JP2010088317A - Chip for biological sample determination, kit for biological sample determination and method for biological sample determination - Google Patents

Chip for biological sample determination, kit for biological sample determination and method for biological sample determination Download PDF

Info

Publication number
JP2010088317A
JP2010088317A JP2008259519A JP2008259519A JP2010088317A JP 2010088317 A JP2010088317 A JP 2010088317A JP 2008259519 A JP2008259519 A JP 2008259519A JP 2008259519 A JP2008259519 A JP 2008259519A JP 2010088317 A JP2010088317 A JP 2010088317A
Authority
JP
Japan
Prior art keywords
nucleic acid
reaction
biological sample
acid amplification
amplification reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008259519A
Other languages
Japanese (ja)
Inventor
富美男 ▲高▼城
Fumio Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008259519A priority Critical patent/JP2010088317A/en
Publication of JP2010088317A publication Critical patent/JP2010088317A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip for biological sample determination, which efficiently determines a target nucleic acid with a small amount of a reaction solution and a method for biological sample determination. <P>SOLUTION: The microreactor array 10 includes a reactor vessel group A that introduces a nucleic acid amplification reaction solution containing a known amount of a target nucleic acid and performs a nucleic acid amplification reaction, a reaction vessel group B that introduces a nucleic acid amplification reaction solution containing a known amount of an internal standard nucleic acid amplifiable with a primer common to that of the target nucleic acid and performs a nucleic acid amplification reaction, a specimen, and reaction vessel groups C and D that introduce a nucleic acid amplification reaction solution containing a known amount of an internal standard nucleic acid and perform a nucleic acid amplification reaction. The reaction vessels 104 are coated with a fluorescent probe to be bound to a part of a nucleic acid amplified by a nucleic acid amplification reaction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、核酸の定量などを行うための生体試料定量用チップ、生体試料定量用キット、及び生体試料定量方法に関するものである。   The present invention relates to a biological sample quantification chip, a biological sample quantification kit, and a biological sample quantification method for quantifying nucleic acids and the like.

ガラス基板等に微細流路が設けられたマイクロ流体チップを使用して、化学分析や化学合成、あるいはバイオ関連の分析などを行う方法が注目されている。マイクロ流体チップは、マイクロTotal Analytical System(マイクロTAS)や、Lab-on-a-chip等とも呼ばれ、従来の装置に比較して試料や試薬の必要量が少ない、反応時間が短い、廃棄物が少ないなどのメリットがあり、医療診断、環境や食品のオンサイト分析、医薬品や化学品などの生産等、広い分野での利用が期待されている。試薬の量が少なくてよいことから、検査のコストを下げることが可能となり、また、試料および試薬の量が少ないことにより、反応時間も大幅に短縮されて検査の効率化が図れる。特に、医療診断に使用する場合には、試料となる血液など検体を少なくすることができるため、患者の負担を軽減できるというメリットもある。   A method of performing chemical analysis, chemical synthesis, bio-related analysis, or the like using a microfluidic chip in which a fine flow path is provided on a glass substrate or the like has attracted attention. Microfluidic chips are also called Micro Total Analytical System (Micro TAS), Lab-on-a-chip, etc., and require less samples and reagents, have shorter reaction times, and waste than conventional devices It is expected to be used in a wide range of fields, such as medical diagnosis, on-site analysis of the environment and food, and production of pharmaceuticals and chemicals. Since the amount of the reagent may be small, it is possible to reduce the cost of the inspection, and because the amount of the sample and the reagent is small, the reaction time is greatly shortened and the inspection can be made more efficient. In particular, when used for medical diagnosis, it is possible to reduce the number of specimens such as blood as a sample.

試料として用いるDNAやRNAなどの遺伝子を増幅する方法として、ポリメラーゼ連鎖反応(PCR)法がよく知られている。PCR法は、ターゲットのDNAと試薬を混合したものをチューブに入れ、サーマルサイクラーという温度制御装置で、例えば55℃、72℃、94℃の3段階の温度変化を数分の周期で繰り返し反応させるもので、ポリメラーゼという酵素の作用により温度サイクル1回あたり、約2倍にターゲットDNAだけを増幅することができる。   As a method for amplifying a gene such as DNA or RNA used as a sample, a polymerase chain reaction (PCR) method is well known. In the PCR method, a mixture of target DNA and reagents is put in a tube, and a temperature control device called a thermal cycler is used to repeatedly react, for example, three steps of temperature changes of 55 ° C, 72 ° C, and 94 ° C with a period of several minutes. Therefore, only the target DNA can be amplified about twice as much per temperature cycle by the action of an enzyme called polymerase.

近年、特殊な蛍光プローブを用いたリアルタイムPCRという方法が実用化され、増幅反応を行いながらDNAの定量ができるようになった。リアルタイムPCRは、測定の感度、信頼性が高いことから、研究用、臨床検査用に広く使われている。   In recent years, a method called real-time PCR using a special fluorescent probe has been put into practical use, and DNA can be quantified while performing an amplification reaction. Real-time PCR is widely used for research and clinical tests because of its high measurement sensitivity and reliability.

特許文献1〜3には、サンプル中に含まれる標的核酸の定量方法に関する技術が記載されている。リアルタイムPCR法でDNAの定量を行う場合、絶対定量法か相対定量法が用いられるが、臨床検査では主に絶対定量法が用いられる。絶対定量法では既知のコピー数の標的核酸を含んだ標準サンプルを用いて検量線を作成し、測定対象サンプルに含まれる標的拡散のコピー数(絶対量)を測定する。検量線を作成するためには、標準サンプルの希釈系列を作製し、少なくとも5点の測定データを取得して検量線をひく必要がある。この検量線の作成が作業を煩雑にし、検査コストが高くなる原因になっている。また、リアルタイムPCR法では、検体中に増幅反応を阻害する物質が存在する場合、測定結果が検量線からずれるため、信頼性が低くなる場合がある。   Patent Documents 1 to 3 describe techniques relating to a method for quantifying a target nucleic acid contained in a sample. When quantifying DNA by a real-time PCR method, an absolute quantification method or a relative quantification method is used, but an absolute quantification method is mainly used in a clinical test. In the absolute quantification method, a calibration curve is prepared using a standard sample containing a target nucleic acid having a known copy number, and the copy number (absolute amount) of target diffusion contained in the sample to be measured is measured. In order to create a calibration curve, it is necessary to prepare a dilution series of a standard sample, acquire measurement data of at least 5 points, and draw a calibration curve. The creation of the calibration curve complicates the work and causes the inspection cost to increase. In addition, in the real-time PCR method, when a substance that inhibits the amplification reaction is present in the sample, the measurement result may deviate from the calibration curve, so that the reliability may be lowered.

また、PCRに必要な反応液の量は数十μlが標準的であり、さらに1つの反応系では基本的に1つの遺伝子の測定しかできないという問題があった。蛍光プローブを複数入れてその色で区別することにより4種類程度の遺伝子を同時に測定する方法もあるが、それ以上の遺伝子を同時に測定するためには反応系の数を増やすしかなかった。検体から抽出されるDNAの量は一般に少量であり、また試薬も高価なため同時に多数の反応系を測定することは困難であった。反応容器を小型化する方法も提案されているが、検体液の分注精度の低下や、1つの反応容器中に含まれる標的核酸の量が少なくなるといった理由により、定量ばらつきが大きくなるという問題があった。
特許第2878453号公報 特許第3331178号公報 WO2005/059548号公報
In addition, a standard amount of reaction solution necessary for PCR is several tens of μl, and there is a problem that basically only one gene can be measured in one reaction system. There is a method of simultaneously measuring about four types of genes by inserting a plurality of fluorescent probes and distinguishing them by their colors, but the only way to measure more genes simultaneously is to increase the number of reaction systems. Since the amount of DNA extracted from the specimen is generally small and the reagents are expensive, it is difficult to measure a large number of reaction systems at the same time. A method of reducing the size of the reaction vessel has also been proposed, but the problem is that quantification variation increases due to a decrease in the dispensing accuracy of the sample liquid and the amount of target nucleic acid contained in one reaction vessel being reduced. was there.
Japanese Patent No. 2878453 Japanese Patent No. 3331178 WO2005 / 059548 publication

そこで、本発明の目的は、微量な反応液で、標的核酸の定量を効率よく行うことが可能な、生体試料定量用チップ、生体試料定量用キット、及び生体試料定量方法を得ることである。   Accordingly, an object of the present invention is to obtain a biological sample quantification chip, a biological sample quantification kit, and a biological sample quantification method capable of efficiently quantifying a target nucleic acid with a small amount of reaction solution.

