JP2010084277A - Electroconductor, and method for producing the same - Google Patents

Electroconductor, and method for producing the same Download PDF

Info

Publication number
JP2010084277A
JP2010084277A JP2008254777A JP2008254777A JP2010084277A JP 2010084277 A JP2010084277 A JP 2010084277A JP 2008254777 A JP2008254777 A JP 2008254777A JP 2008254777 A JP2008254777 A JP 2008254777A JP 2010084277 A JP2010084277 A JP 2010084277A
Authority
JP
Japan
Prior art keywords
fiber
fine particles
conductive
conductive polymer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008254777A
Other languages
Japanese (ja)
Other versions
JP2010084277A5 (en
Inventor
Hiroaki Iriyama
浩彰 入山
Hideaki Kobayashi
小林  秀章
Masashi Uzawa
正志 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008254777A priority Critical patent/JP2010084277A/en
Publication of JP2010084277A publication Critical patent/JP2010084277A/en
Publication of JP2010084277A5 publication Critical patent/JP2010084277A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductor providing sufficient antistatic properties to a base material containing electroconductive fine particles, and having excellent water resistance. <P>SOLUTION: The electroconductor includes an electroconductive polymer (B) having sulfonic acid or carboxy group, and applied to the surface of the base material (A) containing the electroconductive fine particles. In the electroconductor, the base material (A) containing the electroconductive fine particles is an acidic dyeable base material. A method for producing the electroconductor includes immersing the base material (A) containing the electroconductive fine particles in a solution of the electroconductive polymer (B) having the sulfonic acid or carboxy, and carrying out a heat treatment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高い帯電防止性能を有する導電体に関する。   The present invention relates to a conductor having high antistatic performance.

繊維は、電気絶縁性であるため、接触、摩擦等により繊維に帯電した静電気は、容易に漏洩することはない。そのため、衣料のまとわりつき、ホコリ(汚れ)の付着、電子機器の誤動作、発生した静電気の人体からの放電によるスパーク等の種々問題を引き起こす。   Since the fiber is electrically insulating, static electricity charged to the fiber due to contact, friction or the like does not easily leak. For this reason, various problems such as clinging of clothes, adhesion of dust (dirt), malfunction of electronic devices, and sparks caused by discharge of generated static electricity from the human body are caused.

繊維に帯電防止性を付与する方法としては、例えば、界面活性剤等の帯電防止性を有する油剤を繊維に塗布する方法が知られている。界面活性剤を用いることにより、繊維全体の抵抗率を下げることはできる。しかし、十分な帯電防止性能が得られないのに加え、界面活性剤は湿度により導電性が変化するため、帯電防止の効果が不安定である等の問題がある。従って、湿度依存性のない導電剤による帯電防止が求められている。   As a method of imparting antistatic properties to fibers, for example, a method of applying an antistatic oil such as a surfactant to the fibers is known. By using a surfactant, the resistivity of the entire fiber can be lowered. However, in addition to the fact that sufficient antistatic performance cannot be obtained, there is a problem that the antistatic effect is unstable because the surface active agent changes in conductivity with humidity. Accordingly, there is a demand for prevention of charging by a conductive agent that does not depend on humidity.

そのような導電剤としては、ポリアニリン、ポリピロール等の導電性ポリマーが挙げられる。しかし、ポリアニリンおよびポリピロールは、溶解できる溶剤が限られるため、加工性に乏しく、繊維表面に付着させることは困難である。   Examples of such a conductive agent include conductive polymers such as polyaniline and polypyrrole. However, since polyaniline and polypyrrole are limited in the solvent that can be dissolved, they have poor processability and are difficult to adhere to the fiber surface.

溶剤への溶解性に優れた導電性ポリマーとして、スルホン酸基またはカルボキシル基を有する導電性ポリマーが提案されており、該導電性ポリマーを、ポリエステルバインダーを用いて繊維表面に固着させる方法(特許文献1)が知られている。この方法によれば、界面活性剤の課題であった湿度依存性を克服することができるが、未だ十分な帯電防止性能を得られないのに加え、バインダーを用いて導電性ポリマーを繊維表面にコーティングしているだけである為、耐水性、耐摩擦性が不十分であるという問題がある。   As a conductive polymer having excellent solubility in a solvent, a conductive polymer having a sulfonic acid group or a carboxyl group has been proposed, and a method of fixing the conductive polymer to a fiber surface using a polyester binder (Patent Document) 1) is known. According to this method, it is possible to overcome the humidity dependency which has been a problem of the surfactant, but in addition to still not obtaining sufficient antistatic performance, the conductive polymer is applied to the fiber surface using a binder. Since it is only coated, there is a problem that water resistance and friction resistance are insufficient.

一方、カーボン、金属等の導電性微粒子を紡糸原液に混入し、紡糸した導電性繊維を通常繊維に少量ブレンドする方法(特許文献2)も知られているが、該方法では、導電性微粒子が絶縁物としての繊維に囲まれた状態で存在することから、繊維間で導電性微粒子部分の接触面積が少なく、十分な帯電防止性能が得られないという課題が残されている。
特開平11−117178号公報 特開平9−67728号公報
On the other hand, there is also known a method (Patent Document 2) in which conductive fine particles such as carbon and metal are mixed in a spinning stock solution, and a small amount of the spun conductive fibers are usually blended with the fibers. Since it exists in the state enclosed by the fiber as an insulator, the contact area of the electroconductive fine particle part is small between fibers, and the subject that sufficient antistatic performance is not obtained remains.
Japanese Patent Laid-Open No. 11-117178 JP-A-9-67728

よって、本発明の目的は、導電性微粒子を含有した基材に十分な帯電防止性を与え、耐水性に優れる導電体を提供することである。   Accordingly, an object of the present invention is to provide a conductor having sufficient antistatic properties and excellent water resistance to a substrate containing conductive fine particles.

