JP2010091311A - Gas measuring instrument - Google Patents

Gas measuring instrument Download PDF

Info

Publication number
JP2010091311A
JP2010091311A JP2008259258A JP2008259258A JP2010091311A JP 2010091311 A JP2010091311 A JP 2010091311A JP 2008259258 A JP2008259258 A JP 2008259258A JP 2008259258 A JP2008259258 A JP 2008259258A JP 2010091311 A JP2010091311 A JP 2010091311A
Authority
JP
Japan
Prior art keywords
gas
container
hollow container
gas supply
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008259258A
Other languages
Japanese (ja)
Inventor
Akio Fukuda
明雄 福田
Chie Hirai
千恵 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008259258A priority Critical patent/JP2010091311A/en
Publication of JP2010091311A publication Critical patent/JP2010091311A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas measuring instrument capable of measuring the diffusion amount of the chemical substance from a material or part, in a state of temperature rise. <P>SOLUTION: The gas measuring instrument is equipped with a cavity type container 1 having a gas inlet 2 and a gas outlet 3, a heat-insulating means 4 applied to the cavity type container 1, a gas supply means 5 installed upstream on the gas inlet side of the cavity-type container 1, a flow rate control means 6 applied to the gas supply means 5, a gas purify means 7 applied to the gas supply means 5, a heating means 8 applied to the gas supply means 5 for producing a heated gas, and a temperature control means 9 for controlling the temperature of the gas in the cavity type container and constituted capable of measuring the diffusion amount of the chemical substance from a measurement target 10 at about several 100°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、物体表面および内部から揮発する化学物質放散量を測定するための気体測定用装置に関するものである。   The present invention relates to a gas measuring device for measuring the amount of chemical substance volatilized from the surface of an object and from the inside.

従来、この種の揮発性化合物量の測定は、被測定物を一定容積の容器に設定し、所定の温湿度において一定の換気条件の下、気体中の化学物質量を定性定量分析することで行われ、これに必要な気体測定用装置は、温度や不純物濃度などの所定の測定条件を満足するために、測定対象となる物体(被測定物)を設置する容器を備え、また容器内部とその容器を設置する空間の気体浄化や温湿度制御が可能な手段を有している(例えば、非特許文献1参照)。   Conventionally, the amount of volatile compounds of this type is measured by setting the object to be measured in a container with a fixed volume and qualitatively analyzing the amount of chemical substances in the gas under a certain ventilation condition at a predetermined temperature and humidity. In order to satisfy predetermined measurement conditions such as temperature and impurity concentration, an apparatus for measuring gas required for this is provided with a container in which an object to be measured (object to be measured) is installed, It has means capable of purifying the space in which the container is installed and controlling the temperature and humidity (for example, see Non-Patent Document 1).

図3は、非特許文献1に記載された従来の気体測定用装置を示すものである。図3に示すように、所定の内部体積を有する容器13と、空気供給手段14と、空気清浄手段15と、流量制御手段16、温度制御手段17、空調手段18などから構成されている。被測定物からの揮発性化合物の放散量は、温度によって変化するため、測定時の温度は重要な要因であり、可能な限り一定に維持しなければならない。従って、気体測定用装置において温度制御手段は重要な構成要素となっている。   FIG. 3 shows a conventional gas measuring device described in Non-Patent Document 1. As shown in FIG. 3, it comprises a container 13 having a predetermined internal volume, an air supply means 14, an air cleaning means 15, a flow rate control means 16, a temperature control means 17, an air conditioning means 18, and the like. Since the amount of volatile compounds emitted from the object to be measured varies depending on the temperature, the temperature at the time of measurement is an important factor and must be kept as constant as possible. Therefore, the temperature control means is an important component in the gas measuring device.

