JP2010073661A - Solid type cable manufacturing method - Google Patents

Solid type cable manufacturing method Download PDF

Info

Publication number
JP2010073661A
JP2010073661A JP2008243262A JP2008243262A JP2010073661A JP 2010073661 A JP2010073661 A JP 2010073661A JP 2008243262 A JP2008243262 A JP 2008243262A JP 2008243262 A JP2008243262 A JP 2008243262A JP 2010073661 A JP2010073661 A JP 2010073661A
Authority
JP
Japan
Prior art keywords
insulating
oil
insulating oil
pressure
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008243262A
Other languages
Japanese (ja)
Other versions
JP5354159B2 (en
Inventor
Masayuki Hirose
正幸 廣瀬
Shigeki Shimada
茂樹 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008243262A priority Critical patent/JP5354159B2/en
Publication of JP2010073661A publication Critical patent/JP2010073661A/en
Application granted granted Critical
Publication of JP5354159B2 publication Critical patent/JP5354159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid type cable manufacturing method reducing a time to impregnate an insulating layer with an insulating oil. <P>SOLUTION: The solid type cable manufacturing method includes a step of impregnating the insulating layer 3 with the insulating oil under pressure. The method includes the step of temporarily reducing the pressure on the insulating oil under pressure. A impregnation path in a compressed state under pressure is opened by reducing the pressure on the insulating oil which has been temporarily pressed. Thus, the oil flow resistance which has been increased can be decreased and the insulating layer 3 can be impregnated with the insulating oil in a time shorter than that taken when the insulating oil is not pressure-reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、油浸絶縁層を備えるソリッドケーブルの製造方法に関するものである。特に、絶縁油の含浸時間を短縮化できるソリッドケーブルの製造方法に関する。   The present invention relates to a method for manufacturing a solid cable having an oil-immersed insulating layer. In particular, the present invention relates to a method of manufacturing a solid cable that can shorten the impregnation time of insulating oil.

海底ケーブルなどに用いられる電力ケーブルとして、絶縁層に高粘度油を含浸したソリッドケーブルが知られている。このケーブルの構成例は、中心から順に、導体、内部半導電層、絶縁層、外部半導電層、金属シース、防食層および鉄線鎧装を備える。   As a power cable used for a submarine cable or the like, a solid cable in which an insulating layer is impregnated with high viscosity oil is known. The configuration example of this cable includes, in order from the center, a conductor, an inner semiconductive layer, an insulating layer, an outer semiconductive layer, a metal sheath, an anticorrosion layer, and an iron wire armor.

このようなケーブルは、例えば次のようにして製造される。導体の外周に、内部半導電層、絶縁層、外部半導電層を順に形成して、ケーブルコアとする。このケーブルコアをタンク内に巻き取り、絶縁層中の水分及び空気を除去するために真空加熱乾燥する。次いで、タンク内に高粘度の絶縁油を導入して絶縁層に加圧含浸させる。そして、絶縁層の上に金属シースを被せ、その外側に防食層を被せ、さらにその外側に、鉄線鎧装等が形成される。   Such a cable is manufactured as follows, for example. An inner semiconductive layer, an insulating layer, and an outer semiconductive layer are sequentially formed on the outer periphery of the conductor to form a cable core. The cable core is wound up in a tank and vacuum-heated and dried to remove moisture and air in the insulating layer. Next, a highly viscous insulating oil is introduced into the tank to impregnate the insulating layer under pressure. Then, a metal sheath is put on the insulating layer, a corrosion protection layer is put on the outer side, and an iron wire armor is formed on the outer side.

この絶縁層に含浸される絶縁油は、粘度が高いため含浸に長時間を要する。そのため、含浸工程の効率化については種々の提案がなされている。例えば、特許文献1では、ケーブルコアの乾燥工程での乾燥温度よりも高温に絶縁油を加熱して含浸する技術を開示している。   Since the insulating oil impregnated in this insulating layer has a high viscosity, it takes a long time to impregnate. Therefore, various proposals have been made for improving the efficiency of the impregnation process. For example, Patent Document 1 discloses a technique in which an insulating oil is heated and impregnated at a temperature higher than a drying temperature in a cable core drying process.

特開2000−268652号公報Japanese Patent Laid-Open No. 2000-268652

しかし、この含浸工程において、高温に伴って絶縁層の構成材料や絶縁油が劣化することを防止したり、更なる含浸時間を短縮することが求められている。   However, in this impregnation process, it is required to prevent the constituent material and insulating oil of the insulating layer from deteriorating with high temperatures and to further shorten the impregnation time.

