JP2010078404A - Method and device for measuring raman scattering light - Google Patents

Method and device for measuring raman scattering light Download PDF

Info

Publication number
JP2010078404A
JP2010078404A JP2008245667A JP2008245667A JP2010078404A JP 2010078404 A JP2010078404 A JP 2010078404A JP 2008245667 A JP2008245667 A JP 2008245667A JP 2008245667 A JP2008245667 A JP 2008245667A JP 2010078404 A JP2010078404 A JP 2010078404A
Authority
JP
Japan
Prior art keywords
measured
incident light
light
raman scattered
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008245667A
Other languages
Japanese (ja)
Inventor
Hisashi Hiraki
平木  久
Kenji Toyoda
憲治 豊田
Hiroya Tsuji
博也 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008245667A priority Critical patent/JP2010078404A/en
Publication of JP2010078404A publication Critical patent/JP2010078404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring Raman scattering light capable of increasing the intensity of Raman scattering light without increasing the size of an incident light generating device and evaluating the surface of an object to be measured but also the inside, and a device therefor. <P>SOLUTION: In the method for measuring Raman scattering light 6, a reflection member 3 is provided behind an object 1 to be measured, which is perpendicular to the optical axis of incident light 2, in which the incident light 2 reflected on the surface of a reflection member 3 in the optical axis direction of the incident light 2 becomes reflected light 4 and the incident light 2 and the reflected light 4 overlapped each other, which produces a stationary wave 5 and positions the maximum portion of the stationary wave 5 at the objective site of the object 1 to be measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、ラマン散乱光の測定方法及び測定装置に関するものである。   The present invention relates to a measurement method and a measurement apparatus for Raman scattered light.

薄膜は膜厚が薄く、下記式に示すように、ラマン散乱光強度が小さく、ラマン散乱光の測定が困難であった。
ラマン散乱光強度∝I・d・A
[Iは散乱断面積、dは薄膜の膜厚、Aは電界強度]
ここで、散乱断面積Iは材料固有の値であり、膜厚dは薄膜の厚みであり、電界強度Aはレーザーの出力に依存する値である。そのため、薄膜測定時には膜厚dの値は小さくなるので、ラマン散乱光強度も小さくなってしまう。
The thin film was thin, and as shown in the following formula, the Raman scattered light intensity was small, and it was difficult to measure Raman scattered light.
Raman scattered light intensity ∝I ・ d ・ A
[I is scattering cross section, d is thin film thickness, A is electric field strength]
Here, the scattering cross section I is a value specific to the material, the film thickness d is the thickness of the thin film, and the electric field strength A is a value depending on the output of the laser. For this reason, since the value of the film thickness d becomes small during the thin film measurement, the Raman scattered light intensity also becomes small.

一方、特開2004−103108号公報に示されるように、表面の薄膜上にラマン光増強基体を配置して、表面増強ラマンスペクトルを評価する方法が知られている。この薄膜評価方法は、表面のカーボン保護膜上に、厚さ4nmのラマン光増強基体を付着させた透明金属を、カーボン保護膜側にラマン光増強基体が接するように配置して、表面増強ラマンスペクトルを用いて評価するものである。
特開2004−103108号公報
On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 2004-103108, a method for evaluating a surface-enhanced Raman spectrum by placing a Raman light-enhancing substrate on a surface thin film is known. In this thin film evaluation method, a transparent metal having a 4 nm-thick Raman light enhancing substrate attached on a carbon protective film on the surface is disposed so that the Raman light enhancing substrate is in contact with the carbon protective film side. The spectrum is used for evaluation.
JP 2004-103108 A

上記従来例の前者においては、上記問題を解決するために、入射光の電界強度を大きくして、ラマン散乱光強度を大きくしていた。しかしながら、入射光の電界強度を大きくするためには入射光発生装置を大型化する必要があり、レーザーを用いる場合には、装置の大型化がコストの増大を招いていた。また、入射光の電界強度を大きくし過ぎると、被測定物に損傷を与えることになるので、電界強度を大きくすることに限界があった。   In the former of the conventional example, in order to solve the above problem, the electric field intensity of incident light is increased to increase the Raman scattered light intensity. However, in order to increase the electric field intensity of incident light, it is necessary to increase the size of the incident light generating device. When a laser is used, the increase in size of the device causes an increase in cost. In addition, if the electric field strength of incident light is excessively increased, the object to be measured is damaged, and there is a limit to increasing the electric field strength.

上記従来例の後者においては、表面の薄膜を評価するものであり、薄膜が積層された薄膜多層体の内部を構成する薄膜を評価することができないものであった。   In the latter of the above conventional examples, the thin film on the surface is evaluated, and the thin film constituting the inside of the thin film multilayer body in which the thin films are laminated cannot be evaluated.

本願発明は、上記背景技術に鑑みてなしたものであり、その目的は、入射光発生装置を大型化することなくラマン散乱光強度を大きくすることができ、また、被測定物の表面だけでなく内部をも評価することができるラマン散乱光の測定方法及び測定装置を提供することである。   The present invention has been made in view of the above-mentioned background art, and its purpose is to increase the Raman scattered light intensity without increasing the size of the incident light generator, and only the surface of the object to be measured. It is another object of the present invention to provide a measurement method and a measurement apparatus for Raman scattered light that can evaluate the interior without any problem.

上記課題を解決するために、本願請求項1記載の発明は、ラマン散乱光の測定方法において、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、被測定物の測定対象部位に定在波の極大部が位置するようにしている。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present application is a method for measuring Raman scattered light, wherein a reflection member orthogonal to the optical axis of incident light is provided behind the object to be measured, and the surface of the reflection member is provided. Incident light is reflected in the optical axis direction of the incident light to become reflected light, and the standing light is generated by overlapping the incident light and the reflected light, and the maximum portion of the standing wave is located at the measurement target portion of the object to be measured. I am doing so.

本願請求項2記載の発明は、上記請求項1記載のラマン散乱光の測定方法において、入射光の波長を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしたことを特徴としている。   According to the second aspect of the present invention, in the method for measuring Raman scattered light according to the first aspect of the invention, by changing the wavelength of the incident light, the maximum portion of the standing wave is positioned at the measurement target portion of the object to be measured. It is characterized by that.

本願請求項3記載の発明は、上記請求項2記載のラマン散乱光の測定方法において、被測定物と反射部材が一体化されていることを特徴としている。   The invention according to claim 3 of the present application is characterized in that, in the method for measuring Raman scattered light according to claim 2, the object to be measured and the reflecting member are integrated.

本願請求項4記載の発明は、上記請求項1又は2記載のラマン散乱光の測定方法において、被測定物と反射部材との距離を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしたことを特徴としている。   The invention according to claim 4 of the present application is the method for measuring Raman scattered light according to claim 1 or 2, wherein the standing wave is measured at the measurement target portion of the measurement object by changing the distance between the measurement object and the reflecting member. It is characterized by the fact that the local maximum is located.