本発明は、導電性微粒子を含有した基材(A)の表面にスルホン酸基またはカルボキシル基を有する導電性ポリマー(B)が付着してなる導電体である。また、導電性微粒子を含有した基材(A)が酸性可染基材である前記導電体であり、導電性微粒子を含有した基材(A)をスルホン酸基またはカルボキシル基を有する導電性ポリマー(B)の溶液に浸漬し加熱処理を行う導電体の製造方法である。   The present invention is a conductor obtained by attaching a conductive polymer (B) having a sulfonic acid group or a carboxyl group to the surface of a substrate (A) containing conductive fine particles. The base material (A) containing conductive fine particles is the above-mentioned conductor which is an acid-dyeable base material, and the base material (A) containing conductive fine particles is a conductive polymer having a sulfonic acid group or a carboxyl group. It is the manufacturing method of the conductor which immerses in the solution of (B) and heat-processes.

本発明の導電体は、十分な帯電防止性を有し、耐水性に優れる。   The conductor of the present invention has sufficient antistatic properties and excellent water resistance.

以下、本発明について詳細に説明する。
<導電性微粒子を含有した基材(A)>
導電性微粒子を含有した基材(A)としては、例えば、繊維、フィルム、紙、発泡体、成形物等に導電性微粒子が含有させられているものが挙げられる。これら基材の内、特に繊維が好適に用いられる。この場合、導電性微粒子を紡糸原液に混入し、紡糸することで得られる導電性微粒子を含有した繊維のことを指す。導電性微粒子の経時的な脱落を防ぐためには芯鞘複合繊維の芯部に導電性微粒子を含有させることが好ましい。
Hereinafter, the present invention will be described in detail.
<Base material containing conductive fine particles (A)>
Examples of the substrate (A) containing conductive fine particles include those in which conductive fine particles are contained in fibers, films, papers, foams, molded articles and the like. Of these substrates, fibers are particularly preferably used. In this case, it refers to a fiber containing conductive fine particles obtained by mixing conductive fine particles into a spinning dope and spinning. In order to prevent the conductive fine particles from dropping over time, it is preferable to contain the conductive fine particles in the core portion of the core-sheath composite fiber.

導電性微粒子としては特に限定されず、カーボンや鉄、銅、アルミニウム、鉛、錫、金、銀、ニッケルに代表される金属類及びそれらの金属酸化物、硫化物、カルボニル塩、またITO(インジウム・錫酸化物)、酸化亜鉛などの導電性金属酸化物などを用いることが出来るが、コスト面から、カーボンが好ましい。また、繊維の種類としては特に限定されず、紡糸原液に使用されるポリマーは、アクリル系、ポリエステル系、ポリアミド系、アセテート系、ポリオレフィン系、ポリイミド系、レーヨン系等のものが用いられる。また、本発明での繊維とは、繊維を用いた構造物としての織物、編物、及び不織布などを含むが、本発明においては不織布が好適に用いられる。
<スルホン酸基もしくはカルボキシル基を有する導電性ポリマー(B)>
スルホン酸基もしくはカルボキシル基を有する導電性ポリマー(B)としては、下記式(1)〜(3)で表される繰り返し単位の少なくとも1種を有する導電性ポリマーが好ましい。
The conductive fine particles are not particularly limited, and metals represented by carbon, iron, copper, aluminum, lead, tin, gold, silver, nickel, and metal oxides, sulfides, carbonyl salts, and ITO (indium) -Conductive metal oxides such as tin oxide and zinc oxide can be used, but carbon is preferred from the viewpoint of cost. The type of fiber is not particularly limited, and polymers used in the spinning dope include acrylic, polyester, polyamide, acetate, polyolefin, polyimide, rayon, and the like. Moreover, although the fiber in this invention contains the textile fabric, knitted fabric, nonwoven fabric, etc. as a structure using a fiber, in this invention, a nonwoven fabric is used suitably.
<Conductive polymer (B) having sulfonic acid group or carboxyl group>
As the conductive polymer (B) having a sulfonic acid group or a carboxyl group, a conductive polymer having at least one repeating unit represented by the following formulas (1) to (3) is preferable.

