JP2010078221A - Missile - Google Patents

Missile Download PDF

Info

Publication number
JP2010078221A
JP2010078221A JP2008246684A JP2008246684A JP2010078221A JP 2010078221 A JP2010078221 A JP 2010078221A JP 2008246684 A JP2008246684 A JP 2008246684A JP 2008246684 A JP2008246684 A JP 2008246684A JP 2010078221 A JP2010078221 A JP 2010078221A
Authority
JP
Japan
Prior art keywords
steering
main body
rolling bearing
airframe
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008246684A
Other languages
Japanese (ja)
Other versions
JP4882099B2 (en
Inventor
Yusuke Nasuno
雄介 那須野
Toyoki Matsuzawa
豊樹 松澤
Kiyoshi Mizonobu
清志 溝延
Takahisa Sugimoto
卓久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES DEV INST MINI DEFENCE
Daikin Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
TECH RES DEV INST MINI DEFENCE
Daikin Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES DEV INST MINI DEFENCE, Daikin Industries Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical TECH RES DEV INST MINI DEFENCE
Priority to JP2008246684A priority Critical patent/JP4882099B2/en
Publication of JP2010078221A publication Critical patent/JP2010078221A/en
Application granted granted Critical
Publication of JP4882099B2 publication Critical patent/JP4882099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/26Stabilising arrangements using spin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/02Fuze bodies; Fuze housings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Toys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steering airfoil sufficiently enduring acceleration force during shooting and improving controllability in the advancement direction. <P>SOLUTION: The missile includes: the steering airfoil 20 having a body 21 and a shaft 22; and an airframe 30 having an insertion part 32 to which the shaft 22 is rotatably inserted via a rolling bearing 33. A belleville spring 24 is provided between the body 21 of the steering airfoil 20 and the rolling bearing 33. By contraction of the belleville spring 24, the insertion part 32 of the airframe 30 and the body 21 of the steering airfoil 20 are made to abut on each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発射装置や推進装置によって加速される回転式の飛しょう体に関するものである。     The present invention relates to a rotary flying body accelerated by a launching device or a propulsion device.

近年、電子デバイスの小型化により、航空機およびミサイルに比べて小型の砲弾のような回転飛しょう体の方向制御も可能となってきている。     In recent years, with the miniaturization of electronic devices, it has become possible to control the direction of a rotating flying object such as a small shell compared to aircraft and missiles.

このような回転飛しょう体の方向制御方式の1つとして、従来からスラスターを利用した方式がある。スラスターによる方向修正は、回転飛しょう体を望みの進行方向に修正するために、機軸まわりの回転を止めることなく、機軸まわりの回転数に応じて燃焼ガスを噴射するタイミングをコントロールし、その燃焼ガスの反作用力で進行方向を修正している。例えば、非特許文献1の論文には、上記スラスターによる砲弾の方向制御方式の詳細が記載されている。     As one of the direction control methods of such a rotating flying object, there is a conventional method using a thruster. Direction correction by thrusters controls the timing of injecting combustion gas according to the number of revolutions around the axle without stopping rotation around the axle to correct the rotating flying object in the desired direction of travel. The direction of travel is corrected by the reaction force of the gas. For example, the paper of Non-Patent Document 1 describes the details of the shell direction control method using the thruster.

ところで、上記スラスター方式は、噴射できる燃焼ガス量に制約があるため、その方向修正量が限られるという問題がある。     By the way, the thruster system has a problem that the amount of direction correction is limited because the amount of combustion gas that can be injected is limited.

一方、航空機およびミサイルは、翼を具備し、機軸まわりの回転をその翼の空気力で制御しながら、上下、左右の進行方向の方向修正を行っているのが一般的である。     On the other hand, aircraft and missiles are generally equipped with wings, and the direction of movement in the vertical and horizontal directions is corrected while the rotation around the axis is controlled by the aerodynamic force of the wings.

例えば特許文献1に開示されているミサイル(100)は、図3に示すように、前方機体としての前部本体(111)と、後方機体としての尾部アセンブリ(121)とを備えている。前部本体(111)の外周には、いわゆる操舵翼としての複数の先尾翼(113)が設けられている。尾部アセンブリ(121)の外周には、いわゆる固定翼としての複数のフィン(122)が設けられている。先尾翼(113)は、飛行方向を制御するためのものである。フィン(122)は、安定飛翔のためのものである。     For example, the missile (100) disclosed in Patent Document 1 includes a front body (111) as a front body and a tail assembly (121) as a rear body, as shown in FIG. A plurality of leading blades (113) as so-called steering blades are provided on the outer periphery of the front main body (111). A plurality of fins (122) as so-called fixed wings are provided on the outer periphery of the tail assembly (121). The leading wing (113) is for controlling the flight direction. The fin (122) is for stable flight.

