JP2010084785A - Gas supply system - Google Patents

Gas supply system Download PDF

Info

Publication number
JP2010084785A
JP2010084785A JP2008251405A JP2008251405A JP2010084785A JP 2010084785 A JP2010084785 A JP 2010084785A JP 2008251405 A JP2008251405 A JP 2008251405A JP 2008251405 A JP2008251405 A JP 2008251405A JP 2010084785 A JP2010084785 A JP 2010084785A
Authority
JP
Japan
Prior art keywords
flow rate
pressure
gas supply
chamber
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008251405A
Other languages
Japanese (ja)
Other versions
JP5124410B2 (en
Inventor
Yukimasa Furukawa
幸正 古川
Tadahiro Yasuda
忠弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Stec Co Ltd
Original Assignee
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec Co Ltd filed Critical Horiba Stec Co Ltd
Priority to JP2008251405A priority Critical patent/JP5124410B2/en
Publication of JP2010084785A publication Critical patent/JP2010084785A/en
Application granted granted Critical
Publication of JP5124410B2 publication Critical patent/JP5124410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas supply system 100 achieving reduction of size and cost by reducing the number of parts constituting the gas supply system 100. <P>SOLUTION: The gas supply system 100, which selectively supplies a plurality of kinds of gas to the inside of a chamber 200, includes: a main channel 4 in which a flow capacity measuring section 2 measuring the flow capacity and flow capacity control valve 3 controlled based on a flow capacity measuring signal from the flow capacity measuring section 2; a plurality of sub-channels 5 provided corresponding to each of a plurality of the kinds of gas not supplied within the chamber 200 simultaneously, and connected in parallel to the main channel 4; and switching mechanisms 6 provided in the individual sub-channels 5, and switching the gas flowing within the main channel 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体製造装置などのチャンバ内にガスを供給するためのガス供給システムに関するものである。   The present invention relates to a gas supply system for supplying gas into a chamber of a semiconductor manufacturing apparatus or the like.

従来、複数種のガスをチャンバ内に選択的に供給するものとして、例えば特許文献1に示すように、ガス種毎に供給ラインを設け、当該供給ラインに、流量センサおよび流量制御弁(コントロールバルブ)をそれぞれ設けたものがある。   Conventionally, as a method of selectively supplying a plurality of types of gases into a chamber, for example, as shown in Patent Document 1, a supply line is provided for each gas type, and a flow rate sensor and a flow rate control valve (control valve) are provided in the supply line. ).

しかしながら、チャンバ内に供給するガスの種類が増えれば増えるほど、流量センサおよび流量制御弁等の部品点数が増えてしまい、ガス供給システムが肥大化して小型化を妨げ、また製造コストが増大するという問題がある。
特開2006−336114号公報
However, as the number of types of gas supplied into the chamber increases, the number of parts such as the flow sensor and the flow control valve increases, and the gas supply system is enlarged to prevent downsizing and the manufacturing cost increases. There's a problem.
JP 2006-336114 A

そこで本発明は、上記問題点を一挙に解決するため、ガス供給システムを構成する部品点数を削減し、小型化及び低コスト化が実現可能なガス供給システムを提供することを所期課題とするものである。   Accordingly, an object of the present invention is to provide a gas supply system capable of reducing the number of parts constituting the gas supply system and realizing a reduction in size and cost in order to solve the above-described problems all at once. Is.

すなわち本発明に係るガス供給システムは、複数種のガスを選択的にチャンバ内に供給するガス供給システムであって、流量を測定するための流量測定部及び当該流量測定部を用いて得られた流量測定信号に基づいて制御される流量制御弁が設けられるメイン流路と、前記チャンバ内に同時に供給しない複数のガス種毎に対応して設けられ、前記メイン流路の上流側に並列接続される複数のサブ流路と、当該サブ流路毎に設けられ、又は前記メイン流路及び前記サブ流路の間に介在して設けられ、前記メイン流路を流れるガスを切り替える切替機構と、を有するガス供給機構を複数備えることを特徴とする。   That is, the gas supply system according to the present invention is a gas supply system that selectively supplies a plurality of types of gases into a chamber, and is obtained by using a flow rate measuring unit for measuring a flow rate and the flow rate measuring unit. A main flow path provided with a flow rate control valve controlled based on a flow rate measurement signal and a plurality of gas types not simultaneously supplied into the chamber are provided correspondingly and connected in parallel upstream of the main flow path. A plurality of sub flow paths, and a switching mechanism that is provided for each sub flow path, or is interposed between the main flow path and the sub flow path, and switches a gas flowing through the main flow path. A plurality of gas supply mechanisms are provided.

このようなものであれば、ガス供給システムの構成部品を削減することができる。具体的には、流量測定部及び流量制御弁が設けられたメイン流路に、複数のサブ流路を並列接続することにより、従来複数のガス毎に設けられていた流量測定部及び流量制御弁の個数を削減することができ、ガス供給システムの小型化及び低コスト化が可能となる。   If it is such, the component of a gas supply system can be reduced. Specifically, by connecting a plurality of sub-channels in parallel to a main channel provided with a flow rate measuring unit and a flow rate control valve, a flow rate measuring unit and a flow rate control valve conventionally provided for each of a plurality of gases The number of gas can be reduced, and the gas supply system can be reduced in size and cost.