Figure 2010084277
Figure 2010084277

式(1)中、R〜Rは、各々独立に、H、−SO 、−SOH、−R11SO 、−R11SOH、−OCH、−CH、−C、−F、−Cl、−Br、−I、−N(R12、−NHCOR12、−OH、−O、−SR12、−OR12、−OCOR12、−NO、−COOH、−R11COOH、−COOR12、−COR12、−CHOまたは−CNであり、R11は、炭素数1〜24のアルキレン基、炭素数1〜24のアリーレンまたは炭素数1〜24のアラルキレン基であり、R12は、炭素数1〜24のアルキル基、炭素数1〜24のアリール基または炭素数1〜24のアラルキル基であり、R、Rのうち少なくとも一つが、−SO 、−SOH、−R11SO 、−R11SOH、−COOHまたは−R11COOHである。 In formula (1), R 1 to R 2 are each independently H, —SO 3 , —SO 3 H, —R 11 SO 3 , —R 11 SO 3 H, —OCH 3 , —CH 3. , -C 2 H 5, -F, -Cl, -Br, -I, -N (R 12) 2, -NHCOR 12, -OH, -O -, -SR 12, -OR 12, -OCOR 12, -NO 2, -COOH, -R 11 COOH , -COOR 12, -COR 12, a -CHO or -CN, R 11 is an alkylene group having 1 to 24 carbon atoms, having 1 to 24 carbon atoms arylene or carbon an aralkylene group having 1 to 24, R 12 is an alkyl group having 1 to 24 carbon atoms, an aralkyl group an aryl group or a 1 to 24 carbon atoms having 1 to 24 carbon atoms, of R 1, R 2 at least one of, -SO 3 -, -SO 3 H , R 11 SO 3 -, a -R 11 SO 3 H, -COOH or -R 11 COOH.

Figure 2010084277
Figure 2010084277

式(2)中、R〜Rは、各々独立に、H、−SO 、−SOH、−R11SO 、−R11SOH、−OCH、−CH、−C、−F、−Cl、−Br、−I、−N(R12、−NHCOR12、−OH、−O、−SR12、−OR12、−OCOR12、−NO、−COOH、−R11COOH、−COOR12、−COR12、−CHOまたは−CNであり、R11は、炭素数1〜24のアルキレン基、炭素数1〜24のアリーレンまたは炭素数1〜24のアラルキレン基であり、R12は、炭素数1〜24のアルキル基、炭素数1〜24のアリール基または炭素数1〜24のアラルキル基であり、R〜Rのうち少なくとも一つが、−SO 、−SOH、−R11SO 、−R11SOH、−COOHまたは−R11COOHである。 In formula (2), R 3 to R 6 are each independently H, —SO 3 , —SO 3 H, —R 11 SO 3 , —R 11 SO 3 H, —OCH 3 , —CH 3. , -C 2 H 5, -F, -Cl, -Br, -I, -N (R 12) 2, -NHCOR 12, -OH, -O -, -SR 12, -OR 12, -OCOR 12, -NO 2, -COOH, -R 11 COOH , -COOR 12, -COR 12, a -CHO or -CN, R 11 is an alkylene group having 1 to 24 carbon atoms, having 1 to 24 carbon atoms arylene or carbon an aralkylene group having 1 to 24, R 12 is an alkyl group having 1 to 24 carbon atoms, an aralkyl group an aryl group or a 1 to 24 carbon atoms having 1 to 24 carbon atoms, of R 3 to R 6 at least one of, -SO 3 -, -SO 3 H , R 11 SO 3 -, a -R 11 SO 3 H, -COOH or -R 11 COOH.

Figure 2010084277
Figure 2010084277

式(3)中、R〜R10は、水素、炭素数1〜24の直鎖または分岐のアルコキシ基、またはスルホン酸基であり、R〜R10の少なくとも一つは、スルホン酸基である。 In Formula (3), R 7 to R 10 are hydrogen, a linear or branched alkoxy group having 1 to 24 carbon atoms, or a sulfonic acid group, and at least one of R 7 to R 10 is a sulfonic acid group. It is.

式(1)〜(3)で表される繰り返し単位の割合は、導電性ポリマーを構成する全繰り返し単位(100モル%)のうち、20〜100モル%が好ましい。   As for the ratio of the repeating unit represented by Formula (1)-(3), 20-100 mol% is preferable among all the repeating units (100 mol%) which comprise a conductive polymer.

導電性ポリマーは、式(1)〜(3)で表される繰り返し単位を10以上有することが好ましい。   The conductive polymer preferably has 10 or more repeating units represented by the formulas (1) to (3).

導電性ポリマーの質量平均分子量は、5000〜1000000が好ましく、5000〜20000がより好ましい。導電性ポリマーの質量平均分子量が5000以上であれば、導電性、成膜性および膜強度に優れる。導電性ポリマーの質量平均分子量が1000000以下であれば、溶剤への溶解性に優れる。導電性ポリマーの質量平均分子量は、GPCによって測定される質量平均分子量(ポリエチレングリコール換算)である。   The conductive polymer has a mass average molecular weight of preferably 5,000 to 1,000,000, and more preferably 5,000 to 20,000. When the weight average molecular weight of the conductive polymer is 5000 or more, the conductivity, film formability and film strength are excellent. When the weight average molecular weight of the conductive polymer is 1000000 or less, the solubility in a solvent is excellent. The weight average molecular weight of the conductive polymer is a weight average molecular weight (in terms of polyethylene glycol) measured by GPC.