また従来の気体測定用装置によれば、単一材料だけでなく複数の材料や部品から構成される物品からの化学物質量の測定も可能である。
監修 村上周三、編集委員長 田辺新一、「シックハウス対策に役立つ小型チャンバー法 解説[JIS A 1901]」、日本規格協会発行、2003年4月21日、P.37−51
Further, according to the conventional gas measurement device, it is possible to measure the amount of chemical substances from an article composed of a plurality of materials and parts as well as a single material.
Supervised by Shuzo Murakami, Editor-in-Chief Shinichi Tanabe, “Small Chamber Method for Sick House Countermeasures [JIS A 1901]”, published by the Japanese Standards Association, April 21, 2003 37-51

しかしながら、このような気体測定用装置を必要とする分野は多岐にわたり、例えば種々の家庭用機器において、それらを構成する材料や部品等からの化学物質放散量を求める必要性が高まっている。それらの中には、数100℃程度の加熱条件下での測定が必要とされているものが少なくない。   However, there are various fields that require such a gas measuring device, and for example, in various household appliances, there is an increasing need to determine the amount of chemical substance diffused from the materials and parts that constitute them. Some of them require measurement under heating conditions of several hundred degrees Celsius.

これに対して上記従来の装置構成では、種々の材料や部品等からの化学物質放散量を測定することは可能であるが、数100℃程度の加熱条件下で測定するには、装置に対する十分な対応がなされていなかった。   On the other hand, with the conventional apparatus configuration described above, it is possible to measure the amount of chemical substance diffused from various materials and parts, but it is sufficient for the apparatus to measure under heating conditions of about several hundred degrees Celsius. No response was made.

本発明は、上記従来の課題を解決するもので、目的とする材料や部品等から放散される化学物質について、実使用状態を想定した任意の昇温条件下で化学物質放散量を測定できる気体測定用装置を提供することを目的としている。   The present invention solves the above-described conventional problems, and it is a gas that can measure the amount of chemical substance diffused under any temperature rise conditions assuming actual use conditions for chemical substances that are diffused from the target materials and parts. The object is to provide a measuring device.

上記目的を達成するために、本発明の気体測定用装置は、気体流通可能となる気体入口と気体出口を有する空洞型容器と、空洞型容器に付した断熱手段と、空洞型容器の気体入口側上流に設置した気体供給手段と、気体供給手段に付した流量制御手段と、気体供給手段に付した気体浄化手段と、気体供給手段に付した加熱気体を生成する加熱手段と、空洞型容器内部の気体温度を制御する温度制御手段を備える構成としたものである。   In order to achieve the above object, a gas measuring apparatus according to the present invention includes a hollow container having a gas inlet and a gas outlet through which gas can flow, a heat insulating means attached to the hollow container, and a gas inlet of the hollow container. Gas supply means installed on the upstream side, flow control means attached to the gas supply means, gas purification means attached to the gas supply means, heating means attached to the gas supply means for generating heated gas, and a hollow container The temperature control means for controlling the internal gas temperature is provided.

これによって、空洞型容器内部に設置した被測定物の温度を数100℃程度に昇温させることが可能となり、加熱された被測定物から放散された化学物質は、容器内で気体中に拡散した後、気体出口において捕集され、目的とする放散量を求めることができる。   As a result, the temperature of the object to be measured installed inside the hollow container can be raised to about several hundred degrees Celsius, and the chemical substance diffused from the heated object to be measured diffuses into the gas in the container. After that, it is collected at the gas outlet, and the target emission amount can be obtained.

本発明の気体測定用装置は、加熱手段と温度制御手段を備えることにより、任意の材料や部品等からの揮発性化合物の放散量評価が可能となり、放散量の低減化など環境保全分野での有効な技術開発に役立てることができる。   The gas measuring apparatus according to the present invention includes a heating means and a temperature control means, so that it is possible to evaluate the amount of volatile compounds emitted from any material or part, and in the field of environmental conservation such as a reduction in the amount of emissions. It can be used for effective technology development.

第1の発明は、気体流通可能となる気体入口と気体出口を有する空洞型容器と、空洞型容器に付した断熱手段と、空洞型容器の気体入口側上流に設置した気体供給手段と、気体供給手段に付した流量制御手段と、気体供給手段に付した気体浄化手段と、気体供給手段に付した加熱気体を生成する加熱手段と、空洞型容器内部の気体温度を制御する温度制御手段を備える構成とすることにより、加熱気体を空洞型容器の上流側で生成し、空洞型容器内に設置した被測定物をヒータで直接加熱することなく、加熱気体によって任意温度へ昇温することが可能となると同時に、容器内では加熱空気が十分に拡散するので温度ムラを小さくすることができる。   A first invention includes a hollow container having a gas inlet and a gas outlet that allow gas flow, a heat insulating means attached to the hollow container, a gas supply means installed upstream of the hollow container on the gas inlet side, and a gas A flow rate control means attached to the supply means, a gas purification means attached to the gas supply means, a heating means for generating heated gas attached to the gas supply means, and a temperature control means for controlling the gas temperature inside the hollow container. By providing the configuration, the heated gas is generated on the upstream side of the hollow container, and the object to be measured placed in the hollow container can be heated to an arbitrary temperature by the heated gas without being directly heated by the heater. At the same time, since the heated air is sufficiently diffused in the container, the temperature unevenness can be reduced.

