JP2010080455A - 電子機器の冷却装置及び冷却方法 - Google Patents

電子機器の冷却装置及び冷却方法 Download PDF

Info

Publication number
JP2010080455A
JP2010080455A JP2006346619A JP2006346619A JP2010080455A JP 2010080455 A JP2010080455 A JP 2010080455A JP 2006346619 A JP2006346619 A JP 2006346619A JP 2006346619 A JP2006346619 A JP 2006346619A JP 2010080455 A JP2010080455 A JP 2010080455A
Authority
JP
Japan
Prior art keywords
fins
cooling
fin
cooling unit
liquid cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006346619A
Other languages
English (en)
Inventor
Tomotaka Ishida
智隆 石田
Minoru Yoshikawa
実 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2006346619A priority Critical patent/JP2010080455A/ja
Priority to PCT/JP2007/074820 priority patent/WO2008078737A1/ja
Publication of JP2010080455A publication Critical patent/JP2010080455A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】 LSIのより近くに部品を実装することができるようにして配線長距離を短くすることでき、信号伝達速度を向上させることができる電子機器の冷却装置及び冷却方法を提供する。
【解決手段】 単一の液冷ユニットを単一の発熱体に熱的に接合し、複数のフィンの存在領域として規定される面と前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面を実質的に同一形状でかつ同一面積とするので、冷却装置を可及的に縮小することができ、例えば電子機器としてのLSIのすぐ近くにLSIの周辺部品を実装することができ、結果として配線長を短くし、信号伝達速度を向上させることができる。
【選択図】 図1