絶縁油の含浸工程において、タンク内の圧力を上げると、絶縁層3の含浸経路を通して絶縁層の構成材料である絶縁紙に絶縁油が含浸しやすいと考えられ、絶縁油を絶縁層に含浸する際、絶縁油の圧力を所定圧力にまで加圧することが行われている。ソリッドケーブルの場合、絶縁油はコアの外側から加圧され、コア表面部と導体近傍との間に差圧を発生させ、その差圧により絶縁油が絶縁紙に含浸される。そのため、コアの外側からの加圧によって絶縁層自体が締まる。その結果、含浸経路となる絶縁層3中の微細な隙間が圧縮され、かえって油流抵抗が大きくなって、含浸に時間がかかることがある。   In the process of impregnating the insulating oil, if the pressure in the tank is increased, it is considered that the insulating oil, which is the constituent material of the insulating layer, is likely to be impregnated with the insulating oil through the impregnation path of the insulating layer 3. At this time, the pressure of the insulating oil is increased to a predetermined pressure. In the case of a solid cable, the insulating oil is pressurized from the outside of the core to generate a differential pressure between the core surface and the vicinity of the conductor, and the insulating oil is impregnated into the insulating paper by the differential pressure. Therefore, the insulating layer itself is tightened by pressurization from the outside of the core. As a result, fine gaps in the insulating layer 3 serving as the impregnation path are compressed, and the oil flow resistance is increased, which may take time for the impregnation.

特に、絶縁テープとして、ポリプロピレン(PP)フィルムの片側又は両側にクラフト紙を一体化した複合テープ(PPLP 登録商標)を用いた場合、含浸時間の長期化は一層顕著になる。つまり、絶縁油の加圧圧力を主としてPPフィルムが受けるため、そのPPフィルムが含浸経路となるクラフト紙を圧縮する。その結果、油流抵抗が増大して、絶縁油の含浸速度はますます遅くなる。   In particular, when a composite tape (PPLP (registered trademark)) in which kraft paper is integrated on one side or both sides of a polypropylene (PP) film is used as the insulating tape, the prolongation of the impregnation time becomes even more remarkable. That is, since the PP film mainly receives the pressurizing pressure of the insulating oil, the PP film compresses the kraft paper that becomes the impregnation path. As a result, the oil flow resistance increases and the impregnation rate of the insulating oil becomes increasingly slower.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、絶縁層に絶縁油を含浸する時間を短縮できるソリッドケーブルの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a method of manufacturing a solid cable that can shorten the time for impregnating the insulating layer with insulating oil.

本発明は、絶縁層に絶縁油を加圧状態にて含浸する工程を備えるソリッドケーブルの製造方法であって、前記加圧状態で絶縁油の圧力を一旦減圧する工程を備えることを特徴とする。   The present invention is a method of manufacturing a solid cable comprising a step of impregnating an insulating layer with an insulating oil in a pressurized state, the method comprising the step of temporarily reducing the pressure of the insulating oil in the pressurized state. .

この構成によれば、一旦加圧状態とした絶縁油の圧力を含浸工程の途中で減圧することにより、加圧により圧縮状態とされていた含浸経路を開放する。それにより、増大していた油流抵抗を下げ、絶縁油の減圧を行わない場合に比べて、短期間に絶縁油を絶縁層に含浸することができる。また、含浸時間の短縮化が図れるため、従来に比べて低温にて含浸しても許容時間内に含浸作業を完了することも期待できる。それに伴って、高温に伴う絶縁層の構成材料や絶縁油の劣化を抑制することが期待される。なお、ここでの加圧状態とは、加圧前の状態に比べて絶縁油の圧力が上昇した状態のことであり、加圧により絶縁油が所定の圧力に到達した後はもちろん、この所定の圧力にまで昇圧する過程をも含む。   According to this configuration, the pressure of the insulating oil once brought into a pressurized state is reduced during the impregnation step to open the impregnation path that has been compressed by the pressurization. Thereby, the oil flow resistance that has been increased can be reduced, and the insulating oil can be impregnated in the insulating layer in a short period of time as compared with the case where the pressure reduction of the insulating oil is not performed. In addition, since the impregnation time can be shortened, it can be expected that the impregnation operation is completed within the allowable time even if impregnation is performed at a lower temperature than in the past. Along with this, it is expected to suppress deterioration of the constituent material of the insulating layer and the insulating oil accompanying the high temperature. Here, the pressurized state is a state in which the pressure of the insulating oil has increased compared to the state before pressurization. Including the process of increasing the pressure to

本発明方法において、前記絶縁層は、樹脂フィルムを含むことが好ましい。   In the method of the present invention, the insulating layer preferably includes a resin film.

