JP2010079053A - Low refractive index film, antireflective film, transparent member, fluorescent lamp - Google Patents

Low refractive index film, antireflective film, transparent member, fluorescent lamp Download PDF

Info

Publication number
JP2010079053A
JP2010079053A JP2008248626A JP2008248626A JP2010079053A JP 2010079053 A JP2010079053 A JP 2010079053A JP 2008248626 A JP2008248626 A JP 2008248626A JP 2008248626 A JP2008248626 A JP 2008248626A JP 2010079053 A JP2010079053 A JP 2010079053A
Authority
JP
Japan
Prior art keywords
refractive index
film
low refractive
fine particles
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008248626A
Other languages
Japanese (ja)
Inventor
Masaki Ozaki
雅樹 尾崎
Makoto Kikuta
良 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2008248626A priority Critical patent/JP2010079053A/en
Publication of JP2010079053A publication Critical patent/JP2010079053A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low refractive index film with superior transparency, an antireflective film with superior transparency and a reflection preventing effect, and a transparent member with superior transparency and a fluorescent lamp having the low refractive index film or the antireflective film. <P>SOLUTION: Provided are a low refractive index film containing oxide fine particles and a silicate component so as to provide a three-dimensional network structure with the oxide fine particles linked via the silicate component, an antireflective film having the low refractive index film, a transparent member and a fluorescent lamp having either thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低屈折率膜、反射防止膜、透明部材、蛍光ランプに関し、特に、透明性に優れた低屈折率膜及びこれを備えた反射防止膜、透明部材、蛍光ランプに関する。   The present invention relates to a low refractive index film, an antireflection film, a transparent member, and a fluorescent lamp, and more particularly to a low refractive index film excellent in transparency and an antireflection film, a transparent member, and a fluorescent lamp provided with the same.

従来、反射防止膜は、陰極線管(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)等の表示素子、光学レンズ、光学フィルタ等の光学部材、自動車やショーウインドー等のガラス部材等に広く使用されている。   Conventionally, antireflection films have been widely applied to display elements such as cathode ray tubes (CRT), liquid crystal displays (LCD), plasma display panels (PDP), optical members such as optical lenses and optical filters, and glass members such as automobiles and show windows. in use.

例えば、光学フィルタにおいては、透明ガラス基板の表面に、蒸着、スパッタリング、イオンプレーティング等の成膜方法により高屈折率層と低屈折率層とが交互に積層され、多層構造の反射防止膜が形成されている(例えば、特許文献1参照)。
しかしながら、この方法で得られた反射防止膜は、反射防止性能は優れているものの、高コストとなってしまう。特に、大面積の透明ガラス基板に反射防止膜を形成する場合には、製造コストが非常に高くなってしまい、低価格かつ高品質という要求に対応することができない。
For example, in an optical filter, a high-refractive index layer and a low-refractive index layer are alternately stacked on the surface of a transparent glass substrate by a film formation method such as vapor deposition, sputtering, or ion plating, so that an antireflection film having a multilayer structure is formed. (For example, refer patent document 1).
However, although the antireflection film obtained by this method has excellent antireflection performance, it is expensive. In particular, when an antireflection film is formed on a transparent glass substrate having a large area, the manufacturing cost becomes very high, and the demand for low cost and high quality cannot be met.

そこで、製造コストを低く抑え、しかも高品質を維持するために、ゾル−ゲル法等の塗布法を用いて、透明ガラス基板上や透明基材上に反射防止膜を形成することが提案されている。
例えば、ジルコニア、セリア、酸化錫等の屈折率の高い微粒子を含む高屈折率層と、フッ化マグネシウム、シリカ等の相対的に屈折率の低い微粒子を含む低屈折率層とを積層した2層構造の反射防止膜が提案されている(例えば、特許文献2参照)。
Therefore, it has been proposed to form an antireflection film on a transparent glass substrate or a transparent substrate using a coating method such as a sol-gel method in order to keep the manufacturing cost low and to maintain high quality. Yes.
For example, two layers in which a high refractive index layer containing fine particles having a high refractive index such as zirconia, ceria and tin oxide and a low refractive index layer containing fine particles having a relatively low refractive index such as magnesium fluoride and silica are laminated. An antireflection film having a structure has been proposed (see, for example, Patent Document 2).

また、膜の作製時に微粒子間に空隙を形成させることにより、膜の屈折率低下を図ること、微粒子内にも微細孔を有する多孔質シリカ構造とすることにより、更なる屈折率低下を図るという方法も提案されている(例えば、特許文献3参照)。
特開平09−281327 特開平01−154445 特開平11−326601
In addition, the refractive index of the film is reduced by forming voids between the fine particles during the production of the film, and the refractive index is further reduced by forming a porous silica structure having fine pores in the fine particles. A method has also been proposed (see, for example, Patent Document 3).
JP 09-281327 A JP 01-154445 A JP-A-11-326601

しかし、特許文献2の2層構造の反射防止膜では、低屈折率層にシリカ(屈折率:1.44〜1.46)やアルミナ等の微粒子を含有させた場合、高屈折率層と低屈折率層との屈折率の差が小さくなるために、反射防止効果が不十分なものとなる問題点があった。   However, in the antireflection film having a two-layer structure of Patent Document 2, when the low refractive index layer contains fine particles such as silica (refractive index: 1.44 to 1.46) or alumina, the antireflective film has a low refractive index and a low refractive index layer. Since the difference in refractive index from the refractive index layer is small, there is a problem that the antireflection effect is insufficient.

また、特許文献3のように、多孔質シリカ微粒子を用い、微粒子間に空隙をもたせる構造の低屈折率層の場合、微粒子間相互を結合し微粒子間に空隙を有する構造を維持し膜としての強度を維持するための結合剤としては、有機ポリマーが用いられている。しかしながら、有機ポリマーを用いた場合には、耐熱性や耐薬品性・耐溶剤性の低下が避けられないという問題点を有するほか、シリカ微粒子と有機ポリマーの親和性を向上させるために、シリカ粒子表面を予め処理しておく必要があり、工数が増加するという問題点もあった。   In addition, as in Patent Document 3, in the case of a low refractive index layer having a structure in which porous silica fine particles are used and voids are provided between the fine particles, the structure in which the fine particles are bonded to each other and the voids are provided between the fine particles is maintained as a film. An organic polymer is used as a binder for maintaining the strength. However, when organic polymers are used, there is a problem that heat resistance, chemical resistance, and solvent resistance are inevitably lowered, and silica particles are used to improve the affinity between silica fine particles and organic polymers. There was also a problem that the surface had to be treated in advance and man-hours increased.

本発明は、上記の課題を解決するためになされたものであって、透明性に優れた低屈折率膜を提供することを目的とする。また、当該低屈折率膜を有し、高い透明性と優れた反射防止効果とを有する反射防止膜を提供することを目的とする。さらに、上記低屈折率膜または反射防止膜を有し、透明性に優れた透明部材、蛍光ランプを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a low refractive index film excellent in transparency. It is another object of the present invention to provide an antireflection film having the low refractive index film and having high transparency and an excellent antireflection effect. It is another object of the present invention to provide a transparent member and a fluorescent lamp having the low refractive index film or the antireflection film and having excellent transparency.