Description

本発明は、電子機器の冷却装置及び冷却方法に関し、特に電子機器のプロセッサ等のLSIを冷却する冷媒として水などの液体を使用する液冷モジュール構造を備えた電子機器の冷却装置及び冷却方法に関する。
電子機器に使用されるLSIは、世代毎にその集積度が加速的に増加している。
このLSI集積度の増加に伴い、発熱量も増加していく傾向があり、場合によっては200W以上もの発熱があるLSIも出てきている。
しかし、LSIが高速に動作するためには、LSIの動作温度を一定温度以下に制御する必要があり、この点にLSIの発熱量に見合った冷却モジュールが取り付けられることの必要性が生じる。
一方、近年では、LSI内部の演算速度の向上だけではなく、LSIとメモリー間など、LSIとその周辺部の信号伝達速度の高速化によって当該電子機器を構成するシステム全体を高速化し、大型計算機をはじめとした電子機器の更なる速度向上を図る必要性も重要になってきている。
このような信号伝達速度の高速化は、具体的には配線長距離の縮小化によって達成される。しかし、そのような配線長距離の縮小化は、反面、冷却モジュールがLSI上に実装できる放熱面積の確保を困難にするという結果を伴い、冷却モジュールがLSI上に実装できる放熱面積をLSIの発熱量の増大に見合う程度には大きくできないという問題を生じる。
そこで、LSIの上に、フィンが設けられそのフィン間に液体冷媒を流すことができるコールドプレートと呼ばれるチャンバーを有する冷却モジュールが提案されている。特に、冷却性能を向上させるためにフィン間流路の幅0.2mm以下になるような微細なフィンを形成させ、液体冷媒とフィンとの接触面積を増やすことによって熱伝達率を上げ、冷却性能を向上させる試みが多くなされている。
例えば、特許文献1には冷却性能を向上させるために、フィンをワイヤーカットやマイクロ加工によって、微細加工して、フィン間流路の幅0.2mm以下になるような微細なフィンを形成させる方法とその冷却能力について記載されている。
また、特許文献2には屈曲型の流路を有することを特徴とし、複数のLSIを同時に冷却する液冷式の冷却モジュールが提案されている。
特許文献3には多数の微細な流路からなる並列流路の各流路へ冷媒を分配する第1のヘッダーと、並列流路から流出した冷媒が合流する第2のヘッダーとを有する半導体素子用冷却器が提案されている。
特開平05−129485 WO00−16397 特開2001−35981
特許文献1に開示された流路幅が0.2mm以下のレベルでフィンを形成させるようなマイクロ加工では、流路幅に対するフィン高さの比であるアスペクト比は約5が限界であることから、フィン高さも最大で1mm程度を越えることができない。したがって、そのようなフィンでは、流路の断面積が小さく、圧力損失が大きくなりすぎるために、液体冷媒の流量が制限されて、実際のポンプと組み合わせた場合の冷却性能は最大で150W程度となり不十分である。また、微細フィンの形成は製法上のコストアップの原因となり、また液体冷媒中の異物が詰まる危険を生じる原因ともなる。
特許文献2に開示された液冷モジュールは液体冷媒がフィン間を通る道が長くなり、また屈曲型の流路の急な曲がりが、液体冷媒を流す際の圧力損失を増大させてしまう。また、特許文献2に開示された液冷モジュールにおいては複数のLSIを同時に冷却するということが可能であり、その分コールドプレートの体積も大きくすることができ、流路を屈曲型にすることができる。しかし、それ自体が単一の発熱体である単一のLSIに着目する場合には、屈曲の流路でかつ微細なフィンを形成してなる液冷ユニットを適用することはは、生産技術上の問題が大きくコスト増の原因となる。
特許文献3の半導体素子用冷却器では冷却装置自体の大きさ如何に関わらず専ら冷却性能に着目した検討が行われ、信号伝達速度の高速化の要請から進められる配線長距離の縮小化によって冷却モジュールがLSI上に実装できる放熱面積の確保が困難となっているという問題を直接に解決する手段を提供するものではない。さらには、特許文献3の半導体素子用冷却器は、配線長を短くし、信号伝達速度を向上させるという技術的要請に対し、何ら積極的に寄与するものではない。
本発明は斯かる問題点を鑑みてなされたものであり、その目的とするところは、LSIのより近くに部品を実装することができるようにして配線長距離を短くすることでき、信号伝達速度を向上させることができる電子機器の冷却装置及び冷却方法を提供する点にある。
本発明は上記課題を解決すべく、以下に掲げる構成とした。
すなわち本発明の電子機器の冷却装置は、複数のフィンを一のチャンバー内部に有する単一の液冷ユニットを単一の発熱体に熱的に接合してなり、前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面と前記複数のフィンの存在領域として規定される面とが実質的に同一形状でかつ同一面積とされてなることを特徴とする。
さらに本発明の電子機器の冷却装置は、隣り合うフィン間の流路幅が0.2mmから0.8mmで高さが2mmから5mmの複数のフィンを一のチャンバー内部に有する単一の液冷ユニットを単一の発熱体に熱的に接合してなることを特徴とする。
前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面と前記複数のフィンの存在領域として規定される面とが実質的に同一形状でかつ同一面積とされてなる様にしてもよい。