本発明に係る生体試料定量用チップは、検体に含まれる標的核酸の定量を行うための生体試料定量用チップであって、既知量の前記標的核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第1の反応容器群と、前記標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の量含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第2の反応容器群と、前記検体と、既知量の前記内部標準核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第3の反応容器群と、を備え、前記第1〜第3の反応容器群は、前記核酸増幅反応によって増幅された核酸の一部に結合する蛍光プローブが塗布された複数の反応容器を備えている。   A biological sample quantification chip according to the present invention is a biological sample quantification chip for quantification of a target nucleic acid contained in a specimen, and a nucleic acid amplification reaction solution containing a known amount of the target nucleic acid is introduced to obtain a nucleic acid. A first reaction container group for performing an amplification reaction, and a first reaction container for conducting a nucleic acid amplification reaction by introducing a nucleic acid amplification reaction solution containing a known amount of an internal standard nucleic acid that can be amplified with a primer common to the target nucleic acid. 2 reaction container groups, the sample, and a third reaction container group for conducting a nucleic acid amplification reaction by introducing a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid. The third reaction container group includes a plurality of reaction containers coated with a fluorescent probe that binds to a part of the nucleic acid amplified by the nucleic acid amplification reaction.

本発明に係る生体試料定量用チップを用いれば、第1の反応容器群には標的標準核酸、第2の反応容器群には内部標準核酸、第3の反応容器群には検体と内部標準核酸を導入して核酸増幅反応を行い、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定することにより、第1及び第2の反応容器群における蛍光強度の変化から検体中の標的核酸量と蛍光変化量との関係(検量線)を得ることができる。よって、標的核酸の定量を高精度に効率よく行うことが可能である。   When the chip for quantifying a biological sample according to the present invention is used, a target standard nucleic acid is used for the first reaction container group, an internal standard nucleic acid is used for the second reaction container group, and a specimen and an internal standard nucleic acid are used for the third reaction container group. And a nucleic acid amplification reaction is performed, and the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid is measured, so that the change in the fluorescence intensity in the first and second reaction container groups can be detected in the sample. A relationship (calibration curve) between the amount of target nucleic acid and the amount of change in fluorescence can be obtained. Therefore, the target nucleic acid can be quantified efficiently with high accuracy.

また、前記第1〜第3の反応容器群は、それぞれ異なる標的核酸を増幅するためのプライマーが塗布された複数の反応容器を備えていることが望ましい。
これにより、同時に多数種類の標的核酸の増幅及び定量を行うことができる。
The first to third reaction container groups preferably include a plurality of reaction containers each coated with a primer for amplifying different target nucleic acids.
Thereby, amplification and quantification of many types of target nucleic acids can be performed simultaneously.

また、前記第1〜第3の反応容器群は、各々の前記反応容器に接続された反応液導入用流路と、前記反応液導入用流路に接続された反応液収容部と、前記反応液導入用流路に接続された廃液収容部と、を備えていることが望ましい。   The first to third reaction vessel groups include a reaction solution introduction channel connected to each of the reaction vessels, a reaction solution storage unit connected to the reaction solution introduction channel, and the reaction. And a waste liquid storage section connected to the liquid introduction flow path.

本発明によれば、遠心力を利用して、反応容器内に反応液を供給することにより、ピペットで定量することが難しい非常に少量の反応液での反応処理及び定量が可能となる。   According to the present invention, by using a centrifugal force to supply a reaction solution into a reaction vessel, it is possible to perform reaction processing and quantification with a very small amount of reaction solution that is difficult to quantify with a pipette.

また、前記第1の反応容器群は、一定量の前記標的核酸が塗布された複数の反応容器を備え、前記第2及び第3の反応容器群は、一定量の前記内部標準核酸が塗布された複数の反応容器を備えているようにしてもよい。
このように、各々の反応容器に必要な標的核酸及び内部標準核酸を予め塗布しておくことにより、使用時には核酸増幅反応液と検体液をそれぞれ導入するだけでよく作業が簡易になるので、導入する溶液の間違いなどが発生しにくい。
The first reaction container group includes a plurality of reaction containers coated with a certain amount of the target nucleic acid, and the second and third reaction container groups are coated with a certain amount of the internal standard nucleic acid. A plurality of reaction vessels may be provided.
In this way, by applying the necessary target nucleic acid and internal standard nucleic acid to each reaction container in advance, it is only necessary to introduce the nucleic acid amplification reaction solution and the sample solution at the time of use. It is difficult to make mistakes in the solution.

本発明に係る生体試料定量用キットは、本発明に係る生体試料定量用チップを備えた生体試料定量用キットであって、前記第1の反応容器群に導入するための、既知量の前記標的核酸が含まれる核酸増幅反応液と、前記第2の反応容器群に導入するための、前記内部標準核酸が既知の量含まれる核酸増幅反応液と、前記第3の反応容器群に前記検体と併せて導入するための、既知量の前記内部標準核酸が含まれる核酸増幅反応液と、を含むものである。
本発明によれば、使用時にはキットに含まれる反応液をそれぞれ対応する反応容器群に導入すればよいので、容易に増幅反応及び定量を行うことができる。
The biological sample quantification kit according to the present invention is a biological sample quantification kit including the biological sample quantification chip according to the present invention, and is a known amount of the target to be introduced into the first reaction container group. A nucleic acid amplification reaction solution containing nucleic acids; a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid for introduction into the second reaction vessel group; and the sample in the third reaction vessel group And a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid to be introduced together.
According to the present invention, the reaction solution contained in the kit may be introduced into the corresponding reaction container group at the time of use, so that amplification reaction and quantification can be easily performed.

本発明に係る生体試料定量方法は、本発明に係る生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行うための生体試料定量方法であって、前記第1の反応容器群に既知量の前記標的核酸が含まれる核酸増幅反応液を、前記第2の反応容器群に前記内部標準核酸が既知の量含まれる核酸増幅反応液を、前記第3の反応容器群に前記検体と既知量の前記内部標準核酸が含まれる核酸増幅反応液を、それぞれ導入する第1の工程と、核酸増幅反応を行う第2の工程と、各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むものである。   The biological sample quantification method according to the present invention is a biological sample quantification method for quantifying a target nucleic acid contained in a specimen using the biological sample quantification chip according to the present invention, wherein the first reaction container group is used. A nucleic acid amplification reaction solution containing a known amount of the target nucleic acid, a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid in the second reaction container group, and the sample in the third reaction container group. A first step of introducing a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid, a second step of performing a nucleic acid amplification reaction, and a nucleic acid amplified in each reaction vessel A third step of measuring the fluorescence intensity emitted by the fluorescent probe bound to a part, and the sample based on the fluorescence intensity measured in the first reaction container group and the second reaction container group. The amount of the target nucleic acid contained It is intended to include a fourth step of constant, the.

また、前記第1の反応容器群が、一定量の前記標的核酸が塗布された複数の反応容器を備え、前記第2及び第3の反応容器群が、一定量の前記内部標準核酸が塗布された複数の反応容器を備えている場合には、
前記第1の反応容器群及び前記第2の反応容器群に前記核酸増幅反応液を、前記第3の反応容器群に前記検体と前記核酸増幅反応液を導入する第1の工程と、核酸増幅反応を行う第2の工程と、各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むものである。
The first reaction container group includes a plurality of reaction containers coated with a certain amount of the target nucleic acid, and the second and third reaction container groups are coated with a certain amount of the internal standard nucleic acid. If you have multiple reaction vessels,
A first step of introducing the nucleic acid amplification reaction liquid into the first reaction container group and the second reaction container group, and introducing the sample and the nucleic acid amplification reaction liquid into the third reaction container group; A second step of performing a reaction, a third step of measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid in each of the reaction vessels, and the first reaction vessel group And a fourth step of estimating the amount of the target nucleic acid contained in the specimen based on the fluorescence intensity measured in the second reaction container group.

本発明によれば、第1の反応容器群には標的標準核酸、第2の反応容器群には内部標準核酸、第3の反応容器群には検体と内部標準核酸を導入して核酸増幅反応を行い、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定することにより、第1及び第2の反応容器群における蛍光強度の変化から検体中の標的核酸量と蛍光変化量との関係(検量線)を得ることができる。よって、標的核酸の定量を高精度に効率よく行うことが可能である。   According to the present invention, a nucleic acid amplification reaction is performed by introducing a target standard nucleic acid into the first reaction container group, an internal standard nucleic acid into the second reaction container group, and a sample and the internal standard nucleic acid into the third reaction container group. And measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid, so that the amount of target nucleic acid in the sample and the amount of fluorescence change from the change in fluorescence intensity in the first and second reaction container groups (Calibration curve) can be obtained. Therefore, the target nucleic acid can be quantified efficiently with high accuracy.