第2の発明は、特に第1の発明の気体測定用装置で、空洞型容器を石英もしくは内面を不活性処理したガラスまたは金属で構成することにより、放散された揮発性化合物の容器内壁への付着が防止され、捕集前の放散物質の損失を抑制することができるため、より確からしい放散量を求めることができる。   The second invention is the gas measuring apparatus according to the first invention, in particular, and the hollow container is made of quartz or glass or metal whose inner surface has been subjected to inert treatment, so that the diffused volatile compound is applied to the inner wall of the container. Adhesion is prevented and loss of the dissipated material before collection can be suppressed, so a more reliable amount of radiation can be determined.

第3の発明は、特に第1または第2の発明の気体測定用装置で、加熱手段が、石英もしくは内面を不活性処理したガラスまたは金属でなる気体流通管を備える構成とすることにより、加熱部の変質、あるいは変質による不純物の発生による加熱気体の汚染を抑制することができる。   The third invention is a gas measuring apparatus according to the first or second invention, in particular, wherein the heating means is provided with a gas flow pipe made of quartz or glass or metal whose inner surface is subjected to inert treatment, thereby heating It is possible to suppress contamination of the heated gas due to alteration of the part or generation of impurities due to alteration.

第4の発明は、特に第1〜第3の発明の気体測定用装置で、空洞型容器が、容器内部の気体を冷却する冷却手段を有する構成とすることにより、気体温度を室温程度まで低下させることにより捕集剤の吸着作用が十分に機能し、捕集効率の低下を防止できる。   The fourth invention is the gas measuring device according to any one of the first to third inventions, and the hollow container has a cooling means for cooling the gas inside the container, whereby the gas temperature is lowered to about room temperature. By doing so, the adsorbing action of the trapping agent functions sufficiently, and a decrease in trapping efficiency can be prevented.

第5の発明は、特に第1〜第4の発明の気体測定用装置で、空洞型容器の気体供給を垂直方向として、下方流入、上方流出となる縦型配置とすることにより、対流による気体の濃度ムラや温度ムラ影響を抑制できるので、放散物質を含有する気体の濃度ムラや温度ムラを抑制できる。   The fifth invention is a gas measuring apparatus according to any one of the first to fourth inventions, and in particular, a gas by convection is provided by setting the gas supply of the hollow container in a vertical direction to be a downward inflow and an upward outflow. Therefore, the concentration unevenness and temperature unevenness of the gas containing the diffused material can be suppressed.

以下、本発明の気体測定用装置の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of a gas measuring device according to the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における気体測定用装置の模式的構成図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a gas measurement device according to Embodiment 1 of the present invention.

図1において、容器1は内部に任意体積の空洞を有し、合わせて清浄気体を流すために気体入口2および気体出口3を有している。また、容器1の気体入口2側即ち気体上流側には断熱手段4を設けている。清浄空気は、気体供給手段5および流量制御手段6、気体浄化手段7によって任意流量で容器1に供給される。容器1の内部温度は、温度検知手段9aを有する温度制御手段9と、制御用接続手段9bで接続された清浄気体の加熱手段8とによって所定温度に昇温可能となる。   In FIG. 1, a container 1 has a cavity of an arbitrary volume inside, and has a gas inlet 2 and a gas outlet 3 for flowing clean gas together. Further, a heat insulating means 4 is provided on the gas inlet 2 side of the container 1, that is, on the gas upstream side. Clean air is supplied to the container 1 at an arbitrary flow rate by the gas supply means 5, the flow rate control means 6, and the gas purification means 7. The internal temperature of the container 1 can be raised to a predetermined temperature by the temperature control means 9 having the temperature detection means 9a and the clean gas heating means 8 connected by the control connection means 9b.