さらに本発明の電子機器の冷却方法は、液冷ユニットを用いて行う電子機器の冷却方法であって、前記液冷ユニットは複数のフィンを一のチャンバー内部に有する単一の液冷ユニットであり、その単一の液冷ユニットを単一の発熱体に熱的に接合し、前記単一の複数のフィンの存在領域として規定される面と前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面を実質的に同一形状でかつ同一面積とすることを特徴とする。
加えて本発明の電子機器の冷却方法は、液冷ユニットを用いて行う電子機器の冷却方法であって、前記液冷ユニットの隣り合うフィン間の流路幅を0.2mmから0.8mmとする共に、各フィンの高さを2mmから5mmとしてなる複数のフィンを一のチャンバー内部に有してなる単一の液冷ユニットを単一の発熱体に熱的に接合することを特徴とする。
[作用]
本発明の電子機器の冷却装置及び冷却方法によれば、単一の液冷ユニットを単一の発熱体に熱的に接合し、複数のフィンの存在領域として規定される面と前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面を実質的に同一形状でかつ同一面積とするので、冷却装置を可及的に縮小することができ、例えば電子機器としてのLSIのすぐ近くにLSIの周辺部品を実装することができ、結果として配線長を短くし、信号伝達速度を向上させることができる。
しかも、隣り合うフィン間の流路幅が0.2mmから0.8mmで高さが2mmから5mmの複数のフィンを一のチャンバー内部に有する本発明の電子機器の冷却装置及び冷却方法におけるフィン構造の形成は、フィンピッチ、フィン高さとも微細加工の領域ではないため、容易な製造方法にて加工でき、すなわち安価な冷却モジュールが提供される。
さらに、液体冷媒に含まれる異物などによって流路間が詰まることがなく、従来の冷却性能を格段にしのぐLSIサイズにて200W以上冷却可能な冷却構造が提供される。
本発明の電子機器の冷却装置及び冷却方法によれば、前記複数のフィンの存在領域として規定される面と前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面を実質的に同一形状でかつ同一面積とするので、LSIのより近くに部品を実装することができる結果、配線長距離を短くすることでき、信号伝達速度を向上させることができる。
しかも、隣り合うフィン間の流路幅が0.2mmから0.8mmで高さが2mmから5mmの長さにすることで、圧力損失を大きくすることなく、液体冷媒の流量を落とすことなく、液体冷媒と放熱フィンの接触面積を増大させることができるために、冷却性能を従来よりも格段に高めることができる。
特に、フィン間流路幅を0.2mm以上とすることで製造方法をプレス加工が可能にするなど容易にし、安価な液冷モジュールを提供することができる。
次に、本発明を実施するための最良の形態について図面を参照して詳細に説明する。
図1は本発明の一実施の形態であるコールドプレート100の斜視図を示している。コールドプレート100は、内部空間2を有するチャンバー1と、内部空間2に設けられたフィン構造体3を有してなる。
チャンバー1は、チャンバー底板11と、平板形状をしたチャンバー上蓋12と、チャンバー枠体13とを備え、チャンバー底板11はチャンバー枠体13が有する一方の開口を閉じており、チャンバー上蓋12はチャンバー枠体13が有する他の開口を閉じている。
チャンバー1の内部空間2における上流側空間21は、フィン構造体3の上流に位置する空間であり、下流側空間22はフィン構造体3の下流に位置する空間であり、その上流側空間21及び下流側空間22のそれぞれは、内部空間2の一部をなす。
上流側空間21の上部から液体冷媒が流入できるようにチャンバー上蓋12には液体冷媒を流入させるための流入口18が設けられ、下流側空間22の上部から液体冷媒が流出できるようにチャンバー上蓋12には液体冷媒を流出させるための流出口19が設けられている。
なお、流入口18は、上流側空間21に液体冷媒を流入させることが可能であれば、上流側空間21に接するチャンバー枠体13の任意の場所に取り付けることができる。流出口19においても、下流側空間22から液体冷媒を流出させることが可能であれば、下流側空間22に接するチャンバー枠体13の任意の場所に取り付けることができる。
図2は、図1におけるコールドプレート100のAA断面図を示している。例えば配線基板(図示せず)に取り付けられたLSIなどの被冷却体99は、チャンバー底板11に例えばグリースや熱伝導性シートなどの熱伝導性接合材98により熱的に接合されている。また、フィン構造体3は例えばフィン31〜33を備えており、フィン31〜33を含む複数のフィンは互いに並列になるようにチャンバー底板11に固定されている。
図3は、図1におけるコールドプレート100の内部構造を示す平面図である。フィン32とフィン33とは、フィン間流路23を挟んで対向するように隣り合っている。フィン構造体3には、フィン間流路23のようなフィン間流路が複数設けられている。これらのフィン間流路は互いに並列の関係にある。