樹脂フィルムを含む絶縁層は、絶縁油の加圧圧力を樹脂フィルムが受けて含浸経路を圧縮する傾向が強い。そのため、本発明方法は、樹脂フィルムを含む絶縁層への絶縁油の含浸時間短縮に効果的である。   The insulating layer including the resin film has a strong tendency to compress the impregnation path when the resin film receives the pressure of the insulating oil. Therefore, the method of the present invention is effective for shortening the impregnation time of the insulating oil into the insulating layer including the resin film.

また、本発明方法は、樹脂フィルムの片面又は両面にクラフト紙が積層された複合テープを主体として絶縁層を構成したケーブルに適用することが好ましい。さらに、この複合テープがスーパーカレンダー掛けして製造される場合がより好ましい。   Further, the method of the present invention is preferably applied to a cable having an insulating layer mainly composed of a composite tape in which kraft paper is laminated on one side or both sides of a resin film. Furthermore, it is more preferable that the composite tape is manufactured by supercalendering.

この構成によれば、複合テープを絶縁層に用いることで、より絶縁特性に優れたケーブルを構成できる。特に、スーパーカレンダー掛けにより、複合テープの厚みに占める樹脂フィルムの厚みの比率(PP比)が高く、絶縁特性に優れた複合テープが得られる。その複合テープは、薄くて高密度のクラフト紙部分を有する。複合テープのクラフト紙部分は、複合テープを導体の外側に巻回して絶縁層となったとき、主たる含浸経路となる。そのため、含浸経路となるクラフト紙部分の密度が高いと、そのクラフト紙部分の微細な隙間が小さいことになり、含浸経路が元々狭小ということになる。このような狭小な含浸経路の複合テープを絶縁層に用いる場合、絶縁油を加圧すると樹脂フィルムにより狭小な含浸経路がさらに圧縮されて絶縁油の含浸が一層困難となる。しかし、本発明方法では、コアの外側の絶縁油の加圧圧力を減圧することで、このように含浸経路が狭小な複合テープであっても、効率的に絶縁油を含浸することができる。   According to this structure, the cable which was more excellent in the insulation characteristic can be comprised by using a composite tape for an insulating layer. In particular, by supercalendering, a ratio of the thickness of the resin film to the thickness of the composite tape (PP ratio) is high, and a composite tape having excellent insulating properties can be obtained. The composite tape has a thin and dense kraft paper portion. The kraft paper portion of the composite tape becomes the main impregnation path when the composite tape is wound around the conductor to form an insulating layer. For this reason, if the density of the kraft paper portion that becomes the impregnation path is high, the fine gap in the kraft paper section is small, and the impregnation path is originally narrow. When a composite tape having such a narrow impregnation path is used for the insulating layer, when the insulating oil is pressurized, the narrow impregnation path is further compressed by the resin film, and the impregnation of the insulating oil becomes more difficult. However, in the method of the present invention, by reducing the pressure of the insulating oil outside the core, the insulating oil can be efficiently impregnated even if the composite tape has such a narrow impregnation path.

本発明方法において、前記絶縁油は、60℃での動粘度が10mm/s(10cst)以上500mm/s(500cst)未満の中粘度油とすることが挙げられる。 In the method of the present invention, the insulating oil may be a medium viscosity oil having a kinematic viscosity at 60 ° C. of 10 mm 2 / s (10 cst) or more and less than 500 mm 2 / s (500 cst).

絶縁油を中粘度油として本発明方法を行えば、絶縁油の含浸時間を短縮することができる。また、中粘度油は高粘度油に比べて粘度が低いため、より短時間で絶縁層に含浸できる。   If the method of the present invention is performed using an insulating oil as a medium viscosity oil, the impregnation time of the insulating oil can be shortened. Further, since the viscosity of the medium viscosity oil is lower than that of the high viscosity oil, the insulating layer can be impregnated in a shorter time.

本発明方法において、前記絶縁油は、60℃での粘度が500cst以上の高粘度油としてもよい。   In the method of the present invention, the insulating oil may be a high-viscosity oil having a viscosity at 60 ° C. of 500 cst or more.