また、前記流量制御弁を制御する制御部と、前記チャンバ内の圧力を検出する圧力測定部と、をさらに備え、前記制御部が、前記チャンバ内の圧力が所定値に達するまで、前記圧力測定部からの圧力測定信号に基づいて流量制御弁を制御し、前記チャンバ内の圧力が所定値に達した後は、前記流量測定部の流量測定信号に基づいて流量制御弁を制御するものであることが望ましい。これならば、チャンバ内におけるガスの圧力(全圧又は分圧)を圧力制御した後に流量制御を行うことで、チャンバ内の圧力が所定値に到達するまでのガス供給時間を短縮することができる。   Further, the apparatus further includes a control unit that controls the flow rate control valve and a pressure measurement unit that detects the pressure in the chamber, and the control unit measures the pressure until the pressure in the chamber reaches a predetermined value. The flow control valve is controlled based on the pressure measurement signal from the section, and after the pressure in the chamber reaches a predetermined value, the flow control valve is controlled based on the flow measurement signal of the flow measurement section. It is desirable. In this case, the gas supply time until the pressure in the chamber reaches a predetermined value can be shortened by controlling the flow rate after controlling the pressure (total pressure or partial pressure) of the gas in the chamber. .

このように構成した本発明によれば、ガス供給システムを構成する部品点数を削減し、小型化及び低コスト化が実現可能なガス供給システムを提供することができる。   According to the present invention configured as described above, it is possible to provide a gas supply system capable of reducing the number of parts constituting the gas supply system and realizing downsizing and cost reduction.

以下に本発明に係るガス供給システム100の一実施形態について図面を参照して説明する。なお、図1は本実施形態に係るガス供給システム100を示す模式的構成図である。   Hereinafter, an embodiment of a gas supply system 100 according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a gas supply system 100 according to the present embodiment.

<1.装置構成>   <1. Device configuration>

本実施形態に係るガス供給システム100は、例えば半導体製造装置に組み込まれるものであり、例えばCVD処理などの薄膜成形処理、エッチング処理等においてチャンバ200内に半導体プロセスガスを供給するものである。   The gas supply system 100 according to the present embodiment is incorporated in, for example, a semiconductor manufacturing apparatus, and supplies semiconductor process gas into the chamber 200 in thin film forming processing such as CVD processing, etching processing, and the like.

具体的にこのものは、図1に示すように、複数種のガスを選択的にチャンバ200内に供給するものであり、同時に供給しない複数のガス種のうちから選択的に1つのガスをチャンバ200に供給するガス供給機構1を複数備える。なお、以下では、ガス供給システム100が2つのガス供給機構1を有する場合について説明する。   Specifically, as shown in FIG. 1, this gas is to selectively supply a plurality of types of gases into the chamber 200, and selectively supply one gas from a plurality of gas types that are not supplied simultaneously. A plurality of gas supply mechanisms 1 to be supplied to 200 are provided. Hereinafter, a case where the gas supply system 100 includes two gas supply mechanisms 1 will be described.

<2.ガス供給機構1>   <2. Gas supply mechanism 1>

ガス供給機構1は、流量を測定するための流量測定部2、及び当該流量測定部2を用いて得られた流量測定信号に基づいて制御される流量制御弁3が設けられるメイン流路4と、前記チャンバ200内に同時に供給しない複数のガス種毎に対応して設けられ、前記メイン流路4の上流側に並列接続される複数のサブ流路5と、1つのメイン流路4に並列接続された複数のサブ流路5のうちいずれか1つからメイン流路4にガスを流すための切替機構6と、を有する。   The gas supply mechanism 1 includes a main flow path 4 provided with a flow rate measurement unit 2 for measuring a flow rate, and a flow rate control valve 3 controlled based on a flow rate measurement signal obtained using the flow rate measurement unit 2. A plurality of sub-channels 5 that are provided corresponding to a plurality of gas types that are not supplied simultaneously into the chamber 200 and are connected in parallel to the upstream side of the main channel 4 and a single main channel 4 are arranged in parallel. And a switching mechanism 6 for flowing a gas from any one of the plurality of connected sub-channels 5 to the main channel 4.

メイン流路4には、流量測定部2及び流量制御弁3が1つずつ設けられ、これら流量測定部2、流量制御弁3及び後述する流量制御弁制御部74により、マスフローコントローラが構成される。   The main flow path 4 is provided with one flow rate measuring unit 2 and one flow rate control valve 3, and the flow rate measuring unit 2, the flow rate control valve 3 and a flow rate control valve control unit 74 described later constitute a mass flow controller. .

本実施形態の流量測定部2は、圧力を測定し、リストリクタ(絞り機構)23の流量特性を利用して流量を測定するものである。具体的には、流量測定部2は差圧式のものであり、メイン流路4の上流側に設けた上流側圧力センサ21と、下流側に設けた下流側圧力センサ22と、上流側圧力センサ21及び下流側圧力センサ22との間に設けられ圧力差を生じさせるリストリクタ23とを備える。そして、上流側圧力センサ21が上流側圧力データを、下流側圧力センサ22が下流側圧力データを制御装置7に出力する。   The flow rate measuring unit 2 of the present embodiment measures pressure by using the flow rate characteristics of the restrictor (throttle mechanism) 23 to measure pressure. Specifically, the flow rate measuring unit 2 is of a differential pressure type, and includes an upstream pressure sensor 21 provided on the upstream side of the main flow path 4, a downstream pressure sensor 22 provided on the downstream side, and an upstream pressure sensor. 21 and the downstream pressure sensor 22 and a restrictor 23 that generates a pressure difference. The upstream pressure sensor 21 outputs upstream pressure data, and the downstream pressure sensor 22 outputs downstream pressure data to the control device 7.