本願請求項5記載の発明は、上記請求項4記載のラマン散乱光の測定方法において、被測定物を固定し、反射部材を可動させることにより、被測定物と反射部材との距離を変えることを特徴としている。   The invention according to claim 5 of the present application is the method for measuring Raman scattered light according to claim 4, wherein the distance between the object to be measured and the reflecting member is changed by fixing the object to be measured and moving the reflecting member. It is characterized by.

本願請求項6記載の発明は、上記請求項4記載のラマン散乱光の測定方法において、反射部材を固定し、被測定物を可動させることにより、被測定物と反射部材との距離を変えることを特徴としている。   The invention according to claim 6 of the present application is the method for measuring Raman scattered light according to claim 4, wherein the distance between the object to be measured and the reflecting member is changed by fixing the reflecting member and moving the object to be measured. It is characterized by.

本願請求項7記載の発明は、上記請求項4記載のラマン散乱光の測定方法において、被測定物と反射部材の間に、入射光と反射光が透過する透明部材を挟み、透明部材の厚みを変えることにより、被測定物と反射部材との距離を変えることを特徴としている。   The invention according to claim 7 of the present application is the method for measuring Raman scattered light according to claim 4, wherein a transparent member through which incident light and reflected light are transmitted is sandwiched between the object to be measured and the reflecting member, and the thickness of the transparent member is measured. By changing the distance, the distance between the object to be measured and the reflecting member is changed.

本願請求項8記載の発明は、ラマン散乱光の測定装置において、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、入射光の波長を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしている。   The invention according to claim 8 of the present application is a Raman scattered light measuring apparatus, wherein a reflection member orthogonal to the optical axis of incident light is provided behind the object to be measured, and the incident light is incident on the surface of the reflection member. Reflected in the direction to become reflected light, and the incident light and the reflected light overlap to generate a standing wave, and by changing the wavelength of the incident light, the maximum part of the standing wave is located at the measurement target part of the object to be measured. I'm going to do it.

本願請求項9記載の発明は、ラマン散乱光の測定装置において、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、被測定物と反射部材との距離を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしている。   The invention according to claim 9 of the present application is a Raman scattered light measuring device, wherein a reflecting member orthogonal to the optical axis of incident light is provided behind the object to be measured, and the incident light is incident on the surface of the reflecting member. Reflected in the direction to become reflected light, the incident light and the reflected light overlap to generate a standing wave, and by changing the distance between the object to be measured and the reflecting member, the standing wave is measured at the measurement target part of the object to be measured. The local maximum is located.

本願請求項1記載の発明のラマン散乱光の測定方法においては、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、被測定物の測定対象部位に定在波の極大部が位置するものであるから、入射光発生装置を大型化することなく被測定物の測定対象部位の電界強度を大きくして、ラマン散乱光強度を大きくすることができる。また、入射光と反射光が重なり合うことにより発生する定在波は、入射光の光軸方向の特定部位に安定して存在するものであるから、被測定物の測定対象部位に選択的に定在波の極大部を発生させることができ、安定したラマン散乱光を測定することができる。   In the method for measuring Raman scattered light according to the first aspect of the present invention, a reflective member orthogonal to the optical axis of the incident light is provided behind the object to be measured, and the incident light is incident on the surface of the reflective member. Reflected in the direction to become reflected light, and the incident light and reflected light overlap to generate a standing wave, and the maximum part of the standing wave is located at the measurement target part of the object to be measured. It is possible to increase the Raman scattered light intensity by increasing the electric field intensity of the measurement target portion of the object to be measured without increasing the size of the apparatus. In addition, the standing wave generated when the incident light and the reflected light overlap with each other is stably present at a specific portion in the optical axis direction of the incident light, and thus is selectively determined at the measurement target portion of the object to be measured. A local wave maximum can be generated, and stable Raman scattered light can be measured.

本願請求項2記載の発明のラマン散乱光の測定方法においては、特に、入射光の波長を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようにできるため、被測定物と反射部材との距離を変える必要がないので、装置構成を簡易なものにすることができる。   In the method for measuring Raman scattered light according to the second aspect of the present invention, in particular, by changing the wavelength of the incident light, the maximum part of the standing wave can be located at the measurement target portion of the object to be measured. Since it is not necessary to change the distance between the object to be measured and the reflecting member, the apparatus configuration can be simplified.

本願請求項3記載の発明のラマン散乱光の測定方法においては、特に、被測定物と反射部材を一体化することにより、反射部材を別途設ける必要がないので、既存の装置に対応することができる。   In the method for measuring Raman scattered light according to the third aspect of the present invention, in particular, by integrating the object to be measured and the reflecting member, there is no need to separately provide a reflecting member, so that it can be used for existing devices. it can.

本願請求項4記載の発明のラマン散乱光の測定方法においては、特に、被測定物と反射部材との距離を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようにできるため、例えば、入射光発生装置にて発生するレーザーの波長が限られている場合にも対応することができる。   In the method for measuring Raman scattered light according to claim 4 of the present application, in particular, the maximum portion of the standing wave is located at the measurement target portion of the measurement object by changing the distance between the measurement object and the reflecting member. Therefore, for example, it is possible to cope with a case where the wavelength of the laser generated by the incident light generator is limited.

本願請求項5記載の発明のラマン散乱光の測定方法においては、特に、被測定物を固定し、反射部材を可動させることにより、被測定物と反射部材との距離を変えるものであるから、試料台に被測定物を固定し、別途、可動式の反射部材を設けることで、既存装置の改良が容易にできる。   In the method of measuring Raman scattered light of the invention according to claim 5 of the present application, in particular, by fixing the object to be measured and moving the reflecting member, the distance between the object to be measured and the reflecting member is changed. By fixing the object to be measured to the sample stage and separately providing a movable reflecting member, the existing apparatus can be easily improved.

本願請求項6記載の発明のラマン散乱光の測定方法においては、特に、反射部材を固定し、被測定物を可動させることにより、被測定物と反射部材との距離を変えるものであるから、入射光の光軸方向の特定部位に安定して存在する定在波の極大部に被測定物の測定対象部位を選択的に合わせることができる。   In the method for measuring Raman scattered light according to the invention of claim 6 of the present application, in particular, the distance between the object to be measured and the reflecting member is changed by fixing the reflecting member and moving the object to be measured. It is possible to selectively match the measurement target portion of the object to be measured with the maximum portion of the standing wave that stably exists at the specific portion in the optical axis direction of the incident light.

本願請求項7記載の発明のラマン散乱光の測定方法においては、特に、被測定物と反射部材の間に、入射光と反射光が透過する透明部材を挟み、透明部材の厚みを変えることにより、被測定物と反射部材との距離を変えるものであり、簡便な方法で被測定物の測定対象部位に定在波の極大部が位置するようにできる。   In the method for measuring Raman scattered light according to claim 7 of the present application, in particular, by inserting a transparent member through which incident light and reflected light are transmitted between the object to be measured and the reflecting member, and changing the thickness of the transparent member. The distance between the object to be measured and the reflecting member is changed, and the maximum portion of the standing wave can be positioned at the measurement target portion of the object to be measured by a simple method.