容器1は、耐熱性を有する素材で構成することが必要である。特に加熱環境での清浄気体の汚染を防止するために、石英もしくは内面を不活性処理したガラスまたはステンレス等の金属で管状構造にすることが好ましい。不活性処理は良好な酸化ケイ素被膜を形成するなど化学物質に対する吸着性が低いものが良い。   The container 1 needs to be made of a heat-resistant material. In particular, in order to prevent contamination of clean gas in a heating environment, it is preferable to form a tubular structure with quartz or a metal such as glass or stainless steel whose inner surface has been subjected to inert treatment. The inert treatment is preferably one having a low adsorptivity to chemical substances such as forming a good silicon oxide film.

気体供給手段5から気体出口3までの気体流路は、管状の石英もしくはポリテトラフルオロエチレン、あるいは内面を不活性処理したガラスまたはステンレスで構成される。ポリテトラフルオロエチレンについては、加熱手段8及びその近傍での使用は好ましくない。   The gas flow path from the gas supply means 5 to the gas outlet 3 is made of tubular quartz or polytetrafluoroethylene, or glass or stainless steel whose inner surface is subjected to an inert treatment. About polytetrafluoroethylene, use in the heating means 8 and its vicinity is not preferable.

気体入口2及び気体出口3は、気体流路である管と容器1との接続点でもあり、容器1内への汚染を抑制できる素材で構成する。また、気体の漏れがないようにしなければならない。断熱手段4は、容器1の外部に配置するので、熱による放散ガスが少ない材料を選択する。   The gas inlet 2 and the gas outlet 3 are also connection points between the pipe that is a gas flow path and the container 1, and are made of a material that can suppress contamination into the container 1. Also, there must be no gas leakage. Since the heat insulating means 4 is disposed outside the container 1, a material with a small amount of diffused gas due to heat is selected.

気体供給手段5は、高圧ガスボンベあるいはエアポンプによる圧送式でよい。いずれの場合も、容器1内の圧力は大気レベルとなるようにする。図1の構成では、流路の終端が開放であるので、圧力は概ね大気レベルに維持できる。供給気体は、大気或いは室内空気でよい。エアポンプは市販のものでよい。高圧ガスボンベは、気体の室が安定している点で有効である。一方、高価かつ量的制約があるため、長期的維持費用が安価かつ量的制約が殆どない連続した気体供給手段としてはエアポンプが好ましい。   The gas supply means 5 may be a high pressure gas cylinder or a pressure feed type using an air pump. In either case, the pressure in the container 1 is set to the atmospheric level. In the configuration of FIG. 1, the end of the flow path is open, so that the pressure can be generally maintained at the atmospheric level. The supply gas may be air or room air. A commercially available air pump may be used. The high-pressure gas cylinder is effective in that the gas chamber is stable. On the other hand, since there is an expensive and quantitative restriction, an air pump is preferable as a continuous gas supply means with low long-term maintenance costs and almost no quantitative restrictions.

流量制御手段6は、調整バルブ付フロート式流量計、あるいはそれと同等のものでよい。流量計によっては、供給気体を汚染することがあるので注意が必要である。   The flow rate control means 6 may be a float type flow meter with an adjustment valve or an equivalent thereof. Care must be taken because some flow meters may contaminate the supply gas.

気体浄化手段7は、供給気体中の不純物成分を除去するために配置する。除去方式は、活性炭等の吸着剤を用いた吸着除去方式もしくは同等の手段でよい。その場合、予め気体流量と除去効率を評価し、高い除去率を長時間維持できるだけの吸着剤を使用するなどの工夫が必要である。具体的には、ステンレスなどの筐体内に顆粒状活性炭を適量充填し、粉塵飛散防止のためのフィルターを浄化手段の出入り口に設置したものである。   The gas purification means 7 is arranged to remove impurity components in the supply gas. The removal method may be an adsorption removal method using an adsorbent such as activated carbon or an equivalent means. In that case, it is necessary to devise such as evaluating the gas flow rate and the removal efficiency in advance and using an adsorbent that can maintain a high removal rate for a long time. Specifically, an appropriate amount of granular activated carbon is filled in a casing such as stainless steel, and a filter for preventing dust scattering is installed at the entrance of the purification means.