サブ流路5は、メイン流路4の上流側に接続されて、メイン流路4を介してチャンバ200内にガスを供給するためのものであり、半導体処理工程(具体的にはガスの供給順序)の観点などからチャンバ200内に同時に供給しない複数種のガスに対応する複数のサブ流路5がメイン流路4の上流側に並列接続されている。   The sub flow path 5 is connected to the upstream side of the main flow path 4 and supplies gas into the chamber 200 via the main flow path 4, and is used for semiconductor processing (specifically, supply of gas). From the viewpoint of the order), a plurality of sub-channels 5 corresponding to a plurality of types of gases that are not simultaneously supplied into the chamber 200 are connected in parallel to the upstream side of the main channel 4.

チャンバ200内に供給されるガス種が、例えば四フッ化炭素(CF)、水素(H)、アルゴン(Ar)、酸素(O)及び窒素(N)である場合において、これらガス種を2つのガス供給機構1によりチャンバ200に供給することを考える。このとき、各ガス供給機構1のメイン流路4に並列接続される複数のサブ流路5は、図1に示すように、(i)アルゴン(Ar)、水素(H)及び窒素(N)の流路群と、(ii)酸素(O2)、四フッ化炭素(CF)及び窒素(N)の流路群と、に分類される。つまり、チャンバ200に同時に供給しない複数種のガスに対応するサブ流路5は、共通のマスフローコントローラに接続されることになる。なお、上記(i)及び(ii)に示すように、各ガス供給機構1により供給するガス種は重複してもよい。 When the gas species supplied into the chamber 200 are, for example, carbon tetrafluoride (CF 4 ), hydrogen (H 2 ), argon (Ar), oxygen (O 2 ), and nitrogen (N 2 ), these gases Consider supplying seeds into the chamber 200 by two gas supply mechanisms 1. At this time, as shown in FIG. 1, the plurality of sub-channels 5 connected in parallel to the main channel 4 of each gas supply mechanism 1 includes (i) argon (Ar), hydrogen (H 2 ), and nitrogen (N 2 ) and (ii) oxygen (O 2), carbon tetrafluoride (CF 4 ), and nitrogen (N 2 ) flow path groups. That is, the sub flow paths 5 corresponding to a plurality of types of gases that are not simultaneously supplied to the chamber 200 are connected to a common mass flow controller. In addition, as shown to said (i) and (ii), the gas types supplied by each gas supply mechanism 1 may overlap.

サブ流路5の上流側には、各ガスの原料タンク(図示しない)が接続される。また、各サブ流路5上には、電磁弁などにより構成される開閉弁61が設けられている。各サブ流路5に配置された開閉弁61によって切替機構6が構成される。そして、この開閉弁61は、後述する制御装置7の切替機構制御部72によって制御され、チャンバ200内に供給されるガス種が選択される。具体的には、各ガス供給機構1において、複数のサブ流路5のうち1つのガスのみがメイン流路4に流れるように、1つの開閉弁61のみを開放し、その他の開閉弁61を閉塞する。   A raw material tank (not shown) for each gas is connected to the upstream side of the sub flow path 5. Moreover, on each sub flow path 5, the on-off valve 61 comprised by an electromagnetic valve etc. is provided. The switching mechanism 6 is configured by the on-off valve 61 arranged in each sub flow path 5. The on-off valve 61 is controlled by a switching mechanism control unit 72 of the control device 7 to be described later, and the gas type supplied into the chamber 200 is selected. Specifically, in each gas supply mechanism 1, only one on-off valve 61 is opened and the other on-off valves 61 are opened so that only one gas of the plurality of sub-channels 5 flows to the main channel 4. Block.

<3.制御装置7>   <3. Control device 7>

制御装置7は、各サブ流路5に設けられた開閉弁61を制御するとともに、上流側圧力センサ21及び下流側圧力センサ22から圧力データを取得して流量を算出して、当該流量測定信号により流量制御弁3を制御するものである。なお、本実施形態では、1つの制御装置7が複数のガス供給機構1の制御を行う。その構成は、CPUやメモリ、ADコンバータ、バッファなどのデジタル乃至アナログ電子回路で構成されている。そして、前記メモリの所定領域に格納してあるプログラムに基づいてCPUやその周辺機器等が作動することにより、図2に示すように、処理条件受付部71、切替機構制御部72、流量算出部73及び流量制御弁制御部74、等として機能する。   The control device 7 controls the on-off valve 61 provided in each sub flow path 5, acquires pressure data from the upstream pressure sensor 21 and the downstream pressure sensor 22, calculates the flow rate, and calculates the flow rate measurement signal The flow control valve 3 is controlled by the above. In the present embodiment, one control device 7 controls the plurality of gas supply mechanisms 1. The configuration is composed of digital or analog electronic circuits such as a CPU, a memory, an AD converter, and a buffer. Then, when the CPU and its peripheral devices are operated based on the program stored in the predetermined area of the memory, as shown in FIG. 2, a processing condition receiving unit 71, a switching mechanism control unit 72, a flow rate calculation unit 73 and the flow rate control valve control unit 74, and the like.