上記課題を解決するために、本発明者らは、低屈折率膜の構成について検討を行い、当該低屈折率膜を、シリケート成分により酸化物微粒子間を相互に連結し微粒子間に空隙を形成した3次元網目構造とすると、透明性に優れた低屈折率膜が得られることを見出し、本発明に想到した。
また、本発明者らは、酸化物微粒子の粒子径を制御したり、酸化物微粒子と結合剤(シリケート成分)との比率を制御したりすることにより、優れた透明性を維持しながら、機械的強度や耐擦傷性にも優れた低屈折率膜が得られることを見出した。
In order to solve the above-mentioned problems, the present inventors have examined the configuration of a low refractive index film, and the low refractive index film is interconnected between oxide fine particles by a silicate component to form voids between the fine particles. The inventors have found that a low refractive index film excellent in transparency can be obtained by using the three-dimensional network structure, and have arrived at the present invention.
In addition, the present inventors can control the particle diameter of the oxide fine particles or control the ratio of the oxide fine particles and the binder (silicate component), while maintaining excellent transparency. It has been found that a low refractive index film excellent in mechanical strength and scratch resistance can be obtained.

さらに、本発明者らは、このような低屈折率膜を反射防止膜に用いることで、高い透明性、優れた反射防止効果が得られることを見出した。そして、当該反射防止膜についても種々の改良を加えることで膜強度を向上させることできることを見出した。   Furthermore, the present inventors have found that by using such a low refractive index film as an antireflection film, high transparency and an excellent antireflection effect can be obtained. And it discovered that film | membrane intensity | strength could be improved by adding various improvement also about the said antireflection film.

本発明は下記の通りである。
[1]酸化物微粒子とシリケート成分とを含み、前記酸化物微粒子同士が前記シリケート成分を介して連結されてなる3次元網目構造を有する低屈折率膜。
[2]前記酸化物微粒子の屈折率がシリカよりも高い[1]に記載の低屈折率膜。
[3]前記酸化物微粒子が、アルミナ及びイットリアの少なくともいずれかである[2]に記載の低屈折率膜。
[4]前記3次元網目構造により形成されてなる空隙の割合(空隙率)が38〜70体積%である[1]〜[3]のいずれかに記載の低屈折率膜。
[5]前記酸化物微粒子の平均1次粒子径が0.01〜0.10μmである[1]〜[4]のいずれかに記載の低屈折率膜。
[6]前記酸化物微粒子と前記シリケート成分との合計に対する前記酸化物微粒子の配合比率が30〜80体積%である[1]〜[5]のいずれかに記載の低屈折率膜。
The present invention is as follows.
[1] A low refractive index film having a three-dimensional network structure comprising oxide fine particles and a silicate component, wherein the oxide fine particles are connected to each other through the silicate component.
[2] The low refractive index film according to [1], wherein the refractive index of the oxide fine particles is higher than that of silica.
[3] The low refractive index film according to [2], wherein the oxide fine particles are at least one of alumina and yttria.
[4] The low refractive index film according to any one of [1] to [3], wherein a ratio (void ratio) of voids formed by the three-dimensional network structure is 38 to 70% by volume.
[5] The low refractive index film according to any one of [1] to [4], wherein an average primary particle diameter of the oxide fine particles is 0.01 to 0.10 μm.
[6] The low refractive index film according to any one of [1] to [5], wherein a blending ratio of the oxide fine particles to a total of the oxide fine particles and the silicate component is 30 to 80% by volume.

[7]上記[1]〜[6]のいずれかに記載の低屈折率膜を有する反射防止膜。
[8]前記反射防止膜中における屈折率が、当該反射防止膜が透明部材に接する側で高く、接しない側で低い[7]に記載の反射防止膜。
[9]上記[1]〜[6]のいずれかに記載の低屈折率膜または[7]もしくは[8]に記載の反射防止膜のいずれかを有する透明部材。
[10]上記[9]に記載の透明部材を有する蛍光ランプ。
[7] An antireflection film having the low refractive index film according to any one of [1] to [6].
[8] The antireflection film according to [7], wherein a refractive index in the antireflection film is high on a side where the antireflection film is in contact with the transparent member and is low on a side where the antireflection film is not in contact.
[9] A transparent member having either the low refractive index film according to any one of [1] to [6] or the antireflection film according to [7] or [8].
[10] A fluorescent lamp having the transparent member according to [9].

本発明によれば、透明性に優れた低屈折率膜を提供することができる。また、当該低屈折率膜を有し、高い透明性と優れた反射防止効果とを有する反射防止膜を提供することができる。さらに、上記低屈折率膜または反射防止膜を有し、透明性に優れた透明部材、蛍光ランプを提供することができる。   According to the present invention, a low refractive index film excellent in transparency can be provided. In addition, an antireflection film having the low refractive index film and having high transparency and an excellent antireflection effect can be provided. Furthermore, it is possible to provide a transparent member and a fluorescent lamp having the low refractive index film or the antireflection film and having excellent transparency.

[低屈折率膜]
本発明の低屈折率膜は、図1に示すように酸化物微粒子10とシリケート成分12とを含み、酸化物微粒子10同士がシリケート成分12を介して連結されてなる3次元網目構造を有している。シリケート成分12は酸化物微粒子10相互を結合して膜体を形成するが、酸化物微粒子10間全体にはシリケート成分が充填されることなく、粒子間には空隙が存在する。この空隙を有する3次元網目構造により、本発明の低屈折率膜は、構成する酸化物微粒子およびシリケート成分のそれぞれに比べて、屈折率の低下が図られ優れた透明性を発揮することができる。
[Low refractive index film]
As shown in FIG. 1, the low refractive index film of the present invention has a three-dimensional network structure including oxide fine particles 10 and a silicate component 12, and the oxide fine particles 10 are connected to each other through the silicate component 12. ing. The silicate component 12 bonds the oxide fine particles 10 to each other to form a film body, but the entire oxide fine particles 10 are not filled with the silicate component, and there are voids between the particles. Due to the three-dimensional network structure having voids, the low refractive index film of the present invention can exhibit excellent transparency because the refractive index is lowered as compared with the oxide fine particles and the silicate component. .

粒子間に形成された空隙は、それぞれが独立して閉じた状態でも良く、あるいは互いに連通していてもよい。
空隙が独立して閉じた状態の場合には、膜外の雰囲気(例えば湿度)の変化により低屈折率膜の特性が変化することは無いが、空隙率を一定値以上に上げることが難しいため、膜の屈折率を小さくすることに限界が生じることがある。一方、空隙が連通している場合には、空隙率を増し膜の屈折率を十分に小さくすることが可能となるが、雰囲気の変化が膜特性に影響する可能性が高まる。
従って、これらは低屈折率膜に必要とされる条件により選択される。
The voids formed between the particles may be in an independently closed state, or may be in communication with each other.
When the gap is closed independently, the characteristics of the low refractive index film will not change due to changes in the atmosphere outside the film (for example, humidity), but it is difficult to raise the porosity to a certain value or more. There may be a limit in reducing the refractive index of the film. On the other hand, when the voids communicate with each other, the void ratio can be increased and the refractive index of the film can be made sufficiently small, but the possibility that changes in the atmosphere will affect the film characteristics increases.
Therefore, these are selected according to the conditions required for the low refractive index film.