そして、このミサイル(100)では、前部本体(111)の前後方向に延びるシャフト(112)と尾部アセンブリ(121)とがベアリングアセンブリ(123)を介して連結されている。つまり、前部本体(111)が尾部アセンブリ(121)に対して回転自在に構成されている。これにより、先尾翼(113)の制御によって前部本体(111)が回転しても、その回転力は尾部アセンブリ(121)に伝達されない。したがって、フィン(122)が回転するのを回避でき、より安定した飛翔を行うことができる。
Pierre Wey,"PEFORMANCE ANALYSIS OF ISL'S GUIDED SUPERSONIC PROJECTILE",23RD International. Symposium on Ballistcs, 2007. 特表2006−526132号公報
In the missile (100), the shaft (112) extending in the front-rear direction of the front body (111) and the tail assembly (121) are connected via a bearing assembly (123). That is, the front main body (111) is configured to be rotatable with respect to the tail assembly (121). Thereby, even if the front main body (111) rotates under the control of the leading wing (113), the rotational force is not transmitted to the tail assembly (121). Therefore, rotation of the fin (122) can be avoided, and more stable flight can be performed.
Pierre Wey, "PEFORMANCE ANALYSIS OF ISL'S GUIDED SUPERSONIC PROJECTILE", 23RD International. Symposium on Ballistcs, 2007. JP-T-2006-526132

ところで、上述した特許文献1の飛しょう体の分割構造では、射撃時の加速力(いわゆるセットバック荷重)によってベアリングアセンブリ(軸受)が破損する虞があった。特に、砲弾など、数ms〜数十msの短時間に発射装置等により加速される回転飛しょう体においては、ミサイルよりも極めて大きな加速力が作用するため、上述した分割構造を砲弾に適用することが困難であるという問題があった。     By the way, in the division structure of the flying body of Patent Document 1 described above, there is a possibility that the bearing assembly (bearing) may be damaged by the acceleration force (so-called setback load) at the time of shooting. In particular, in a rotating projectile that is accelerated by a launching device or the like in a short period of several ms to several tens of ms, such as a cannonball, an extremely large acceleration force acts than a missile, so the above-described divided structure is applied to a cannonball. There was a problem that it was difficult.

本発明は、上記技術課題に鑑みてなされたものであり、前方と後方とに分割され、操舵翼によって進行方向制御を行う飛しょう体において、射撃時の回転力が操舵翼を有する機体に伝達されるのを阻止すると共に、射撃時の加速力によって軸受けが損傷するのを阻止することを目的とするものである。     The present invention has been made in view of the above technical problems, and in a flying body that is divided into a front part and a rear part and that controls the traveling direction by the steering wing, the rotational force at the time of shooting is transmitted to the airframe having the steering wing. The purpose of this is to prevent the bearing from being damaged by the acceleration force during shooting.

第1の発明は、操舵翼(23)を有すると共に機軸方向に延びるシャフト(22)が形成された本体(21)を備える前方側の操舵翼部(20)と、該操舵翼部(20)のシャフト(22)が回転自在に嵌入される転がり軸受(33)が装着された後方側の機体部(30)とを備えた飛しょう体を前提としている。そして、本発明は、上記操舵翼部(20)の本体(21)と上記機体部(30)の転がり軸受(33)との間には、機軸方向に伸縮する弾性部材(24)が設けられ、該弾性部材(24)の収縮により上記機体部(30)と上記操舵翼部(20)の本体(21)とが当接するように構成されているものを採用する。     The first invention includes a steering blade portion (20) on the front side provided with a main body (21) having a steering blade (23) and having a shaft (22) extending in the axial direction, and the steering blade portion (20). It is premised on a flying body including a rear body part (30) on which a rolling bearing (33) into which a shaft (22) of the shaft is rotatably inserted is mounted. In the present invention, an elastic member (24) that expands and contracts in the axial direction is provided between the main body (21) of the steering wing (20) and the rolling bearing (33) of the airframe (30). In addition, a configuration in which the body part (30) and the main body (21) of the steering wing part (20) are brought into contact with each other by contraction of the elastic member (24) is adopted.

上記の発明では、射撃時(発射時)において、回転力と共に飛翔するための加速力(いわゆるセットバック荷重)が機体部(30)へ作用する。そうすると、弾性部材(24)が機軸方向(即ち、前後方向)に収縮して、機体部(30)と操舵翼部(20)の本体(21)とが当接(接触)する。これにより、機体部(30)に作用した加速力は、一部が弾性部材(24)に吸収され、残りが操舵翼部(20)の本体(21)へ伝達される。     In the above invention, at the time of shooting (at the time of launch), an acceleration force (so-called setback load) for flying together with the rotational force acts on the airframe portion (30). Then, the elastic member (24) contracts in the machine axis direction (that is, the front-rear direction), and the machine body part (30) and the main body (21) of the steering blade part (20) come into contact (contact). Thereby, a part of the acceleration force acting on the airframe part (30) is absorbed by the elastic member (24), and the rest is transmitted to the main body (21) of the steering blade part (20).