コールドプレート100の外から流入口18を通って上流側空間21に流入した液体冷媒は、フィン構造体3に設けられた複数のフィン間流路のいずれか、例えばフィン間流路23を通って下流側空間22に流入し、そこから流出口19を通ってコールドプレート100の外に流出する。したがって、被冷却体99で発生し、熱伝導性接合材98とチャンバー底部11を経由してフィン31〜33のようなフィンに移動した熱は、そこからフィン間流路を流れる液体冷媒へと放熱され、液体冷媒によってコールドプレート100の外へと運ばれる。
図4は本発明の電子機器の冷却装置及び冷却方法に適用されるコールドプレート100の構造の一例を示し、チャンバー底板11、チャンバー上蓋12、チャンバー枠体13は省略し、フィン構造体3のみを示してある。ここで、液体冷媒が流れる方向を縦方向、液体冷媒が流れる方向に対して垂直の方向を横の長さとすると、Wはフィン構造体3の横の長さ、Lはフィン構造体の縦の長さ、Zはフィン構造体の高さを表していている。また、Wcはフィン間流路の幅の長さ、Wwはフィン1枚の厚みの長さを表している。
本発明の電子機器の冷却装置及び冷却方法に適用されるコールドプレート100では、複数のフィンの存在領域として規定され、フィン構造体3の横の長さWとフィン構造体の縦の長さLによって得られる形状W・L及び面積W×Lは、冷却の対象となる単一の発熱体、例えば単一のLSI99のコールドプレート100に対する熱的接合面99aと実質的に同一形状でかつ同一面積とされる。これによってコールドプレート100からより迅速に液体冷媒に熱伝達が行われると同時にスペース効率の向上が可能となる。
以上のコールドプレート100を用いる場合には、被冷却体99を効率的に冷却するためには、微細なフィンを多く形成すれば、フィン間流路に流れる液体冷媒との接触面積を大きくできるために、より多くの熱を効率的に奪うことができ、すなわちコールドプレート100の冷却性能を向上させることができる。しかし、フィンを微細にしすぎると、フィン間流路も狭まるために液体冷媒が流れにくくなり、結果として冷却性能は低下する。つまり、冷却モジュールの冷却性能の最適化を実施する際には、ポンプの能力に応じてフィンの枚数及びサイズを検討する必要がある。
係る観点から、本発明の電子機器の冷却装置及び冷却方法では、フィン間流路幅Wcは0.2mmから0.8mmとする。フィン間流路幅が0.2mm未満の場合は、圧力損失が大きくなり、200W以上の冷却能力を有するためには現状のポンプでは冷却性能が出にくいうえに製法の難易度が上がってしまう。フィン間流路幅が0.8mm以上では液体冷媒と接するフィンの表面積が小さくなるために満足な冷却性能がでない。
さらに、フィン間流路の幅を0.2〜0.8mmとすることによって、微細フィンの製造と比較して、製造方法の選択肢が拡がる。たとえば、フィン間流路0.2mm以下には適用できなかった低コスト製法であるプレス加工、切削加工、押し出し加工などを用いることができる。
また、フィン高さにおいては、流路幅に対して約5倍から約25倍まで(フィン高さで1mmから5mmまで)、つまりアスペクト比は5から25までが好適である。アスペクト比が5以下の場合は、フィンの表面積が減ることによる熱伝達率の減少およびフィン間流路の断面積が小さいことによる圧力損失の増大が冷却性能を下げてしまう。また、フィン高さが流路幅の25倍以上の場合は、例えフィンの材料に熱伝導率の高い銅を用いたとしても、フィン効率が悪くなるために表面積の増加が冷却性能に効かなくなっていくこと及びフィン間流路間の断面積が大きくなりすぎるためフィン間の流速が減少し、冷却性能が低下する。
また、フィンは必ずしもプレート状である必要はなく湾曲状やピン状構造などフィンの形は問わない。その場合に、流路幅とは液体の流れる方向に対して垂直な方向の隣り合うフィンもしくはピン同士の幅として特定することができる。また、フィン高さはフィンもしくはピンの最長部とチャンバー底部との最短距離として特定することができる。
また、フィン構造体3、チャンバー底部11、チャンバー上蓋12、チャンバー枠体13、流入口18、流出口19などは必ずしもそれぞれひとつの部品である必要はなく、いずれかの組み合わせを一体形成してもかまわない。たとえば、チャンバー上蓋12と流入口18、流出口19が一体になった部品を製造することなどが考えられる。それぞれの材料は、特段制限はないが、放熱性能を考えると熱伝導率の高い金属部材で加工のし易い銅もしくはアルミニウムが好適である。
本発明のコールドプレートとポンプ、タンク、熱交換器を液体冷媒が循環できるようにホースなどでつなげた液冷モジュールを電子機器に適用することで、LSIなどの温度を下げることができ、安定に動作させることができる。
[実施例1]
以下に本発明の電子機器の冷却方法の実施例につき説明する。
図4に、本実施例に用いた本発明のコールドプレートの具体的な構造の一例を示す。図4においてはチャンバー底板11、チャンバー上蓋12、チャンバー枠体13は省略し、フィン構造体3のみを示してある。ここで、液体冷媒が流れる方向を縦方向、液体冷媒が流れる方向に対して垂直の方向を横の長さとすると、Wはフィン構造体3の横の長さ、Lはフィン構造体の縦の長さ、Zはフィン構造体の高さを表していている。また、Wcはフィン間流路の幅の長さ、Wwはフィン1枚の厚みの長さを表している。
本実施例では、W:20mm、L:20mm、Z:2mm、Wc:0.25mm、Ww:0.25mmとした。チャンバー底板11、チャンバー上蓋12、チャンバー枠体13、フィン構造体3、流入口18、流出口19はすべて銅とし、それぞれの部材はロウ付けにより接合した。また、液体冷媒には水を用いて、発熱体はフィン構造体の底面積と同等のサイズである20mm角のLSIを想定して実験を行った。