以下各部71〜74について説明する。   Hereinafter, each part 71-74 is demonstrated.

処理条件受付部71は、半導体基板を処理する場合にチャンバ200内に供給するガスの種類及び供給方法等の処理条件を示す処理条件データを受け付けるものである。この処理条件データは、ユーザによって入力手段により入力される。また、処理条件受付部71は、受け付けたデータのうち、ガスの種類により決定される供給ガス設定信号を切替機構制御部72に出力し、流量設定信号を流量制御弁制御部74に出力する。   The processing condition receiving unit 71 receives processing condition data indicating processing conditions such as the type of gas supplied into the chamber 200 and the supply method when processing a semiconductor substrate. This processing condition data is input by an input means by a user. Further, the processing condition receiving unit 71 outputs a supply gas setting signal determined by the type of gas among the received data to the switching mechanism control unit 72 and outputs a flow rate setting signal to the flow rate control valve control unit 74.

切替機構制御部72は、設定条件受付部71から供給ガス設定信号を受け付けて、サブ流路5上に設けられた開閉弁61を制御するものである。例えば、チャンバ200内に四フッ化炭素(CF)のみを供給する場合には、四フッ化炭素(CF)のサブ流路5上に設けられた開閉弁61のみを開放し、その他のサブ流路5上に設けられた開閉弁61は全て閉塞する。また、チャンバ200内に水素(H)及び酸素(O)を供給する場合には、水素(H)のサブ流路5上に設けた開閉弁61及び酸素(O)のサブ流路5上に設けた開閉弁61のみを開放し、その他のサブ流路5上に設けられた開閉弁61は全て閉塞する。このように、切替機構制御部72は、複数のガス供給機構1の有する開閉弁61の全てを制御する。 The switching mechanism control unit 72 receives a supply gas setting signal from the setting condition receiving unit 71 and controls the on-off valve 61 provided on the sub flow path 5. For example, when supplying only carbon tetrafluoride (CF 4 ) into the chamber 200, only the on-off valve 61 provided on the carbon tetrafluoride (CF 4 ) sub-flow path 5 is opened, and the other All the on-off valves 61 provided on the sub flow path 5 are closed. When supplying hydrogen (H 2 ) and oxygen (O 2 ) into the chamber 200, an on-off valve 61 provided on the hydrogen (H 2 ) sub-flow path 5 and a sub-flow of oxygen (O 2 ) are provided. Only the on-off valve 61 provided on the passage 5 is opened, and all the on-off valves 61 provided on the other sub-channels 5 are closed. Thus, the switching mechanism control unit 72 controls all the on-off valves 61 included in the plurality of gas supply mechanisms 1.

流量算出部73は、上流側圧力センサ21からの上流側圧力データ及び下流側圧力センサ22からの下流側圧力データを受け取り、リストリクタ23上流側の圧力値及びリストリクタ23下流側の圧力値から、リストリクタ23上流及び下流の圧力差を算出し、その圧力差からメイン流路4を流れるガスの流量を算出する。そして、流量算出部73は、その流量を示す流量測定信号を流量制御弁制御部74に出力する。   The flow rate calculation unit 73 receives the upstream pressure data from the upstream pressure sensor 21 and the downstream pressure data from the downstream pressure sensor 22, and from the pressure value upstream of the restrictor 23 and the pressure value downstream of the restrictor 23. The pressure difference between the upstream and downstream of the restrictor 23 is calculated, and the flow rate of the gas flowing through the main flow path 4 is calculated from the pressure difference. Then, the flow rate calculation unit 73 outputs a flow rate measurement signal indicating the flow rate to the flow rate control valve control unit 74.

流量制御弁制御部74は、処理条件受付部71から流量設定信号を受け付け、流量算出部73から流量測定信号を受け付けて、流量設定信号の示す設定流量値と流量測定信号の示す測定流量値とを比較し、その比較結果に基づいて流量制御弁3に制御弁制御信号を出力して、その弁開度を制御するものである。また、流量制御弁制御部74は、それぞれのガス供給機構1の流量制御弁3に制御信号を出力する。   The flow rate control valve control unit 74 receives a flow rate setting signal from the processing condition receiving unit 71, receives a flow rate measurement signal from the flow rate calculation unit 73, and sets a set flow value indicated by the flow rate setting signal and a measured flow rate value indicated by the flow rate measurement signal. And a control valve control signal is output to the flow control valve 3 based on the comparison result to control the valve opening. Moreover, the flow control valve control unit 74 outputs a control signal to the flow control valve 3 of each gas supply mechanism 1.

