎる。   In either case of carbon dioxide supply by a gas cylinder or carbon dioxide supply by dry ice, the pressure in the system is set to 0.5 to 10 MPa. If it is less than 0.5 MPa, the effect of allowing carbon dioxide-dissolved water to penetrate into the bark is low, and the pretreatment effect may not be sufficient. Moreover, even if the pressure exceeds 10 MPa, the effect reaches a peak and the burden on the apparatus becomes too great.

乾燥木材1質量部に対する水の質量比は5質量部以下の範囲で選択できる。溶液の量比が高いと、加熱に必要なエネルギーが増加するためコストがかかる。また、後に続く酵素処理や醗酵工程の効率を低下させる。   The mass ratio of water to 1 part by mass of dry wood can be selected within a range of 5 parts by mass or less. If the amount ratio of the solution is high, the energy required for heating increases, which increases costs. Moreover, the efficiency of the subsequent enzyme treatment and fermentation process is reduced.

前処理時間は60分から240分の範囲で選択される。60分未満では二酸化炭素溶解水によるリグニンの破壊、除去が充分でなく、240分を越えて続けても効果は頭打ちとなりエネルギーのロスとなるか、前処理温度が高い場合には逆に低下する傾向にある。前述したように、適切な時間は温度により異なり、採用可能な温度の範囲内で高温であるほど、処理時間は短くする必要があるが、安定した結果を得ることができることから、一般的には60〜120分の範囲が好ましい。   The pretreatment time is selected in the range of 60 minutes to 240 minutes. If it is less than 60 minutes, the destruction and removal of lignin by carbon dioxide-dissolved water is not sufficient, and even if it continues for more than 240 minutes, the effect reaches its peak, resulting in a loss of energy, or conversely when the pretreatment temperature is high. There is a tendency. As described above, the appropriate time depends on the temperature, and the higher the temperature within the applicable temperature range, the shorter the processing time is. However, in general, a stable result can be obtained. A range of 60 to 120 minutes is preferred.

二酸化炭素溶解水に前処理された木材は、密閉容器の解放により二酸化炭素を放出し、そのまま酵素糖化反応に供することができる。しかし、密閉容器の開放により二酸化炭素を放出した後、機械によって解繊処理を施したものを糖化反応に供することが望ましい。解繊処理に用いる機械は木材が解繊できれば特に限定されないが離解機、リファイナー、破砕機などが使用できる。粒径は特に限定されない。   Wood pretreated with carbon dioxide-dissolved water releases carbon dioxide by releasing the sealed container and can be directly subjected to an enzymatic saccharification reaction. However, after releasing carbon dioxide by opening the hermetic container, it is desirable to subject the saccharification reaction to a machine that has been defibrated by a machine. The machine used for the defibrating process is not particularly limited as long as wood can be defibrated. The particle size is not particularly limited.

酵素反応工程で使用する酵素としては、酵素はセルラーゼが含まれていれば市販の酵素を特に制限なく利用することが可能である。また、ヘミセルラーゼが含まれていることがより好ましい。
糖化反応に使用するセルロース分解酵素は、セロビオヒドロラーゼ活性、エンドグルカナーゼ活性、ベータグルコシダーゼ活性を有する、所謂セルラーゼと総称される酵素である。
As the enzyme used in the enzyme reaction step, a commercially available enzyme can be used without particular limitation as long as the enzyme contains cellulase. Moreover, it is more preferable that hemicellulase is contained.
The cellulolytic enzyme used for the saccharification reaction is an enzyme collectively called cellulase having cellobiohydrolase activity, endoglucanase activity, and betaglucosidase activity.

糖化反応工程で使用できるもう一つの酵素であるヘミセルロース分解酵素は、キシラン分解酵素、マンナン分解酵素、ペクチン分解酵素、アラビナン分解酵素などの一連のヘミセルロース分解酵素のうちから選ばれる少なくとも一つの酵素である。
セルロース分解酵素とヘミセルロース分解酵素は、夫々を適宜の量で添加しても良いが、市販されているセルラーゼ製剤には、上記した各種のセルラーゼ活性を有すると同時に、ヘミセルラーゼ活性も有しているものが多く、入手可能なセルラーゼ製剤を用いれば良い。
Another enzyme that can be used in the saccharification reaction process, hemicellulose-degrading enzyme is at least one enzyme selected from a series of hemicellulose-degrading enzymes such as xylan-degrading enzyme, mannan-degrading enzyme, pectin-degrading enzyme, and arabinan-degrading enzyme. .
Cellulose-degrading enzyme and hemicellulose-degrading enzyme may be added in appropriate amounts, respectively, but commercially available cellulase preparations have various cellulase activities as well as hemicellulase activity. Many cellulase preparations may be used.

セルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム属(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス属(Trametes)、フーミコラ(Humicola)属、バチルス(Bacillus)属などに由来するセルラーゼ製剤がある。このようなセルラーゼ製剤は試薬や市販品として購入可能である。(例えば、全て商品名で、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼGC220(ジェネンコア社製)等が挙げられる。)
原料固形分100質量部に対するセルラーゼ製剤の使用量は、0.5〜100質量部が好ましい。
Cellulase preparations include the genus Trichoderma, the genus Acremonium, the genus Aspergillus, the genus Phanerochaete, the genus Trametes, the genus Humicolas, and the like. There are cellulase preparations derived from. Such cellulase preparations can be purchased as reagents or commercial products. (For example, cellulosine T2 (manufactured by HIPI), Mecellase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme), multifect CX10L (manufactured by Genencor), cellulase GC220 (manufactured by Genencor), etc. Can be mentioned.)
As for the usage-amount of the cellulase formulation with respect to 100 mass parts of raw material solid content, 0.5-100 mass parts is preferable.

反応条件はpHが4〜7が好ましい。温度は25〜50℃が好ましく、30〜40℃がさらに好ましい。糖化反応は、連続式が好ましいが、バッチ方式でも良い。糖化反応時間は、酵素濃度によっても異なるが、バッチ式の場合は10〜240時間、さらに好ましくは15〜160時間である。連続式の場合も、平均滞留時間が、10〜150時間、さらに好ましくは15〜100時間である。   The reaction conditions are preferably pH 4-7. The temperature is preferably 25 to 50 ° C, more preferably 30 to 40 ° C. The saccharification reaction is preferably a continuous method, but may be a batch method. The saccharification reaction time varies depending on the enzyme concentration, but in the case of a batch type, it is 10 to 240 hours, more preferably 15 to 160 hours. Also in the case of a continuous type, the average residence time is 10 to 150 hours, more preferably 15 to 100 hours.

次に実施例1〜8により本発明をさらに詳細に説明するが、本発明は以下の実施例によって限定されるものではない。以下に示す実施例において、%は、特に断りがない限りは全ての質量によるものである。また、糖量としては、イオンクロマトグラフィーにより検出した。   EXAMPLES Next, although this invention is demonstrated further in detail by Examples 1-8, this invention is not limited by the following examples. In the examples shown below, “%” is based on the total mass unless otherwise specified. The amount of sugar was detected by ion chromatography.

実験例1(比較例)
ブナの木材をそれぞれ約1mm角に切断し、試料として用いた。
15ml容のステンレス対耐圧容器に、絶乾質量で50mg相当の上記試料と水200mgを投入した後に密栓し、予め175℃に設定したオーブンに投入することにより120分加熱加圧処理を施した。
120分の加熱加圧処理後、耐圧容器を開放し、内容物を1mlの100mMクエン酸―リン酸バッファー(pH5.0)を用いて、2ml容エッペンチューブに移し、そのエッペンチューブに10.4mgの市販セルラーゼ(SIGMA社製)と0.1mlのペクチナーゼ(SIGMA社製)を添加した条件下で37℃、24時間の酵素糖化処理を行い、処理後の糖化液の糖量を測定し、以下の式によって、糖収率を算出した。
糖収率(%)=(糖化液中の糖量/サンプル絶乾質量)×100
糖収率を算出したところ処理前木材の15.5%相当の糖を得ることが出来た。
Experimental example 1 (comparative example)
Each beech wood was cut into approximately 1 mm squares and used as samples.
The above-mentioned sample corresponding to 50 mg in absolute dry mass and 200 mg of water were put into a 15 ml stainless-steel pressure-resistant container, which was then sealed and placed in an oven set at 175 ° C. for 120 minutes for heating and pressurization.
After 120 minutes of heat and pressure treatment, the pressure vessel was opened, and the contents were transferred to a 2 ml Eppendorf tube using 1 ml of 100 mM citrate-phosphate buffer (pH 5.0), and 10.4 mg in the Eppendorf tube. Was subjected to enzymatic saccharification treatment at 37 ° C. for 24 hours under the condition of adding 0.1 ml of commercially available cellulase (manufactured by SIGMA) and 0.1 ml of pectinase (manufactured by SIGMA). The sugar yield was calculated according to the formula:
Sugar yield (%) = (sugar amount in saccharified solution / sample dry mass) × 100
When the sugar yield was calculated, it was possible to obtain sugar corresponding to 15.5% of the untreated wood.