また、前記第4の工程では、前記核酸増幅反応の前後で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定することが望ましい。
また、前記第4の工程では、前記核酸増幅反応後において前記蛍光プローブが増幅された核酸の一部に結合している第1の状態、及び前記核酸増幅反応後において前記蛍光プローブが増幅された核酸から解離している第2の状態で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定するようにしてもよい。
これにより、検量線の精度を向上させることができる。
In the fourth step, it is desirable to estimate the amount of the target nucleic acid contained in the specimen using two fluorescence intensity values measured before and after the nucleic acid amplification reaction.
In the fourth step, the first state in which the fluorescent probe is bonded to a part of the amplified nucleic acid after the nucleic acid amplification reaction, and the fluorescent probe is amplified after the nucleic acid amplification reaction. The amount of the target nucleic acid contained in the specimen may be estimated using two fluorescence intensity values measured in the second state dissociated from the nucleic acid.
Thereby, the accuracy of the calibration curve can be improved.

以下、本発明の実施の形態について図面を参照して説明する。
実施の形態1.
図1(A)は、本発明の実施の形態1によるマイクロリアクターアレイ(生体試料定量用チップ)10の概略構成を示す上面図、図1(B)は図1(A)のC−C断面図である。図に示すように、マイクロリアクターアレイ10は、透明基板101,102,103、反応容器104、反応液導入用流路105、廃液収容部106、反応液収容部107、反応液導入用流路105と廃液収容部106を接続する流路108、反応液供給口109を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1A is a top view showing a schematic configuration of a microreactor array (biological sample quantification chip) 10 according to Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view taken along the line CC in FIG. 1A. FIG. As shown in the figure, the microreactor array 10 includes transparent substrates 101, 102, 103, a reaction vessel 104, a reaction solution introduction channel 105, a waste solution storage unit 106, a reaction solution storage unit 107, and a reaction solution introduction channel 105. And a reaction liquid supply port 109 are provided.

図1(B)に示すように、マイクロリアクターアレイ10は、透明基板101,102,103を貼り合わせて構成されている。透明基板101には、複数の反応容器104、反応液導入用流路105、反応液収容部107、反応液供給口109が形成されている。透明基板102には、廃液収容部106、流路108が形成されている。透明基板101,102,103は例えば樹脂基板とすることができ、各部は例えば射出成型により形成することができる。   As shown in FIG. 1B, the microreactor array 10 is configured by bonding transparent substrates 101, 102, and 103 together. A plurality of reaction vessels 104, a reaction solution introduction channel 105, a reaction solution storage unit 107, and a reaction solution supply port 109 are formed in the transparent substrate 101. In the transparent substrate 102, a waste liquid container 106 and a flow path 108 are formed. The transparent substrates 101, 102, 103 can be, for example, resin substrates, and each part can be formed by, for example, injection molding.

マイクロリアクターアレイ10には反応容器群A〜Dが設けられている。反応容器群A〜Dは、各々が複数の反応容器104、各々の反応容器104に接続された反応液導入用流路105、反応液導入用流路105に接続された反応液収容部107、及び反応液導入用流路105に接続された廃液収容部106を備えている。   The microreactor array 10 is provided with reaction vessel groups A to D. Each of the reaction vessel groups A to D includes a plurality of reaction vessels 104, a reaction solution introduction channel 105 connected to each reaction vessel 104, a reaction solution storage unit 107 connected to the reaction solution introduction channel 105, And a waste liquid storage section 106 connected to the reaction liquid introduction flow path 105.

後述するように、反応容器群A(第1の反応容器群)は、標的核酸が既知の濃度で含まれる標的標準核酸溶液を導入して核酸増幅反応を行うための反応容器群である。反応容器群B(第2の反応容器群)は、標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の濃度で含まれる内部標準核酸溶液を導入して核酸増幅反応を行うための反応容器群である。反応容器群C及び反応容器群D(第3の反応容器群)は、検体液と内部標準核酸溶液を導入して核酸増幅反応を行うための反応容器群である。   As will be described later, the reaction container group A (first reaction container group) is a reaction container group for performing a nucleic acid amplification reaction by introducing a target standard nucleic acid solution containing a target nucleic acid at a known concentration. Reaction vessel group B (second reaction vessel group) is a reaction for carrying out a nucleic acid amplification reaction by introducing an internal standard nucleic acid solution containing an internal standard nucleic acid that can be amplified with a target primer and a common primer at a known concentration. It is a container group. Reaction container group C and reaction container group D (third reaction container group) are reaction container groups for introducing a sample solution and an internal standard nucleic acid solution to perform a nucleic acid amplification reaction.

反応容器104は、例えば直径500μmの円形状で、深さ100μmに形成されている。反応液導入用流路105は、反応液の流れる方向に垂直な断面が、幅200μm、深さ100μmに形成されている。隣り合う反応容器104間の距離は、反応容器104間での反応液の混合を防止できるように十分に確保されている。なお、反応容器104、及び反応液導入用流路105は、気泡の吸着を防止するため内壁面が親液性となるように表面処理を施しておくことが望ましい。また、反応容器104、及び反応液導入用流路105の内壁面にはタンパク質などの生体分子の非特異吸着を抑制する表面処理が施されていることが望ましい。   The reaction vessel 104 is, for example, a circular shape having a diameter of 500 μm and a depth of 100 μm. The reaction liquid introduction channel 105 has a cross section perpendicular to the direction in which the reaction liquid flows, having a width of 200 μm and a depth of 100 μm. The distance between the adjacent reaction vessels 104 is sufficiently secured so as to prevent mixing of the reaction liquid between the reaction vessels 104. The reaction vessel 104 and the reaction solution introduction channel 105 are preferably subjected to surface treatment so that the inner wall surface becomes lyophilic to prevent the adsorption of bubbles. Further, it is desirable that the inner wall surfaces of the reaction vessel 104 and the reaction solution introduction channel 105 are subjected to a surface treatment that suppresses nonspecific adsorption of biomolecules such as proteins.

また、各々の反応容器104には蛍光プローブが塗布されている。蛍光プローブは、PCR反応によって増幅された標的核酸の一部に結合し、内部標準核酸と標的核酸を識別して蛍光変化を示すものであればよく、Taqman probe(登録商標)、Hyb probe(登録商標)、Molecular Beacon(登録商標)、Q−Probe(登録商標)などを利用することができる。   Each reaction vessel 104 is coated with a fluorescent probe. The fluorescent probe may be any probe that binds to a part of the target nucleic acid amplified by the PCR reaction and shows a change in fluorescence by distinguishing between the internal standard nucleic acid and the target nucleic acid. Taqman probe (registered trademark), Hyb probe (registered) Trademark), Molecular Beacon (registered trademark), Q-Probe (registered trademark), and the like can be used.

廃液収容部106は、反応液導入用流路105と流路108を介して接続されている。廃液収容部106には、後述するように、反応液導入用流路105に充填された反応液が排出されるため、反応液導入用流路105の容積よりも大きな容積を有していればよい。流路108は透明基板102を垂直に貫通するように設けられている。   The waste liquid storage unit 106 is connected to the reaction liquid introduction channel 105 and the channel 108. As will be described later, the reaction liquid filled in the reaction liquid introduction flow path 105 is discharged to the waste liquid storage section 106, so that the waste liquid storage section 106 has a larger volume than the reaction liquid introduction flow path 105. Good. The flow path 108 is provided so as to penetrate the transparent substrate 102 vertically.

また、透明基板101,102,103の互いに接触する面が撥液性を有するように表面処理を施したり、接触面にシール性を持たせたりすることにより、反応容器104から反応液が漏れ、基板表面を伝わって別の反応容器104に入ることを防ぐことができる。具体的には接触面をシリコーンゴムやフッ素樹脂でコートするなどの方法が考えられる。   Further, the surface of the transparent substrates 101, 102, 103 that are in contact with each other is subjected to a surface treatment so as to have liquid repellency, or the contact surface has a sealing property, whereby the reaction solution leaks from the reaction vessel 104, It is possible to prevent another reaction vessel 104 from entering the substrate surface. Specifically, a method of coating the contact surface with silicone rubber or fluororesin can be considered.

次に、マイクロリアクターアレイ10に反応液を充填する方法を説明する。まず、反応容器群A〜Dの各反応液収容部107に、反応液供給口109からピペット等を用いて反応液を供給する。   Next, a method for filling the microreactor array 10 with the reaction solution will be described. First, the reaction solution is supplied from the reaction solution supply port 109 to each reaction solution storage portion 107 of the reaction container group A to D using a pipette or the like.