しかして本実施形態のガス供給機構1は、チャンバ200内の圧力を測定するチャンバ圧力センサ8を備え、流量制御弁制御部74が、チャンバ200内の圧力が所定値に達するまで、チャンバ圧力センサ8からの圧力測定信号に基づいて流量制御弁3を制御し、チャンバ200内の圧力が所定値に達した後は、流量測定部2の流量測定信号に基づいて流量制御弁3を制御する。   Therefore, the gas supply mechanism 1 of the present embodiment includes the chamber pressure sensor 8 that measures the pressure in the chamber 200, and the chamber pressure sensor 74 until the pressure in the chamber 200 reaches a predetermined value. The flow rate control valve 3 is controlled based on the pressure measurement signal from 8, and after the pressure in the chamber 200 reaches a predetermined value, the flow rate control valve 3 is controlled based on the flow rate measurement signal of the flow rate measurement unit 2.

流量制御弁制御部74は、単一のガスをチャンバ200内に供給する場合には、チャンバ200内の全圧が所定値(処理条件を満たす圧力)に到達するまでは、チャンバ200内の圧力が当該所定値となるように、チャンバ圧力センサ8からの圧力測定信号に基づいて流量制御弁3を制御する。そして、流量制御弁制御部74は、チャンバ200内の全圧が所定値に到達して処理条件を満たした後は、前述したように、流量測定部2により得られた流量測定信号に基づいて流量制御弁3を制御する。   When supplying a single gas into the chamber 200, the flow control valve controller 74 determines the pressure in the chamber 200 until the total pressure in the chamber 200 reaches a predetermined value (pressure that satisfies the processing condition). The flow rate control valve 3 is controlled based on the pressure measurement signal from the chamber pressure sensor 8 so that becomes the predetermined value. After the total pressure in the chamber 200 reaches a predetermined value and satisfies the processing conditions, the flow control valve control unit 74 is based on the flow measurement signal obtained by the flow measurement unit 2 as described above. The flow control valve 3 is controlled.

また、流量制御弁制御部74は、複数のガスをチャンバ200内に供給する場合には、チャンバ200内における各供給成分の分圧が所定値(処理条件を満たす分圧)に到達するまでは、チャンバ200内の各成分の分圧が所定値となるように、チャンバ圧力センサ8からの圧力測定信号に基づいて流量制御弁3を制御(圧力制御)する。そして、流量制御弁制御部74は、チャンバ200内の各成分の分圧が所定値に到達して処理条件を満たした後は、前述したように、流量測定部2により得られた流量測定信号に基づいて流量制御弁3を制御(流量制御)する。なお、例えば、圧力制御時における流量測定部2によって得られた積算流量値を用いて流量制御の初期値設定を行うことにより、その後の流量制御において総流量単位での安定制御を可能にすることができる。   In addition, when supplying a plurality of gases into the chamber 200, the flow control valve control unit 74 until the partial pressure of each supply component in the chamber 200 reaches a predetermined value (partial pressure satisfying the processing condition). The flow rate control valve 3 is controlled (pressure control) based on the pressure measurement signal from the chamber pressure sensor 8 so that the partial pressure of each component in the chamber 200 becomes a predetermined value. Then, after the partial pressure of each component in the chamber 200 reaches a predetermined value and satisfies the processing conditions, the flow rate control valve control unit 74 obtains the flow rate measurement signal obtained by the flow rate measurement unit 2 as described above. The flow rate control valve 3 is controlled based on the above (flow rate control). In addition, for example, by setting the initial value of the flow rate control using the integrated flow rate value obtained by the flow rate measurement unit 2 at the time of pressure control, it is possible to perform stable control in the unit of the total flow rate in the subsequent flow rate control. Can do.

このように、チャンバ圧力センサ8からの圧力測定信号に基づいて流量制御弁3を制御(圧力制御)した後、流量測定部2からの流量測定信号に基づいて流量制御弁3を制御(流量制御)しているので、チャンバ200内の圧力(全圧又は分圧)が一定になるまでのガス供給時間を短縮することができる。   Thus, after controlling the flow control valve 3 based on the pressure measurement signal from the chamber pressure sensor 8 (pressure control), the flow control valve 3 is controlled based on the flow measurement signal from the flow measurement unit 2 (flow control). Therefore, the gas supply time until the pressure (total pressure or partial pressure) in the chamber 200 becomes constant can be shortened.

<本実施形態の効果>   <Effect of this embodiment>

このように構成した本実施形態に係るガス供給システム100によれば、ガス供給システム100の構成部品を削減することができる。具体的には、複数のサブ流路5をメイン流路4に並列接続することにより、従来複数種のガス毎に設けられていた流量測定部(流量センサ)2及び流量制御弁3の個数を削減することができ、ガス供給システム100の小型化及び低コスト化が可能となる。   According to the gas supply system 100 according to the present embodiment configured as described above, the components of the gas supply system 100 can be reduced. Specifically, by connecting a plurality of sub flow paths 5 to the main flow path 4 in parallel, the number of flow rate measuring units (flow rate sensors) 2 and flow rate control valves 3 that are conventionally provided for each of a plurality of types of gases can be reduced. The gas supply system 100 can be reduced in size and cost.

<その他の変形実施形態>   <Other modified embodiments>

なお、本発明は前記実施形態に限られるものではない。以下の説明において前記実施形態に対応する部材には同一の符号を付すこととする。   The present invention is not limited to the above embodiment. In the following description, the same reference numerals are given to members corresponding to the above-described embodiment.