実験例2(比較例)
ブナの木材を約1mm角に切断し、前処理を施さずに比較例1と同様の糖化処理を行った。 糖収率を算出したところ処理前木材の0.6%相当の糖を得ることが出来た。
実験例3(比較例)
厚さが50μmのスギ鉋屑を約1cmに切断し、処理温度を200℃、処理時間を1時間とする以外は、実験例1と同様の糖化処理を行った。 糖収率を算出したところ処理前木材の3.5%相当の糖を得ることが出来た。
実験例4(比較例)
厚さが50μmのスギ鉋屑を約1cmに切断し、前処理を施さずに比較例1と同様の糖化処理を行った。 糖収率を算出したところ処理前木材の0.3%相当の糖を得ることが出来た。
Experimental example 2 (comparative example)
The beech wood was cut into approximately 1 mm square and subjected to the same saccharification treatment as in Comparative Example 1 without pretreatment. When the sugar yield was calculated, a sugar equivalent to 0.6% of the untreated wood was obtained.
Experimental example 3 (comparative example)
A saccharification treatment similar to Experimental Example 1 was carried out except that cedar sawdust having a thickness of 50 μm was cut into about 1 cm 2 , the treatment temperature was 200 ° C., and the treatment time was 1 hour. When the sugar yield was calculated, it was possible to obtain a sugar equivalent to 3.5% of the untreated wood.
Experimental Example 4 (Comparative Example)
A cedar sawdust having a thickness of 50 μm was cut into about 1 cm 2 and subjected to the same saccharification treatment as in Comparative Example 1 without performing pretreatment. When the sugar yield was calculated, a sugar equivalent to 0.3% of the untreated wood was obtained.

実験例5(実施例)
実験例1と同様、ブナの木材を約1mm角に切断して試料として、試料投入の際に1.5gのドライアイスも同時に混合し、処理温度175℃、処理時間120分の前処理を行い、その後、酵素糖化処理を行った。耐圧容器の二酸化炭素分圧は8.5MPaと計測された。糖収率を算出したところ処理前木材の54.1%相当の糖を得ることが出来た。
実験例6(実施例)
厚さが50μmのスギ鉋屑を約1cmに切断して試料として、実験例5と同様に耐圧容器内の試料にドライアイスを混合して処理温度200℃、処理時間120分の前処理を行い、その後、酵素糖化処理を行った。耐圧容器の二酸化炭素分圧は8.9MPaと計測された。糖収率を算出したところ処理前木材の17.6%相当の糖を得ることが出来た。
実験例7(実施例)
厚さが50μmのスギ鉋屑を約1cmに切断して試料として、処理時間を4時間とする以外は、実験例5と同様の糖化処理を行った。 糖収率を算出したところ処理前木材の26.6%相当の糖を得ることが出来た。
Experimental Example 5 (Example)
As in Experimental Example 1, beech wood was cut into approximately 1 mm squares, and as a sample, 1.5 g of dry ice was mixed at the same time when the sample was added. Thereafter, enzymatic saccharification treatment was performed. The partial pressure of carbon dioxide in the pressure vessel was measured as 8.5 MPa. When the sugar yield was calculated, 54.1% sugar equivalent to the pre-treated wood could be obtained.
Experimental Example 6 (Example)
A 50 μm thick cedar sawdust is cut into approximately 1 cm 2 as a sample, and the sample in the pressure vessel is mixed with dry ice and pretreated at a treatment temperature of 200 ° C. for a treatment time of 120 minutes as in Experiment Example 5. Thereafter, enzymatic saccharification treatment was performed. The partial pressure of carbon dioxide in the pressure vessel was measured as 8.9 MPa. When the sugar yield was calculated, it was possible to obtain 17.6% equivalent sugar of the untreated wood.
Experimental Example 7 (Example)
A saccharification treatment was performed in the same manner as in Experimental Example 5 except that a cedar sawdust having a thickness of 50 μm was cut into about 1 cm 2 and used as a sample, and the treatment time was 4 hours. When the sugar yield was calculated, sugar equivalent to 26.6% of the untreated wood could be obtained.

実験例1及び実験例2と実験例5の結果、及び、実験例3及び実験例4と実験例6及び実施例7の結果は、木材を、二酸化炭素溶解水に浸漬して加熱・加圧下に前処理することが、酵素糖化反応効率の優れた原料を調製できる手段であることを示している。   The results of Experimental Example 1, Experimental Example 2, and Experimental Example 5, and Experimental Example 3, Experimental Example 4, Experimental Example 6, and Example 7 are as follows. It is shown that pretreatment is a means for preparing a raw material having excellent enzymatic saccharification reaction efficiency.