本願請求8記載の発明のラマン散乱光の測定装置においては、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、入射光の波長を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するものであるから、入射光発生装置を大型化することなく被測定物の測定対象部位の電界強度を大きくして、ラマン散乱光強度を大きくすることができる。また、入射光と反射光が重なり合うことにより発生する定在波は、入射光の光軸方向の特定部位に安定して存在するものであるから、被測定物の測定対象部位に選択的に定在波の極大部を発生させることができ、安定したラマン散乱光を測定することができる。さらに、入射光の波長を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようにできるため、被測定物と反射部材との距離を変える必要がないので、装置構成を簡易なものにすることができる。   In the Raman scattered light measuring apparatus according to the eighth aspect of the present invention, a reflecting member orthogonal to the optical axis of the incident light is provided behind the object to be measured, and the incident light is incident on the surface of the reflecting member in the optical axis direction of the incident light. The reflected light is reflected to become reflected light, and a standing wave is generated by overlapping the incident light and the reflected light. By changing the wavelength of the incident light, the maximum part of the standing wave is located at the measurement target portion of the object to be measured. Therefore, the intensity of the Raman scattered light can be increased by increasing the electric field strength of the measurement target portion of the object to be measured without increasing the size of the incident light generator. In addition, the standing wave generated when the incident light and the reflected light overlap with each other is stably present at a specific portion in the optical axis direction of the incident light, and thus is selectively determined at the measurement target portion of the object to be measured. A local wave maximum can be generated, and stable Raman scattered light can be measured. Furthermore, by changing the wavelength of the incident light, the maximum portion of the standing wave can be positioned at the measurement target site of the object to be measured, so there is no need to change the distance between the object to be measured and the reflecting member. The configuration can be simplified.

本願請求項9記載の発明のラマン散乱光の測定装置においては、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、被測定物と反射部材との距離を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するものであるから、入射光発生装置を大型化することなく被測定物の測定対象部位の電界強度を大きくして、ラマン散乱光強度を大きくすることができる。また、入射光と反射光が重なり合うことにより発生する定在波は、入射光の光軸方向の特定部位に安定して存在するものであるから、被測定物の測定対象部位に選択的に定在波の極大部を発生させることができ、安定したラマン散乱光を測定することができる。さらに、被測定物と反射部材との距離を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようにできるため、例えば、入射光発生装置にて発生するレーザーの波長が限られている場合にも対応することができる。   In the Raman scattered light measuring device according to the ninth aspect of the present invention, a reflective member orthogonal to the optical axis of the incident light is provided behind the object to be measured, and the incident light is incident on the surface of the reflective member. Reflected in the direction to become reflected light, the incident light and the reflected light overlap to generate a standing wave, and by changing the distance between the object to be measured and the reflecting member, the standing wave is measured at the measurement target part of the object to be measured. Therefore, the intensity of the Raman scattered light can be increased by increasing the electric field intensity of the measurement target portion of the object to be measured without increasing the size of the incident light generator. In addition, the standing wave generated when the incident light and the reflected light overlap with each other is stably present at a specific portion in the optical axis direction of the incident light, and thus is selectively determined at the measurement target portion of the object to be measured. A local wave maximum can be generated, and stable Raman scattered light can be measured. Furthermore, by changing the distance between the object to be measured and the reflecting member, the maximum part of the standing wave can be located at the measurement target part of the object to be measured. For example, the laser generated by the incident light generator It is possible to cope with a case where the wavelength is limited.

図1及び図2は、本願発明の第1の実施形態であるラマン散乱光の測定方法及び測定装置を示している。このラマン散乱光の測定方法は、図1(a)、(b)に示すように、被測定物1の後方に、入射光2の光軸と直交する反射部材3を設け、反射部材3の表面で入射光2が入射光2の光軸方向に反射されて反射光4となり、入射光2と反射光4が重なり合うことにより定在波5を発生させ、被測定物1の測定対象部位に定在波5の極大部が位置するようになしている。また、被測定物1と反射部材3との距離を変えることにより、被測定物1の測定対象部位に定在波5の極大部が位置するようになしている。ここで、被測定物1は薄膜多層体8であり、薄膜多層体8は入射光2の光軸と直交するように薄膜が積層されている。   1 and 2 show a Raman scattered light measuring method and measuring apparatus according to the first embodiment of the present invention. As shown in FIGS. 1A and 1B, this Raman scattered light measurement method is provided with a reflecting member 3 that is orthogonal to the optical axis of incident light 2 behind the DUT 1. The incident light 2 is reflected on the surface in the optical axis direction of the incident light 2 to become reflected light 4. The incident light 2 and the reflected light 4 are overlapped to generate a standing wave 5. The maximum part of the standing wave 5 is located. Further, by changing the distance between the DUT 1 and the reflecting member 3, the maximum portion of the standing wave 5 is positioned at the measurement target portion of the DUT 1. Here, the DUT 1 is a thin film multilayer body 8, and the thin film multilayer body 8 has thin films laminated so as to be orthogonal to the optical axis of the incident light 2.

そして、このラマン散乱光の測定装置は、被測定物1の後方に、入射光2の光軸と直交する反射部材3を設け、反射部材3の表面で入射光2が入射光2の光軸方向に反射されて反射光4となり、入射光2と反射光4が重なり合うことにより定在波5を発生させ、被測定物1と反射部材3との距離を変えることにより、被測定物1の測定対象部位に定在波5の極大部が位置するようになしている。   In this Raman scattered light measuring apparatus, a reflection member 3 orthogonal to the optical axis of the incident light 2 is provided behind the DUT 1, and the incident light 2 is incident on the surface of the reflection member 3. The reflected light 4 is reflected in the direction, and the incident light 2 and the reflected light 4 are overlapped to generate a standing wave 5. By changing the distance between the measured object 1 and the reflecting member 3, the measured object 1 The maximum part of the standing wave 5 is located at the measurement target site.

以下、この実施形態のラマン散乱光の測定方法及び測定装置を、より具体的詳細に説明する。本願発明で用いられる測定装置は図2に示すように、励起光源10と、光学フィルター11と、ミラー12と、ハーフミラー13と、ノッチフィルター14と、分光器15と、光検出器16とを備えている。   Hereinafter, the Raman scattered light measurement method and measurement apparatus of this embodiment will be described in more detail. As shown in FIG. 2, the measuring device used in the present invention includes an excitation light source 10, an optical filter 11, a mirror 12, a half mirror 13, a notch filter 14, a spectroscope 15, and a photodetector 16. I have.

励起光源10はラマン散乱を誘起する励起光を発生させるものであり、例えば、レーザー発信器等が用いられる。光学フィルター11は励起光源10から発せられた励起光の不要な輝線等を取り除いて入射光2とするものであり、励起光源10とミラー12の間に設けられる。   The excitation light source 10 generates excitation light that induces Raman scattering. For example, a laser transmitter or the like is used. The optical filter 11 removes unnecessary bright lines of the excitation light emitted from the excitation light source 10 to make the incident light 2 and is provided between the excitation light source 10 and the mirror 12.