低屈折率膜の空隙率は、38〜70体積%であることが好ましく、38〜55体積%であることがより好ましい。空隙率が38体積%以上であると、空隙の効果が発揮されやすく膜の屈折率を十分に小さくすることができる。そのため、この膜を用いて反射防止膜を構成しても十分な反射防止効果が得られる。一方、70体積%以下であると、膜自体の強度が低下するのを防止し、実用に耐える低屈折率膜とすることができる。   The porosity of the low refractive index film is preferably 38 to 70% by volume, and more preferably 38 to 55% by volume. When the porosity is 38% by volume or more, the effect of voids is easily exhibited and the refractive index of the film can be made sufficiently small. Therefore, even if an antireflection film is formed using this film, a sufficient antireflection effect can be obtained. On the other hand, when it is 70% by volume or less, the strength of the film itself can be prevented from being lowered, and a low refractive index film that can be practically used can be obtained.

ここで、低屈折率膜中の3次元網目構造の有無は、当該膜を集束イオンビーム加工(SII社製、SMI 2050)により膜の断面を切り出し、その断面を電界放射形走査電子顕微鏡(日立製作所社製、FE−SEM(S−4000))で観察することで確認することができる。
また、空隙率は、次のようにして求めることができる。始めに、一定寸法に切り出した低屈折率膜について、膜の厚さをFE−SEM等で測定して膜の体積を求めるとともに膜の質量を測定し、体積と質量から当該低屈折率膜の比重を算出する。次に、膜の組成と各材料成分の比重から、膜を構成する材料の真比重(膜中に空隙が存在しない場合の比重)を算出する。膜の実際の比重と真比重の比が膜の充填率となるので、1からこの充填率を引いた残余値を求めれば空隙率となる。
Here, the presence or absence of a three-dimensional network structure in the low-refractive index film is determined by cutting out the cross section of the film by focused ion beam processing (SII, SMI 2050), and cutting the cross section into a field emission scanning electron microscope (Hitachi). It can confirm by observing with a Seisakusho company make and FE-SEM (S-4000).
The porosity can be determined as follows. First, for the low refractive index film cut out to a certain size, the thickness of the film is measured by FE-SEM or the like to determine the volume of the film, and the mass of the film is measured. Calculate the specific gravity. Next, from the composition of the film and the specific gravity of each material component, the true specific gravity of the material constituting the film (specific gravity when no voids exist in the film) is calculated. Since the ratio of the actual specific gravity and the true specific gravity of the film becomes the filling rate of the film, if the residual value obtained by subtracting this filling rate from 1 is obtained, the porosity is obtained.

酸化物微粒子の平均1次粒子径は、0.01〜0.10μmであることが好ましく、0.01〜0.08μmであることがより好ましい。1次粒子の平均粒子径が0.01μm以上であると、微細粒子相互の間隔が狭くなりすぎることがなくなって空隙を形成することが容易になり、膜の屈折率を十分に小さくすることが可能となる。一方、0.10μm以下であると、散乱による光の乱反射を防ぐことが可能となり、低屈折率膜のヘーズ値が上昇して高い透明性が得られなくなるのを防ぐことができる。また、その結果、反射防止膜とした場合、良好な反射防止効果が発揮されやすくなる。
なお、平均1次粒子径は、日機装社製のマイクロトラック粒度分布測定装置MT3000IIシリーズ、HORIBA社製レーザー回折/散乱式粒子径分布測定装置LA−950などにより測定することができる。
The average primary particle diameter of the oxide fine particles is preferably 0.01 to 0.10 μm, and more preferably 0.01 to 0.08 μm. When the average particle diameter of the primary particles is 0.01 μm or more, the interval between the fine particles is not too narrow, and it becomes easy to form voids, and the refractive index of the film can be made sufficiently small. It becomes possible. On the other hand, when the thickness is 0.10 μm or less, it is possible to prevent irregular reflection of light due to scattering, and it is possible to prevent the haze value of the low refractive index film from increasing and high transparency from being obtained. As a result, when the antireflection film is used, a good antireflection effect is easily exhibited.
The average primary particle size can be measured with a microtrack particle size distribution measuring device MT3000II series manufactured by Nikkiso Co., Ltd., a laser diffraction / scattering particle size distribution measuring device LA-950 manufactured by HORIBA, or the like.

酸化物微粒子とシリケート成分との合計に対する酸化物微粒子の配合比率は30〜80体積%であることが好ましく、50〜65体積%であることがより好ましい。酸化物微粒子が30%体積未満であると、シリケート成分が酸化物微粒子に対して過剰となり、過剰なシリケート成分が酸化物微粒子間の空隙を埋めてしまうため空隙率が保てないが、酸化物微粒子が30体積%以上であれば過剰なシリケート成分がなくなるのでこのようなことがなくなり、空隙率を40体積%以上としやすくなる。一方、酸化物微粒子が80体積%以下であれば、シリケート成分による酸化物微粒子間の結合力が良好となり、強度的に実用に耐える低屈折率膜を形成することができる。   The mixing ratio of the oxide fine particles to the total of the oxide fine particles and the silicate component is preferably 30 to 80% by volume, and more preferably 50 to 65% by volume. If the oxide fine particles are less than 30% volume, the silicate component becomes excessive with respect to the oxide fine particles, and the excess silicate component fills the voids between the oxide fine particles, so the porosity cannot be maintained. If the fine particles are 30% by volume or more, the excessive silicate component is eliminated, so this is not caused, and the porosity is easily set to 40% by volume or more. On the other hand, when the oxide fine particles are 80% by volume or less, the bonding force between the oxide fine particles by the silicate component is good, and a low refractive index film that can withstand practical use in strength can be formed.

本発明は低屈折率膜であるから、膜を構成する酸化物微粒子自体の屈折率は低いことが好ましく、また膜の特性は酸化物微粒子の特性に左右されるから、酸化物微粒子の特性も安定であることが好ましい。
これらを満たす材料としては、シリカ(石英ガラスとしての屈折率:1.44〜1.46)、アルミナ(単結晶の屈折率:1.76〜1.77)、イットリア(屈折率:1.91)を挙げることができる。これらの酸化物微粒子は、単独で用いても良いし、あるいは2種以上を混合して使用してもよい。特に後述の屈折率傾斜膜を作製するためには、2種以上の酸化物微粒子を、混合比を変えて使用することは有効である。
なお、屈折率が2.0を超える酸化物微粒子を用いることは、膜の屈折率の上昇を招くので好ましくない。
Since the present invention is a low refractive index film, the refractive index of the oxide fine particles constituting the film is preferably low, and the characteristics of the film depend on the characteristics of the oxide fine particles. It is preferable that it is stable.
Materials satisfying these requirements include silica (refractive index as quartz glass: 1.44 to 1.46), alumina (refractive index of single crystal: 1.76 to 1.77), yttria (refractive index: 1.91). ). These oxide fine particles may be used alone or in combination of two or more. In particular, it is effective to use two or more kinds of oxide fine particles with different mixing ratios in order to produce a gradient refractive index film described later.
Note that it is not preferable to use fine oxide particles having a refractive index of more than 2.0 because the refractive index of the film is increased.