前記実施形態の流量測定部は、上流側圧力センサと、下流側圧力センサと、上流側圧力センサ及び下流側圧力センサとの間に設けられたリストリクタ(絞り機構)とを備えるものであり、各圧力センサから圧力測定信号を制御装置に出力して、制御装置の流量算出部により流量を算出するようにしているが、流量測定部が、差圧伝送器を用いた流量センサであり、当該流量センサにより得られた測定流量信号を制御装置に出力するようにしても良い。この場合制御装置7は、図3に示すように流量算出部を備えなくても良い。   The flow rate measurement unit of the embodiment includes an upstream pressure sensor, a downstream pressure sensor, and a restrictor (a throttling mechanism) provided between the upstream pressure sensor and the downstream pressure sensor. A pressure measurement signal is output from each pressure sensor to the control device, and the flow rate is calculated by the flow rate calculation unit of the control device. The flow rate measurement unit is a flow rate sensor using a differential pressure transmitter. The measured flow rate signal obtained by the flow rate sensor may be output to the control device. In this case, the control device 7 may not include the flow rate calculation unit as shown in FIG.

流量測定部としては、差圧式の他、面積式や超音波式等の堆積流量型の流量センサを用いても良いし、熱式やコリオリ式等の質量流量型の流量センサを用いても良い。   As the flow rate measuring unit, in addition to the differential pressure type, a deposition flow type flow sensor such as an area type or an ultrasonic type may be used, or a mass flow type flow sensor such as a thermal type or a Coriolis type may be used. .

また、切替機構としては、前記実施形態のように各サブ流路それぞれに開閉弁を設けたものであったが、メイン流路及びサブ流路の間、具体的にはサブ流路の合流点に切替弁を設けても良い。   In addition, as the switching mechanism, each sub-flow path is provided with an open / close valve as in the above embodiment, but between the main flow path and the sub-flow path, specifically, the junction of the sub-flow paths A switching valve may be provided.

さらに、図4に示すように、メイン流路4の下流側に比率調整機構9を設けることができる。この比率調整機構9は、チャンバ200内にガスを複数箇所から供給する場合に、各箇所における供給比率を調整するものである。具体的には、各ガス供給機構1のメイン流路4が混合器(図示しない)を介して合流し、その後、複数の供給箇所の数に応じて分岐される。この分岐路4A、4Bそれぞれには流量センサ91及び流量制御弁92が設けられている。そして、図5に示すように、制御装置7が比率調整機構制御部75を有し、当該比率調整機構制御部75が、各分岐路4A、4Bに設けられた流量センサ91から測定流量信号を受け付けて、比率設定信号の示す設定比率と、各分岐路4A、4Bの流量測定信号により得られた測定比率とを比較して、その比較結果に基づいて、流量制御弁92に制御弁制御信号を出力し、各分岐路4A、4Bの流量制御弁92を制御するものである。このように、流量センサ91からの流量測定信号に基づいて分岐路4A、4Bに設けられた流量制御弁92の弁開度を調整することにより、それぞれの分岐路4A、4Bに流れるガス(混合ガス)の分流比を調整することができ、その結果、複数の供給箇所における供給比率を調整することができる。また、図4に示すガス供給システム100は、メイン流路4に流れるガスの圧力を所定の範囲内となるように、メイン流路4の上流側に、ガスの圧力を調節するための調圧機構10を備えている。なお、流量センサ91は、上流側圧力センサ21、リストリクタ23及び下流側圧力センサ22からなる流量測定部2に置き換えることも可能である。   Furthermore, as shown in FIG. 4, a ratio adjusting mechanism 9 can be provided on the downstream side of the main flow path 4. The ratio adjusting mechanism 9 adjusts the supply ratio at each location when the gas is supplied into the chamber 200 from a plurality of locations. Specifically, the main flow path 4 of each gas supply mechanism 1 merges through a mixer (not shown), and then branches according to the number of a plurality of supply locations. A flow rate sensor 91 and a flow rate control valve 92 are provided in each of the branch paths 4A and 4B. And as shown in FIG. 5, the control apparatus 7 has the ratio adjustment mechanism control part 75, and the said ratio adjustment mechanism control part 75 receives the measurement flow rate signal from the flow sensor 91 provided in each branch path 4A, 4B. The setting ratio indicated by the ratio setting signal is compared with the measurement ratio obtained from the flow rate measurement signal of each branch path 4A, 4B, and the control valve control signal is sent to the flow rate control valve 92 based on the comparison result. To control the flow control valve 92 of each branch path 4A, 4B. In this way, by adjusting the valve opening degree of the flow control valve 92 provided in the branch paths 4A and 4B based on the flow measurement signal from the flow sensor 91, the gas (mixed gas) flowing in the respective branch paths 4A and 4B is adjusted. Gas) can be adjusted, and as a result, the supply ratios at a plurality of supply locations can be adjusted. Further, the gas supply system 100 shown in FIG. 4 adjusts the pressure of the gas upstream of the main flow path 4 so that the pressure of the gas flowing through the main flow path 4 is within a predetermined range. A mechanism 10 is provided. Note that the flow rate sensor 91 can be replaced with a flow rate measurement unit 2 including the upstream pressure sensor 21, the restrictor 23, and the downstream pressure sensor 22.