加熱手段8は、気体入口2の上流側に配置し、容器1内の温度を検知する温度検知手段9aを備えた温度制御手段9と制御用接続手段9bによって接続されている。加熱手段8は、容器1内が所定温度になるように気体入口2の上流側の流路で、清浄空気を加熱制御する。既述したように、気体流路は、管状の石英もしくはポリテトラフルオロエチレン、あるいは内面を不活性処理したガラスまたはステンレスで構成されるが、特に加熱手段8の被加熱部は、石英もしくは内面を不活性処理したガラスまたは金属でなる耐熱性に優れた気体流通管を用いる。   The heating means 8 is arranged on the upstream side of the gas inlet 2 and is connected by a temperature control means 9 having a temperature detection means 9a for detecting the temperature in the container 1 and a control connection means 9b. The heating means 8 controls the heating of the clean air in the flow path upstream of the gas inlet 2 so that the inside of the container 1 has a predetermined temperature. As described above, the gas flow path is made of tubular quartz or polytetrafluoroethylene, or glass or stainless steel whose inner surface is subjected to inert treatment. In particular, the heated portion of the heating means 8 is made of quartz or inner surface. A gas flow tube made of inert glass or metal and having excellent heat resistance is used.

所定温度が高い場合、気体出口3近傍での温度降下が不十分な場合がある。その場合、吸着作用による捕集剤の捕集効率が低下するため、流出する気体温度を下げることが必要である。そのために、図2にあるように冷却手段12を設置する。冷却手段12は、送風ファンによる空冷方式もしくは水冷方式など、同程度の冷却効果を有する手段を用いる。また、十分な冷却効果を得るため、容器1の冷却部は流路方向に沿って必要な長さを確保する。   When the predetermined temperature is high, the temperature drop near the gas outlet 3 may be insufficient. In that case, since the collection efficiency of the collection agent due to the adsorption action is lowered, it is necessary to lower the temperature of the flowing gas. Therefore, the cooling means 12 is installed as shown in FIG. As the cooling means 12, a means having the same level of cooling effect such as an air cooling system using a blower fan or a water cooling system is used. Further, in order to obtain a sufficient cooling effect, the cooling part of the container 1 ensures a necessary length along the flow path direction.

被測定物10は、容器1を断熱材4が囲む範囲内に配置し、加熱放散された化学物質は容器1内で供給気体中に拡散するので、気体出口3の下流側で捕集装置11を用いて捕集剤に捕集する。捕集装置11は、定量吸引が可能な吸引ポンプもしくは同等品でよい。捕集した化学物質の定性定量分析は、ガスクロマトグラフ−質量分析装置などを用いて行う。   The object to be measured 10 is arranged in a range in which the heat insulating material 4 surrounds the container 1, and the chemical substance that has been heat-dissipated diffuses into the supply gas within the container 1, so that the collection device 11 is downstream of the gas outlet 3. To collect in the collection agent. The collection device 11 may be a suction pump capable of quantitative suction or an equivalent product. Qualitative and quantitative analysis of the collected chemical substance is performed using a gas chromatograph-mass spectrometer or the like.

供給気体流量は、捕集装置11の吸引量以上に設定し、気体流出口11aからは気体が常時流出している状態を維持し、流量超過分のベント流路とする。   The supply gas flow rate is set to be equal to or greater than the suction amount of the collection device 11, and the state where the gas is constantly flowing out from the gas outlet port 11a is maintained, and the excess flow rate is used as the vent flow path.

以上のように構成された気体測定用装置について、以下その動作、作用を説明する。   About the apparatus for gas measurement comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、容器1の内部が空の状態で、気体供給手段5及び流量制御手段6によって、大気あるいは室内空気から一定流量の空気を気体入口2から供給する。流量は、流量制御手段5の流量計によって容器内が所定の換気回数になるように調整する。供給された空気は、気体浄化手段7で活性炭などの吸着剤によって揮発性化合物が除去され、清浄空気になる。   First, in a state where the interior of the container 1 is empty, air of a constant flow rate is supplied from the gas inlet 2 by the gas supply means 5 and the flow rate control means 6 from the atmosphere or room air. The flow rate is adjusted by the flow meter of the flow rate control means 5 so that the inside of the container has a predetermined ventilation frequency. Volatile compounds are removed from the supplied air by an adsorbent such as activated carbon in the gas purification means 7 to become clean air.