Figure 2010094095
Figure 2010094095

Claims (2)

木材を、加熱・加圧下において二酸化炭素溶解水に浸漬する前処理をし、次いで、該前処理後の木材を酵素により糖化することを特徴とする、木材の糖化方法。 A method for saccharification of wood, comprising pre-treating wood in carbon dioxide-dissolved water under heating and pressure, and then saccharifying the pre-treated wood with an enzyme. 前記前処理温度が、前記木材を175〜200℃の温度で、60分から240分、二酸化炭素溶解水に浸漬する処理であることを特徴とする、請求項1記載の木材の糖化方法。 The method for saccharification of wood according to claim 1, wherein the pretreatment temperature is a treatment of immersing the wood in carbon dioxide-dissolved water at a temperature of 175 to 200 ° C for 60 to 240 minutes.
JP2008268973A 2008-10-17 2008-10-17 Method for saccharifying wood material Pending JP2010094095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268973A JP2010094095A (en) 2008-10-17 2008-10-17 Method for saccharifying wood material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268973A JP2010094095A (en) 2008-10-17 2008-10-17 Method for saccharifying wood material

Publications (1)

Publication Number Publication Date
JP2010094095A true JP2010094095A (en) 2010-04-30

Family

ID=42256233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268973A Pending JP2010094095A (en) 2008-10-17 2008-10-17 Method for saccharifying wood material

Country Status (1)

Country Link
JP (1) JP2010094095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130733A (en) * 2009-12-25 2011-07-07 Ihi Corp Device for treating biomass
JP2012044880A (en) * 2010-07-29 2012-03-08 Sekisui Chem Co Ltd Method for saccharifying cellulose
US10920372B2 (en) 2017-11-08 2021-02-16 Earthrecycle Co., Ltd. Method for separating cellulose

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130733A (en) * 2009-12-25 2011-07-07 Ihi Corp Device for treating biomass
JP2012044880A (en) * 2010-07-29 2012-03-08 Sekisui Chem Co Ltd Method for saccharifying cellulose
US10920372B2 (en) 2017-11-08 2021-02-16 Earthrecycle Co., Ltd. Method for separating cellulose

Similar Documents

Publication Publication Date Title
Kumari et al. Pretreatment of lignocellulosic wastes for biofuel production: a critical review
Panahi et al. Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline
Tayyab et al. Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: a review.
Chen et al. A review on the pretreatment of lignocellulose for high-value chemicals
Tomás-Pejó et al. Pretreatment technologies for lignocellulose-to-bioethanol conversion
Alvira et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
Ibrahim Pretreatment of straw for bioethanol production
Sarip et al. A review of the thermal pretreatment of lignocellulosic biomass towards glucose production: autohydrolysis with DIC technology
Peral Biomass pretreatment strategies (technologies, environmental performance, economic considerations, industrial implementation)
Trinh et al. Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate
Souza et al. Bioethanol from fresh and dried banana plant pseudostem
He et al. A review of hydrothermal pretreatment of lignocellulosic biomass for enhanced biogas production
Uyan et al. Bioconversion of hazelnut shell using near critical water pretreatment for second generation biofuel production
Lissens et al. Wet oxidation pre‐treatment of woody yard waste: parameter optimization and enzymatic digestibility for ethanol production
Eblaghi et al. Combining ultrasound with mild alkaline solutions as an effective pretreatment to boost the release of sugar trapped in sugarcane bagasse for bioethanol production
Sheikh et al. A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production
Klinpratoom et al. Improvement of cassava stem hydrolysis by two-stage chemical pretreatment for high yield cellulosic ethanol production
Smichi et al. Steam explosion (SE) and instant controlled pressure drop (DIC) as thermo-hydro-mechanical pretreatment methods for bioethanol production
Rahardjo et al. Pretreatment of tropical lignocellulosic biomass for industrial biofuel production: a review
Sathendra et al. Refining lignocellulose of second-generation biomass waste for bioethanol production
Niglio et al. Combined pretreatments of coffee silverskin to enhance fermentable sugar yield
Barchyn et al. Process analysis of superheated steam pre-treatment of wheat straw and its relative effect on ethanol selling price
JP5267387B2 (en) Bast fiber manufacturing method and bast fiber
Sudiyani et al. Alkaline pretreatment of sweet sorghum bagasse for bioethanol production
Potumarthi et al. Fermentable sugars from lignocellulosic biomass: technical challenges