反応容器群Aの反応液収容部107に供給する反応液には、標的核酸が既知の濃度で含まれる標的標準核酸溶液と、核酸増幅反応液が含まれる。核酸増幅反応液には、反応に適した濃度のポリメラーゼ、及びヌクレオチド(dNTP)が含まれる。   The reaction liquid supplied to the reaction liquid container 107 of the reaction container group A includes a target standard nucleic acid solution containing a target nucleic acid at a known concentration and a nucleic acid amplification reaction liquid. The nucleic acid amplification reaction solution contains a polymerase and nucleotides (dNTP) at concentrations suitable for the reaction.

反応容器群Bの反応液収容部107に供給する反応液には、標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の濃度で含まれる内部標準核酸溶液と、核酸増幅反応液が含まれる。   The reaction liquid supplied to the reaction liquid container 107 of the reaction vessel group B includes an internal standard nucleic acid solution containing a known concentration of an internal standard nucleic acid that can be amplified with a target nucleic acid and a common primer, and a nucleic acid amplification reaction liquid. It is.

また、反応容器群C,Dの反応液収容部107に供給する反応液には、検体液と内部標準核酸溶液、核酸増幅反応液が含まれる。検体液は、例えば血液、尿、唾液、髄液のような生体サンプルから抽出したDNA、または抽出したRNAから逆転写したcDNAなどを用いることができる。反応容器群C及び反応容器群Dに供給する反応液には、それぞれ異なる検体が含まれる。   The reaction liquid supplied to the reaction liquid storage unit 107 of the reaction container groups C and D includes a sample liquid, an internal standard nucleic acid solution, and a nucleic acid amplification reaction liquid. As the sample liquid, for example, DNA extracted from a biological sample such as blood, urine, saliva, spinal fluid, or cDNA reverse-transcribed from the extracted RNA can be used. The reaction liquid supplied to the reaction container group C and the reaction container group D includes different samples.

また、プライマーは核酸増幅反応液に含まれていてもよいし、各反応容器104内に、予め塗付され乾燥状態で収容されていてもよい。また、反応容器群A〜Dを構成する各々の反応容器104には、それぞれ異なるプライマーを塗付しておいてもよい。これにより、同時に多数種類の標的核酸のPCRが行えるようになっている。ただし、反応容器群A〜D間で対応する反応容器104には同一のプライマーを塗布する。   Moreover, the primer may be contained in the nucleic acid amplification reaction solution, or may be applied in advance in each reaction vessel 104 and stored in a dry state. Further, different primers may be applied to each of the reaction vessels 104 constituting the reaction vessel groups A to D. Thereby, PCR of many types of target nucleic acids can be performed simultaneously. However, the same primer is apply | coated to the reaction container 104 corresponding between reaction container group AD.

次に、マイクロリアクターアレイ10を図2A,図2Bに示すような遠心装置50を用いて回転させる。図2Aは遠心装置50を横から見た図、図2Bは遠心装置50を上から見た図である。
図2A,図2Bに示すように、遠心装置50は、マイクロリアクターアレイ10を装着可能なホルダ(被回転部)51,51a、回転モータ(回転手段)52を備える。ホルダ51,51aは、回転軸Oからマイクロリアクターアレイ10に向かう方向に対して角度θ傾斜している。このため、ホルダ51,51aに装着されたマイクロリアクターアレイ10も回転軸Oからマイクロリアクターアレイ10に向かう方向に対して角度θ傾斜する。ここではθ=45°である。なお、θは、0°<θ<90°の範囲であればよい。
Next, the microreactor array 10 is rotated using a centrifuge device 50 as shown in FIGS. 2A and 2B. 2A is a view of the centrifugal device 50 as viewed from the side, and FIG. 2B is a view of the centrifugal device 50 as viewed from above.
As shown in FIGS. 2A and 2B, the centrifuge 50 includes holders (rotated parts) 51 and 51 a to which the microreactor array 10 can be attached, and a rotary motor (rotating means) 52. The holders 51, 51 a are inclined at an angle θ with respect to the direction from the rotation axis O toward the microreactor array 10. For this reason, the microreactor array 10 mounted on the holders 51 and 51a is also inclined at an angle θ with respect to the direction from the rotation axis O toward the microreactor array 10. Here, θ = 45 °. Note that θ may be in the range of 0 ° <θ <90 °.

図3は、遠心装置50のホルダ51に装着したマイクロリアクターアレイ10を上から見た図、図4は、ホルダ51に装着したマイクロリアクターアレイ10の横断面図であり、図4(A)〜図4(C)は、それぞれ図3(A)〜図3(C)のD−D断面に相当する。   3 is a top view of the microreactor array 10 mounted on the holder 51 of the centrifuge 50, and FIG. 4 is a cross-sectional view of the microreactor array 10 mounted on the holder 51. FIGS. 4C corresponds to the DD cross section of FIGS. 3A to 3C, respectively.

まず、図3(A)及び図4(A)に示すように、回転軸Oから見て透明基板101が外側になるようにマイクロリアクターアレイ10をホルダ51に装着し回転する。これにより、反応液収容部107から反応容器104へ向かう方向に遠心力がかかり、反応液収容部107内の反応液が反応液導入用流路105を充填しながら進んで反応容器104を充填する。反応液よりも比重の軽い空気は反応液導入用流路105内へ押し出され、反応液と入れ替わることにより、反応容器104が反応液で満たされる。   First, as shown in FIGS. 3A and 4A, the microreactor array 10 is mounted on the holder 51 and rotated so that the transparent substrate 101 is on the outer side when viewed from the rotation axis O. As a result, a centrifugal force is applied in a direction from the reaction solution storage unit 107 toward the reaction vessel 104, and the reaction solution in the reaction solution storage unit 107 advances while filling the reaction solution introduction channel 105 to fill the reaction vessel 104. . Air having a specific gravity lower than that of the reaction solution is pushed into the reaction solution introduction channel 105 and is replaced with the reaction solution, thereby filling the reaction vessel 104 with the reaction solution.

この時、反応液は廃液収容部106へは送出されない。これは、図4(A)に示すように、反応液導入用流路105から廃液収容部106へ向かう流路108の方向が遠心力の方向(図中矢印F)に対して135度の角度をなしているため、反応液導入用流路105から廃液収容部106へ向かう方向の遠心力成分が0以下となるからである。   At this time, the reaction liquid is not sent to the waste liquid container 106. As shown in FIG. 4A, the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 is an angle of 135 degrees with respect to the direction of centrifugal force (arrow F in the figure). This is because the centrifugal force component in the direction from the reaction liquid introduction flow path 105 toward the waste liquid storage section 106 becomes 0 or less.

なお、反応液導入用流路105から廃液収容部106へ向かう流路108の方向と遠心力の方向のなす角度が90度以上180度以下であれば、反応液は廃液収容部106へ送出されない。   If the angle formed between the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 and the direction of the centrifugal force is 90 degrees or more and 180 degrees or less, the reaction liquid is not sent to the waste liquid storage section 106. .

以上のように、反応液が廃液収容部106の方へ流れていかないため、すべての反応容器104に効率よく反応液を充填することができ、回転後は図3(B)及び図4(B)に示すように、すべての反応容器104と反応液導入用流路105に反応液が充填された状態となる。   As described above, since the reaction liquid does not flow toward the waste liquid storage unit 106, all the reaction vessels 104 can be efficiently filled with the reaction liquid, and after the rotation, the reaction liquids shown in FIGS. ), The reaction liquid is filled in all the reaction vessels 104 and the reaction liquid introduction flow path 105.

次に、遠心装置50の回転を一端停止し、今度は図3(C)及び図4(C)に示すように、回転軸Oから見て透明基板103が外側になるようにマイクロリアクターアレイ10をホルダ51aに装着し回転する。これにより、今度は反応液導入用流路105内の反応液が廃液収容部106に送出される。これは、図4(C)に示すように、反応液導入用流路105から廃液収容部106へ向かう流路108の方向が、遠心力の方向(図中矢印F)に対して45度の角度をなしているため、反応液導入用流路105から廃液収容部106へ向かう方向の遠心力成分が0以上となるからである。なお、反応液導入用流路105から廃液収容部106へ向かう流路108の方向と遠心力の方向のなす角度が0度以上かつ90度より小さければ、反応液は廃液収容部106へ送出される。なお、反応液導入用流路105内の反応液は廃液収容部106へ送出されるが、反応容器104内の反応液は反応容器104内に留まる。   Next, the rotation of the centrifuge 50 is stopped once, and this time, as shown in FIGS. 3 (C) and 4 (C), the microreactor array 10 so that the transparent substrate 103 faces outward as viewed from the rotation axis O. Is mounted on the holder 51a and rotated. As a result, the reaction solution in the reaction solution introduction channel 105 is sent out to the waste solution storage unit 106 this time. As shown in FIG. 4C, the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 is 45 degrees with respect to the direction of centrifugal force (arrow F in the figure). This is because, since the angle is formed, the centrifugal force component in the direction from the reaction liquid introduction flow path 105 toward the waste liquid storage section 106 becomes 0 or more. If the angle between the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 and the direction of the centrifugal force is not less than 0 degrees and less than 90 degrees, the reaction liquid is sent to the waste liquid storage section 106. The The reaction solution in the reaction solution introduction channel 105 is sent to the waste solution storage unit 106, but the reaction solution in the reaction vessel 104 remains in the reaction vessel 104.