清浄空気によって容器1や流路などの内部を浄化するが、浄化程度は気体出口3からの流出空気中の化学物質量を測定し評価する。被測定物10からの想定される放散量に対して、十分に小さいレベルまで容器1や流路内部を清浄化する。清浄化に必要な時間は、換気回数などによって異なるので、諸条件に対応する清浄化に要する時間などを予め評価しておくことが好ましい。   The inside of the container 1 and the flow path is purified by clean air, and the degree of purification is evaluated by measuring the amount of chemical substance in the outflow air from the gas outlet 3. The inside of the container 1 and the flow path is cleaned to a level sufficiently small with respect to an assumed amount of emission from the DUT 10. Since the time required for cleaning varies depending on the number of ventilations, it is preferable to evaluate in advance the time required for cleaning corresponding to various conditions.

装置内が清浄化されたら容器1内を所定温度に昇温させる。必要であれば、昇温開始と同時に冷却手段12を動作させ、容器1内を所定温度にする。容器1は、加熱源である加熱手段8によって直接加熱されることがないので、熱的劣化による容器内壁の腐食などの進行速度を抑制することができる。   When the inside of the apparatus is cleaned, the inside of the container 1 is heated to a predetermined temperature. If necessary, the cooling means 12 is operated simultaneously with the start of raising the temperature to bring the inside of the container 1 to a predetermined temperature. Since the container 1 is not directly heated by the heating means 8 that is a heating source, it is possible to suppress the progress rate of corrosion of the inner wall of the container due to thermal deterioration.

容器1が所定温度で安定したら、気体出口3からの流出空気中の化学物質量を測定する。   When the container 1 is stabilized at a predetermined temperature, the amount of chemical substance in the outflow air from the gas outlet 3 is measured.

この量が、被測定物10からの想定される放散量に対して、十分に小さいレベルまで容器1の保温を続ける。流出空気中の化学物質量が測定可能レベルになった後、被測定物10を容器1内の所定の場所に挿入設置する。容器1内には、予め被測定物設置台を設けてもよい。設置台の素材は、石英もしくは同程度の性状を有する素材が好ましい。被測定物10は、気体出口3側から挿入する。従って、気体出口3は被測定物10の移動可能な広さを確保する。被測定物10の取出しは、挿入と逆操作を行う。   This amount keeps the container 1 warm to a level that is sufficiently smaller than the expected amount of radiation from the DUT 10. After the amount of chemical substance in the outflow air reaches a measurable level, the object to be measured 10 is inserted and installed at a predetermined location in the container 1. In the container 1, a device installation base may be provided in advance. The material for the installation table is preferably quartz or a material having similar properties. The DUT 10 is inserted from the gas outlet 3 side. Therefore, the gas outlet 3 ensures a movable area of the DUT 10. The measurement object 10 is taken out by reverse operation of insertion.

被測定物10を設置後、経過時間に応じて分析に必要とする気体捕集を実施する。捕集剤は、揮発性有機化合物に対しては専用品として市販されているTENAXあるいは活性炭など、アルデヒド類に対してはカートリッジ式のDNPHなどがある。分析装置は、一般的に、揮発性有機化合物にはガスクロマトグラフ−質量分析装置(GCMS)、アルデヒド類には高速液体クロマトグラフ装置を使用する。その具体方法は、JIS1901Aなどを参照できる。   After installing the object to be measured 10, gas collection required for analysis is performed according to the elapsed time. Examples of the collecting agent include TENAX and activated carbon that are commercially available as dedicated products for volatile organic compounds, and cartridge-type DNPH for aldehydes. The analyzer generally uses a gas chromatograph-mass spectrometer (GCMS) for volatile organic compounds and a high performance liquid chromatograph for aldehydes. Refer to JIS1901A etc. for the specific method.

容器1の内容積に対する被測定物の容積や表面積の比で表す試料負荷率が大きい場合、化学物質の放散量が抑制されることがある。これは、試料負荷率が大きいほど容器1内での被測定物10の占有比率が高いため気体中にある化学物質濃度が高くなり、材料や部品表面と気体中にある化学物質の濃度勾配が小さくなり、結果として化学物質の放散量が抑制されることによる。従って、定量評価が主目的の場合、抑制状態にならないような試料負荷率での測定が必要である。   When the sample load factor represented by the ratio of the volume or surface area of the object to be measured to the internal volume of the container 1 is large, the amount of chemical substance emitted may be suppressed. This is because the larger the sample load factor, the higher the occupation ratio of the object to be measured 10 in the container 1, and thus the concentration of chemical substances in the gas becomes higher, and the concentration gradient of the chemical substances in the gas with respect to the surface of the material and parts is increased. This is due to the fact that the amount of chemical substance released is suppressed as a result. Therefore, when quantitative evaluation is the main purpose, it is necessary to perform measurement at a sample load factor that does not result in a suppressed state.