式(1)〜(3)の導電性ポリマーのうち、特に(3)の構造が、モノマーのコストやポリマーの作り易さの観点から好ましい。
<酸性可染基材>
本発明において、酸性可染基材とは酸性染料により染色が可能な基材のことを指す。基材としては、例えば、繊維、フィルム、紙、発泡体、成形物等が挙げられる。本発明においては、これら基材の内、特に繊維が好適に用いられ、羊毛や絹等のたんぱく質繊維、ナイロン等のポリアミド繊維、およびポリイミド繊維等の、アミド基、イミド基、ヒドラジド基、アミジノ基、アミノ基、イミノ基、ヒドラジン基等の塩基性官能基を有した繊維が好ましい。
Among the conductive polymers of formulas (1) to (3), the structure of (3) is particularly preferable from the viewpoints of monomer cost and ease of polymer production.
<Acid dyeable substrate>
In the present invention, an acid-dyeable substrate refers to a substrate that can be dyed with an acid dye. As a base material, a fiber, a film, paper, a foam, a molded article etc. are mentioned, for example. In the present invention, among these base materials, fibers are particularly preferably used, such as protein fibers such as wool and silk, polyamide fibers such as nylon, and polyimide fibers, and amide groups, imide groups, hydrazide groups, and amidino groups. A fiber having a basic functional group such as an amino group, an imino group or a hydrazine group is preferred.

なお、上記以外の繊維であっても、公知の酸性可染加工をすることで酸性可染繊維とすることが出来る。例えば、アクリル繊維の酸性染化加工としては、アクリル繊維をヒドロキシルアミンの中性又はアルカリ浴で熱処理し、アクリル繊維のニトリル基をアミドオキシム基に変換する、アミドオキシム化という方法が挙げられる。アミドオキシム化処理は80〜110℃の高温水溶液中又はスチーミング中で行われる。反応を十分に進行させるために、処理温度は80℃以上が好ましく、アクリル繊維の硬化を抑制するため110℃以下が好ましい。アミドオキシム化処理の際に、ポリアミン等のカチオン化剤を用いることにより、スルホン酸基またはカルボキシル基の付着力を向上させることができる。
<製造方法>
本発明の導電体は、導電性ポリマー(B)を含有する溶液(以下、導電性ポリマー溶液という)に、導電性微粒子を含有した基材(A)を浸漬して加熱処理を行うか、又は既に加熱してある導電性ポリマー溶液に導電性微粒子を含有した基材(A)を浸漬することで得られる。加熱することで、導電性ポリマー(B)のスルホン酸基またはカルボキシル基と、酸性可染基材のアミノ基がイオン化し、これらがイオン結合を形成することにより、繊維表面からの導電性ポリマー(B)の脱落を抑制できて導電性繊維の耐水性と耐摩擦性が向上すると考えられる。このように、導電性ポリマー(B)が、導電性微粒子を含有した基材(A)に、化学的な結合(イオン結合)を介して付着することが重要である。
In addition, even if it is a fiber other than the above, it can be set as an acid dyeable fiber by performing a known acid dyeable process. For example, as an acid dyeing process of acrylic fiber, a method called amide oxime formation in which acrylic fiber is heat-treated with a neutral or alkaline bath of hydroxylamine to convert nitrile group of acrylic fiber into amide oxime group. The amide oximation treatment is performed in a high temperature aqueous solution or steaming at 80 to 110 ° C. In order to sufficiently advance the reaction, the treatment temperature is preferably 80 ° C. or higher, and preferably 110 ° C. or lower in order to suppress curing of the acrylic fiber. By using a cationizing agent such as polyamine during the amide oximation treatment, the adhesion of the sulfonic acid group or carboxyl group can be improved.
<Manufacturing method>
The conductor of the present invention is subjected to a heat treatment by immersing the base material (A) containing conductive fine particles in a solution containing the conductive polymer (B) (hereinafter referred to as a conductive polymer solution), or It is obtained by immersing the base material (A) containing conductive fine particles in a conductive polymer solution that has already been heated. By heating, the sulfonic acid group or carboxyl group of the conductive polymer (B) and the amino group of the acid-dyeable substrate are ionized, and these form an ionic bond, whereby the conductive polymer (from the fiber surface ( It is considered that the dropout of B) can be suppressed and the water resistance and friction resistance of the conductive fibers are improved. As described above, it is important that the conductive polymer (B) adheres to the base material (A) containing conductive fine particles through chemical bonds (ionic bonds).

以下、基材が繊維である場合について説明するが、繊維以外の場合も、繊維同様に取り扱うことが出来る。   Hereinafter, although the case where a base material is a fiber is demonstrated, cases other than a fiber can also be handled similarly to a fiber.

導電性ポリマー溶液は、導電性ポリマーを溶剤に溶解または分散させることにより調製される。溶剤としては、水;水と、水に可溶または分散可能な有機溶媒との混合溶媒が挙げられる。水に可溶または分散可能な有機溶媒としては、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール等のアルコール類;アセトン、エチルイソブチルケトン等のケトン類;エチレングリコール、エチレングリコールメチルエーテル等のエチレングリコール類;プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のプロピレングリコール類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;N−メチルピロリドン、N−エチルピロリドン等のピロリドン類;ジフェニル、フェニルフェノール、クロルベンゼン等の芳香族炭化水素類等が挙げられる。この中でも溶媒としては、水、または水とアルコール類との混合溶媒が好ましい。   The conductive polymer solution is prepared by dissolving or dispersing the conductive polymer in a solvent. Examples of the solvent include water; a mixed solvent of water and an organic solvent that is soluble or dispersible in water. Examples of organic solvents that are soluble or dispersible in water include alcohols such as methanol, ethanol, isopropyl alcohol, propyl alcohol, and butanol; ketones such as acetone and ethyl isobutyl ketone; ethylene glycol such as ethylene glycol and ethylene glycol methyl ether Propylene glycols such as propylene glycol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether and propylene glycol propyl ether; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methyl Examples include pyrrolidones such as pyrrolidone and N-ethylpyrrolidone; aromatic hydrocarbons such as diphenyl, phenylphenol and chlorobenzene. . Among these, water or a mixed solvent of water and alcohols is preferable as the solvent.