上記例示した酸化物微粒子のなかでも、シリカよりも屈折率が高い酸化物微粒子、すなわちアルミナ及びイットリアの少なくともいずれかであることが好ましい。これは、シリカを用いた場合に比べ、アルミナ及びイットリアを用いた場合の方が、平均1次粒子径が同じ場合、得られる膜の屈折率が低くなるためである。この理由としては、酸化物微粒子とシリケート成分との結合状態との関係から、アルミナ及びイットリアを用いた場合の方が空隙率が高くなるためと考えられる。また、アルミナ及びイットリアは、耐水銀性や紫外線反射特性の点から蛍光ランプへの適用を考慮した場合特に好ましい。   Among the oxide fine particles exemplified above, oxide fine particles having a refractive index higher than that of silica, that is, at least one of alumina and yttria are preferable. This is because the refractive index of the obtained film is lower in the case of using alumina and yttria when the average primary particle diameter is the same than in the case of using silica. The reason for this is considered to be that the porosity is higher in the case of using alumina and yttria from the relationship between the bonding state between the oxide fine particles and the silicate component. Alumina and yttria are particularly preferable in consideration of application to fluorescent lamps in terms of mercury resistance and ultraviolet reflection characteristics.

酸化物微粒子の形状は特に限定されないが、球状よりは多角形状あるいは不定形状の方が好ましく、さらに不定形多角形状であればより好ましい。これは、粒子が球状の場合には、粒子の充填性がよいために空隙率が高くなりにくいのに対し、粒子が多角形状や不定形状であれば、各粒子がランダムな方向を向くことにより空隙率を高めることができるからである。また、粒子が不定形多角形状であれば、各粒子が形状や大きさを揃えて配列することが起こりえないため、空隙率をより高めることができる。   The shape of the oxide fine particles is not particularly limited, but a polygonal shape or an indefinite shape is preferable to a spherical shape, and an indefinite polygonal shape is more preferable. This is because, when the particles are spherical, the porosity is difficult to increase due to good particle filling, whereas when the particles are polygonal or indeterminate, each particle is oriented in a random direction. This is because the porosity can be increased. Further, if the particles are irregular polygonal shapes, it is impossible for the particles to be arranged with the same shape and size, so that the porosity can be further increased.

さらに、酸化物微粒子として凹部や空孔を有するものを用い、低屈折率膜の形成時にこの凹部や空孔にシリケート成分が充填されて埋まらないようにすれば、空隙率をより高めることができるので好ましい。   Furthermore, if the oxide fine particles having a recess or a void are used and the recess or void is not filled with a silicate component when the low refractive index film is formed, the porosity can be further increased. Therefore, it is preferable.

シリケート成分は、有機ケイ素化合物またはその重合体(ポリマー)から構成される。ここで、有機ケイ素化合物としては、アルコキシシラン化合物、ハロゲン化シラン化合物、アシロキシシラン化合物、シラザン化合物などが挙げられる。かかる有機ケイ素化合物は、その分子中にアルキル基、アリール基、ビニル基、アリル基、(メタ)アクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基などの置換基を有していてもよい。   The silicate component is composed of an organosilicon compound or a polymer thereof. Here, examples of the organosilicon compound include alkoxysilane compounds, halogenated silane compounds, acyloxysilane compounds, and silazane compounds. The organosilicon compound may have a substituent such as an alkyl group, an aryl group, a vinyl group, an allyl group, a (meth) acryloyloxy group, an epoxy group, an amino group, or a mercapto group in the molecule.

有機ケイ素化合物としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラクロロシラン、メチルトリメトキシシラン、メチルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ―アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ―アミノプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシランなどのアルコキシシラン化合物、ヘキサメチルジシラザンなどのシラザン化合物などが挙げられ、これらはそれぞれ単独または2種以上を混合して用いられる。   Examples of the organosilicon compound include tetramethoxysilane, tetraethoxysilane, tetrachlorosilane, methyltrimethoxysilane, methyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and vinyltrimethoxysilane. Vinyltriethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ- Mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-glycid Shi trimethoxysilane, alkoxysilane compounds such as γ- glycidoxypropyl methyl dimethoxy silane, such as silazane compounds such as hexamethyldisilazane and the like, which may be used alone or in combination, respectively.

シリケート成分は、かかる有機ケイ素化合物の単量体であってもよいし、2量体〜10量体程度のオリゴマーまたは重合度が10を超えるポリマーなどのような重合体であってもよい。また、シリケート成分は、上記有機ケイ素化合物が加水分解された加水分解生成物あってもよい。加水分解生成物は、上記有機ケイ素化合物に塩酸、リン酸、酢酸などの酸または水酸化ナトリウム、酢酸ナトリウムなどの塩基を加えることにより生成させることができる。   The silicate component may be a monomer of such an organosilicon compound, or may be a polymer such as a dimer-to-10-mer oligomer or a polymer having a degree of polymerization exceeding 10. The silicate component may be a hydrolysis product obtained by hydrolyzing the organosilicon compound. The hydrolysis product can be produced by adding an acid such as hydrochloric acid, phosphoric acid or acetic acid or a base such as sodium hydroxide or sodium acetate to the organosilicon compound.

低屈折率膜を形成するには、例えば、基材上に上記有機ケイ素化合物と酸化物微粒子と溶剤と含有する組成物を塗布し、硬化させればよい。   In order to form the low refractive index film, for example, a composition containing the organosilicon compound, oxide fine particles, and solvent may be applied on a substrate and cured.

組成物に用いられる溶剤としては、有機ケイ素化合物を溶解し、塗布後揮発し、酸化物微粒子を用いる場合にはこれを分散し得るものであれば特に限定されるものではなく、基材の材質、形状、塗布方法などに応じて適宜選択される。   The solvent used in the composition is not particularly limited as long as it dissolves an organosilicon compound, volatilizes after coating, and oxide fine particles can be dispersed. Depending on the shape, coating method, etc.

上記組成物は、反応促進剤、安定化剤、酸化防止剤、着色剤などの添加剤を含有していてもよい。また、有機ケイ素化合物として、その加水分解生成物を用いる場合には、塩酸、リン酸、酢酸などの酸または水酸化ナトリウム、酢酸ナトリウムなどの塩基などを組成物に加えてもよい。   The composition may contain additives such as a reaction accelerator, a stabilizer, an antioxidant, and a colorant. When the hydrolysis product is used as the organosilicon compound, an acid such as hydrochloric acid, phosphoric acid or acetic acid or a base such as sodium hydroxide or sodium acetate may be added to the composition.

塗布方法は、通常と同様の方法、例えばマイクログラビアコート法、ロールコート法、ディッピングコート法、スピンコート法、ダイコート法、キャスト転写法、スプレーコート法などの方法が挙げられる。   Examples of the coating method include the same methods as usual, such as a micro gravure coating method, a roll coating method, a dipping coating method, a spin coating method, a die coating method, a cast transfer method, and a spray coating method.

基材としては、例えばアクリル樹脂、ポリカーボネート樹脂、ポリスチレン、スチレン−アクリル共重合体、アクリロニトリル−スチレン共重合体、トリアセチルセルロース樹脂などからなる樹脂基材、無機ガラスなどの無機基材などが挙げられる。   Examples of the substrate include resin substrates made of acrylic resin, polycarbonate resin, polystyrene, styrene-acrylic copolymer, acrylonitrile-styrene copolymer, triacetylcellulose resin, and inorganic substrates such as inorganic glass. .