その上、前記実施形態の構成をガス集積パネルとしてユニット化しても良い。   In addition, the configuration of the embodiment may be unitized as a gas integrated panel.

加えて、ガス供給機構1は2つに限られず、1つでも良いし、3つ以上でも良い。   In addition, the number of gas supply mechanisms 1 is not limited to two, and may be one or three or more.

さらに加えて、図6に示すように、上流側圧力センサとして測定レンジの異なる上流側圧力センサ21a、21bを設け、それら上流側圧力センサ21a、21bを切り替えることにより流量測定部2をワイドレンジ化することができる。また、図7に示すように、測定レンジの異なるリストリクタ23a、23bを上流側圧力センサ21及び下流側圧力センサ22の間に並列に設け、それらを開閉弁24により切り替えることにより、流量測定部2をワイドレンジ化することができる。これならば、ガス供給システム100の構成部品を削減しつつ、ワイドレンジの流量制御を行うことができる。   In addition, as shown in FIG. 6, upstream pressure sensors 21a and 21b having different measurement ranges are provided as upstream pressure sensors, and the flow rate measuring unit 2 is widened by switching the upstream pressure sensors 21a and 21b. can do. In addition, as shown in FIG. 7, restrictors 23 a and 23 b having different measurement ranges are provided in parallel between the upstream pressure sensor 21 and the downstream pressure sensor 22, and they are switched by an on-off valve 24, thereby enabling a flow rate measurement unit. 2 can be widened. If this is the case, it is possible to perform wide-range flow rate control while reducing the components of the gas supply system 100.

また、本実施形態では、圧力センサ8がチャンバ内の圧力を測定しているが、圧力センサ22がチャンバ内の圧力を測定するようにしてもよい。これにより、圧力センサ8が削減されるので、装置全体の更なる小型化が可能であるとともに、制御装置7が、一方の流路の圧力及び他方の流路の流量を同時に制御することが可能となる。   In this embodiment, the pressure sensor 8 measures the pressure in the chamber, but the pressure sensor 22 may measure the pressure in the chamber. Thereby, since the pressure sensor 8 is reduced, the entire device can be further reduced in size, and the control device 7 can simultaneously control the pressure in one flow path and the flow rate in the other flow path. It becomes.

さらに、圧力センサ22に3つの様態を持たせることが可能である。具体的には、圧力センサ22は、圧力センサ21とともに使用して流量測定、チャンバの圧力測定、又はMFCの診断をするために使用することもできる。   Further, the pressure sensor 22 can have three modes. Specifically, the pressure sensor 22 can also be used in conjunction with the pressure sensor 21 to measure flow, chamber pressure, or MFC diagnosis.

その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, some or all of the above-described embodiments and modified embodiments may be combined as appropriate, and the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. .

本発明の一実施形態に係るガス供給システムの模式的構成図。1 is a schematic configuration diagram of a gas supply system according to an embodiment of the present invention. 同実施形態の制御装置の機能構成図。The function block diagram of the control apparatus of the embodiment. 変形実施形態に係る制御装置の機能構成図。The function block diagram of the control apparatus which concerns on deformation | transformation embodiment. その他の変形実施形態に係るガス供給システムの模式的構成図。The typical block diagram of the gas supply system which concerns on other deformation | transformation embodiment. 制御装置の更なる機能を示す図。The figure which shows the further function of a control apparatus. ガス供給機構の変形例を示す図。The figure which shows the modification of a gas supply mechanism. ガス供給機構の変形例を示す図。The figure which shows the modification of a gas supply mechanism.

符号の説明Explanation of symbols

100・・・ガス供給システム
200・・・チャンバ
1 ・・・ガス供給機構
2 ・・・流量測定部
3 ・・・流量制御弁
4 ・・・メイン流路
5 ・・・サブ流路
6 ・・・切替機構
74 ・・・流量制御弁制御部
8 ・・・チャンバ圧力測定部
DESCRIPTION OF SYMBOLS 100 ... Gas supply system 200 ... Chamber 1 ... Gas supply mechanism 2 ... Flow measurement part 3 ... Flow control valve 4 ... Main flow path 5 ... Sub flow path 6 ...・ Switching mechanism 74 ・ ・ ・ Flow control valve control unit 8 ・ ・ ・ Chamber pressure measurement unit

Claims (2)