液中の導電性ポリマー(B)の量は、浸漬させる繊維100質量部に対して、0.01質量部以上が好ましい。導電性ポリマー(B)の量が0.01質量部以上であれば、繊維に十分な量の導電性ポリマー(B)が付着し、十分な導電性を発現できる。   The amount of the conductive polymer (B) in the liquid is preferably 0.01 parts by mass or more with respect to 100 parts by mass of the fibers to be immersed. If the quantity of a conductive polymer (B) is 0.01 mass part or more, sufficient quantity of the conductive polymer (B) will adhere to a fiber, and sufficient electroconductivity can be expressed.

また、使用する溶液中の導電性ポリマー(B)の含有量は、0.01〜20質量%の範囲内とすることが好ましい。0.01質量%以上で導電性が得られ、20質量%以下で、導電性ポリマー(B)が繊維に付着する効率が高く保たれる。   Moreover, it is preferable that content of the conductive polymer (B) in the solution to be used exists in the range of 0.01-20 mass%. When 0.01% by mass or more, conductivity is obtained, and when 20% by mass or less, the efficiency with which the conductive polymer (B) adheres to the fiber is kept high.

導電性ポリマー溶液のpHは、繊維を浸漬する前は、1.5〜4.5が好ましい。導電性ポリマー溶液のpHが1.5〜4.5であれば、帯電防止性が良好な繊維が得られる。pHの調整方法としては、例えば、水溶液中で酸性を呈する化合物を添加する方法が挙げられる。そのような化合物としては、硫酸、塩酸、硝酸等の鉱酸;酢酸、蟻酸等の有機カルボン酸;トルエンスルホン酸、ドデシルベンゼンスルホン酸、メタンスルホン酸等の有機スルホン酸が挙げられる。   The pH of the conductive polymer solution is preferably 1.5 to 4.5 before the fibers are immersed. If the pH of the conductive polymer solution is 1.5 to 4.5, fibers having good antistatic properties can be obtained. Examples of the method for adjusting the pH include a method of adding a compound exhibiting acidity in an aqueous solution. Examples of such compounds include mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid; organic carboxylic acids such as acetic acid and formic acid; and organic sulfonic acids such as toluenesulfonic acid, dodecylbenzenesulfonic acid, and methanesulfonic acid.

導電性ポリマー溶液には、必要に応じて、酸性染料による染色に用いられる、均染剤、無機塩等の添加剤を添加してもよい。   If necessary, additives such as leveling agents and inorganic salts used for dyeing with acidic dyes may be added to the conductive polymer solution.

導電性ポリマー溶液の温度は、30℃以上とすることが好ましく、40℃以上とすることがより好ましい。40℃以上であれば、導電体の耐水性が向上する。また、導電性ポリマー溶液の温度は、180℃以下とすることが好ましく、90℃以下とすることがより好ましい。180℃以下とすることで、繊維の変形または変質を防止することができる。溶液を加温する方法は、特に限定されるものではない。   The temperature of the conductive polymer solution is preferably 30 ° C. or higher, and more preferably 40 ° C. or higher. If it is 40 degreeC or more, the water resistance of a conductor will improve. In addition, the temperature of the conductive polymer solution is preferably 180 ° C. or less, and more preferably 90 ° C. or less. By setting the temperature to 180 ° C. or lower, deformation or alteration of the fiber can be prevented. The method for heating the solution is not particularly limited.

繊維を導電性ポリマー溶液に浸漬する時間は、5分以上とすることが好ましく、10分以上とすることがさらに好ましい。また、浸漬時間は300分以下とすることが好ましく、120分以下とすることが更に好ましい。繊維を導電性ポリマー溶液に浸漬する方法は、インラインで連続的に行ってもよいし、バッチ方式で行ってもよい。   The time for immersing the fiber in the conductive polymer solution is preferably 5 minutes or more, and more preferably 10 minutes or more. Further, the immersion time is preferably 300 minutes or less, and more preferably 120 minutes or less. The method of immersing the fiber in the conductive polymer solution may be performed continuously in-line or in a batch system.

加熱処理を終えた後、乾燥工程で繊維を乾燥し、目的とする導電繊維を得る。乾燥温度は60〜200℃が好ましく、100〜200℃がより好ましい。60℃以上の乾燥温度で乾燥時間を短縮し、200℃以下の温度で導電性ポリマーの熱分解を防止することが出来る。   After finishing the heat treatment, the fibers are dried in a drying step to obtain the target conductive fibers. The drying temperature is preferably 60 to 200 ° C, more preferably 100 to 200 ° C. The drying time can be shortened at a drying temperature of 60 ° C. or higher, and thermal decomposition of the conductive polymer can be prevented at a temperature of 200 ° C. or lower.