基材は、板(シート)、フィルムなどのように表面が平面である基材あってもよいし、凸レンズ、凹レンズなどのように表面が曲面である基材であってもよい。また、表面に細かな凹凸が設けられていてもよい。   The substrate may be a substrate having a flat surface such as a plate (sheet) or a film, or may be a substrate having a curved surface such as a convex lens or a concave lens. Further, fine irregularities may be provided on the surface.

塗布後の塗膜を硬化させるには、例えば加熱を行えばよい。加熱温度、加熱時間は用いる有機ケイ素化合物の種類、使用量などに応じて適宜選択される。低屈折率層の厚みは、基材の屈折率や低屈折率層の屈折率などに応じて適宜選択されるが、0.01〜0.5μmであることが好ましい。
このようにして基材の表面に本発明の低屈折率膜が設けられた部材(例えば、後述する透明部材)が得られる。
なお、酸化物微粒子同士がシリケート成分を介して連結されてなる3次元網目構造とするための好ましい方法としては、あらかじめ分散液中で酸化物微粒子の粒子表面にシリケート成分を結合させておく、といった方法が挙げられる。すなわち、酸化物微粒子を分散させた分散液中にシリケート成分を添加し、分散液中で酸化物微粒子の粒子表面にシリケート成分の反応基である水酸基を結合させた後、当該塗料を用いて膜を形成することにより、酸化物微粒子同士がシリケート成分を介して連結されてなる3次元網目構造を持つ低屈折率膜を形成することができる。
In order to cure the coated film after application, for example, heating may be performed. The heating temperature and the heating time are appropriately selected according to the type of organic silicon compound used, the amount used, and the like. The thickness of the low refractive index layer is appropriately selected according to the refractive index of the substrate, the refractive index of the low refractive index layer, and the like, but is preferably 0.01 to 0.5 μm.
In this way, a member (for example, a transparent member described later) in which the low refractive index film of the present invention is provided on the surface of the substrate is obtained.
In addition, as a preferable method for obtaining a three-dimensional network structure in which oxide fine particles are connected to each other via a silicate component, the silicate component is previously bonded to the particle surface of the oxide fine particles in a dispersion. A method is mentioned. That is, a silicate component is added to a dispersion in which oxide fine particles are dispersed, and hydroxyl groups that are reactive groups of the silicate component are bonded to the surface of the oxide fine particles in the dispersion, and then a film is formed using the paint. By forming the above, it is possible to form a low refractive index film having a three-dimensional network structure in which oxide fine particles are connected via a silicate component.

[反射防止膜]
本発明の反射防止膜は、本発明の低屈折率膜を有する。
透明部材の表面に設けられる反射防止膜の屈折率は、透明部材の屈折率と空気の屈折率(1.0)の間である必要があるので、本発明の低屈折率膜を反射防止膜として用いることは非常に有効である。
[Antireflection film]
The antireflection film of the present invention has the low refractive index film of the present invention.
Since the refractive index of the antireflective film provided on the surface of the transparent member needs to be between the refractive index of the transparent member and the refractive index of air (1.0), the low refractive index film of the present invention is used as the antireflective film. It is very effective to use as.

さらに、反射防止膜における透明部材側の屈折率を高くして透明部材の屈折率に近づけ、空気側の屈折率を低くして空気の屈折率に近づけた屈折率傾斜膜とすることにより、反射防止効果をより高めることができる。   Furthermore, the refractive index gradient film in which the refractive index on the transparent member side in the antireflection film is increased to approach the refractive index of the transparent member, and the refractive index on the air side is decreased to approach the refractive index of air, thereby reflecting The prevention effect can be further enhanced.

このような屈折率傾斜膜を形成する方法としては、従来知られた技術を用いることができる。例えば、はじめに屈折率が透明部材に近い層を透明部材表面に形成し、その上に始めの層よりも屈折率を下げた層(本発明の低屈折率膜)を形成する多層膜構造とすればよい。この場合、各層の屈折率制御は、含有する酸化物微粒子の種類や混合量を変えることで各層を構成する材料自体の屈折率を変えても良いし、または酸化物微粒子の粒子径を変えたり酸化物微粒子とシリケート成分の混合比を変えたりなどにより空隙率を変えることにより行ってもよく、これらの方法を組み合わせてもよい。
また、反射防止膜の形成時に酸化物微粒子成分が透明部材側に凝集するような作用を膜形成材料に持たせることにより、反射防止膜の透明部材側は酸化物微粒子が密に詰まった空隙が少ない状態となり、空気側は酸化物微粒子が疎な空隙が多い状態になるようにしてもよい。
As a method for forming such a gradient refractive index film, a conventionally known technique can be used. For example, a multilayer film structure in which a layer having a refractive index close to that of a transparent member is first formed on the surface of the transparent member and a layer having a lower refractive index than the first layer (the low refractive index film of the present invention) is formed thereon. That's fine. In this case, the refractive index control of each layer may be performed by changing the refractive index of the material itself constituting each layer by changing the type and mixing amount of the oxide fine particles contained, or changing the particle diameter of the oxide fine particles. It may be carried out by changing the porosity by changing the mixing ratio of the oxide fine particles and the silicate component, or these methods may be combined.
Further, by providing the film forming material with an action that causes the oxide fine particle component to aggregate on the transparent member side during the formation of the antireflection film, the transparent member side of the antireflection film has voids tightly packed with oxide fine particles. The air side may be in a state where there are few voids in which the oxide fine particles are sparse.

[透明部材]
本発明の透明部材は、基材状に本発明の低屈折率膜または反射防止膜を有する。このような膜が形成された透明部材としては、例えば、陰極線管(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、光学レンズ、光学フィルタ等の光学部材や自動車やショーウインドー等のガラス部材が挙げられる。
[Transparent material]
The transparent member of the present invention has the low refractive index film or the antireflection film of the present invention on a substrate. Examples of the transparent member on which such a film is formed include an optical member such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display panel (PDP), an optical lens, an optical filter, or a glass such as an automobile or a show window. Member.

[蛍光ランプ]
本発明の蛍光ランプは本発明の透明部材を有する。すなわち、本発明の膜(本発明の低屈折率膜または反射防止膜)を透光性封止管の内部に形成することにより、可視光線領域での透過性を良好に保持・向上させることが可能となる。
図2は、本発明の一実施形態の蛍光ランプを示す縦断面図、図3は同横断面図であり、図において、1は両端が封止されたガラス管からなる透光性封止管、2は本発明の膜であり透光性封止管1の内壁全体(内面)に形成されている。3は赤色系発光蛍光体、緑色系発光蛍光体及び青色系発光蛍光体の混合物からなる蛍光体層、4は透光性封止管1内の両端部側にそれぞれ設けられた電極、5は電極4に電気的に接続されたリード線である。
また、Gは透光性封止管1内に封入された封入ガスであり、この封入ガスGは、水銀、及びアルゴン等の希ガスや窒素等の不活性ガスにより構成されている。
[Fluorescent lamp]
The fluorescent lamp of the present invention has the transparent member of the present invention. That is, by forming the film of the present invention (the low refractive index film or the antireflection film of the present invention) inside the translucent sealing tube, the transparency in the visible light region can be favorably maintained and improved. It becomes possible.
2 is a longitudinal sectional view showing a fluorescent lamp according to an embodiment of the present invention, FIG. 3 is a transverse sectional view thereof, and in the figure, 1 is a translucent sealing tube made of a glass tube sealed at both ends. Reference numeral 2 denotes a film of the present invention, which is formed on the entire inner wall (inner surface) of the translucent sealing tube 1. 3 is a phosphor layer made of a mixture of a red light-emitting phosphor, a green light-emitting phosphor and a blue light-emitting phosphor, 4 is an electrode provided on each side of the translucent sealing tube 1, and 5 is A lead wire electrically connected to the electrode 4.
G is a sealed gas sealed in the translucent sealing tube 1, and this sealed gas G is composed of mercury, a rare gas such as argon, or an inert gas such as nitrogen.