図4で示したフィン構造を有するコールドプレートにおける液体冷媒の流量Q[ml/min]に対する冷却性能の指標である熱抵抗R[℃/W]をプロットしたグラフを図5に示す。流量が200ml/minと比較的流量が小さい場合でも熱抵抗は0.08[℃/W]というデータ得られた。流量を大きくしていくと、1000ml/minを越えたあたりから熱抵抗は飽和していき、約0.065[℃/W]まで下がることが分かった。今、LSIの許容最高温度を85℃、冷媒の温度を35℃として検討した場合、LSIの冷媒の温度に対する許容温度上昇は50℃になる。また、冷却能力は、LSIとコールドプレート間の熱伝導性接合材の熱抵抗を0.1[℃/W]とすると、流量が200ml/minのときでも、50[℃]÷(0.08+0.1)[℃/W]=277[W]と導出でき、約280Wとなり200W以上冷却できることになる。
次に、図6を用いて市販のポンプを用いたときに図4で示したフィン構造を有するコールドプレートに流れる流量を導出した。図6に示すように、本発明のコールドプレートにおける液体冷媒の流量に対して生じる圧力損失曲線(以後システムインピーダンス曲線と呼ぶ)と、ポンプの性能を示すPQ曲線の交点が、実際のポンプの動作点となり流量を導出することができる。ポンプはメーカーによってPQ特性が異なるので、ここでは、電子機器の液冷システム向けに市販されているなかで、異なるPQ特性をもつ2つのポンプA、ポンプBを選択した。ポンプAは低吐出圧であるが高流量のポンプ、ポンプBは高吐出圧であるが低流量のポンプである。一方、本発明のコールドプレートのシステムインピーダンスは流量に対する圧力損失を実験にて導出した。
この結果、図4で示したフィン構造を有するコールドプレートを用いた場合、ポンプAでは約800[ml/min]、ポンプBでは約480[ml/min]流れることが分かった。この導出した流量から図5を用いて冷却性能を導出すると、ポンプAでは263W、ポンプBでは284W冷却できることが予測でき、実際の実験でも良い一致を確認した。
[実施例2]
次に第2の実施例について説明する。第2の実施例では、第1の実施例よりも流路幅を広げ、フィンの高さを高くしたケースを用い、W:20mm、L:20mm、Z:5mm、Wc:0.4mm、Ww:0.4mmとした。第1の実施例同様、チャンバー底板11、チャンバー上蓋12、チャンバー枠体13、フィン構造体3、流入口18、流出口19はすべて銅とし、それぞれの部材はロウ付けにより接合した。また、液体冷媒には水を用いて、発熱体はフィン構造体の底面積と同等のサイズである20mm角のLSIを想定して実験を行った。
第2の実施例のフィン構造を有するコールドプレートにおける液体冷媒の流量Q[ml/min]に対する冷却性能の指標である熱抵抗R[℃/W]をプロットしたグラフを図7に示す。流量が200[ml/min]と比較的流量が小さい場合で熱抵抗は0.15[℃/W]であった。流量が1200[ml/min]まで流量をあげると、熱抵抗は約0.096[℃/W]まで下がった。この熱抵抗の値を熱伝導性接合材の熱抵抗を0.1[℃/W]として、冷却性能を換算すると、200[ml/min]で200W、1200[ml/min]で255Wである。
また、第2の実施例においてのコールドプレートのシステムインピーダンス曲線とポンプAおよびポンプBのPQ曲線から流量を求めたときのグラフを図8に示す。
図8からポンプAおよびポンプBを用いたときに流れる流量はそれぞれ930[ml/min]、480[ml/min]であった。この導出した流量から図7を用いて冷却性能を導出すると、ポンプAでは250W、ポンプBでは227W冷却できることが予測でき、実際の実験でも良い一致を確認した。
第1の実施例及び第2の実施例で示したサイズだけでなく、各種フィン間流路幅および流路高さをパラメーターとした実験を行い、200W以上の冷却能力を有するためにはフィン間流路幅は0.2mmから0.8mmとすることが好適であることを確認した。
また、フィン高さにおいては、流路幅に対して約5倍から約25倍まで(フィン高さで1mmから5mmまで)、つまりアスペクト比は5から25までが好適であることを確認した。
本発明の冷却装置の第1の実施の形態を示す斜視図。 本発明の冷却装置の第1の実施の形態を示す断面図。 本発明の冷却装置の第1の実施の形態を示す平面図。 本発明の第1の実施の形態のフィン構造。 本発明の第1の実施の形態における流量に対する熱抵抗のグラフ 本発明の第1の実施の形態における圧力損失と流量の関係を示すグラフ 本発明の第2の実施の形態における流量に対する熱抵抗のグラフ 本発明の第2の実施の形態における圧力損失と流量の関係を示すグラフ
符号の説明
1・・・チャンバー、2・・・内部空間、3・・・フィン構造体、11・・・チャンバー底部、12・・・チャンバー上蓋、13・・・チャンバー枠体、18・・・流入口、19・・・流出口、21・・・上流側空間、22・・・下流側空間、23・・・フィン間流路、31〜33・・・フィン、41・・・ヒートシンクのベース、98・・・熱伝導性接合材、99・・・被冷却体、99a・・・フィンの存在領域として規定される面、100・・・コールドプレート。