ミラー12は入射光2の光軸を変えて被測定物1へ入射光2を導くものであり、被測定物1は入射光2の光軸と直交するように置かれている。そして、被測定物1の後方には、入射光2の光軸と直交するように反射部材3が設けられている。反射部材3は例えば、白色の樹脂板、白色塗装した金属板、アルミナ等のセラミック板、アルミ反射板、金成膜反射板、銀成膜反射板等がよい。   The mirror 12 changes the optical axis of the incident light 2 and guides the incident light 2 to the object 1 to be measured. The object 1 to be measured is placed so as to be orthogonal to the optical axis of the incident light 2. A reflection member 3 is provided behind the DUT 1 so as to be orthogonal to the optical axis of the incident light 2. The reflecting member 3 is preferably a white resin plate, a white coated metal plate, a ceramic plate such as alumina, an aluminum reflecting plate, a gold film forming reflecting plate, a silver film forming reflecting plate, or the like.

被測定物1と反射部材3はともに入射光2の光軸と直交し、一定の距離をおいて平行に配置されている。この場合、反射部材3の表面で入射光2が入射光2の光軸方向に反射されて反射光4となり、入射光2と反射光4が重なり合うことにより定在波5が発生する。ここで、被測定物1の測定対象部位に定在波5の極大部が位置するように反射部材3の位置を調整しているので、被測定物1の測定対象部位で発生するラマン散乱光6の強度を大きくすることができる。   The DUT 1 and the reflection member 3 are both orthogonal to the optical axis of the incident light 2 and arranged in parallel at a certain distance. In this case, the incident light 2 is reflected on the surface of the reflecting member 3 in the optical axis direction of the incident light 2 to become reflected light 4, and the standing wave 5 is generated by overlapping the incident light 2 and the reflected light 4. Here, since the position of the reflecting member 3 is adjusted so that the maximum portion of the standing wave 5 is located at the measurement target portion of the DUT 1, the Raman scattered light generated at the measurement target portion of the DUT 1 is measured. The strength of 6 can be increased.

ハーフミラー13は入射光2を透過させ、ラマン散乱光6や反射光4やレイリー散乱光等を反射させることにより、入射光2の光軸とラマン散乱光6等の光軸を変えるものである。ノッチフィルター14は、ハーフミラー13で反射された反射光4やレイリー散乱光等を取り除き、分光器15にラマン散乱光6を導くものである。分光器15はラマン散乱光6を分光して特定の波長領域のラマン散乱光6を光検出器16で検出できるようにするものである。   The half mirror 13 transmits the incident light 2 and reflects the Raman scattered light 6, the reflected light 4, the Rayleigh scattered light, and the like, thereby changing the optical axis of the incident light 2 and the optical axis of the Raman scattered light 6 and the like. . The notch filter 14 removes the reflected light 4 and Rayleigh scattered light reflected by the half mirror 13 and guides the Raman scattered light 6 to the spectroscope 15. The spectroscope 15 separates the Raman scattered light 6 so that the Raman scattered light 6 in a specific wavelength region can be detected by the photodetector 16.

上記はラマン散乱光の測定装置の一例であって、従来のラマン散乱分光分析を行う光学配置であれば、どのようなものでも用いることができる。例えば、光学フィルター11は、励起光源10からの不要な光を取り除き、観測すべきラマン散乱光6にこの励起光源10からの不要な光や、この不要な光によるラマン散乱光6が光検出器16に入らないようにすることが主な目的であることから、使用する励起光源10、及び観測するラマン散乱光6によっては、光学フィルター11は不要となるものである。また、光軸を合わせるためにミラー12を使用しているが、これはもちろん、励起光源10の配置によって、不要になる場合もあれば、複数必要になる場合もある。   The above is an example of an apparatus for measuring Raman scattered light, and any optical arrangement that performs conventional Raman scattering spectroscopic analysis can be used. For example, the optical filter 11 removes unnecessary light from the excitation light source 10, and unnecessary light from the excitation light source 10 or Raman scattered light 6 due to this unnecessary light is detected as the Raman scattered light 6 to be observed by the photodetector. Since the main purpose is not to enter 16, the optical filter 11 is unnecessary depending on the excitation light source 10 to be used and the Raman scattered light 6 to be observed. Further, although the mirror 12 is used to align the optical axis, this may be unnecessary or may be necessary depending on the arrangement of the excitation light source 10.

さらに、図2では、ラマン散乱光6は後方散乱(入射光2が入射される側へのラマン散乱)を観測しているが、ラマン散乱はあらゆる方向に発するため、必ずしも後方である必要はなく、任意の方向で観測できる。図2は、後方散乱による観測の例を示しており、そのため、入射光2の光軸とラマン散乱光6の光軸が重なってしまうため、ハーフミラー13を用いて、ラマン散乱光6を光検出器16の方向に導いている。ここで、ハーフミラー13を用いる理由は、もしこのミラーが全反射ミラーであった場合、入射光2も全反射されてしまうため、入射光2を被測定物1に導けないからである。よって、ラマン散乱光6を取り込む方向が異なれば、ハーフミラー13はミラーに置き換えることも可能であり、また、光検出器16の配置によっては、ミラーも不要となるものである。   Further, in FIG. 2, the Raman scattered light 6 is observed as backscattering (Raman scattering toward the side where the incident light 2 is incident). However, since Raman scattering is emitted in all directions, it is not always necessary to be behind. It can be observed in any direction. FIG. 2 shows an example of observation by backscattering. For this reason, the optical axis of the incident light 2 and the optical axis of the Raman scattered light 6 overlap each other. It leads to the direction of the detector 16. Here, the reason for using the half mirror 13 is that if this mirror is a total reflection mirror, the incident light 2 is also totally reflected, and therefore the incident light 2 cannot be guided to the DUT 1. Therefore, if the direction in which the Raman scattered light 6 is captured is different, the half mirror 13 can be replaced with a mirror, and depending on the arrangement of the photodetector 16, a mirror is not necessary.

ノッチフィルター14は、上述のように、反射光4やレイリー散乱光等を取り除くために使用するが、これも、観測したいラマン散乱光6が、反射光4やレイリー散乱光等とエネルギー的に離れた位置に観測される場合は不要である。また、ラマン散乱光6の検出に分光器15を用いているが、観測すべきラマン散乱光6の波長帯域が固定されている場合には、分光器15の代わりに光学フィルターを用いることもできる。光検出器16としては、CCD、光電子倍増管、フォトダイオードなど、従来用いられているあらゆる光検出器を用いることができる。   As described above, the notch filter 14 is used to remove the reflected light 4 and Rayleigh scattered light. However, the Raman scattered light 6 to be observed is also separated from the reflected light 4 and Rayleigh scattered light in terms of energy. It is not necessary when observed at a different position. Further, although the spectroscope 15 is used for detecting the Raman scattered light 6, an optical filter can be used instead of the spectroscope 15 when the wavelength band of the Raman scattered light 6 to be observed is fixed. . As the photodetector 16, any conventionally used photodetector such as a CCD, a photomultiplier tube, or a photodiode can be used.

つまり、上述のように、本願発明では、従来のラマン分光分析を行う光学配置であれば、どのようなものでも用いることができるので、本願発明における測定装置自身の具体的構成は特に限定しない。   That is, as described above, in the present invention, any optical arrangement that performs conventional Raman spectroscopic analysis can be used. Therefore, the specific configuration of the measuring apparatus in the present invention is not particularly limited.