このように、反応液導入用流路105内の反応液を廃液収容部106に送出することにより、各反応容器104を分離することができる。   In this way, each reaction vessel 104 can be separated by sending the reaction solution in the reaction solution introduction channel 105 to the waste solution storage unit 106.

なお、図3(C)及び図4(C)に示す状態で回転する際、予め反応液供給口109から、ピペット等を用いて反応液収容部107にミネラルオイルを供給しておくようにしてもよい。この状態でマイクロリアクターアレイ10を回転させると、反応液導入用流路105にミネラルオイルが充填される。この時、反応液の比重がミネラルオイルよりも重いので、反応容器104内の反応液はミネラルオイルと入れ替わらない。これにより、個々の反応容器104を分離して、反応容器104間でのコンタミネーションを防止することができる。また、反応処理中に、反応容器104内が乾燥することを防止することもできる。なお、ミネラルオイルの代わりに反応液よりも比重が軽く、反応液と混和せず反応液よりも蒸発しにくい液体を用いても良い。また、一旦、図3(C)及び図4(C)に示す状態で回転を行って反応液導入用流路105内の反応液を廃液収容部106に送出した後で、反応液収容部107にミネラルオイルを供給し、再度遠心装置50を回転させてもよい。   When rotating in the state shown in FIGS. 3 (C) and 4 (C), mineral oil is previously supplied from the reaction liquid supply port 109 to the reaction liquid storage unit 107 using a pipette or the like. Also good. When the microreactor array 10 is rotated in this state, the reaction liquid introduction channel 105 is filled with mineral oil. At this time, since the specific gravity of the reaction liquid is heavier than that of mineral oil, the reaction liquid in the reaction vessel 104 is not replaced with mineral oil. Thereby, the individual reaction containers 104 can be separated and contamination between the reaction containers 104 can be prevented. It is also possible to prevent the inside of the reaction vessel 104 from being dried during the reaction process. Instead of mineral oil, a liquid that has a specific gravity lighter than that of the reaction liquid and is not miscible with the reaction liquid and is less likely to evaporate than the reaction liquid may be used. Further, after rotating in the state shown in FIGS. 3C and 4C to send the reaction solution in the reaction solution introduction channel 105 to the waste solution storage unit 106, the reaction solution storage unit 107. Mineral oil may be supplied to the centrifuge and the centrifuge 50 may be rotated again.

以上のような手順でマイクロリアクターアレイ10に反応液を供給したら、次にPCR処理(生体試料反応処理)を行う。具体的には、マイクロリアクターアレイ10の開口部をシールした後、マイクロリアクターアレイ10をサーマルサイクラーに設置してPCR処理を行う。一般的には、まず、94℃で2本鎖DNAを解離させる工程を実行し、次に、プライマーを約55℃でアニーリングする工程を実行し、次に耐熱性のDNAポリメラーゼを使用して約72℃で相補鎖の複製を行う工程を含むサイクルを繰り返す。   After the reaction solution is supplied to the microreactor array 10 in the above procedure, PCR processing (biological sample reaction processing) is performed next. Specifically, after the opening of the microreactor array 10 is sealed, the microreactor array 10 is placed on a thermal cycler to perform PCR processing. In general, first, the step of dissociating the double-stranded DNA at 94 ° C. is performed, then the step of annealing the primer at about 55 ° C. is performed, and then the temperature is increased using a thermostable DNA polymerase. The cycle including the step of replicating the complementary strand at 72 ° C. is repeated.

PCR処理の後、蛍光顕微鏡を用いて個々の反応容器104内の蛍光強度を測定し、検体中に含まれる標的核酸の量を定量する。   After the PCR process, the fluorescence intensity in each reaction vessel 104 is measured using a fluorescence microscope, and the amount of target nucleic acid contained in the sample is quantified.

以下に、蛍光プローブとしてQ−Probeを用いた場合を例にとり、検体中の標的核酸の定量方法について説明する。Q-Probeは、結合した核酸に含まれるグアニンと相互作用して著しく蛍光が消光するのが特徴である。標的核酸と内部標準核酸の両方にQ-Probeが結合できるようにし、さらに、Q-Probeがどちらか一方と結合した際に蛍光の消光が発生するようにしておくことにより、既知の内部標準核酸の量に対する標的核酸の相対量を推定することができる。   Hereinafter, taking a case where Q-Probe is used as a fluorescent probe, a method for quantifying a target nucleic acid in a sample will be described. Q-Probe is characterized by significant fluorescence quenching through interaction with guanine contained in the bound nucleic acid. By allowing Q-Probe to bind to both the target nucleic acid and the internal standard nucleic acid, and further causing fluorescence quenching to occur when Q-Probe binds to either one, a known internal standard nucleic acid can be obtained. The relative amount of the target nucleic acid relative to the amount of can be estimated.

図5に、標的核酸と内部標準核酸の配列例を示す。下線を引いた部分にQ-Probeが結合する。図に示すように、蛍光プローブの結合部分の直後が、標的核酸は「TTTT」、内部標準核酸は「GGGT」となっている。従って、Q-Probeは内部標準核酸と結合した際に、結合部分のグアニン(G)と反応するため、蛍光が消光する。   FIG. 5 shows a sequence example of the target nucleic acid and the internal standard nucleic acid. Q-Probe binds to the underlined portion. As shown in the figure, immediately after the binding portion of the fluorescent probe, the target nucleic acid is “TTTT” and the internal standard nucleic acid is “GGGT”. Therefore, when Q-Probe binds to the internal standard nucleic acid, it reacts with the binding moiety guanine (G), and thus the fluorescence is quenched.

次に、測定した蛍光強度から標的核酸の定量を行う方法について説明する。
反応容器群Aのように標的標準核酸のみを含む場合、PCRによる増幅産物は標的標準核酸の増幅産物のみである。この場合の蛍光変化量をFtとする。反応容器群Bのように内部標準核酸のみを含む場合、増幅産物は内部標準核酸の増幅産物のみである。この場合の蛍光変化量をFcとする。反応容器群C,Dのように内部標準核酸と標的核酸の両方を含む場合、両方の増幅産物ができるため、この場合の蛍光変化量Fは、以下の式1で表せる。
F=FtX/(X+C)+FcC/(X+C)
=〔C(Fc−Ft)/(X+C)〕+Ft …(1)
ここで、Cは反応容器群C,Dにおける、内部標準核酸の量(反応容器内のコピー数)、Xは反応容器群C,Dにおける、標的核酸の量(反応容器内のコピー数)である。
Next, a method for quantifying the target nucleic acid from the measured fluorescence intensity will be described.
When only the target standard nucleic acid is included as in the reaction container group A, the PCR amplification product is only the amplification product of the target standard nucleic acid. The amount of change in fluorescence in this case is Ft. When only the internal standard nucleic acid is included as in the reaction container group B, the amplification product is only the amplification product of the internal standard nucleic acid. In this case, the amount of change in fluorescence is Fc. When both the internal standard nucleic acid and the target nucleic acid are included as in the reaction vessel groups C and D, both amplification products are produced. In this case, the fluorescence change amount F can be expressed by the following formula 1.
F = FtX / (X + C) + FcC / (X + C)
= [C (Fc-Ft) / (X + C)] + Ft (1)
Here, C is the amount of the internal standard nucleic acid in the reaction container groups C and D (copy number in the reaction container), and X is the amount of the target nucleic acid in the reaction container groups C and D (copy number in the reaction container). is there.