また、銃砲(火砲)から飛翔して加速力の作用がなくなると、弾性部材(24)が機軸方向(前後方向)に伸長して、機体部(30)と操舵翼部(20)の本体(21)とが離反する。これにより、機体部(30)と操舵翼部(20)とが転がり軸受(33)のみで連結されることとなる。したがって、機体部(30)の回転力は操舵翼部(20)へ伝達されない。     In addition, when the acceleration force disappears after flying from a gun (firearm), the elastic member (24) expands in the axial direction (front-rear direction), and the body (30) and the main body of the steering wing (20) ( 21) is separated. As a result, the airframe portion (30) and the steering blade portion (20) are connected only by the rolling bearing (33). Therefore, the rotational force of the airframe part (30) is not transmitted to the steering blade part (20).

第2の発明は、上記第1の発明において、上記弾性部材として皿バネ(24)を採用する。     According to a second invention, in the first invention, a disc spring (24) is employed as the elastic member.

上記の発明では、射撃時においては皿バネ(24)が収縮し、飛翔時においては皿バネ(24)が伸長する。     In the above invention, the disc spring (24) contracts during shooting, and the disc spring (24) extends during flight.

第3の発明は、上記第1または第2の発明において、上記機体部(30)の前方側には、上記転がり軸受(33)が装着される嵌入部(32)が形成されている。一方、本発明は、上記弾性部材(24)の収縮により、上記嵌入部(32)の前方端部(32a)と上記操舵翼部(20)の本体(21)の後方端部(21a)とが当接するように構成されているものを採用する。     According to a third invention, in the first or second invention, a fitting portion (32) to which the rolling bearing (33) is attached is formed on the front side of the body portion (30). On the other hand, according to the present invention, due to the contraction of the elastic member (24), the front end portion (32a) of the fitting portion (32) and the rear end portion (21a) of the main body (21) of the steering blade portion (20) Adopted one that is configured to abut.

上記の発明では、射撃時において、加速力の一部が嵌入部(32)の前方端部(32a)から操舵翼部(20)の本体(21)の後方端部(21a)へ伝達される。     In the above invention, at the time of shooting, part of the acceleration force is transmitted from the front end portion (32a) of the insertion portion (32) to the rear end portion (21a) of the main body (21) of the steering blade portion (20). .

以上説明したように、本発明によれば、転がり軸受(33)と操舵翼部(20)の本体(21)との間に弾性部材(24)を設け、該弾性部材(24)の収縮により機体部(30)と操舵翼部(20)の本体(21)とを当接させるようにした。したがって、射撃時の加速力を弾性部材(24)と操舵翼部(20)で受けることができる。これにより、加速力が転がり軸受(33)に作用するのを抑制することができ、転がり軸受(33)の損傷を回避することができる。また、飛翔して加速力がなくなると、弾性部材(24)が伸長して、機体部(30)と操舵翼部(20)の本体(21)とを離反させることができる。これにより、機体部(30)の回転力が操舵翼部(20)へ伝達されるのを抑制することができる。その結果、操舵翼(23)による進行方向制御を確実に行うことができ、進行方向修正のための空気力を所望の位置まで確実に作用させることができる。以上の結果、転がり軸受(33)を損傷を回避しながらも、操舵翼部(20)の回転を確実に抑制(制限)することができるため、信頼性の高い高精度な進行方向制御を行うことができる。     As described above, according to the present invention, the elastic member (24) is provided between the rolling bearing (33) and the main body (21) of the steering blade portion (20), and the elastic member (24) is contracted. The airframe (30) and the main body (21) of the steering wing (20) are brought into contact with each other. Therefore, the acceleration force at the time of shooting can be received by the elastic member (24) and the steering blade portion (20). Thereby, it can suppress that acceleration force acts on a rolling bearing (33), and damage to a rolling bearing (33) can be avoided. Further, when the flying force disappears after the flight, the elastic member (24) expands, and the airframe part (30) and the main body (21) of the steering wing part (20) can be separated. Thereby, it can suppress that the rotational force of a body part (30) is transmitted to a steering blade part (20). As a result, the advancing direction control by the steering blade (23) can be reliably performed, and the aerodynamic force for correcting the advancing direction can be reliably applied to a desired position. As a result, the rotation of the steering blade (20) can be reliably suppressed (restricted) while avoiding damage to the rolling bearing (33), so that highly reliable and highly accurate traveling direction control is performed. be able to.