蛍光ランプは、点灯用電気回路を介して通電して点灯させると、透光性封止管1内の放電空間から発生する水銀の輝線である254nmの波長の光を蛍光体層3が吸収・励起しバルブを通して放射する。このとき変換された可視光線バルブを透過する。   When the fluorescent lamp is turned on by being energized through an electric circuit for lighting, the phosphor layer 3 absorbs light having a wavelength of 254 nm, which is an emission line of mercury generated from the discharge space in the translucent sealing tube 1. Excitation and emission through a bulb. At this time, the converted visible light bulb is transmitted.

以下、実施例により本発明を具体的に説明するが本発明はこれらの例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(実施例1)
テトラエトキシシラン(シリケート成分換算で0.9質量部)、平均1次粒子径0.02μmであるアルミナ粒子(4.1質量部)およびイソブチルアルコール(溶剤:95質量部)を混合して得たコーティング用組成物(酸化物微粒子の配合比率:70体積%)を作製した。
Example 1
It was obtained by mixing tetraethoxysilane (0.9 parts by mass in terms of silicate component), alumina particles (4.1 parts by mass) having an average primary particle size of 0.02 μm, and isobutyl alcohol (solvent: 95 parts by mass). A coating composition (mixing ratio of oxide fine particles: 70% by volume) was prepared.

このコーティング用組成物を、厚み50μmのポリエチレンテレフタレートフィルム(三菱ポリエステル社製;ダイアホイル0−300E)の一方の面に、ディップコート法(引上げ速度20cm/分)により塗布し、室温で5分間乾燥した後、80℃で20分間加熱して低屈折率膜を設けた。   This coating composition was applied to one surface of a 50 μm-thick polyethylene terephthalate film (Mitsubishi Polyester; Diafoil 0-300E) by dip coating (pulling speed 20 cm / min) and dried at room temperature for 5 minutes. Then, it was heated at 80 ° C. for 20 minutes to provide a low refractive index film.

この低屈折率膜について、集束イオンビーム加工(SII社製、SMI 2050)により膜の断面を切り出し、その断面を電界放射形走査電子顕微鏡(日立製作所社製、FE−SEM(S−4000))により観察したところ、図4に示すように、アルミナ粒子同士がシリケート成分を介して連結されてなる3次元網目構造が確認された。   About this low refractive index film | membrane, the cross section of a film | membrane is cut out by focused ion beam processing (The product made by SII, SMI2050), The cross section is a field emission type scanning electron microscope (The Hitachi, Ltd. make, FE-SEM (S-4000)). As shown in FIG. 4, a three-dimensional network structure in which alumina particles are connected via a silicate component was confirmed, as shown in FIG.

この低屈折率膜について膜厚と質量を測定し、膜の実際の比重と真比重の比から空隙率を求めた。具体的な計算方法は、次のとおりである。
まず、この低屈折率膜を10cm角に切り出し膜厚と質量を測定したところ、膜厚は0.105μm(0.0000105cm)、質量は0.00173gであった。この膜の体積は10×10×0.0000105=0.00105cm3 であるから、この膜の比重は0.00173g/0.00105cm3=1.65g/cm3となる。
次に、この低屈折率膜の組成はAl23:70体積%、SiO2:30体積%であり、またAl23の比重は3.9g/cm3、SiO2の比重は2.2g/cm3であるから、この低屈折率膜と同一組成で空隙を有さない材料の比重、すなわち低屈折率膜の真比重は3.9×0.7+2.2×0.3=3.39g/cm3となる。
低屈折率膜の充填率(%)は膜の実際の比重を真比重で割った値であり、空隙率は1からこの充填率を引いた残余値であるから、上記の各値より、空隙率は[1−(1.65/3.39)]×100=51.4%となった。
The film thickness and mass of this low refractive index film were measured, and the porosity was determined from the ratio between the actual specific gravity and the true specific gravity of the film. The specific calculation method is as follows.
First, when this low refractive index film was cut into a 10 cm square and the film thickness and mass were measured, the film thickness was 0.105 μm (0.0000105 cm) and the mass was 0.00173 g. Since the volume of the membrane is 10 × 10 × 0.0000105 = 0.00105cm 3 , the specific gravity of the film becomes 0.00173g / 0.00105cm 3 = 1.65g / cm 3.
Next, the composition of this low refractive index film is Al 2 O 3 : 70 volume%, SiO 2 : 30 volume%, the specific gravity of Al 2 O 3 is 3.9 g / cm 3 , and the specific gravity of SiO 2 is 2 because it is .2g / cm 3, the low refractive index film of the same material of specific gravity without voids in the composition, i.e. a true specific gravity of the low refractive index film is 3.9 × 0.7 + 2.2 × 0.3 = 3.39 g / cm 3 .
The filling rate (%) of the low refractive index film is a value obtained by dividing the actual specific gravity of the film by the true specific gravity, and the porosity is a residual value obtained by subtracting this filling rate from 1. Therefore, from the above values, the gap The rate was [1- (1.65 / 3.39)] × 100 = 51.4%.

(実施例2,3)
コーティング用組成物中のアルミナ粒子の配合比率を下記表1に示すようにした以外は、実施例1と同様にポリエチレンテレフタレートフィルム上に低屈折率膜を設けた。
(Examples 2 and 3)
A low refractive index film was provided on a polyethylene terephthalate film in the same manner as in Example 1 except that the blending ratio of alumina particles in the coating composition was as shown in Table 1 below.

これらの低屈折率膜について、実施例1と同様に断面を観察したところ、アルミナ粒子同士がシリケート成分を介して連結されてなる3次元網目構造が確認された。また、実施例1と同様に膜厚と質量を測定し、空隙率を求めた。   When these cross sections of these low refractive index films were observed in the same manner as in Example 1, a three-dimensional network structure in which the alumina particles were connected via a silicate component was confirmed. Further, the film thickness and mass were measured in the same manner as in Example 1 to determine the porosity.

(実施例4)
コーティング用組成物中の酸化物微粒子を平均1次粒子径0.05μmであるイットリア粒子に代えた以外は、実施例1と同様にポリエチレンテレフタレートフィルム上に低屈折率膜を設けた。
Example 4
A low refractive index film was provided on a polyethylene terephthalate film in the same manner as in Example 1 except that the oxide fine particles in the coating composition were replaced with yttria particles having an average primary particle diameter of 0.05 μm.