本発明方法によれば、絶縁油を高粘度油とした場合であっても、含浸時間を短縮することができる。また、絶縁油を高粘度油とすれば、例えばソリッドケーブルを海底ケーブルの渚付近など、高低差のある箇所に布設した場合であっても、絶縁油が金属シースと絶縁層との隙間に移動することが殆どなく、この隙間に沿ってケーブル軸方向に絶縁油が移動し、高所で絶縁油の枯渇に伴う絶縁特性の劣化を抑制することができる。   According to the method of the present invention, the impregnation time can be shortened even when the insulating oil is a high viscosity oil. Also, if the insulating oil is made of high viscosity oil, the insulating oil moves to the gap between the metal sheath and the insulating layer even when the solid cable is installed at a location with a difference in height, such as near the bottom of a submarine cable. The insulating oil moves along the gap in the cable axial direction, and deterioration of the insulating characteristics due to the depletion of the insulating oil at high places can be suppressed.

本発明のソリッドケーブルの製造方法によれば、絶縁層への絶縁油の含浸工程を短縮化することができる。   According to the method for manufacturing a solid cable of the present invention, the step of impregnating the insulating layer with the insulating oil can be shortened.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

まず、本発明製造方法を説明するのに先立って、この方法により得られるソリッドケーブルの構成を図1に基づいて説明する。   First, prior to describing the manufacturing method of the present invention, the configuration of a solid cable obtained by this method will be described with reference to FIG.

このケーブルは、中心から順に導体1、内部半導電層2、絶縁層3、外部半導電層4、金属シース5、防食層6を備える。図では省略しているが、防食層6の外側に鉄線鎧装が形成される。また、金属シース5上または防食層6上にステンレステープなどで構成した補強層(図示略)が形成されても良い。   This cable includes a conductor 1, an inner semiconductive layer 2, an insulating layer 3, an outer semiconductive layer 4, a metal sheath 5, and an anticorrosion layer 6 in order from the center. Although omitted in the figure, iron wire armor is formed outside the anticorrosion layer 6. Further, a reinforcing layer (not shown) made of stainless steel tape or the like may be formed on the metal sheath 5 or the anticorrosion layer 6.

導体1は、複数本の銅素線からなるキーストン導体により構成される。内部半導電層2及び外部半導電層4は、カーボン紙などの導電性テープにより構成される。内部半導電層2は導体1の外側に、外部半導電層4は絶縁層3の外側に導電性テープを巻回して構成される。金属シース5は、一般に鉛被が用いられる。さらに防食層6は、ポリエチレンやポリ塩化ビニルなどにより構成される。   The conductor 1 is composed of a keystone conductor made of a plurality of copper strands. The inner semiconductive layer 2 and the outer semiconductive layer 4 are made of a conductive tape such as carbon paper. The inner semiconductive layer 2 is formed by winding a conductive tape around the outside of the conductor 1, and the outer semiconductive layer 4 is wound around the outside of the insulating layer 3. The metal sheath 5 is generally made of lead. Further, the anticorrosion layer 6 is made of polyethylene or polyvinyl chloride.

一方、絶縁層3は、絶縁テープを内部半導電層2上に巻回して構成される。ここでの絶縁テープには、(A)クラフト紙などの紙テープや、(B)ポリオレフィン系などの樹脂テープ、或いは(C)樹脂フィルム3aの片面又は両面にクラフト紙3bを一体化した複合テープを適宜選択して利用できる。ポリオレフィン系樹脂の代表例としてはポリプロピレンが挙げられる。より具体的には、(1)紙テープのみで絶縁層を構成したり、(2)複合テープ単独で絶縁層を構成したり、(3)紙テープと複合テープとを組み合わせて絶縁層を構成したり、(4)樹脂テープと複合テープとを組み合わせて絶縁層を構成したりすることが挙げられる。各種絶縁テープの組み合わせ方には、絶縁層の厚さ方向の一部に異種の絶縁テープ巻回層を形成したり、異種の絶縁テープを交互に巻回することが含まれる。   On the other hand, the insulating layer 3 is configured by winding an insulating tape on the inner semiconductive layer 2. Insulating tape here includes (A) paper tape such as kraft paper, (B) resin tape such as polyolefin, or (C) composite tape in which kraft paper 3b is integrated on one or both sides of resin film 3a. It can be selected and used as appropriate. A representative example of the polyolefin resin is polypropylene. More specifically, (1) the insulation layer is composed only of paper tape, (2) the insulation layer is composed solely of the composite tape, or (3) the insulation layer is composed of a combination of paper tape and the composite tape. (4) An insulating layer may be formed by combining a resin tape and a composite tape. The method of combining various insulating tapes includes forming different types of insulating tape winding layers on a part of the insulating layer in the thickness direction, or alternately winding different types of insulating tapes.