また、第2の発明によれば、弾性部材として皿バネ(24)を用いるようにしたため、より大きな加速力に耐えることができ、より大きな加速力を吸収することができる。よって、転がり軸受(33)の損傷を一層確実に回避することができる。     Further, according to the second invention, since the disc spring (24) is used as the elastic member, it can withstand a greater acceleration force and can absorb a greater acceleration force. Therefore, damage to the rolling bearing (33) can be avoided more reliably.

また、第3の発明によれば、加速力の一部を嵌入部(32)の前方端部(32a)から操舵翼部(20)の本体(21)の後方端部(21a)へ伝達するようにした。これにより、加速力をその作用方向に沿って伝達することができるため、加速力を操舵翼部(20)へ効果的に伝達させることができる。     According to the third invention, part of the acceleration force is transmitted from the front end portion (32a) of the insertion portion (32) to the rear end portion (21a) of the main body (21) of the steering blade portion (20). I did it. As a result, the acceleration force can be transmitted along the acting direction, and therefore the acceleration force can be effectively transmitted to the steering blade portion (20).

本発明の一実施形態を図面に基づいて詳細に説明する。     An embodiment of the present invention will be described in detail with reference to the drawings.

図1および図2に示すように、本実施形態の飛しょう体(10)は、例えば銃砲によって射撃される砲弾であり、回転式の飛しょう体である。図1は射撃前および飛翔時の状態を示し、図2は射撃による加速時(即ち、セットバック荷重の作用時)の状態を示す。なお、本実施形態において、前方および後方は図1および図2のそれぞれ右側および左側を示すものとする。     As shown in FIGS. 1 and 2, the flying object (10) of the present embodiment is, for example, a shell shot by a gun, and is a rotating flying object. FIG. 1 shows a state before shooting and at the time of flight, and FIG. 2 shows a state at the time of acceleration by shooting (that is, when a setback load is applied). In the present embodiment, the front and the rear indicate the right side and the left side in FIGS. 1 and 2, respectively.

上記飛しょう体(10)は、互いに分割された機体部(30)と操舵翼部(20)とを備えている。操舵翼部(20)と機体部(30)とは、前後方向(即ち、機軸方向)に連結されている。つまり、本実施形態では、操舵翼部(20)が前方機体を構成し、機体部(30)が後方機体を構成している。     The flying body (10) includes a body part (30) and a steering wing part (20) which are divided from each other. The steering wing part (20) and the airframe part (30) are connected in the front-rear direction (that is, the airframe direction). That is, in this embodiment, the steering wing part (20) constitutes the front airframe, and the airframe part (30) constitutes the rear airframe.

上記操舵翼部(20)は、略円錐台状の本体(21)と、棒状のシャフト(22)とを備えている。本体(21)の後方端には、後方に突出するバネ受け部(21b)が形成されている。そして、本体(21)の後方側には、バネ受け部(21b)が突出することにより、外方へ庇状に出っ張るつば部(21a)が形成されている。シャフト(22)は、バネ受け部(21b)の中心部に一体形成されている。シャフト(22)は、後方へ延びている。なお、つば部(21a)は、本発明に係る本体(21)の後方端部を構成している。     The steering blade portion (20) includes a substantially truncated cone-shaped main body (21) and a rod-shaped shaft (22). A spring receiving portion (21b) protruding rearward is formed at the rear end of the main body (21). Then, on the rear side of the main body (21), a spring receiving portion (21b) protrudes to form a flange portion (21a) that protrudes outward in a bowl shape. The shaft (22) is integrally formed at the center of the spring receiving portion (21b). The shaft (22) extends rearward. In addition, the collar part (21a) comprises the back end part of the main body (21) which concerns on this invention.

上記本体(21)のやや前方側の外周には、複数(本実施形態では、4つ)の操舵翼(23)が設けられている。この操舵翼(23)は、銃砲内においては本体(21)のスロット(図示せず)内に収納されており、銃砲から離脱された後は本体(21)の径方向外方へ展開、即ち開くように構成されている。操舵翼(23)は、飛翔時において、進行方向を制御するためのものである。そして、シャフト(22)は、後述する転がり軸受(33)を介して機体部(30)へ嵌入されている。     A plurality (four in this embodiment) of steering wings (23) are provided on the outer periphery slightly forward of the main body (21). This steering wing (23) is housed in a slot (not shown) of the main body (21) in the gun, and after being detached from the gun, it is deployed radially outward of the main body (21), that is, Configured to open. The steering wing (23) is for controlling the traveling direction during flight. The shaft (22) is fitted into the body part (30) via a rolling bearing (33) described later.