この低屈折率膜について、実施例1と同様に断面を観察したところ、イットリア粒子同士がシリケート成分を介して連結されてなる3次元網目構造が確認された。また、実施例1と同様に膜厚と質量を測定し、空隙率を求めた。   When the cross section of this low refractive index film was observed in the same manner as in Example 1, a three-dimensional network structure in which yttria particles were connected to each other via a silicate component was confirmed. Further, the film thickness and mass were measured in the same manner as in Example 1 to determine the porosity.

(実施例5)
コーティング用組成物中の酸化物微粒子を平均1次粒子径0.02μmであるシリカ粒子に代えた以外は、実施例1と同様にポリエチレンテレフタレートフィルム上に低屈折率膜を設けた。
(Example 5)
A low refractive index film was provided on a polyethylene terephthalate film in the same manner as in Example 1 except that the oxide fine particles in the coating composition were replaced with silica particles having an average primary particle size of 0.02 μm.

この低屈折率膜について、実施例1と同様に断面を観察したところ、シリカ粒子同士がシリケート成分を介して連結されてなる3次元網目構造が確認された。   When the cross section of this low refractive index film was observed in the same manner as in Example 1, a three-dimensional network structure in which silica particles were connected via a silicate component was confirmed.

(比較例1)
シリケート成分であるテトラエトキシシランを使用しなかった以外は実施例1と同様にポリエチレンテレフタレートフィルム上に低屈折率膜を設けた。
この低屈折率膜について、実施例1と同様に断面を観察したところ、アルミナ粒子同士が互いに接触しあって存在し、それらの間に空隙が確認されたが、空隙量は実施例に比べ少なかった。
(Comparative Example 1)
A low refractive index film was provided on a polyethylene terephthalate film in the same manner as in Example 1 except that tetraethoxysilane as a silicate component was not used.
When the cross section of this low refractive index film was observed in the same manner as in Example 1, the alumina particles were in contact with each other, and voids were observed between them, but the amount of voids was less than in the examples. It was.

(比較例2)
アルミナ粒子を使用しなかった以外は実施例1と同様にポリエチレンテレフタレートフィルム上に低屈折率膜を設けた。
この低屈折率膜について、実施例1と同様に断面を観察したところ、空隙が全くない均質な膜であることが確認された。
(Comparative Example 2)
A low refractive index film was provided on a polyethylene terephthalate film in the same manner as in Example 1 except that alumina particles were not used.
When the cross section of this low refractive index film was observed in the same manner as in Example 1, it was confirmed that the film was a homogeneous film having no voids.

(実施例6)
アルミナ粒子として、平均1次粒子径が0.005μmであるものを使用した以外は実施例1と同様にポリエチレンテレフタレートフィルム上に低屈折率膜を設けた。
この低屈折率膜について、実施例1と同様に断面を観察したところ、実施例1と比較し非常に緻密な3次元網目構造であることが確認された。
(Example 6)
A low refractive index film was provided on a polyethylene terephthalate film in the same manner as in Example 1 except that alumina particles having an average primary particle diameter of 0.005 μm were used.
When the cross section of this low refractive index film was observed in the same manner as in Example 1, it was confirmed that it had a very dense three-dimensional network structure as compared with Example 1.

(実施例7)
アルミナ粒子として、平均1次粒子径が0.15μmであるものを使用した以外は実施例1と同様にポリエチレンテレフタレートフィルム上に低屈折率膜を設けた。
この低屈折率膜について、実施例1と同様に断面を観察したところ、実施例1と比較し網目部分の間隔が大きな3次元網目構造であることが確認された。
(Example 7)
A low refractive index film was provided on a polyethylene terephthalate film in the same manner as in Example 1 except that alumina particles having an average primary particle diameter of 0.15 μm were used.
When the cross section of this low refractive index film was observed in the same manner as in Example 1, it was confirmed that the low refractive index film had a three-dimensional network structure in which the distance between the mesh portions was larger than that in Example 1.

実施例1〜7及び比較例1,2で得られた低屈折率膜について、下記評価1,2を行った。結果を下記表1に示す。また表1には、各実施例及び比較例の膜厚、並びに実施例1〜4及び比較例1の空隙率も併せて示す。   The following evaluations 1 and 2 were performed on the low refractive index films obtained in Examples 1 to 7 and Comparative Examples 1 and 2. The results are shown in Table 1 below. Table 1 also shows the film thicknesses of the examples and comparative examples, and the porosity of examples 1 to 4 and comparative example 1.

(評価1)
分光光度計で反射率を測定し、その反射率から塗膜の屈折率を算出した。
波長550nmにおける反射率(%R550nm)及び塗膜の屈折率を下記表1に示す。
(Evaluation 1)
The reflectance was measured with a spectrophotometer, and the refractive index of the coating film was calculated from the reflectance.
The reflectance (% R550 nm) at a wavelength of 550 nm and the refractive index of the coating film are shown in Table 1 below.

(評価2)
膜の全光線透過率及びヘーズ値はヘーズメータ NDH2000(日本電色工業社製)を用いて測定した。なお、全光線透過率の測定では、対照として未塗布の石英ガラスを用い、この石英ガラスの全光線透過率を100%として各々の試料の測定値を補正した。
結果を下記表1に示す。
(Evaluation 2)
The total light transmittance and haze value of the film were measured using a haze meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). In the measurement of the total light transmittance, uncoated quartz glass was used as a control, and the measured value of each sample was corrected by setting the total light transmittance of this quartz glass to 100%.
The results are shown in Table 1 below.

Figure 2010079053
Figure 2010079053

表1より、実施例1〜7では透明な低屈折率膜が形成されており、透明性に優れ、十分な反射防止効果を有する透明部材が作製されていることが確認された。   From Table 1, in Examples 1-7, it was confirmed that the transparent low refractive index film | membrane was formed, and the transparent member which is excellent in transparency and has sufficient antireflection effect was produced.

本発明の一実施形態の低屈折率膜の厚さ方向部分断面図である。It is a thickness direction fragmentary sectional view of the low refractive index film of one embodiment of the present invention. 本発明の一実施形態の蛍光ランプを示す縦断面図である。It is a longitudinal cross-sectional view which shows the fluorescent lamp of one Embodiment of this invention. 本発明の一実施形態の蛍光ランプを示す横断面図である。It is a cross-sectional view which shows the fluorescent lamp of one Embodiment of this invention. 実施例1の低屈折率膜の厚さ方向の断面写真である。2 is a cross-sectional photograph in the thickness direction of a low refractive index film of Example 1. FIG.