次に、被測定物1の測定対象部位に定在波5の極大部が位置するようにする方法を説明する。ここで、被測定物1は薄膜多層体8であり、図1(a)に示すように、薄膜多層体8は入射光2の光軸と直交するように第1の薄膜8a、第2の薄膜8b、第3の薄膜8c、第4の薄膜8dが積層されている。例えば、入射光発生装置にて発生するレーザーの波長が限られ、入射光2の波長が固定されている場合、薄膜多層体8と反射部材3との距離を変えることにより、薄膜多層体8の測定対象部位である特定の層の薄膜に定在波5の極大部が位置するようにする。図1(a)に示すように、第2の薄膜8bに定在波5の極大部が位置するようにするには、薄膜多層体8と反射部材3を接するように設ける必要がある。この場合、第4の薄膜8dにも定在波5の極大部が位置するようになっているが、分光器15にて、第2の薄膜8bで発生するラマン散乱光6を選択的に分光して、光検出器16で検出することができる。また、図1(b)に示すように、第3の薄膜8cに定在波5の極大部が位置するようにするには、薄膜多層体8と反射部材3を所定の距離離して設ける必要がある。この場合、第1の薄膜8aにも定在波5の極大部が位置するようになっているが、分光器15にて、第3の薄膜8cで発生するラマン散乱光6を選択的に分光して、光検出器16で検出することができる。   Next, a method for causing the maximum portion of the standing wave 5 to be positioned at the measurement target portion of the DUT 1 will be described. Here, the DUT 1 is a thin film multilayer body 8, and as shown in FIG. 1A, the thin film multilayer body 8 has a first thin film 8 a and a second thin film so as to be orthogonal to the optical axis of the incident light 2. A thin film 8b, a third thin film 8c, and a fourth thin film 8d are stacked. For example, when the wavelength of the laser generated by the incident light generator is limited and the wavelength of the incident light 2 is fixed, the distance between the thin film multilayer body 8 and the reflecting member 3 is changed to change the thickness of the thin film multilayer body 8. The maximum part of the standing wave 5 is positioned on the thin film of the specific layer that is the measurement target part. As shown in FIG. 1A, in order for the maximum portion of the standing wave 5 to be positioned on the second thin film 8b, it is necessary to provide the thin film multilayer body 8 and the reflecting member 3 in contact with each other. In this case, the maximum portion of the standing wave 5 is located also in the fourth thin film 8d, but the spectroscope 15 selectively splits the Raman scattered light 6 generated in the second thin film 8b. Then, it can be detected by the photodetector 16. Further, as shown in FIG. 1B, in order to position the maximum portion of the standing wave 5 on the third thin film 8c, it is necessary to provide the thin film multilayer body 8 and the reflecting member 3 at a predetermined distance apart. There is. In this case, the maximum portion of the standing wave 5 is also located on the first thin film 8a, but the spectroscope 15 selectively splits the Raman scattered light 6 generated in the third thin film 8c. Then, it can be detected by the photodetector 16.

ここでは、被測定物1として薄膜多層体8を用いて説明しているが、被測定物1と反射部材3との距離を変えることにより、測定対象部位に定在波5の極大部が位置するようにすれば、被測定物1の表面だけでなく、内部も測定可能となる。   Here, the thin film multilayer body 8 is described as the device under test 1, but by changing the distance between the device under test 1 and the reflecting member 3, the maximum portion of the standing wave 5 is positioned at the measurement target site. By doing so, not only the surface of the DUT 1 but also the inside can be measured.

したがって、被測定物1の後方に、入射光2の光軸と直交する反射部材3を設け、反射部材3の表面で入射光2が入射光2の光軸方向に反射されて反射光4となり、入射光2と反射光4が重なり合うことにより定在波5を発生させ、被測定物1の測定対象部位に定在波5の極大部が位置するものであるから、入射光発生装置を大型化することなく被測定物1の測定対象部位の電界強度を大きくして、ラマン散乱光強度を大きくすることができる。また、入射光2と反射光4が重なり合うことにより発生する定在波5は、入射光2の光軸方向の特定部位に安定して存在するものであるから、被測定物1の測定対象部位に選択的に定在波5の極大部を発生させることができ、安定したラマン散乱光6を測定することができる。さらに、被測定物1と反射部材3との距離を変えることにより、被測定物1の測定対象部位に定在波5の極大部が位置するようにできるため、例えば、入射光発生装置にて発生するレーザーの波長が限られている場合にも対応することができる。   Therefore, the reflection member 3 orthogonal to the optical axis of the incident light 2 is provided behind the DUT 1, and the incident light 2 is reflected in the optical axis direction of the incident light 2 by the surface of the reflection member 3 to become reflected light 4. Since the incident light 2 and the reflected light 4 are overlapped to generate a standing wave 5 and the maximum portion of the standing wave 5 is located at the measurement target portion of the object 1 to be measured, the incident light generator is large-sized. The electric field intensity of the measurement target portion of the DUT 1 can be increased without increasing the Raman scattered light intensity. In addition, the standing wave 5 generated by the overlapping of the incident light 2 and the reflected light 4 is stably present at a specific portion in the optical axis direction of the incident light 2, so that the measurement target portion of the DUT 1 is measured. Thus, the local maximum portion of the standing wave 5 can be selectively generated, and the stable Raman scattered light 6 can be measured. Furthermore, by changing the distance between the DUT 1 and the reflecting member 3, the maximum part of the standing wave 5 can be positioned at the measurement target portion of the DUT 1. For example, in the incident light generator It is possible to cope with the case where the wavelength of the generated laser is limited.

図3は、本願発明の第2の実施形態であるラマン散乱光の測定方法及び測定装置を示している。ここでは、上記第1の実施形態と相違する事項についてのみ説明し、その他の事項(構成、作用効果等)については、上記第1の実施形態と同様であるのでその説明を省略する。このラマン散乱光の測定方法は、入射光2の波長を変えることにより、被測定物1の測定対象部位に定在波5の極大部が位置するようになしている。また、被測定物1と反射部材3が一体化されている。   FIG. 3 shows a Raman scattered light measuring method and measuring apparatus according to the second embodiment of the present invention. Here, only matters different from those in the first embodiment will be described, and other matters (configuration, operational effects, and the like) are the same as those in the first embodiment, and thus description thereof will be omitted. In this Raman scattered light measurement method, the maximum portion of the standing wave 5 is positioned at the measurement target portion of the DUT 1 by changing the wavelength of the incident light 2. In addition, the DUT 1 and the reflecting member 3 are integrated.

そして、このラマン散乱光の測定装置は、被測定物1の後方に、入射光2の光軸と直交する反射部材3を設け、反射部材3の表面で入射光2が入射光2の光軸方向に反射されて反射光4となり、入射光2と反射光4が重なり合うことにより定在波5を発生させ、入射光2の波長を変えることにより、被測定物1の測定対象部位に定在波5の極大部が位置するようになしている。   In this Raman scattered light measuring apparatus, a reflection member 3 orthogonal to the optical axis of the incident light 2 is provided behind the DUT 1, and the incident light 2 is incident on the surface of the reflection member 3. The reflected light 4 is reflected in the direction, and the incident light 2 and the reflected light 4 are overlapped to generate a standing wave 5. By changing the wavelength of the incident light 2, the measurement object 1 of the object 1 is measured. The local maximum of the wave 5 is located.