上記機体部(30)は、本体(31)を備えている。本体(31)の前方側は、断面視矩形の凹状に形成された嵌入部(32)となっている。この嵌入部(32)には、上述した転がり軸受(33)が装着されている。転がり軸受(33)の外輪は嵌入部(32)に固定されている。そして、転がり軸受(33)の内輪に操舵翼部(20)のシャフト(22)が嵌入(挿入)されている。これにより、シャフト(22)が機体部(30)に対して回転自在となる。なお、シャフト(22)の途中には、拡径部(22a)が形成されており、この拡径部(22a)によってシャフト(22)、引いては操舵翼部(20)が転がり軸受(33)から抜け出るのを防止している。     The body part (30) includes a main body (31). The front side of the main body (31) is a fitting portion (32) formed in a concave shape having a rectangular shape in cross section. The rolling bearing (33) described above is attached to the fitting portion (32). The outer ring of the rolling bearing (33) is fixed to the fitting portion (32). The shaft (22) of the steering blade (20) is fitted (inserted) into the inner ring of the rolling bearing (33). Thereby, a shaft (22) becomes rotatable with respect to a body part (30). An enlarged diameter portion (22a) is formed in the middle of the shaft (22), and the enlarged diameter portion (22a) causes the shaft (22) and then the steering blade portion (20) to roll the bearing (33). ) Is prevented from exiting.

そして、本発明の特徴として、転がり軸受(33)と操舵翼部(20)の本体(21)との間に弾性部材としての皿バネ(24)が装着されている。具体的に、皿バネ(24)の後方側である一端は、転がり軸受(33)の内輪側に接触している。皿バネ(24)の前方側である他端は、操舵翼部(20)の本体(21)のバネ受け部(21b)に接触している。皿バネ(24)は前後方向に伸縮するように構成されている。つまり、本体(21)の後方側と転がり軸受(33)とが前後方向に皿バネ(24)を介して接触している。この飛しょう体(10)では、機体部(30)が回転しても、転がり軸受(33)の内輪側は回転しないため、機体部(30)の回転が皿バネ(24)を介して操舵翼部(20)に伝達されることはない。     As a feature of the present invention, a disc spring (24) as an elastic member is mounted between the rolling bearing (33) and the main body (21) of the steering blade portion (20). Specifically, one end on the rear side of the disc spring (24) is in contact with the inner ring side of the rolling bearing (33). The other end, which is the front side of the disc spring (24), is in contact with the spring receiving portion (21b) of the main body (21) of the steering blade portion (20). The disc spring (24) is configured to expand and contract in the front-rear direction. That is, the rear side of the main body (21) and the rolling bearing (33) are in contact in the front-rear direction via the disc spring (24). In this flying body (10), even if the airframe part (30) rotates, the inner ring side of the rolling bearing (33) does not rotate, so the rotation of the airframe part (30) is steered via the disc spring (24). It is not transmitted to the wing (20).

上記飛しょう体(10)は、射撃前および飛翔時では、操舵翼部(20)における本体(21)のつば部(21a)と機体部(30)における嵌入部(32)の端部(32a)とが皿バネ(24)の付勢力によって離反するように構成されている(図1の状態)。また、飛しょう体(10)は、射撃による加速時には、皿バネ(24)が収縮して、操舵翼部(20)における本体(21)のつば部(21a)と機体部(30)における嵌入部(32)の端部(32a)とが接触(当接)するように構成されている(図2の状態)。     The flying body (10) includes the flange (21a) of the main body (21) in the steering wing (20) and the end (32a) of the fitting part (32) in the airframe (30) before shooting and during the flight. Are separated from each other by the urging force of the disc spring (24) (state shown in FIG. 1). In addition, the flying body (10), when accelerated by shooting, the disc spring (24) contracts, and the body (21) collar part (21a) and the fuselage part (30) fit into the steering wing part (20). It is comprised so that the edge part (32a) of a part (32) may contact (contact | abut) (state of FIG. 2).

−射撃時および飛翔時の動作−
次に、上記飛しょう体(10)の射撃時(発射時)および銃砲から離脱した後の飛翔時における動作について説明する。
-Action during shooting and flight-
Next, the operation at the time of shooting (shooting) of the flying object (10) and at the time of flying after leaving the gun can be described.

射撃時においては、機体部(30)へ回転力および直進の加速力(即ち、セットバック荷重)が作用する。そうすると、図2に示すように、皿バネ(24)が収縮して、嵌入部(32)の端部(32a)が本体(21)のつば部(21a)へ当接する。これにより、機体部(30)へ作用した加速力の一部が皿バネ(24)に吸収される。そして、嵌入部(32)の端部(32a)が本体(21)のつば部(21a)へ当接することにより、加速力の残りが操舵翼部(20)へ伝達される。したがって、加速力が転がり軸受(33)に作用するのを抑制することができる。     At the time of shooting, a rotational force and a linear acceleration force (that is, a setback load) are applied to the airframe portion (30). Then, as shown in FIG. 2, the disc spring (24) contracts, and the end portion (32a) of the fitting portion (32) contacts the collar portion (21a) of the main body (21). Thereby, a part of acceleration force which acted on the body part (30) is absorbed by the disc spring (24). The rest of the acceleration force is transmitted to the steering blade portion (20) by the end portion (32a) of the fitting portion (32) coming into contact with the collar portion (21a) of the main body (21). Therefore, it can suppress that acceleration force acts on a rolling bearing (33).