以上説明した本発明の導電体の製造方法によれば、バインダーを用いることなく、導電性微粒子を有する繊維表面に導電性ポリマー(B)を化学的に付着することができるため、十分な導電性を有し、湿度依存性がなくかつ耐水性に優れる導電繊維を得ることが出来る。   According to the method for producing a conductor of the present invention described above, the conductive polymer (B) can be chemically attached to the surface of the fiber having conductive fine particles without using a binder. Thus, it is possible to obtain a conductive fiber having no humidity dependency and excellent water resistance.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。なお、実施例中の評価方法は以下の通りである。
<表面抵抗値(初期)>
三菱化学製ハイレスタIP−ICPHT260を用い、2探針法にて、温度23℃、湿度55%の条件下で導電性繊維の表面抵抗値を測定した。
<表面抵抗値(耐水性試験後)>
導電性繊維を室温の純水に2時間浸漬した後、導電性繊維を100℃で30分間乾燥させた。乾燥後、三菱化学製ハイレスタIP−ICPHT260を用い、2探針法にて、温度23℃、湿度55%の条件下で繊維の表面抵抗値を測定した。

〔製造例1〕
導電性ポリマー(B−1)の製造
2−アミノアニソール−4−スルホン酸100mmolを25℃で4mol/Lのトリエチルアミン水溶液に溶解し、該溶液を撹拌しながら、該溶液にペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後、25℃で12時間さらに攪拌した。反応生成物を濾別、洗浄した後、乾燥し、導電性ポリマー(B−1)の粉末15gを得た。導電性ポリマーの体積抵抗値は、9.0Ω・cmであった。
繊維の酸性可染処理
導電性微粒子を含有したアクリル導電繊維「コアブリッドB(三菱レイヨン製)」100%の不織布、硫酸ヒドロキシルアミン8.0%owf、カチオン化剤「カチオンマスターCTA−65」3.0%owf、苛性ソーダ(98%フレーク)3.0%owf、浴比1:10の水溶液を攪拌しながら約1時間かけて昇温し、沸騰させて1時間処理した。更に硫酸を4%owf添加して30分間保持することで、酸性可染処理を実施し、冷却後水洗することで表1記載の不織布(A−1)を得た。同様にして、「ボンネル(三菱レイヨン製)」を用いて不織布(A−4)を得た。
〔実施例1〕
100質量部の純水に導電性ポリマー(B−1)を0.5質量部添加し、pH2となるように硫酸を添加して作製した水溶液中に、酸性可染化処理済の、表1記載の不織布(A−1)10質量部を浸漬させ、80℃で60分間攪拌しながら浸漬後、150℃の乾燥機で10分間乾燥させて導電性繊維を得た。
〔実施例2〕
表1記載の不織布(A−2)を用いて実施例1記載の方法で導電性繊維を得た。

〔比較例1〕
表1記載の不織布(A−3)をそのまま使用した。
〔比較例2〕
表1記載の不織布(A−3)を用いて実施例1記載の方法で、乾燥は120℃の乾燥機で10分間行い、導電性繊維を得た。
〔比較例3〕
表1記載の不織布(A−4)を用い、乾燥温度を180℃とした以外は実施例1と同様の方法で導電性繊維を得た。
〔比較例4〕
導電性ポリマー(B−1)とバインダー(東洋紡績社製、MD−1200、スルホン酸基含有水溶性ポリエステル)を固形分比で10/90になるように、導電性組成物を調製した。該導電性組成物を、表1記載の不織布(A−3)にディップコートし、120℃の乾燥機で10分間乾燥して導電性繊維を得た。各導電性繊維について評価を行った結果を表1に示す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the evaluation method in an Example is as follows.
<Surface resistance value (initial)>
The surface resistance value of the conductive fiber was measured under the conditions of a temperature of 23 ° C. and a humidity of 55% by a two-probe method using Mitsubishi Chemical's Hiresta IP-ICPHT260.
<Surface resistance value (after water resistance test)>
After immersing the conductive fiber in pure water at room temperature for 2 hours, the conductive fiber was dried at 100 ° C. for 30 minutes. After drying, the surface resistance value of the fiber was measured under the conditions of a temperature of 23 ° C. and a humidity of 55% by a two-probe method using Hiresta IP-ICPHT260 manufactured by Mitsubishi Chemical.

[Production Example 1]
Production of Conductive Polymer (B-1) 100 mmol of 2-aminoanisole-4-sulfonic acid was dissolved in a 4 mol / L triethylamine aqueous solution at 25 ° C., and the solution was stirred, and an aqueous solution of 100 mmol ammonium peroxodisulfate was added to the solution. Was dripped. After completion of dropping, the mixture was further stirred at 25 ° C. for 12 hours. The reaction product was separated by filtration, washed, and dried to obtain 15 g of a conductive polymer (B-1) powder. The volume resistance value of the conductive polymer was 9.0 Ω · cm.
Acid-dyeable treatment of fibers Acrylic conductive fiber containing conductive fine particles "Corebrid B (Mitsubishi Rayon)" 100% non-woven fabric, hydroxylamine sulfate 8.0% owf, cationizing agent "cation master CTA" An aqueous solution of −65 ”3.0% owf, caustic soda (98% flakes) 3.0% owf, bath ratio 1:10 was heated with stirring for about 1 hour, boiled and treated for 1 hour. Furthermore, 4% owf of sulfuric acid was added and held for 30 minutes to carry out an acid dyeable treatment, and after cooling, washed with water to obtain the nonwoven fabric (A-1) shown in Table 1. Similarly, a nonwoven fabric (A-4) was obtained using “Bonnel (Mitsubishi Rayon)”.
[Example 1]
In an aqueous solution prepared by adding 0.5 parts by mass of a conductive polymer (B-1) to 100 parts by mass of pure water and adding sulfuric acid so as to have a pH of 2, Table 1 treated with acid dyeing 10 mass parts of the described nonwoven fabric (A-1) was dipped, dipped while stirring at 80 ° C. for 60 minutes, and then dried for 10 minutes with a dryer at 150 ° C. to obtain conductive fibers.
[Example 2]
Conductive fibers were obtained by the method described in Example 1 using the nonwoven fabric (A-2) described in Table 1.