蛍光変化量Fには、個々の反応容器が発する蛍光輝度そのものを用いてもよいが、増幅前の蛍光輝度と増幅後の蛍光輝度の比、あるいは、増幅後に、増幅産物および蛍光プローブが解離する温度まで加熱した状態の蛍光輝度と、増幅産物と蛍光プローブが結合している温度での蛍光輝度との比を用いても良い。これにより、検量線の精度を向上させることができる。   As the fluorescence change amount F, the fluorescence brightness itself emitted from each reaction vessel may be used. However, the ratio between the fluorescence brightness before amplification and the fluorescence brightness after amplification, or the amplification product and the fluorescence probe dissociate after amplification. A ratio between the fluorescence brightness in the state heated to the temperature and the fluorescence brightness at the temperature at which the amplification product and the fluorescent probe are bonded may be used. Thereby, the accuracy of the calibration curve can be improved.

上記の式1に、反応容器群Aと反応容器群Bの蛍光輝度から求めたFtとFcを代入することにより、検体中に含まれる標的核酸の量Xを求めることができる。   By substituting Ft and Fc obtained from the fluorescence brightness of the reaction container group A and reaction container group B into the above equation 1, the amount X of the target nucleic acid contained in the sample can be obtained.

(実施例)
マイクロリアクターアレイ10の反応容器104には、予め図6に示す配列を有するプライマー及びQ-probeが塗布され、真空乾燥されている。Q-probeは図7に示す配列を有し、BODIPY FL( Molecular probes社製)にて蛍光標識されている。
(Example)
A primer having the sequence shown in FIG. 6 and Q-probe are applied in advance to the reaction vessel 104 of the microreactor array 10 and vacuum-dried. Q-probe has the sequence shown in FIG. 7 and is fluorescently labeled with BODIPY FL (manufactured by Molecular probes).

反応容器群Aの反応容器104には標的標準核酸溶液が、反応容器群Bの反応容器104には内部標準核酸溶液が、反応容器群C〜G(E〜Gは別のマイクロリアクターアレイ10に設けられている。)の反応容器104には、それぞれ異なる希釈率の検体液と一定量の内部標準核酸溶液が供給される。表1に、反応容器群A〜Gの各反応容器104内における標的核酸及び内部標準核酸の量を示す。   The target standard nucleic acid solution is contained in the reaction vessel 104 of the reaction vessel group A, the internal standard nucleic acid solution is contained in the reaction vessel 104 of the reaction vessel group B, and the reaction vessel groups C to G (E to G are separate microreactor arrays 10). Provided)) are supplied with different dilutions of the sample solution and a predetermined amount of the internal standard nucleic acid solution. Table 1 shows the amounts of the target nucleic acid and the internal standard nucleic acid in each reaction vessel 104 of the reaction vessel groups A to G.

Figure 2010088317
上記の核酸溶液と共に、ライトサイクラー480ジェノタイピングマスター、ウラシルDNAグルコシラーゼ(以上、ロシュ ダイアグノスティクス社)を含むPCR反応液(核酸増幅反応液)を反応容器104に充填し、サーマルサイクラーでPCRを行った。蛍光測定は、室温にて増幅の前後に測定し、さらに、増幅後は60℃と95℃で測定を行った。なお、60℃では増幅産物と蛍光プローブが結合しており、95℃では増幅産物および蛍光プローブが解離する。
Figure 2010088317
A PCR reaction solution (nucleic acid amplification reaction solution) containing the light cycler 480 genotyping master and uracil DNA glucosylase (hereinafter referred to as Roche Diagnostics) is filled in the reaction vessel 104 together with the nucleic acid solution described above, and PCR is performed using a thermal cycler. It was. The fluorescence measurement was performed before and after amplification at room temperature, and after amplification, measurement was performed at 60 ° C. and 95 ° C. The amplification product and the fluorescent probe are bonded at 60 ° C., and the amplification product and the fluorescent probe are dissociated at 95 ° C.

(実験結果)
増幅後の60℃及び95℃における蛍光強度値の比を蛍光変化量としたとき、式1のパラメータは以下にようになった。
Ft=1.28
Fc=0.82
ここで、Cは反応容器群C〜Gにおける内部標準核酸の量(1000コピー)である。これらの値を式1に代入すると、
F=1.28−460/(X+1000) …(2)
となる。
図8に、式2に基づいて作成した、検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値(図中■)を示す。
(Experimental result)
When the ratio of the fluorescence intensity values at 60 ° C. and 95 ° C. after amplification is defined as the amount of change in fluorescence, the parameters of Equation 1 are as follows.
Ft = 1.28
Fc = 0.82
Here, C is the amount (1000 copies) of the internal standard nucleic acid in the reaction container groups C to G. Substituting these values into Equation 1,
F = 1.28-460 / (X + 1000) (2)
It becomes.
FIG. 8 shows the relationship (calibration curve) between the target nucleic acid amount X and the fluorescence change amount F in the specimen, and the actual measurement value (■ in the figure), which was created based on Equation 2.

また、室温における増幅前後の蛍光強度値の比を蛍光変化量としたとき、式1のパラメータは以下にようになった。
Ft=1.25
Fc=0.94
ここで、Cは反応容器群C〜Gにおける内部標準核酸の量(1000コピー)である。これらの値を式1に代入すると、
F=1.25−310/(X+1000) …(3)
となる。
図9に、式3に基づいて作成した、検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値(図中◆)を示す。
Further, when the ratio of the fluorescence intensity values before and after amplification at room temperature is defined as the amount of fluorescence change, the parameters of Equation 1 are as follows.
Ft = 1.25
Fc = 0.94
Here, C is the amount (1000 copies) of the internal standard nucleic acid in the reaction container groups C to G. Substituting these values into Equation 1,
F = 1.25-310 / (X + 1000) (3)
It becomes.
FIG. 9 shows the relationship (calibration curve) between the target nucleic acid amount X and the fluorescence change amount F in the sample and the actual measurement value (♦ in the figure) created based on Equation 3.

図8、9から明らかなように、標的核酸/内部標準核酸の構成比と、Q-Probeの蛍光変化量との間には高い相関がある。したがって、式2,3により求めた検量線を用いて検体中の標的核酸の定量を行うことが可能であることが示唆された。   As is apparent from FIGS. 8 and 9, there is a high correlation between the composition ratio of the target nucleic acid / internal standard nucleic acid and the fluorescence change amount of Q-Probe. Therefore, it was suggested that the target nucleic acid in the sample can be quantified using the calibration curve obtained from Equations 2 and 3.

なお、ここでは、1種類の標的核酸についての定量結果を示したが、上述したように各反応容器群の反応容器には、それぞれ異なる標的核酸を増幅・定量するための試薬(プライマー、蛍光プローブ)を導入することができるので、上記のような検量線を同時に多数作成し、それぞれの標的核酸の定量を行うことができる。   In addition, although the quantification result about one type of target nucleic acid was shown here, as mentioned above, each reaction container group has a reaction container (primer, fluorescent probe) for amplifying and quantifying different target nucleic acids. ) Can be introduced, a large number of calibration curves as described above can be created simultaneously to quantify each target nucleic acid.

また、本実施例では、内部標準核酸の量を反応容器あたり1000コピーとしたが、定量する標的核酸の量に応じて変更することができる。すなわち、検体中の標的核酸の量が内部標準核酸の量と著しく異なる場合は、希釈により検体の濃度を適切に調整するか、あるいは、内部標準核酸の量を適切に設定することにより定量精度を上げることができる。また、内部標準核酸の量を段階的に変えた反応容器群を追加してもよい。   In this example, the amount of the internal standard nucleic acid was 1000 copies per reaction container, but can be changed according to the amount of the target nucleic acid to be quantified. In other words, if the amount of target nucleic acid in the sample is significantly different from the amount of internal standard nucleic acid, adjust the concentration of the sample appropriately by dilution, or set the amount of internal standard nucleic acid appropriately to improve quantification accuracy. Can be raised. Moreover, you may add the reaction container group which changed the quantity of the internal standard nucleic acid in steps.

以上のように本実施形態によれば、反応容器群Aの反応容器104には標的標準核酸溶液、反応容器群Bの反応容器104には内部標準核酸溶液、反応容器群C、Dの反応容器104には、それぞれ異なる希釈率の検体液と一定量の内部標準核酸溶液を充填してPCR反応を行い、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定することにより、反応容器群A、Bにおける蛍光強度の変化から検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)を得ることができる。よって、標的核酸の定量を高精度に効率よく行うことが可能である。   As described above, according to this embodiment, the reaction container 104 of the reaction container group A has the target standard nucleic acid solution, the reaction container 104 of the reaction container group B has the internal standard nucleic acid solution, and the reaction containers of the reaction container groups C and D. 104, by filling a sample solution with a different dilution ratio and a predetermined amount of an internal standard nucleic acid solution, performing a PCR reaction, and measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid, The relationship (calibration curve) between the target nucleic acid amount X and the fluorescence change amount F in the sample can be obtained from the change in the fluorescence intensity in the reaction container groups A and B. Therefore, the target nucleic acid can be quantified efficiently with high accuracy.