つまり、本体(21)のつば部(21a)は、機体部(30)に加速度aが作用する際、操舵翼部(20)の慣性力Mc×aによる静等価荷重が転がり軸受(33)の基本静定格荷重よりも小さくなるように、その慣性力Mc×aを機体部(30)および皿バネ(24)に分散させるように構成されている。ここで、Mcは操舵翼部(20)の質量を示す。     That is, the collar portion (21a) of the main body (21) is subjected to static equivalent load due to the inertial force Mc × a of the steering blade portion (20) when the acceleration a acts on the airframe portion (30). The inertial force Mc × a is distributed to the body part (30) and the disc spring (24) so as to be smaller than the basic static load rating. Here, Mc represents the mass of the steering blade portion (20).

そして、銃砲から離脱した後の飛翔時においては、機体部(30)が飛翔するための加速度aを受けなくなると、皿バネ(24)に蓄えられている収縮力が本体(21)と転がり軸受(33)に作用する。つまり、皿バネ(24)が伸長する。そうすると、図1に示すように、嵌入部(32)の端部(32a)と本体(21)のつば部(21a)とが離反する。この状態では、操舵翼部(20)と機体部(30)とは転がり軸受(33)のみで連結されている。これにより、機体部(30)の機軸まわりの回転力が操舵翼部(20)へ伝達されるのを防止することができる。したがって、操舵翼部(20)の回転動作が制限され、操舵翼(23)による進行方向制御が容易となる。     When the aircraft body (30) is no longer subjected to the acceleration a for flying after being detached from the gun, the contraction force stored in the disc spring (24) is applied to the main body (21) and the rolling bearing. Acts on (33). That is, the disc spring (24) extends. Then, as shown in FIG. 1, the end portion (32a) of the fitting portion (32) and the collar portion (21a) of the main body (21) are separated from each other. In this state, the steering blade portion (20) and the airframe portion (30) are connected only by the rolling bearing (33). Thereby, it is possible to prevent the rotational force around the axis of the airframe part (30) from being transmitted to the steering wing part (20). Therefore, the rotational operation of the steering blade (20) is limited, and the traveling direction control by the steering blade (23) becomes easy.

−実施形態の効果−
本実施形態によれば、転がり軸受(33)と操舵翼部(20)における本体(21)との間に皿バネ(24)を設けて、該皿バネ(24)の収縮により機体部(30)の嵌入部(32)と操舵翼部(20)の本体(21)とを当接させるようにした。したがって、射撃時において、機体部(30)へ作用する加速力を皿バネ(24)および操舵翼部(20)の本体(21)で受けることができる。これにより、転がり軸受(33)に加速力が作用するのを阻止できるため、転がり軸受(33)の損傷を回避することができる。
-Effect of the embodiment-
According to this embodiment, the disc spring (24) is provided between the rolling bearing (33) and the main body (21) of the steering blade portion (20), and the airframe portion (30 ) And the main body (21) of the steering blade (20) are brought into contact with each other. Therefore, at the time of shooting, acceleration force acting on the airframe portion (30) can be received by the disc spring (24) and the main body (21) of the steering blade portion (20). As a result, it is possible to prevent the acceleration force from acting on the rolling bearing (33), and thus it is possible to avoid damage to the rolling bearing (33).

また、射撃後の飛翔時においては、皿バネ(24)の伸長(付勢力)によって機体部(30)の嵌入部(32)と操舵翼部(20)の本体(21)とを離間させることができる。これにより、機体部(30)の機軸まわりの回転力が操舵翼部(20)へ伝達されるのを抑制することができる。その結果、操舵翼(23)による進行方向制御を確実に行うことができ、進行方向修正のための空気力を所望の位置まで確実に作用させることができる。     Also, during flight after shooting, the insertion part (32) of the airframe part (30) and the main body (21) of the steering wing part (20) are separated by the extension (biasing force) of the disc spring (24). Can do. Thereby, it can suppress that the rotational force around the axis of a body part (30) is transmitted to a steering blade part (20). As a result, the advancing direction control by the steering blade (23) can be reliably performed, and the aerodynamic force for correcting the advancing direction can be reliably applied to a desired position.

以上により、転がり軸受(33)を損傷を回避しながらも、操舵翼部(20)の回転を確実に抑制(制限)することができる。よって、信頼性の高い高精度な進行方向制御を行うことができる。     As described above, it is possible to reliably suppress (limit) the rotation of the steering blade portion (20) while avoiding damage to the rolling bearing (33). Therefore, highly reliable and highly accurate traveling direction control can be performed.