[Comparative Example 1]
The nonwoven fabric (A-3) shown in Table 1 was used as it was.
[Comparative Example 2]
Using the nonwoven fabric (A-3) described in Table 1, drying was performed for 10 minutes with a dryer at 120 ° C. by the method described in Example 1 to obtain conductive fibers.
[Comparative Example 3]
Using the nonwoven fabric (A-4) shown in Table 1, conductive fibers were obtained in the same manner as in Example 1 except that the drying temperature was 180 ° C.
[Comparative Example 4]
A conductive composition was prepared such that the conductive polymer (B-1) and a binder (MD-1200, sulfonic acid group-containing water-soluble polyester manufactured by Toyobo Co., Ltd.) had a solid content ratio of 10/90. The conductive composition was dip coated on the nonwoven fabric (A-3) shown in Table 1 and dried for 10 minutes with a dryer at 120 ° C. to obtain conductive fibers. Table 1 shows the results of evaluation for each conductive fiber.

Figure 2010084277
Figure 2010084277

A−1:カーボンブラックを含有したアクリル導電繊維(芯鞘複合繊維)
「コアブリッドB(三菱レイヨン製)」に酸性可染処理を施したもの
A−2:導電性微粒子を含有したナイロン導電繊維と
ナイロン/ポリエステルの極細繊維を組み合わせたワイピングクロス
「ザビーナAS(KBセイレン製)」
A−3:酸性可染処理を行わない「コアブリッドB」
A−4:レギュラータイプのアクリル繊維
「ボンネル(三菱レイヨン製)」に酸性可染処理を施したもの
表1に示す通り、実施例1、2では、導電性微粒子を有する酸性可染繊維に対して、スルホン酸基を有する導電性ポリマー(B−1)溶液中での加熱処理を実施することで、低い表面抵抗値を達成し、更に耐水試験後にもその値を保っており、耐水性に優れる。一方、比較例2、4においては、導電性微粒子を有する繊維が酸性可染繊維ではなく繊維表面と導電性ポリマー(B−1)が化学的な結合を形成しないため、耐水試験後の表面抵抗値は高くなってしまった。比較例3においては、酸性可染繊維(A−4)を用いていることから、耐水性を保っているが、酸性可染繊維(A−4)が導電性微粒子を含有していない為、表面抵抗値は実施例に比べて約1ケタ高い値となっている。
以上より明らかに、表面が酸性可染性であり、芯部に導電性微粒子を含有する酸性可染繊維の表面に、スルホン酸基もしくはカルボン酸基を有する導電性高分子が化学的に付着させることで、耐水性に優れる繊維を得ることが出来る。
A-1: Acrylic conductive fiber (core-sheath composite fiber) containing carbon black
"Corebrid B (Mitsubishi Rayon)" treated with acid dyeing A-2: Wiping cloth "Zabina AS (KB Seiren) combining nylon conductive fibers containing conductive fine particles and ultrafine nylon / polyester fibers" Made) "
A-3: “Corebrid B” without acid dyeing treatment
A-4: Regular type acrylic fiber “Bonnel (Made by Mitsubishi Rayon)” subjected to acidic dyeing treatment As shown in Table 1, in Examples 1 and 2, for acid dyeable fiber having conductive fine particles By conducting heat treatment in the conductive polymer (B-1) solution having a sulfonic acid group, a low surface resistance value is achieved, and the value is maintained even after the water resistance test. Excellent. On the other hand, in Comparative Examples 2 and 4, since the fiber having conductive fine particles is not an acid dyeable fiber and the fiber surface and the conductive polymer (B-1) do not form a chemical bond, the surface resistance after the water resistance test The value has gone up. In Comparative Example 3, since the acid dyeable fiber (A-4) is used, water resistance is maintained, but the acid dyeable fiber (A-4) does not contain conductive fine particles. The surface resistance value is about 1 digit higher than that of the example.
Obviously, the conductive polymer having a sulfonic acid group or a carboxylic acid group is chemically attached to the surface of the acid dyeable fiber whose surface is acidic dyeable and contains conductive fine particles in the core. Thus, a fiber having excellent water resistance can be obtained.