Claims (5)

  1. 複数のフィンを一のチャンバー内部に有する単一の液冷ユニットを単一の発熱体に熱的に接合してなり、前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面と前記複数のフィンの存在領域として規定される面とが実質的に同一形状でかつ同一面積とされてなることを特徴とする電子機器の冷却装置。
  2. 隣り合うフィン間の流路幅が0.2mmから0.8mmで高さが2mmから5mmの複数のフィンを一のチャンバー内部に有する単一の液冷ユニットを単一の発熱体に熱的に接合してなることを特徴とする電子機器の冷却装置。
  3. 請求項2記載の電子機器の冷却装置において、前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面と前記複数のフィンの存在領域として規定される面とが実質的に同一形状でかつ同一面積とされてなる電子機器の冷却装置。
  4. 液冷ユニットを用いて行う電子機器の冷却方法であって、前記液冷ユニットは複数のフィンを一のチャンバー内部に有する単一の液冷ユニットであり、その単一の液冷ユニットを単一の発熱体に熱的に接合し、前記単一の複数のフィンの存在領域として規定される面と前記単一の発熱体の前記単一の液冷ユニットに対する熱的接合面を実質的に同一形状でかつ同一面積とすることを特徴とする電子機器の冷却方法。
  5. 液冷ユニットを用いて行う電子機器の冷却方法であって、前記液冷ユニットの隣り合うフィン間の流路幅を0.2mmから0.8mmとする共に、各フィンの高さを2mmから5mmとしてなる複数のフィンを一のチャンバー内部に有してなる単一の液冷ユニットを単一の発熱体に熱的に接合することを特徴とする電子機器の冷却方法。
JP2006346619A 2006-12-22 2006-12-22 電子機器の冷却装置及び冷却方法 Pending JP2010080455A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006346619A JP2010080455A (ja) 2006-12-22 2006-12-22 電子機器の冷却装置及び冷却方法
PCT/JP2007/074820 WO2008078737A1 (ja) 2006-12-22 2007-12-25 電子機器の冷却装置及び冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346619A JP2010080455A (ja) 2006-12-22 2006-12-22 電子機器の冷却装置及び冷却方法