次に、被測定物1の測定対象部位に定在波5の極大部が位置するようにする方法を説明する。ここで、被測定物1は薄膜多層体8であり、図3(a)に示すように、薄膜多層体8は入射光2の光軸と直交するように第1の薄膜8a、第2の薄膜8b、第3の薄膜8c、第4の薄膜8dが積層されている。また、反射部材3として、例えばアルミ薄膜を用い、第4の薄膜8dと接合して、薄膜多層体8と反射部材3を一体化している。このように薄膜多層体8と反射部材3との距離が固定されている場合、入射光2の波長を変えることにより、薄膜多層体8の測定対象部位である特定の層の薄膜に定在波5の極大部が位置するようにする。図3に示すように、第3の薄膜8cに定在波5の極大部が位置するようにするには、図3(a)に示す波長の長い入射光2では対応できず、図3(b)に示す波長の短い入射光2で対応することができる。この場合、第1の薄膜8a、第4の薄膜8dにも定在波5の極大部が位置するようになっているが、分光器15にて、第3の薄膜8cで発生するラマン散乱光6を選択的に分光して、光検出器16で検出することができる。   Next, a method for causing the maximum portion of the standing wave 5 to be positioned at the measurement target portion of the DUT 1 will be described. Here, the DUT 1 is a thin film multilayer body 8, and as shown in FIG. 3A, the thin film multilayer body 8 has the first thin film 8 a and the second thin film 8 so as to be orthogonal to the optical axis of the incident light 2. A thin film 8b, a third thin film 8c, and a fourth thin film 8d are stacked. Further, as the reflecting member 3, for example, an aluminum thin film is used, and the thin film multilayer body 8 and the reflecting member 3 are integrated by being joined to the fourth thin film 8d. When the distance between the thin film multilayer body 8 and the reflecting member 3 is fixed as described above, the standing wave is applied to the thin film of the specific layer that is the measurement target portion of the thin film multilayer body 8 by changing the wavelength of the incident light 2. The local maximum of 5 is located. As shown in FIG. 3, in order to position the local maximum portion of the standing wave 5 on the third thin film 8c, the incident light 2 having a long wavelength shown in FIG. The incident light 2 having a short wavelength shown in b) can be used. In this case, the local maximum portion of the standing wave 5 is located also in the first thin film 8a and the fourth thin film 8d, but the Raman scattered light generated in the third thin film 8c by the spectroscope 15. 6 can be selectively dispersed and detected by the photodetector 16.

したがって、入射光2の波長を変えることにより、被測定物1の測定対象部位に定在波5の極大部が位置するようにできるため、被測定物1と反射部材3との距離を変える必要がないので、装置構成を簡易なものにすることができる。また、被測定物1と反射部材3を一体化することにより、反射部材3を別途設ける必要がないので、既存の装置に対応することができる。   Accordingly, by changing the wavelength of the incident light 2, the maximum portion of the standing wave 5 can be located at the measurement target portion of the device under test 1, so the distance between the device under test 1 and the reflecting member 3 needs to be changed. Therefore, the apparatus configuration can be simplified. In addition, by integrating the DUT 1 and the reflective member 3, it is not necessary to separately provide the reflective member 3, so that it is possible to deal with an existing apparatus.

図4は、本願発明の第3の実施形態であるラマン散乱光の測定方法を示している。ここでは、上記第1の実施形態と相違する事項についてのみ説明し、その他の事項(構成、作用効果等)については、上記第1の実施形態と同様であるのでその説明を省略する。このラマン散乱光の測定方法は、被測定物1を固定し、反射部材3を可動させることにより、被測定物1と反射部材3との距離を変えるようにしている。   FIG. 4 shows a method for measuring Raman scattered light according to the third embodiment of the present invention. Here, only matters different from those in the first embodiment will be described, and other matters (configuration, operational effects, and the like) are the same as those in the first embodiment, and thus description thereof will be omitted. In this Raman scattered light measurement method, the distance between the DUT 1 and the reflecting member 3 is changed by fixing the DUT 1 and moving the reflecting member 3.

具体的に説明すると、被測定物1は測定装置の基体17に固定され、反射部材3は駆動手段18を介して測定装置の基体17に固定される。被測定物1は、例えば測定装置の試料台(図示せず)に置かれ、基体17に固定される。また、駆動手段18は例えば機械駆動や電動駆動等であり、反射部材3を入射光2の光軸方向に移動させることができるものである。ここで、試料台は被測定物1に入射する入射光2が透過して、反射部材3に入射できるよう、開口部が設けられている。   More specifically, the DUT 1 is fixed to the base 17 of the measuring device, and the reflecting member 3 is fixed to the base 17 of the measuring device via the driving means 18. The DUT 1 is placed, for example, on a sample stage (not shown) of a measuring apparatus and fixed to the base body 17. The driving means 18 is, for example, mechanical drive or electric drive, and can move the reflecting member 3 in the optical axis direction of the incident light 2. Here, the sample stage is provided with an opening so that incident light 2 incident on the DUT 1 can be transmitted and incident on the reflecting member 3.

したがって、被測定物1を固定し、反射部材3を可動させることにより、被測定物1と反射部材3との距離を変えるものであるから、試料台に被測定物1を固定し、別途、可動式の反射部材3を設けることで、既存装置の改良が容易にできる。   Therefore, since the object 1 is fixed and the reflecting member 3 is moved, the distance between the object 1 and the reflecting member 3 is changed. Therefore, the object 1 is fixed to the sample stage, and separately, By providing the movable reflection member 3, the existing apparatus can be easily improved.

図5は、本願発明の第4の実施形態であるラマン散乱光の測定方法を示している。ここでは、上記第1の実施形態と相違する事項についてのみ説明し、その他の事項(構成、作用効果等)については、上記第1の実施形態と同様であるのでその説明を省略する。このラマン散乱光の測定方法は、反射部材を固定し、被測定物を可動させることにより、被測定物1と反射部材3との距離を変えるようにしている。   FIG. 5 shows a method for measuring Raman scattered light according to the fourth embodiment of the present invention. Here, only matters different from those in the first embodiment will be described, and other matters (configuration, operational effects, and the like) are the same as those in the first embodiment, and thus description thereof will be omitted. In this Raman scattered light measurement method, the distance between the object to be measured 1 and the reflecting member 3 is changed by fixing the reflecting member and moving the object to be measured.