本発明の導電繊維は、制電作業服、ユニフォーム、スーツ、白衣等の衣料;カーペット、カーテン、椅子張り等のインテリア繊維製品;帽子、靴、カバン;自動車、電車、飛行機等のシート;コピー機やプリンタなどの転写ドラムやコピー用紙などの除電ブラシや除電布等の産業用繊維製品の製造に有用である。 The conductive fiber of the present invention includes anti-static work clothes, uniforms, suits, white robes and the like; interior textile products such as carpets, curtains, and chairs; hats, shoes, bags; sheets for automobiles, trains, airplanes, etc .; It is useful for manufacturing industrial textiles such as static elimination brushes and static elimination cloths such as transfer drums and copy paper for printers and printers.

Claims (3)

導電性微粒子を含有した基材(A)の表面にスルホン酸基またはカルボキシル基を有する導電性ポリマー(B)が付着してなる導電体 Conductor formed by attaching conductive polymer (B) having a sulfonic acid group or a carboxyl group to the surface of base material (A) containing conductive fine particles 導電性微粒子を含有した基材(A)が酸性可染基材である請求項1記載の導電体 The conductor according to claim 1, wherein the substrate (A) containing conductive fine particles is an acid-dyeable substrate. 導電性微粒子を含有した基材(A)をスルホン酸基またはカルボキシル基を有する導電性ポリマー(B)の溶液に浸漬し加熱処理を行う導電体の製造方法 A method for producing a conductor in which a base material (A) containing conductive fine particles is immersed in a solution of a conductive polymer (B) having a sulfonic acid group or a carboxyl group and then subjected to heat treatment
JP2008254777A 2008-09-30 2008-09-30 Electroconductor, and method for producing the same Pending JP2010084277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254777A JP2010084277A (en) 2008-09-30 2008-09-30 Electroconductor, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254777A JP2010084277A (en) 2008-09-30 2008-09-30 Electroconductor, and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013153310A Division JP5610243B2 (en) 2013-07-24 2013-07-24 Conductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010084277A true JP2010084277A (en) 2010-04-15
JP2010084277A5 JP2010084277A5 (en) 2011-11-04

Family

ID=42248518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254777A Pending JP2010084277A (en) 2008-09-30 2008-09-30 Electroconductor, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010084277A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234871A (en) * 1990-02-07 1991-10-18 Achilles Corp Electrically conductive woven fabric and its preparation
JPH03294579A (en) * 1990-04-11 1991-12-25 Achilles Corp Electrically conductive fiber
JPH09111666A (en) * 1995-10-16 1997-04-28 Mitsubishi Rayon Co Ltd Electric conductive fiber
JPH11117178A (en) * 1997-10-09 1999-04-27 Toyobo Co Ltd Electrically conductive fiber
WO2008050801A1 (en) * 2006-10-24 2008-05-02 Mitsubishi Rayon Co., Ltd. Method for making material conductive, method for manufacturing conductive material, and conductive material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234871A (en) * 1990-02-07 1991-10-18 Achilles Corp Electrically conductive woven fabric and its preparation
JPH03294579A (en) * 1990-04-11 1991-12-25 Achilles Corp Electrically conductive fiber
JPH09111666A (en) * 1995-10-16 1997-04-28 Mitsubishi Rayon Co Ltd Electric conductive fiber
JPH11117178A (en) * 1997-10-09 1999-04-27 Toyobo Co Ltd Electrically conductive fiber
WO2008050801A1 (en) * 2006-10-24 2008-05-02 Mitsubishi Rayon Co., Ltd. Method for making material conductive, method for manufacturing conductive material, and conductive material

Similar Documents

Publication Publication Date Title
JP4004214B2 (en) Antistatic coating composition
JP5255281B2 (en) Method for imparting conductivity, method for producing conductive material, and conductive material
JP2005097499A (en) Carbon nanotube-containing composition, composite having coated film composed thereof, and method for producing the same
TW200837217A (en) Metal plated article and method for producing it
US5840214A (en) Method of increasing polyaniline conductivity with ionic surfactants
JP2006282941A (en) Antistatic coating composition, antistatic film obtained by applying the same and method for producing the same
JP2005336341A (en) Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same
JPH11279279A (en) Transparent electroconductive polymer
JP2007237580A (en) Surface protective film, method for producing the film, and laminate comprising the film
JP5610243B2 (en) Conductor and manufacturing method thereof
TW200307954A (en) Transparent polythiophene layers of high conductivity
US5525261A (en) Anti-static composition and method of making the same
JP4621950B2 (en) Antistatic coating composition
TW201000672A (en) Metal plated article of molded form and method for producing it
JP2010084277A (en) Electroconductor, and method for producing the same
KR920007556B1 (en) Toluene sulfonate salts of 2-alkyl imidazolines
US20130092878A1 (en) Thermoplastic based electronic conductive inks and method of making the same
JP3518624B2 (en) Antistatic agent using conductive organic polymer composition
JP4758874B2 (en) Method for producing conductive substrate
KR101951759B1 (en) Antistatic composition for treating texile, preparing method thereof, antistatic treating method and dyeing method using the same and antistatic texile
JP2000256617A (en) Water borne polyaniline composition, preparation thereof, and antistatic coating agent
Toptaş et al. Conductive polyaniline/polyacrylonitrile composite fibers: Effect of synthesis parameters on polyaniline content and electrical surface resistivity
US20130273797A1 (en) Conductive polymer layers grafted onto insulating polymer surfaces
JP2009041154A (en) Method for producing conductor and the resultant conductor
JP2009259621A (en) Conductive substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507