Publications (1)

Publication Number Publication Date
JP2010080455A true JP2010080455A (ja) 2010-04-08

Family

ID=39562526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346619A Pending JP2010080455A (ja) 2006-12-22 2006-12-22 電子機器の冷却装置及び冷却方法

Country Status (2)

Country Link
JP (1) JP2010080455A (ja)
WO (1) WO2008078737A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192409A (ja) * 2013-03-28 2014-10-06 Fujitsu Ltd マイクロチャネル熱交換装置及び電子機器
JP2021089959A (ja) * 2019-12-04 2021-06-10 三菱電機株式会社 ヒートシンク
US11788794B2 (en) * 2019-12-25 2023-10-17 Resonac Packaging Corporation Heat exchanger and inner fin thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485583B2 (ja) * 2008-07-24 2010-06-23 トヨタ自動車株式会社 熱交換器及びその製造方法
JP5342392B2 (ja) * 2009-09-28 2013-11-13 古河電気工業株式会社 冷却装置
JP2015159254A (ja) * 2014-02-25 2015-09-03 三桜工業株式会社 冷却装置及び冷却装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324173A (ja) * 2002-05-02 2003-11-14 Nissan Motor Co Ltd 半導体素子の冷却装置
JP2004022914A (ja) * 2002-06-19 2004-01-22 Hitachi Ltd 絶縁回路基板とその冷却構造及ぴパワー半導体装置とその冷却構造
JP4172302B2 (ja) * 2003-03-26 2008-10-29 日産自動車株式会社 半導体モジュールの冷却装置
JP4015060B2 (ja) * 2003-05-20 2007-11-28 株式会社日立製作所 直接水冷型パワー半導体モジュール構造
JP2005324647A (ja) * 2004-05-13 2005-11-24 Ishikawajima Harima Heavy Ind Co Ltd バトックフロー型船

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192409A (ja) * 2013-03-28 2014-10-06 Fujitsu Ltd マイクロチャネル熱交換装置及び電子機器
JP2021089959A (ja) * 2019-12-04 2021-06-10 三菱電機株式会社 ヒートシンク
JP7407577B2 (ja) 2019-12-04 2024-01-04 三菱電機株式会社 ヒートシンク
US11788794B2 (en) * 2019-12-25 2023-10-17 Resonac Packaging Corporation Heat exchanger and inner fin thereof

Also Published As

Publication number Publication date
WO2008078737A1 (ja) 2008-07-03

Similar Documents

Publication Publication Date Title
US10747276B2 (en) Cooling system and water cooling radiator
US8199505B2 (en) Jet impingement heat exchanger apparatuses and power electronics modules
JP6164304B2 (ja) 半導体モジュール用冷却器の製造方法、半導体モジュール用冷却器、半導体モジュール及び電気駆動車両
JP5769834B2 (ja) 液冷式冷却器
US20080105413A1 (en) Manufacturing Method of Water Block
JP2007180505A (ja) 電子部品の冷却装置
JP6406348B2 (ja) 冷却器およびそれを用いた半導体モジュール
JP2006522463A (ja) 流体により冷却される超小型熱交換のための最適なスプレッダシステム、装置及び方法
JP2010123881A (ja) コールドプレート
JP2006310363A (ja) パワー半導体装置
US9123697B2 (en) Semiconductor cooling device
US20070124934A1 (en) Water Block And Manufacturing Method Thereof
JP2010080455A (ja) 電子機器の冷却装置及び冷却方法
KR20060105637A (ko) 냉각재킷
JP4899997B2 (ja) サーマルサイフォン式沸騰冷却器
JP3780953B2 (ja) 冷却装置付き電子回路装置
JP2010016254A (ja) 半導体装置
JP2007250701A (ja) 電子機器用冷却装置
JP2011134978A (ja) 流体冷却式ヒートシンク
JP2008300447A (ja) 放熱装置
KR101474610B1 (ko) 히트 싱크 및 이를 구비한 냉각 시스템
US20210066166A1 (en) Liquid-cooling-type cooler
JP2007081375A (ja) 冷却装置
JP4517962B2 (ja) 電子機器用冷却装置
JP2021093511A (ja) 放熱器