符号の説明Explanation of symbols

1・・・透光性封止管
2・・・本発明の低屈折率膜または反射防止膜
3・・・蛍光体層
4・・・電極
5・・・リード線
10・・・酸化物微粒子
12・・・シリケート成分
G・・・封入ガス
DESCRIPTION OF SYMBOLS 1 ... Translucent sealing tube 2 ... Low refractive index film | membrane or antireflection film 3 of this invention ... Phosphor layer 4 ... Electrode 5 ... Lead wire 10 ... Oxide fine particle 12 ... silicate component G ... filled gas

Claims (10)

酸化物微粒子とシリケート成分とを含み、
前記酸化物微粒子同士が前記シリケート成分を介して連結されてなる3次元網目構造を有する低屈折率膜。
Including oxide fine particles and a silicate component,
A low refractive index film having a three-dimensional network structure in which the oxide fine particles are connected to each other through the silicate component.
前記酸化物微粒子の屈折率がシリカよりも高い請求項1に記載の低屈折率膜。   The low refractive index film according to claim 1, wherein the refractive index of the oxide fine particles is higher than that of silica. 前記酸化物微粒子が、アルミナ及びイットリアの少なくともいずれかである請求項2に記載の低屈折率膜。   The low refractive index film according to claim 2, wherein the oxide fine particles are at least one of alumina and yttria. 前記3次元網目構造により形成されてなる空隙の割合(空隙率)が38〜70体積%である請求項1〜3のいずれか1項に記載の低屈折率膜。   The low refractive index film according to any one of claims 1 to 3, wherein a ratio (void ratio) of voids formed by the three-dimensional network structure is 38 to 70% by volume. 前記酸化物微粒子の平均1次粒子径が0.01〜0.10μmである請求項1〜4のいずれか1項に記載の低屈折率膜。   The low refractive index film according to any one of claims 1 to 4, wherein an average primary particle diameter of the oxide fine particles is 0.01 to 0.10 µm. 前記酸化物微粒子と前記シリケート成分との合計に対する前記酸化物微粒子の配合比率が30〜80体積%である請求項1〜5のいずれか1項に記載の低屈折率膜。   The low refractive index film according to any one of claims 1 to 5, wherein a blending ratio of the oxide fine particles with respect to a total of the oxide fine particles and the silicate component is 30 to 80% by volume. 請求項1〜6のいずれか1項に記載の低屈折率膜を有する反射防止膜。   An antireflection film having the low refractive index film according to claim 1. 前記反射防止膜中における屈折率が、当該反射防止膜が透明部材に接する側で高く、接しない側で低い請求項7に記載の反射防止膜。   The antireflective film according to claim 7, wherein a refractive index in the antireflective film is high on a side where the antireflective film is in contact with the transparent member, and is low on a noncontact side. 請求項1〜6のいずれか1項に記載の低屈折率膜または請求項7もしくは8に記載の反射防止膜のいずれかを有する透明部材。   The transparent member which has either the low refractive index film | membrane of any one of Claims 1-6, or the anti-reflective film of Claim 7 or 8. 請求項9に記載の透明部材を有する蛍光ランプ。   A fluorescent lamp having the transparent member according to claim 9.
JP2008248626A 2008-09-26 2008-09-26 Low refractive index film, antireflective film, transparent member, fluorescent lamp Pending JP2010079053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248626A JP2010079053A (en) 2008-09-26 2008-09-26 Low refractive index film, antireflective film, transparent member, fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248626A JP2010079053A (en) 2008-09-26 2008-09-26 Low refractive index film, antireflective film, transparent member, fluorescent lamp

Publications (1)

Publication Number Publication Date
JP2010079053A true JP2010079053A (en) 2010-04-08

Family

ID=42209554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248626A Pending JP2010079053A (en) 2008-09-26 2008-09-26 Low refractive index film, antireflective film, transparent member, fluorescent lamp

Country Status (1)

Country Link
JP (1) JP2010079053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101081746B1 (en) 2011-07-22 2011-11-09 주식회사 네패스 Anti-reflective coating composition, anti-reflective coating layer and substrate comprising the anti-reflective coating layer
JP2017045062A (en) * 2010-10-20 2017-03-02 スリーエム イノベイティブ プロパティズ カンパニー Low refractive index diffuser element having interconnected voids

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017227A (en) * 1998-07-03 2000-01-18 Nihon Yamamura Glass Co Ltd Coating composition
JP2003255103A (en) * 2002-02-28 2003-09-10 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device
JP2003322703A (en) * 2002-05-02 2003-11-14 Fuji Photo Film Co Ltd Reflection preventing film and method of forming the same, polarizing plate, image display device
JP2004086196A (en) * 2002-07-05 2004-03-18 Nof Corp Low refractive index layer for reflection reducing material, reflection reducing material equipped with same, and its usage
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
JP2007086764A (en) * 2005-08-25 2007-04-05 Fujifilm Corp Optical film, polarizing plate and image display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017227A (en) * 1998-07-03 2000-01-18 Nihon Yamamura Glass Co Ltd Coating composition
JP2003255103A (en) * 2002-02-28 2003-09-10 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device
JP2003322703A (en) * 2002-05-02 2003-11-14 Fuji Photo Film Co Ltd Reflection preventing film and method of forming the same, polarizing plate, image display device
JP2004086196A (en) * 2002-07-05 2004-03-18 Nof Corp Low refractive index layer for reflection reducing material, reflection reducing material equipped with same, and its usage
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
JP2007086764A (en) * 2005-08-25 2007-04-05 Fujifilm Corp Optical film, polarizing plate and image display apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045062A (en) * 2010-10-20 2017-03-02 スリーエム イノベイティブ プロパティズ カンパニー Low refractive index diffuser element having interconnected voids
JP2018194855A (en) * 2010-10-20 2018-12-06 スリーエム イノベイティブ プロパティズ カンパニー Low refractive index diffuser element having interconnected voids
KR101081746B1 (en) 2011-07-22 2011-11-09 주식회사 네패스 Anti-reflective coating composition, anti-reflective coating layer and substrate comprising the anti-reflective coating layer

Similar Documents

Publication Publication Date Title
JP5527482B2 (en) Anti-reflection laminate
EP1447433B1 (en) Coating material composition and article having coating film formed therewith
US20100167046A1 (en) Process for coating a glass plate
JP2006215542A (en) Anti-reflection coating and optical element having such anti-reflection coating for imaging system
KR101939871B1 (en) Cover glass for photoelectric conversion device
EP2476656A1 (en) Article having low-reflection film on surface of base material
WO2014061605A1 (en) Silica based porous film, article with silica based porous film and method for producing same
TW201606357A (en) Substrate with anti-glare film and article thereof
JP4443318B2 (en) Antireflection film and optical element having antireflection film
US20060099407A1 (en) Antireflective coating composition, antireflection film, and fabrication method thereof
JP5686138B2 (en) Method for producing a coating liquid for increasing light transmittance for use in glass for solar cell modules and coating liquid composition produced thereby
JP2011088787A (en) Composition for antireflection film, antireflection film, method for producing antireflection film, and substrate with antireflection film
JP2015049319A (en) Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
KR101659709B1 (en) Hollow-type aluminosilicate nanoparticle and preparation method thereof
KR20020093920A (en) Irregular film and method of manufacturing the film
JP4251093B2 (en) Lighting device
TW201606356A (en) Anti-glare-layer substrate and article
JP2010079053A (en) Low refractive index film, antireflective film, transparent member, fluorescent lamp
JP2016128157A (en) Production method of silica aerogel film
JP2012148952A (en) Coating solution for formation of low-reflective film, method for preparation thereof, and low-reflective member produced by using the same
JP6451424B2 (en) High durability low refractive index film
JP6164120B2 (en) Base material and article with antireflection film
WO2024080149A1 (en) Anti-reflection film, liquid composition, liquid composition group, and method for manufacturing anti-reflection film
JP2011138034A (en) Method for forming reflection enhancement film, reflection enhancement film, and coating material for forming reflection enhancement film
JP2014201598A (en) Composition for forming low refractive index film and production method of the same, and formation method of low refractive index film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319