複数種のガスを選択的にチャンバ内に供給するガス供給システムであって、
流量を測定するための流量測定部及び当該流量測定部を用いて得られた流量測定信号に基づいて制御される流量制御弁が設けられるメイン流路と、前記チャンバ内に同時に供給しない複数のガス種毎に対応して設けられ、前記メイン流路の上流側に並列接続される複数のサブ流路と、当該サブ流路毎に設けられ、又は前記メイン流路及び前記サブ流路の間に介在して設けられ、前記メイン流路を流れるガスを切り替える切替機構と、を有するガス供給機構を複数備える、ガス供給システム。
A gas supply system that selectively supplies a plurality of gases into a chamber,
A main flow path provided with a flow rate measurement unit for measuring a flow rate and a flow rate control valve controlled based on a flow rate measurement signal obtained using the flow rate measurement unit, and a plurality of gases not simultaneously supplied into the chamber A plurality of sub-channels provided corresponding to each species and connected in parallel to the upstream side of the main channel, and provided for each sub-channel, or between the main channel and the sub-channel A gas supply system comprising a plurality of gas supply mechanisms that are interposed and have a switching mechanism that switches a gas flowing through the main flow path.
前記流量制御弁を制御する制御部と、
前記チャンバ内の圧力を検出する圧力測定部と、をさらに備え、
前記制御部が、前記チャンバ内の圧力が所定値に達するまで、前記圧力測定部からの圧力測定信号に基づいて流量制御弁を制御し、前記チャンバ内の圧力が所定値に達した後は、前記流量測定部の流量測定信号に基づいて流量制御弁を制御するものである、請求項1記載のガス供給システム。
A control unit for controlling the flow rate control valve;
A pressure measuring unit for detecting the pressure in the chamber,
The control unit controls the flow control valve based on the pressure measurement signal from the pressure measurement unit until the pressure in the chamber reaches a predetermined value, and after the pressure in the chamber reaches the predetermined value, The gas supply system according to claim 1, wherein the flow rate control valve is controlled based on a flow rate measurement signal of the flow rate measurement unit.
JP2008251405A 2008-09-29 2008-09-29 Gas supply system Active JP5124410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251405A JP5124410B2 (en) 2008-09-29 2008-09-29 Gas supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251405A JP5124410B2 (en) 2008-09-29 2008-09-29 Gas supply system

Publications (2)

Publication Number Publication Date
JP2010084785A true JP2010084785A (en) 2010-04-15
JP5124410B2 JP5124410B2 (en) 2013-01-23

Family

ID=42248955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251405A Active JP5124410B2 (en) 2008-09-29 2008-09-29 Gas supply system

Country Status (1)

Country Link
JP (1) JP5124410B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030636A (en) * 2011-07-28 2013-02-07 Horiba Stec Co Ltd Gas supply system
CN103049008A (en) * 2011-10-14 2013-04-17 东京毅力科创株式会社 Flow rate controller and processing apparatus
JP2013245387A (en) * 2012-05-28 2013-12-09 Nissei Asb Mach Co Ltd Coating apparatus for resin container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125877A (en) * 1988-11-02 1990-05-14 Semiconductor Energy Lab Co Ltd Formation of protective film on solid body
JPH0361799A (en) * 1989-07-28 1991-03-18 Teisan Kk Mixed gas filling device
JPH08316231A (en) * 1995-05-15 1996-11-29 Fujitsu Ltd Formation method of insulating film and semiconductor device
JP2003065495A (en) * 2001-08-28 2003-03-05 Nippon Sanso Corp Mixed gas charging method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125877A (en) * 1988-11-02 1990-05-14 Semiconductor Energy Lab Co Ltd Formation of protective film on solid body
JPH0361799A (en) * 1989-07-28 1991-03-18 Teisan Kk Mixed gas filling device
JPH08316231A (en) * 1995-05-15 1996-11-29 Fujitsu Ltd Formation method of insulating film and semiconductor device
JP2003065495A (en) * 2001-08-28 2003-03-05 Nippon Sanso Corp Mixed gas charging method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030636A (en) * 2011-07-28 2013-02-07 Horiba Stec Co Ltd Gas supply system
CN103049008A (en) * 2011-10-14 2013-04-17 东京毅力科创株式会社 Flow rate controller and processing apparatus
JP2013088926A (en) * 2011-10-14 2013-05-13 Tokyo Electron Ltd Flow controller and processor
JP2013245387A (en) * 2012-05-28 2013-12-09 Nissei Asb Mach Co Ltd Coating apparatus for resin container

Also Published As

Publication number Publication date
JP5124410B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US8019481B2 (en) Flow rate ratio control device
JP5855921B2 (en) Gas concentration adjustment device
JP4585035B2 (en) Flow rate ratio controller
KR101162546B1 (en) Discontinuous switching flow control method of fluid using pressure type flow controller
KR101565437B1 (en) Gas supply apparatus for semiconductor manufacturing apparatus
JP5091821B2 (en) Mass flow controller
TWI480712B (en) A gas shunt supply device for a semiconductor manufacturing apparatus
US10996689B2 (en) Flow rate ratio control device with flow velocity control mode
JP2000077394A (en) Semiconductor manufacture device
KR20140098840A (en) Gas split-flow supply device for semiconductor production device
JP5124410B2 (en) Gas supply system
JP2005056031A (en) Device for supplying gas to chamber, and method for controlling internal pressure in chamber using the device
KR102596165B1 (en) Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
WO2004070801A1 (en) Fluid control device and heat treatment device
KR20080082818A (en) Gas dilution apparatus using mass flow controller
JP2004280689A (en) Mass flow controller
CN111826638B (en) Gas distribution device and method, atomic layer deposition equipment
JP2546520B2 (en) Flow controller
JP2009279527A (en) High-speed gas switching apparatus with pressure adjustment function
JP6008688B2 (en) Method for supplying hydrogen selenide mixed gas for solar cell
JP2023103769A (en) Fluid control device, fluid control method, and fluid control program
JP2011248773A (en) Flow rate ratio control device
JP2015127672A (en) Catalyst evaluation apparatus
JP2005251867A (en) Processor
KR20040102837A (en) Minuteness mass flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5124410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250