具体的に説明すると、被測定物1は駆動手段18を介して測定装置の基体17に固定され、反射部材3は測定装置の基体17に固定される。被測定物1は、例えば測定装置の試料台(図示せず)に置かれ、基体17に固定される。また、駆動手段18は例えば機械駆動や電動駆動等であり、試料台に置かれた被測定物1を入射光2の光軸方向に移動させることができるものである。ここで、試料台は被測定物1に入射する入射光2が透過して、反射部材3に入射できるよう、開口部が設けられている。   More specifically, the DUT 1 is fixed to the base 17 of the measuring device via the driving means 18, and the reflecting member 3 is fixed to the base 17 of the measuring device. The DUT 1 is placed, for example, on a sample stage (not shown) of a measuring apparatus and fixed to the base body 17. Further, the drive means 18 is, for example, mechanical drive or electric drive, and can move the DUT 1 placed on the sample stage in the optical axis direction of the incident light 2. Here, the sample stage is provided with an opening so that incident light 2 incident on the DUT 1 can be transmitted and incident on the reflecting member 3.

したがって、反射部材3を固定し、被測定物1を可動させることにより、被測定物1と反射部材3との距離を変えるものであるから、入射光2の光軸方向の特定部位に安定して存在する定在波5の極大部に被測定物1の測定対象部位を選択的に合わせることができる。   Therefore, by fixing the reflecting member 3 and moving the object 1 to be measured, the distance between the object 1 to be measured and the reflecting member 3 is changed, so that it is stable at a specific site in the optical axis direction of the incident light 2. It is possible to selectively match the measurement target portion of the DUT 1 to the maximum portion of the standing wave 5 present.

図6は、本願発明の第5の実施形態であるラマン散乱光の測定方法を示している。ここでは、上記第1の実施形態と相違する事項についてのみ説明し、その他の事項(構成、作用効果等)については、上記第1の実施形態と同様であるのでその説明を省略する。このラマン散乱光の測定方法は、被測定物1と反射部材3の間に、入射光2と反射光4が透過する透明部材7を挟み、透明部材7の厚みを変えることにより、被測定物1と反射部材3との距離を変えるようにしている。   FIG. 6 shows a method for measuring Raman scattered light according to the fifth embodiment of the present invention. Here, only matters different from those in the first embodiment will be described, and other matters (configuration, operational effects, and the like) are the same as those in the first embodiment, and thus description thereof will be omitted. In this Raman scattered light measurement method, a transparent member 7 through which incident light 2 and reflected light 4 are transmitted is sandwiched between the measured object 1 and the reflecting member 3, and the thickness of the transparent member 7 is changed. The distance between 1 and the reflecting member 3 is changed.

透明部材7は入射光2と反射光4が透過するものであり、例えば、透明なプラスチック板、透明なガラス板、透明なプラスチックシートなどがよい。被測定物1と反射部材3の間に透明部材7を挟む場合は、厚みの異なる透明部材7を必要に応じて使い分けてもよいし、一定の厚みの透明部材7を複数、重ねてもよい。   The transparent member 7 transmits the incident light 2 and the reflected light 4, and is preferably a transparent plastic plate, a transparent glass plate, a transparent plastic sheet, or the like. When the transparent member 7 is sandwiched between the DUT 1 and the reflecting member 3, the transparent members 7 having different thicknesses may be properly used as necessary, or a plurality of transparent members 7 having a certain thickness may be stacked. .

具体的に説明すると、例えば測定装置の試料台(図示せず)に、まず反射部材3を置き、その上に透明部材7を重ね、被測定物1を透明部材7に積み重ねて、基体17に固定する。もしくは、試料台に予め透明部材7を挟み込んだ被測定物1と反射部材3を置いて固定してもよい。   More specifically, for example, the reflecting member 3 is first placed on a sample stage (not shown) of the measuring apparatus, the transparent member 7 is stacked thereon, the object 1 to be measured is stacked on the transparent member 7, and the substrate 17 is stacked. Fix it. Alternatively, the DUT 1 and the reflection member 3 in which the transparent member 7 is sandwiched in advance may be placed on the sample stage and fixed.

したがって、被測定物1と反射部材3の間に、入射光2と反射光4が透過する透明部材7を挟み、透明部材7の厚みを変えることにより、被測定物1と反射部材3との距離を変えるものであり、簡便な方法で被測定物1の測定対象部位に定在波5の極大部が位置するようにできる。また、測定装置に可動設備を別途設ける必要がないので、既存の装置に対応することができる。   Therefore, by sandwiching the transparent member 7 through which the incident light 2 and the reflected light 4 pass between the DUT 1 and the reflecting member 3 and changing the thickness of the transparent member 7, the DUT 1 and the reflecting member 3 are changed. The distance is changed, and the maximum portion of the standing wave 5 can be positioned at the measurement target portion of the DUT 1 by a simple method. Moreover, since it is not necessary to separately provide movable equipment in the measuring apparatus, it can correspond to an existing apparatus.

本願発明の第1の実施形態であるラマン散乱光の測定方法を示し、(a)は被測定物が反射部材と接している場合、(b)は被測定物が反射部材と離れている場合をそれぞれ示す概念図である。1 shows a method for measuring Raman scattered light according to the first embodiment of the present invention, where (a) shows a case where the object to be measured is in contact with the reflecting member, and (b) shows a case where the object to be measured is separated from the reflecting member. FIG. 同ラマン散乱光の測定方法で用いられる測定装置を示す概念図である。It is a conceptual diagram which shows the measuring apparatus used with the measuring method of the same Raman scattered light. 本願発明の第2の実施形態であるラマン散乱光の測定方法を示し、(a)は入射光の波長が長い場合、(b)は入射光の波長が短い場合をそれぞれ示す概念図である。The measurement method of the Raman scattered light which is the 2nd Embodiment of this invention is shown, (a) is a conceptual diagram which shows the case where the wavelength of incident light is long, (b) respectively shows the case where the wavelength of incident light is short. 本願発明の第3の実施形態であるラマン散乱光の測定方法を示す概念図である。It is a conceptual diagram which shows the measuring method of the Raman scattered light which is the 3rd Embodiment of this invention. 本願発明の第4の実施形態であるラマン散乱光の測定方法を示す概念図である。It is a conceptual diagram which shows the measuring method of the Raman scattered light which is the 4th Embodiment of this invention. 本願発明の第5の実施形態であるラマン散乱光の測定方法を示す概念図である。It is a conceptual diagram which shows the measuring method of the Raman scattered light which is the 5th Embodiment of this invention.

符号の説明Explanation of symbols

1 被測定物
2 入射光
3 反射部材
4 反射光
5 定在波
6 ラマン散乱光
7 透明部材
8 薄膜多層体
8a 第1の薄膜
8b 第2の薄膜
8c 第3の薄膜
8d 第4の薄膜
DESCRIPTION OF SYMBOLS 1 Measured object 2 Incident light 3 Reflective member 4 Reflected light 5 Standing wave 6 Raman scattered light 7 Transparent member 8 Thin film multilayer body 8a 1st thin film 8b 2nd thin film 8c 3rd thin film 8d 4th thin film

Claims (10)