(実施の形態2)
図2は、本発明の実施の形態2における気体測定用装置の模式的一部構成図である。
(Embodiment 2)
FIG. 2 is a schematic partial configuration diagram of a gas measurement device according to Embodiment 2 of the present invention.

図2において、容器1は清浄空気の供給を垂直方向として、下方流入、上方流出となる縦型配置としている。水平方向の配置に比較して、容器1内部での空気対流による気体の濃度ムラや温度ムラ影響を抑制できるので、放散物質を含有する気体の濃度ムラや温度ムラを抑制できる。動作及び作用は、実施の形態1と同様であるが、使用中に気体出口3より容器1内部に不純物が混入しない様に注意を払わねばならない。   In FIG. 2, the container 1 has a vertical arrangement in which the supply of clean air is in the vertical direction and the lower inflow and the upper outflow. Compared with the arrangement in the horizontal direction, the influence of gas concentration unevenness and temperature unevenness due to air convection inside the container 1 can be suppressed, so that the concentration unevenness and temperature unevenness of the gas containing the diffused material can be suppressed. The operation and action are the same as in the first embodiment, but care must be taken so that impurities are not mixed into the container 1 from the gas outlet 3 during use.

以上のように、本実施の形態では、空洞型容器内部およびそこに設置した被測定物を予め加熱された気体によって数100℃程度に昇温可能で、昇温状態で放散された化学物質の捕集と定性定量分析ができる。これによって、昇温状態で使用される部品や材料等の仕様と、それらから放散される化学物質との相関関係が明らかになる。   As described above, in the present embodiment, the inside of the hollow container and the object to be measured can be heated to about several hundred degrees Celsius by the gas heated in advance, and the chemical substance diffused in the heated state Capturing and qualitative quantitative analysis are possible. This reveals the correlation between the specifications of parts and materials used in the temperature-raised state and the chemical substances released from them.

本発明にかかる気体測定用装置は、被測定物が放散する化学物質を数100℃程度の昇温状態で測定できるので、化学物質放散源である材料や部品等からの化学物質放散の相関関係の解明が可能となり、放散量の低減化など環境保全分野での有効な技術開発やその評価等、種々の用途に適用できる。   The gas measuring apparatus according to the present invention can measure a chemical substance diffused by an object to be measured at a temperature rise of about several hundred degrees Celsius, so that the correlation of the chemical substance emission from the material or parts as a chemical substance emission source. Can be elucidated, and can be applied to various uses such as effective technological development and evaluation in the field of environmental conservation such as reduction of emission.

本発明の実施の形態1における気体測定用装置の模式的構成図Schematic configuration diagram of the gas measurement device according to Embodiment 1 of the present invention. 本発明の実施の形態2における気体測定用装置の模式的構成図Schematic configuration diagram of the gas measurement device according to Embodiment 2 of the present invention. 従来の気体測定用装置の概略構成図Schematic configuration diagram of a conventional gas measurement device

符号の説明Explanation of symbols

1 容器
2 気体入口
3 気体出口
4 断熱手段
5 気体供給手段
6 流量制御手段
7 気体浄化手段
8 加熱手段
9 温度制御手段
12 冷却手段
DESCRIPTION OF SYMBOLS 1 Container 2 Gas inlet 3 Gas outlet 4 Heat insulation means 5 Gas supply means 6 Flow rate control means 7 Gas purification means 8 Heating means 9 Temperature control means 12 Cooling means

Claims (5)