また、砲弾の場合、ミサイルに比べて、加速力(セットバック荷重)が極端に大きくなるが、その加速力が転がり軸受(33)に作用するのを阻止できるため、信頼性の高い砲弾を提供することができる。     Also, in the case of shells, the acceleration force (setback load) is extremely large compared to missiles, but the acceleration force can be prevented from acting on the rolling bearing (33), providing a highly reliable shell. can do.

また、本発明は、射撃時の加速力が逆方向に作用する場合や機体部(30)が回転しない場合にも適用可能である。     The present invention is also applicable to the case where the acceleration force during shooting acts in the reverse direction and the case where the airframe portion (30) does not rotate.

また、本実施形態において、皿バネ(24)以外の弾性部材を用いるようにしてもよいことは勿論である。     In this embodiment, it is needless to say that an elastic member other than the disc spring (24) may be used.

なお、上記実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the said embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、操舵翼を有する前方側の機体と後方側の機体とに分割された飛しょう体について有用である。     As described above, the present invention is useful for a flying body that is divided into a front body and a rear body having steering wings.

実施形態に係る飛しょう体の構成を示す図である。It is a figure which shows the structure of the flying body which concerns on embodiment. 実施形態に係る飛しょう体の射撃時における状態を示す図である。It is a figure which shows the state at the time of the shooting of the flying body which concerns on embodiment. 従来のミサイルの概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the conventional missile.

符号の説明Explanation of symbols

10 飛しょう体
20 操舵翼部
21 本体
21a つば部(後方端部)
22 シャフト
23 操舵翼
24 皿バネ(弾性部材)
30 機体部
32 嵌入部
32a 端部
33 転がり軸受
10 Flying object
20 Steering blade
21 Body
21a collar (back end)
22 Shaft
23 Steering blade
24 Disc spring (elastic member)
30 Airframe
32 Insertion
32a end
33 Rolling bearings

Claims (3)

操舵翼(23)を有すると共に機軸方向に延びるシャフト(22)が形成された本体(21)を備える前方側の操舵翼部(20)と、該操舵翼部(20)のシャフト(22)が回転自在に嵌入される転がり軸受(33)が装着された後方側の機体部(30)とを備えた飛しょう体であって、
上記操舵翼部(20)の本体(21)と上記機体部(30)の転がり軸受(33)との間には、機軸方向に伸縮する弾性部材(24)が設けられ、該弾性部材(24)の収縮により上記機体部(30)と上記操舵翼部(20)の本体(21)とが当接するように構成されている
ことを特徴とする飛しょう体。
A steering wing (20) on the front side having a main body (21) having a steering wing (23) and having a shaft (22) extending in the axial direction, and a shaft (22) of the steering wing (20) A flying body provided with a rear body part (30) mounted with a rolling bearing (33) to be rotatably inserted,
Between the main body (21) of the steering wing (20) and the rolling bearing (33) of the airframe (30), an elastic member (24) that expands and contracts in the axial direction is provided, and the elastic member (24 The flying body is configured such that the airframe part (30) and the main body (21) of the steering wing part (20) are brought into contact with each other by the contraction of a).
請求項1において、
上記弾性部材は、皿バネ(24)である
ことを特徴とする飛しょう体。
In claim 1,
The flying body, wherein the elastic member is a disc spring (24).
請求項1または2において、
上記機体部(30)の前方側には、上記転がり軸受(33)が装着される嵌入部(32)が形成される一方、
上記弾性部材(24)の収縮により、上記嵌入部(32)の前方端部(32a)と上記操舵翼部(20)の本体(21)の後方端部(21a)とが当接するように構成されている
ことを特徴とする飛しょう体。
In claim 1 or 2,
On the front side of the body part (30), an insertion part (32) to which the rolling bearing (33) is attached is formed,
The elastic member (24) contracts so that the front end portion (32a) of the fitting portion (32) and the rear end portion (21a) of the main body (21) of the steering blade portion (20) come into contact with each other. A flying body characterized by being.
JP2008246684A 2008-09-25 2008-09-25 Flying body Active JP4882099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246684A JP4882099B2 (en) 2008-09-25 2008-09-25 Flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246684A JP4882099B2 (en) 2008-09-25 2008-09-25 Flying body

Publications (2)

Publication Number Publication Date
JP2010078221A true JP2010078221A (en) 2010-04-08
JP4882099B2 JP4882099B2 (en) 2012-02-22

Family

ID=42208879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246684A Active JP4882099B2 (en) 2008-09-25 2008-09-25 Flying body

Country Status (1)