また、遠心力を利用して、反応容器104内に反応液を供給することにより、ピペットで定量することが難しい非常に少量の反応液での反応処理及び定量が可能となる。   Further, by using the centrifugal force to supply the reaction solution into the reaction vessel 104, it is possible to perform reaction processing and quantification with a very small amount of reaction solution that is difficult to quantify with a pipette.

また、本実施形態では、検量線作成のために、標的標準核酸溶液を用いるグループ(反応容器群A)と内部標準核酸溶液を用いるグループ(反応容器群B)をそれぞれ1つずつ設けたが、検量線の精度を高めるために、これらのグループを希釈率の異なる複数の反応容器群から構成してもよい。   Further, in this embodiment, in order to prepare a calibration curve, a group using the target standard nucleic acid solution (reaction container group A) and a group using the internal standard nucleic acid solution (reaction container group B) are provided one by one. In order to improve the accuracy of the calibration curve, these groups may be composed of a plurality of reaction vessel groups having different dilution rates.

また、本実施形態では、反応容器104に反応液を充填するのに遠心力を利用しているが、遠心力の代わりに、毛管力やポンプによる圧力等を用いて充填するようにしてもよい。   Further, in this embodiment, centrifugal force is used to fill the reaction vessel 104 with the reaction solution. However, instead of centrifugal force, filling may be performed using capillary force, pressure by a pump, or the like. .

(生体試料定量用キット)
本発明に係る生体試料定量用キットは、実施の形態1によるマイクロリアクターアレイ10と、反応容器群Aに供給するための標的標準核酸溶液と核酸増幅反応液を含む溶液と、反応容器群Bに供給するための内部標準核酸溶液と核酸増幅反応液を含む溶液と、反応容器群C,Dに供給するための内部標準核酸溶液と核酸増幅反応液を含む溶液を有する。使用時には、反応容器群A,Bにはそれぞれキットに備えられた溶液を供給し、反応容器群C,Dにはキットに備えられた溶液に、必要に応じて希釈した検体液を加えて供給する。
(Biological sample quantification kit)
A biological sample quantification kit according to the present invention includes a microreactor array 10 according to Embodiment 1, a solution containing a target standard nucleic acid solution and a nucleic acid amplification reaction solution to be supplied to reaction vessel group A, and reaction vessel group B. It has a solution containing an internal standard nucleic acid solution to be supplied and a nucleic acid amplification reaction solution, and a solution containing an internal standard nucleic acid solution and a nucleic acid amplification reaction solution to be supplied to the reaction vessel groups C and D. In use, the reaction vessel groups A and B are supplied with the solution provided in the kit, and the reaction vessel groups C and D are supplied with the sample solution diluted as necessary to the solution provided in the kit. To do.

このように、使用時にはキットに含まれる反応液をそれぞれ対応する反応容器群に導入すればよいので、容易に増幅反応及び定量を行うことができる。   Thus, since the reaction liquid contained in the kit may be introduced into the corresponding reaction container group at the time of use, the amplification reaction and quantification can be easily performed.

実施の形態2.
実施の形態2では、反応容器群Aの反応容器104に、予め一定量の標的核酸が塗布されている。同様に、反応容器群Bの反応容器104には、予め一定量の内部標準核酸が塗布されており、反応容器群C,Dの反応容器104には、予め一定量の内部標準核酸が塗布されている。
Embodiment 2. FIG.
In the second embodiment, a certain amount of target nucleic acid is applied in advance to the reaction vessel 104 of the reaction vessel group A. Similarly, a predetermined amount of internal standard nucleic acid is applied in advance to the reaction vessel 104 of the reaction vessel group B, and a predetermined amount of internal standard nucleic acid is applied to the reaction vessel 104 of the reaction vessel groups C and D in advance. ing.

実施の形態2では、反応容器群A及び反応容器群Bには、核酸増幅反応液のみを供給すればよい。また、反応容器群C,Dには、検体液と核酸増幅反応液を供給すればよい。   In Embodiment 2, only the nucleic acid amplification reaction solution may be supplied to the reaction container group A and the reaction container group B. Further, the sample solution and the nucleic acid amplification reaction solution may be supplied to the reaction container groups C and D.

このように、実施の形態2によれば、各々の反応容器104に必要な標的核酸及び内部標準核酸を予め塗布しておくことにより、使用時には核酸増幅反応液と検体をそれぞれ導入するだけでよく作業が簡易になるので、導入する溶液の間違いなどが発生しにくい。   As described above, according to the second embodiment, the target nucleic acid and the internal standard nucleic acid necessary for each reaction vessel 104 are applied in advance, so that the nucleic acid amplification reaction solution and the sample need only be introduced at the time of use. Since the work is simplified, it is difficult to make mistakes in the solution to be introduced.

図1(A)は、本発明の実施の形態1によるマイクロリアクターアレイの概略構成を示す上面図、図1(B)は図1(A)のC−C断面図。1A is a top view illustrating a schematic configuration of a microreactor array according to Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view taken along a line CC in FIG. 1A. 図2Aは、遠心装置を横から見た図である。FIG. 2A is a side view of the centrifuge. 図2Bは、遠心装置を上から見た図である。FIG. 2B is a view of the centrifuge as viewed from above. 遠心装置のホルダに装着したマイクロリアクターアレイを上から見た図。The figure which looked at the micro reactor array with which the holder of the centrifuge was equipped from the top. 遠心装置のホルダに装着したマイクロリアクターアレイの横断面図。The cross-sectional view of the microreactor array attached to the holder of the centrifuge. 標的核酸と内部標準核酸の配列例を示す図。The figure which shows the example of a sequence of a target nucleic acid and an internal standard nucleic acid. プライマーの配列例を示す図。The figure which shows the example of a sequence | arrangement of a primer. Q-probeの配列を示す図。The figure which shows the arrangement | sequence of Q-probe. 検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値を示す図。The figure which shows the relationship (calibration curve) between the amount X of target nucleic acids in a sample, and the fluorescence variation F, and an actual measurement value. 検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値を示す図。The figure which shows the relationship (calibration curve) between the amount X of target nucleic acids in a sample, and the fluorescence variation F, and an actual measurement value.

符号の説明Explanation of symbols

10 マイクロリアクターアレイ、101,102,103 透明基板、104 反応容器、105 反応液導入用流路、106 廃液収容部、107 反応液収容部、108 流路、109 反応液供給口、50 遠心装置、51,51a ホルダ、52 回転モータ   10 microreactor array, 101, 102, 103 transparent substrate, 104 reaction vessel, 105 reaction liquid introduction flow path, 106 waste liquid storage section, 107 reaction liquid storage section, 108 flow path, 109 reaction liquid supply port, 50 centrifuge, 51, 51a Holder, 52 Rotating motor

Claims (9)