気体流通可能となる気体入口と気体出口を有する空洞型容器と、前記空洞型容器に付した断熱手段と、前記空洞型容器の気体入口側上流に設置した気体供給手段と、前記気体供給手段に付した流量制御手段と、前記気体供給手段に付した気体浄化手段と、前記気体供給手段に付した加熱気体を生成する加熱手段と、前記空洞型容器内部の気体温度を制御する温度制御手段を備えた気体測定用装置。 A hollow container having a gas inlet and a gas outlet that allows gas flow, heat insulating means attached to the hollow container, gas supply means installed upstream of the hollow container on the gas inlet side, and the gas supply means A flow rate control means, a gas purification means attached to the gas supply means, a heating means for generating heated gas attached to the gas supply means, and a temperature control means for controlling the gas temperature inside the hollow container. Equipped with a gas measuring device. 空洞型容器が、石英もしくは内面を不活性処理したガラスまたは金属である請求項1記載の気体測定用装置。 The gas measuring device according to claim 1, wherein the hollow container is quartz, glass or metal whose inner surface is subjected to an inert treatment. 加熱手段が、石英もしくは内面を不活性処理したガラスまたは金属でなる気体流通管を有する請求項1または2に記載の気体測定用装置。 The gas measuring device according to claim 1 or 2, wherein the heating means has a gas flow pipe made of quartz or glass or metal whose inner surface is subjected to inert treatment. 空洞型容器が、容器内部の気体を冷却する冷却手段を有する構造とした請求項1〜3のいずれか1項に記載の気体測定用装置。 The gas measuring device according to any one of claims 1 to 3, wherein the hollow container has a structure having cooling means for cooling the gas inside the container. 空洞型容器の気体供給を垂直方向として、下方流入、上方流出となる縦型配置である請求項1〜4のいずれか1項に記載の気体測定用装置。 The apparatus for gas measurement according to any one of claims 1 to 4, wherein the gas supply of the hollow container is a vertical arrangement in which the gas supply in the vertical direction is a downward inflow and an upward outflow.
JP2008259258A 2008-10-06 2008-10-06 Gas measuring instrument Pending JP2010091311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259258A JP2010091311A (en) 2008-10-06 2008-10-06 Gas measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259258A JP2010091311A (en) 2008-10-06 2008-10-06 Gas measuring instrument

Publications (1)

Publication Number Publication Date
JP2010091311A true JP2010091311A (en) 2010-04-22

Family

ID=42254186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259258A Pending JP2010091311A (en) 2008-10-06 2008-10-06 Gas measuring instrument

Country Status (1)

Country Link
JP (1) JP2010091311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918769A (en) * 2018-05-18 2018-11-30 北京声迅电子股份有限公司 A kind of hot volatilization device of trace measured object gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918769A (en) * 2018-05-18 2018-11-30 北京声迅电子股份有限公司 A kind of hot volatilization device of trace measured object gas
CN108918769B (en) * 2018-05-18 2022-10-25 北京声迅电子股份有限公司 Trace measured object gas heat volatilization device

Similar Documents

Publication Publication Date Title
US20200348278A1 (en) Simple chamber for formaldehyde or voc release test and pretreatment
CN107064420B (en) Online monitoring system and method for medium-volatile organic compounds in atmosphere
US10895565B2 (en) Analysis system and method for detecting volatile organic compounds in liquid
KR100764519B1 (en) A Large chamber type pollution and air quality tester
JP6648018B2 (en) Apparatus and method for detecting gas
CN207689449U (en) Simple cabin is tested and pre-processed to formaldehyde or VOC burst sizes
US8776576B2 (en) Gas chromatography device
JP2010091311A (en) Gas measuring instrument
US20220099641A1 (en) Field calibration for a multipoint air sampling system
JP2005055336A (en) Indoor chemical material measuring apparatus
JP3839988B2 (en) Gas evaluation apparatus and gas evaluation method
JP2006091000A (en) Method for measuring amount of pollutant diffusion
TWI790465B (en) System and method for monitoring for the presence of volatile organic compounds
TWI477777B (en) Positive pressure can control the temperature and humidity of the gas supply device
JP2016008798A (en) Chemical substance diffusion test chamber
JP3206240U (en) Analysis equipment
JP2013079870A (en) Environment provision device, environment provision method, and evaluation method for particulate detection apparatus
JP2007327857A (en) Gas collector
KR102536296B1 (en) Dual chamber for evaluating properties of semi-volatile organic compounds
JP5181299B2 (en) Material evaluation method
JP2011089904A (en) Gas measuring apparatus
JP2010091312A (en) Gas measuring instrument
JP4476849B2 (en) Method for measuring pollutant emissions
JP4953283B2 (en) Analysis method of molecular pollutants
CN116413404B (en) Test system and test method