Country Link
JP (1) JP4882099B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413498B1 (en) * 2011-11-09 2014-07-01 최용준 Decoupling bearing module for guided missile
KR101421127B1 (en) * 2014-01-15 2014-07-22 국방과학연구소 Course correction fuze
EP2921812A1 (en) * 2014-03-18 2015-09-23 Nexter Munitions Spin-stabilised projectile
WO2016139485A1 (en) * 2015-03-05 2016-09-09 Atlantic Inertial Systems Limited Projectiles
EP3246657A1 (en) * 2010-08-25 2017-11-22 BAE Systems Rokar International Ltd. System and method for guiding a cannon shell in flight
EP3992571A1 (en) * 2020-10-29 2022-05-04 Diehl Defence GmbH & Co. KG Projectile and bearing unit for a projectile
JP7369505B2 (en) 2019-12-03 2023-10-26 株式会社Ihiエアロスペース propulsion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605396A (en) * 1965-01-04 1995-04-26 Short Brothers & Harland Ltd Improvements relating to control systems for missiles
EP0952424A1 (en) * 1997-04-08 1999-10-27 Tda Armements S.A.S. Device for the micro-controlling of fins for correcting the trajectory of a spin-stabilized projectile
US6796525B2 (en) * 2000-07-03 2004-09-28 Bofors Defence Ab Fin-stabilized guidable missile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605396A (en) * 1965-01-04 1995-04-26 Short Brothers & Harland Ltd Improvements relating to control systems for missiles
EP0952424A1 (en) * 1997-04-08 1999-10-27 Tda Armements S.A.S. Device for the micro-controlling of fins for correcting the trajectory of a spin-stabilized projectile
US6796525B2 (en) * 2000-07-03 2004-09-28 Bofors Defence Ab Fin-stabilized guidable missile

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246657A1 (en) * 2010-08-25 2017-11-22 BAE Systems Rokar International Ltd. System and method for guiding a cannon shell in flight
US9945649B2 (en) 2010-08-25 2018-04-17 Bae Systems Rokar International Ltd. System and method for guiding a cannon shell in flight
US11009322B2 (en) 2010-08-25 2021-05-18 Bae Systems Rokar International Ltd. System and method for guiding a cannon shell in flight
KR101413498B1 (en) * 2011-11-09 2014-07-01 최용준 Decoupling bearing module for guided missile
KR101421127B1 (en) * 2014-01-15 2014-07-22 국방과학연구소 Course correction fuze
EP2921812A1 (en) * 2014-03-18 2015-09-23 Nexter Munitions Spin-stabilised projectile
FR3018908A1 (en) * 2014-03-18 2015-09-25 Nexter Munitions GYROSTABILIZED PROJECTILE
WO2016139485A1 (en) * 2015-03-05 2016-09-09 Atlantic Inertial Systems Limited Projectiles
US10378866B2 (en) 2015-03-05 2019-08-13 Atlantic Inertial Systems Limited Projectiles
JP7369505B2 (en) 2019-12-03 2023-10-26 株式会社Ihiエアロスペース propulsion device
EP3992571A1 (en) * 2020-10-29 2022-05-04 Diehl Defence GmbH & Co. KG Projectile and bearing unit for a projectile

Also Published As

Publication number Publication date
JP4882099B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4882099B2 (en) Flying body
US8319163B2 (en) Roll isolation bearing
US4076187A (en) Attitude-controlling system and a missile equipped with such a system
EP2165152B1 (en) Hybrid spin/fin stabilized projectile
US6126109A (en) Unlocking tail fin assembly for guided projectiles
KR101522212B1 (en) Shell
US4373688A (en) Canard drive mechanism latch for guided projectile
IL198968A (en) Spin stabilized projectile trajectory control device
US20120248239A1 (en) Steerable spin-stabilized projectile
US8530809B2 (en) Ring gear control actuation system for air-breathing rocket motors
EP2652438B1 (en) Projectile that includes propulsion system and launch motor on opposing sides of payload and method
KR101413498B1 (en) Decoupling bearing module for guided missile
WO2012037020A1 (en) Projectile and method that include speed adjusting guidance and propulsion systems
US5005781A (en) In-flight reconfigurable missile construction
US10371495B2 (en) Reaction control system
US7434762B2 (en) Retractable thrust vector control vane system and method
JP2015059694A (en) Guided missile
EP2917683B1 (en) Rocket propelled payload with divert control system within nose cone
US3946639A (en) Fin and spin stabilized rocket
NO162583B (en) DISCONNECTABLE PUSHING VECTOR MECHANISM FOR A MISSILE.
JP2008215704A (en) Underwater high-speed flying object
US10996031B1 (en) Free spinning hub for mortar projectiles
JP5626768B2 (en) Flying object
JP2008224115A (en) Guided missile, and guidance control device and method for guided missile
JP6212898B2 (en) High speed flying object

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4882099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250