ラマン散乱光の測定方法において、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、被測定物の測定対象部位に定在波の極大部が位置するようになしたことを特徴とするラマン散乱光の測定方法。   In the method for measuring Raman scattered light, a reflection member orthogonal to the optical axis of the incident light is provided behind the object to be measured, and the incident light is reflected in the optical axis direction of the incident light to become reflected light on the surface of the reflection member, A method for measuring Raman scattered light, wherein a standing wave is generated by overlapping incident light and reflected light, and a maximum part of the standing wave is positioned at a measurement target portion of the object to be measured. 入射光の波長を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしたことを特徴とする請求項1記載のラマン散乱光の測定方法。   2. The method of measuring Raman scattered light according to claim 1, wherein the maximum portion of the standing wave is positioned at the measurement target portion of the object to be measured by changing the wavelength of the incident light. 被測定物と反射部材が一体化されていることを特徴とする請求項2記載のラマン散乱光の測定方法。   3. The method for measuring Raman scattered light according to claim 2, wherein the object to be measured and the reflecting member are integrated. 被測定物と反射部材との距離を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしたことを特徴とする請求項1又は2記載のラマン散乱光の測定方法。   3. The Raman scattered light according to claim 1, wherein the maximum portion of the standing wave is positioned at the measurement target portion of the measurement object by changing the distance between the measurement object and the reflecting member. Measuring method. 被測定物を固定し、反射部材を可動させることにより、被測定物と反射部材との距離を変えることを特徴とする請求項4記載のラマン散乱光の測定方法。   5. The method for measuring Raman scattered light according to claim 4, wherein the distance between the object to be measured and the reflecting member is changed by fixing the object to be measured and moving the reflecting member. 反射部材を固定し、被測定物を可動させることにより、被測定物と反射部材との距離を変えることを特徴とする請求項4記載のラマン散乱光の測定方法。   5. The method of measuring Raman scattered light according to claim 4, wherein the distance between the object to be measured and the reflecting member is changed by fixing the reflecting member and moving the object to be measured. 被測定物と反射部材の間に、入射光と反射光が透過する透明部材を挟み、透明部材の厚みを変えることにより、被測定物と反射部材との距離を変えることを特徴とする請求項4記載のラマン散乱光の測定方法。   The transparent member that transmits incident light and reflected light is sandwiched between the object to be measured and the reflecting member, and the distance between the object to be measured and the reflecting member is changed by changing the thickness of the transparent member. 4. The method for measuring Raman scattered light according to 4. 被測定物が薄膜多層体であり、薄膜多層体は薄膜が入射光の光軸と直交するように積層され、被測定物の測定対象部位は、薄膜多層体中の特定の層の薄膜であることを特徴とする請求項1乃至7のいずれか一項記載のラマン散乱光の測定方法。   The object to be measured is a thin film multilayer body, the thin film multilayer body is laminated so that the thin film is perpendicular to the optical axis of the incident light, and the measurement target part of the object to be measured is a thin film of a specific layer in the thin film multilayer body The method for measuring Raman scattered light according to any one of claims 1 to 7. ラマン散乱光の測定装置において、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、入射光の波長を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしたことを特徴とするラマン散乱光の測定装置。   In the Raman scattered light measurement device, a reflective member orthogonal to the optical axis of the incident light is provided behind the object to be measured, and the incident light is reflected in the optical axis direction of the incident light to become reflected light on the surface of the reflective member, A feature is that a standing wave is generated by overlapping incident light and reflected light, and the maximum part of the standing wave is positioned at the measurement target part of the object to be measured by changing the wavelength of the incident light. To measure Raman scattered light. ラマン散乱光の測定装置において、被測定物の後方に、入射光の光軸と直交する反射部材を設け、反射部材の表面で入射光が入射光の光軸方向に反射されて反射光となり、入射光と反射光が重なり合うことにより定在波を発生させ、被測定物と反射部材との距離を変えることにより、被測定物の測定対象部位に定在波の極大部が位置するようになしたことを特徴とするラマン散乱光の測定装置。   In the Raman scattered light measurement device, a reflective member orthogonal to the optical axis of the incident light is provided behind the object to be measured, and the incident light is reflected in the optical axis direction of the incident light to become reflected light on the surface of the reflective member, When the incident light and the reflected light overlap, a standing wave is generated, and by changing the distance between the object to be measured and the reflecting member, the maximum part of the standing wave is positioned at the measurement target portion of the object to be measured. An apparatus for measuring Raman scattered light.
JP2008245667A 2008-09-25 2008-09-25 Method and device for measuring raman scattering light Pending JP2010078404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245667A JP2010078404A (en) 2008-09-25 2008-09-25 Method and device for measuring raman scattering light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245667A JP2010078404A (en) 2008-09-25 2008-09-25 Method and device for measuring raman scattering light

Publications (1)

Publication Number Publication Date
JP2010078404A true JP2010078404A (en) 2010-04-08

Family

ID=42209033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245667A Pending JP2010078404A (en) 2008-09-25 2008-09-25 Method and device for measuring raman scattering light

Country Status (1)

Country Link
JP (1) JP2010078404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031896A1 (en) * 2011-09-01 2015-03-23 三菱重工業株式会社 Fluid composition analysis mechanism, calorific value measurement device and power plant, and fluid composition analysis method
US9737232B2 (en) 2013-03-14 2017-08-22 Gyrus Acmi, Inc. Surgical positioning circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031896A1 (en) * 2011-09-01 2015-03-23 三菱重工業株式会社 Fluid composition analysis mechanism, calorific value measurement device and power plant, and fluid composition analysis method
US9737232B2 (en) 2013-03-14 2017-08-22 Gyrus Acmi, Inc. Surgical positioning circuit
US11369281B2 (en) 2013-03-14 2022-06-28 Gyrus Acmi, Inc. Surgical positioning circuit
US11759119B2 (en) 2013-03-14 2023-09-19 Gyrus Acmi, Inc. Surgical positioning circuit

Similar Documents

Publication Publication Date Title
KR100947464B1 (en) Apparatus for measuring thickness
JP5607392B2 (en) Optical interference measurement device
US7492462B2 (en) Optochemical sensor
JP2012047668A (en) Spectrometry device and spectrometry method
FR3017210A1 (en) SPECTROMETER AND FLUID ANALYSIS SYSTEM
JP2012058068A5 (en)
KR102229048B1 (en) Thickness measuring apparatus and thickness measuring method
US9563061B2 (en) Device having an arrangement of optical elements
CN104390943A (en) Microscopic imaging system capable of simultaneously obtaining appearance image and element distribution image
JP5957825B2 (en) Raman spectroscope and Raman spectroscopic measurement method
JP2010078404A (en) Method and device for measuring raman scattering light
JP5356804B2 (en) Raman scattered light measurement system
KR20190100622A (en) crude oil detection apparatus
CN115003981A (en) Method and system for combining OCD and light reflection
US20070165215A1 (en) Contactless corrosion sensor
KR20150146075A (en) Confocal spectrogram microscope
US20070165216A1 (en) Out-of-fluid sensor
RU2457466C2 (en) Array-based control device
EP1677093A3 (en) Near-field film-thickness measurement apparatus
JP2006242902A (en) Bio-sensing device
JP2012173112A (en) Raman spectroscopic apparatus and raman spectroscopic method
JP5488351B2 (en) Surface plasmon excitation enhanced fluorescence measuring apparatus and sensor structure used therefor
JP5233643B2 (en) Shape measuring device
JP2009115474A (en) Method and device for observing multilayer film structure
CN105510296B (en) The portable fluorescence Raman spectrum detection system that disappears