検体に含まれる標的核酸の定量を行うための生体試料定量用チップであって、
既知量の前記標的核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第1の反応容器群と、
前記標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の量含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第2の反応容器群と、
前記検体と、既知量の前記内部標準核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第3の反応容器群と、を備え、
前記第1〜第3の反応容器群は、前記核酸増幅反応によって増幅された核酸の一部に結合する蛍光プローブが塗布された複数の反応容器を備えていることを特徴とする生体試料定量用チップ。
A biological sample quantification chip for quantifying a target nucleic acid contained in a specimen,
A first reaction vessel group for conducting a nucleic acid amplification reaction by introducing a nucleic acid amplification reaction solution containing a known amount of the target nucleic acid;
A second reaction container group for conducting a nucleic acid amplification reaction by introducing a nucleic acid amplification reaction solution containing a known amount of an internal standard nucleic acid that can be amplified with a primer common to the target nucleic acid;
A third reaction vessel group for conducting a nucleic acid amplification reaction by introducing a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid,
The first to third reaction container groups include a plurality of reaction containers coated with fluorescent probes that bind to a part of the nucleic acid amplified by the nucleic acid amplification reaction. Chip.
前記第1〜第3の反応容器群は、それぞれ異なる標的核酸を増幅するためのプライマーが塗布された複数の反応容器を備えていることを特徴とする請求項1に記載の生体試料定量用チップ。   The biological sample quantification chip according to claim 1, wherein each of the first to third reaction container groups includes a plurality of reaction containers each coated with a primer for amplifying different target nucleic acids. . 前記第1〜第3の反応容器群は、
各々の前記反応容器に接続された反応液導入用流路と、
前記反応液導入用流路に接続された反応液収容部と、
前記反応液導入用流路に接続された廃液収容部と、を備えていることを特徴とする請求項1または請求項2に記載の生体試料定量用チップ。
The first to third reaction vessel groups are:
A reaction liquid introduction flow channel connected to each of the reaction vessels;
A reaction solution storage unit connected to the reaction solution introduction channel;
The biological sample determination chip according to claim 1, further comprising: a waste liquid storage unit connected to the reaction liquid introduction channel.
前記第1の反応容器群は、一定量の前記標的核酸が塗布された複数の反応容器を備え、
前記第2及び第3の反応容器群は、一定量の前記内部標準核酸が塗布された複数の反応容器を備えていることを特徴とする請求項1から請求項3のいずれかに記載の生体試料定量用チップ。
The first reaction container group includes a plurality of reaction containers coated with a certain amount of the target nucleic acid,
The living body according to any one of claims 1 to 3, wherein the second and third reaction container groups include a plurality of reaction containers coated with a predetermined amount of the internal standard nucleic acid. Sample quantification chip.
請求項1から請求項3のいずれかに記載の生体試料定量用チップを備えた生体試料定量用キットであって、
前記第1の反応容器群に導入するための、既知量の前記標的核酸が含まれる核酸増幅反応液と、
前記第2の反応容器群に導入するための、前記内部標準核酸が既知の量含まれる核酸増幅反応液と、
前記第3の反応容器群に前記検体と併せて導入するための、既知量の前記内部標準核酸が含まれる核酸増幅反応液と、を含むことを特徴とする生体試料定量用キット。
A biological sample quantification kit comprising the biological sample quantification chip according to any one of claims 1 to 3,
A nucleic acid amplification reaction solution containing a known amount of the target nucleic acid for introduction into the first reaction vessel group;
A nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid for introduction into the second reaction container group;
A biological sample quantification kit comprising: a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid for introduction into the third reaction container group together with the sample.
請求項1から請求項3のいずれかに記載の生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行うための生体試料定量方法であって、
前記第1の反応容器群に既知量の前記標的核酸が含まれる核酸増幅反応液を、前記第2の反応容器群に前記内部標準核酸が既知の量含まれる核酸増幅反応液を、前記第3の反応容器群に前記検体と既知量の前記内部標準核酸が含まれる核酸増幅反応液を、それぞれ導入する第1の工程と、
核酸増幅反応を行う第2の工程と、
各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、
前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むことを特徴とする生体試料定量方法。
A biological sample quantification method for quantifying a target nucleic acid contained in a specimen using the biological sample quantification chip according to claim 1,
A nucleic acid amplification reaction solution containing a known amount of the target nucleic acid in the first reaction vessel group, a nucleic acid amplification reaction solution containing a known amount of the internal standard nucleic acid in the second reaction vessel group, A first step of introducing a nucleic acid amplification reaction solution containing the sample and a known amount of the internal standard nucleic acid into the reaction container group, respectively,
A second step of performing a nucleic acid amplification reaction;
A third step of measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid in each of the reaction vessels;
And a fourth step of estimating the amount of the target nucleic acid contained in the specimen based on the fluorescence intensity measured in the first reaction container group and the second reaction container group. A biological sample quantification method.
請求項4に記載の生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行うための生体試料定量方法であって、
前記第1の反応容器群及び前記第2の反応容器群に前記核酸増幅反応液を、前記第3の反応容器群に前記検体と前記核酸増幅反応液を導入する第1の工程と、
核酸増幅反応を行う第2の工程と、
各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、
前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むことを特徴とする生体試料定量方法。
A biological sample quantification method for quantifying a target nucleic acid contained in a specimen using the biological sample quantification chip according to claim 4,
A first step of introducing the nucleic acid amplification reaction liquid into the first reaction container group and the second reaction container group, and introducing the sample and the nucleic acid amplification reaction liquid into the third reaction container group;
A second step of performing a nucleic acid amplification reaction;
A third step of measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid in each of the reaction vessels;
And a fourth step of estimating the amount of the target nucleic acid contained in the specimen based on the fluorescence intensity measured in the first reaction container group and the second reaction container group. A biological sample quantification method.
前記第4の工程では、
前記核酸増幅反応の前後で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定することを特徴とする請求項6または請求項7に記載の生体試料定量方法。
In the fourth step,
The biological sample according to claim 6 or 7, wherein the amount of the target nucleic acid contained in the specimen is estimated using two fluorescence intensity values measured before and after the nucleic acid amplification reaction. Quantitation method.
前記第4の工程では、
前記核酸増幅反応後において前記蛍光プローブが増幅された核酸の一部に結合している第1の状態、及び前記核酸増幅反応後において前記蛍光プローブが増幅された核酸から解離している第2の状態で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定することを特徴とする請求項6または請求項7に記載の生体試料定量方法。
In the fourth step,
A first state in which the fluorescent probe is bonded to a part of the amplified nucleic acid after the nucleic acid amplification reaction; and a second state in which the fluorescent probe is dissociated from the amplified nucleic acid after the nucleic acid amplification reaction. The biological sample quantification method according to claim 6 or 7, wherein the amount of the target nucleic acid contained in the specimen is estimated using two fluorescence intensity values measured in a state.
JP2008259519A 2008-10-06 2008-10-06 Chip for biological sample determination, kit for biological sample determination and method for biological sample determination Pending JP2010088317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259519A JP2010088317A (en) 2008-10-06 2008-10-06 Chip for biological sample determination, kit for biological sample determination and method for biological sample determination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259519A JP2010088317A (en) 2008-10-06 2008-10-06 Chip for biological sample determination, kit for biological sample determination and method for biological sample determination

Publications (1)

Publication Number Publication Date
JP2010088317A true JP2010088317A (en) 2010-04-22

Family

ID=42251698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259519A Pending JP2010088317A (en) 2008-10-06 2008-10-06 Chip for biological sample determination, kit for biological sample determination and method for biological sample determination

Country Status (1)

Country Link
JP (1) JP2010088317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103122A1 (en) * 2017-11-24 2019-05-31 Ricoh Company, Ltd. Detection determining method, detection determining device, detection determining program, and device
JP2019092505A (en) * 2017-11-24 2019-06-20 株式会社リコー Detection determination method, detection determination device, detection determination program, and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103122A1 (en) * 2017-11-24 2019-05-31 Ricoh Company, Ltd. Detection determining method, detection determining device, detection determining program, and device
JP2019092505A (en) * 2017-11-24 2019-06-20 株式会社リコー Detection determination method, detection determination device, detection determination program, and device
JP7322386B2 (en) 2017-11-24 2023-08-08 株式会社リコー Detection determination method, detection determination device, detection determination program, and device

Similar Documents

Publication Publication Date Title
US10252261B2 (en) Handling liquid samples
Fu et al. A microfluidic chip based on surfactant-doped polydimethylsiloxane (PDMS) in a sandwich configuration for low-cost and robust digital PCR
US9416418B2 (en) Biochip and target DNA quantitative method
JP5298718B2 (en) Centrifugal device for filling biological sample reaction chip with reaction solution
JP4556194B2 (en) Biological sample reaction method
JP4665960B2 (en) Biological sample reaction chip, biological sample reaction device, and biological sample reaction method
JP4453090B2 (en) Biological sample reaction chip and biological sample reaction method
CN215906212U (en) Nucleic acid amplification reactor
JP2011239742A (en) Microfluidic chip, microfluidic chip set and nucleic acid analysis kit
JPWO2006062149A1 (en) Biological sample analysis plate
Zhang et al. Overview and future perspectives of microfluidic digital recombinase polymerase amplification (dRPA)
JP5131538B2 (en) Reaction liquid filling method
JP4706883B2 (en) Biological sample quantification method
JP2010088317A (en) Chip for biological sample determination, kit for biological sample determination and method for biological sample determination
CN114192200B (en) System and method for separating an aqueous liquid into at least two chambers
JP5505646B2 (en) Biological sample quantification method
JP2010063395A (en) Chip for reacting biological specimen, and method for reacting biological specimen
JP2009150754A (en) Chip, apparatus and method for biological sample reaction
KR20240053619A (en) How to Pierce a Seal for Sample Testing
JP2009171933A (en) Chip for biological specimen reaction, and method for biological specimen reaction
Keller Microfluidic Apps for centrifugal thermocyclers at constant rotational frequency
JP2006220531A (en) Biological sample discriminating plate
JP2010217162A (en) Biological sample reaction container, biological sample charging device, biological sample quantifying device, and biological sample reaction method