より具体的な複合テープの例としては、PPフィルムの片面又は両面にクラフト紙を一体化したPPLP(登録商標)をスーパーカレンダー掛けしたものであって、次の特性を有するものが挙げられる。   More specific examples of the composite tape include those obtained by supercalendering PPLP (registered trademark) in which kraft paper is integrated on one or both sides of a PP film and having the following characteristics.

PPLP全体の厚さ:30〜200μm(特に70〜150μm)
PPLPの全体厚に対するPPフィルム厚の比率:40〜90%(特に60〜90%)
PPLPにおけるクラフト紙の密度:0.85g/cm3以上(特に1.0g/cm3以上)
Overall thickness of PPLP: 30-200μm (especially 70-150μm)
Ratio of PP film thickness to total PPLP thickness: 40 to 90% (especially 60 to 90%)
Kraft paper density in PPLP: 0.85 g / cm 3 or more (particularly 1.0 g / cm 3 or more)

このような絶縁層には、絶縁油が含浸される。その絶縁油としては、中粘度油や高粘度油が利用できる。中粘度油は、60℃での粘度が10cst以上500cst未満の絶縁油である。中粘度油の代表例としては、ポリブテンが挙げられる。その他、中粘度油としては、ポリスチレン系絶縁油、鉱油、アルキルベンゼン主体の合成油、重質アルキレート或いはこれらの1種以上を含む混合等が挙げられる。一方、高粘度油は、60℃での粘度が500cst以上、特に1000cst以上の絶縁油である。高粘度油の代表例としては、ナフテン系油が挙げられる。より具体的には、例えばT2015(ダセック社 商品名)を挙げることができる。このT2015の粘度は60℃にて1200cst、比重は0.93(5℃)であり、直流海底ソリッドケーブルの絶縁油として実績がある。   Such an insulating layer is impregnated with insulating oil. As the insulating oil, medium viscosity oil or high viscosity oil can be used. The medium viscosity oil is an insulating oil having a viscosity at 60 ° C. of 10 cst or more and less than 500 cst. A typical example of a medium viscosity oil is polybutene. In addition, examples of the medium viscosity oil include polystyrene insulating oil, mineral oil, synthetic oil mainly composed of alkylbenzene, heavy alkylate, or a mixture containing one or more of these. On the other hand, the high viscosity oil is an insulating oil having a viscosity at 60 ° C. of 500 cst or more, particularly 1000 cst or more. A typical example of the high viscosity oil is naphthenic oil. More specifically, for example, T2015 (trade name of Dusek) can be mentioned. This T2015 has a viscosity of 1200 cst at 60 ° C. and a specific gravity of 0.93 (5 ° C.), and has a track record as an insulating oil for DC submarine solid cables.

以上の構成のソリッドケーブルは、次のようにして製造する。まず、導体1上に内部半導電層2、絶縁層3、外部半導電層4を形成してケーブルコアとする。次に、このコアを巻き取ってタンク内に収納し、コアを加熱することで絶縁層3を真空乾燥させる。この乾燥温度は、例えば100〜130℃程度、乾燥圧力は10-1mmHg以下である。続いて、タンク内に所定温度の絶縁油を導入し、この絶縁油の圧力を加圧して、絶縁油を絶縁層3に含浸させる。絶縁油の含浸温度は、例えば80〜120℃程度、より好ましくは80〜100℃である。絶縁油の含浸が完了したら、ケーブルコアをタンク内から取り出し、そのコアの外側に金属シース5を形成する。そして、金属シース5の上に防食層6、鉄線凱装を形成する。必要に応じて、金属シース5の上又は防食層6の上に補強層も形成する。 The solid cable having the above configuration is manufactured as follows. First, the inner semiconductive layer 2, the insulating layer 3, and the outer semiconductive layer 4 are formed on the conductor 1 to form a cable core. Next, the core is wound up and stored in a tank, and the insulating layer 3 is vacuum-dried by heating the core. The drying temperature is, for example, about 100 to 130 ° C., and the drying pressure is 10 −1 mmHg or less. Subsequently, an insulating oil having a predetermined temperature is introduced into the tank, the pressure of the insulating oil is increased, and the insulating oil 3 is impregnated with the insulating oil. The impregnation temperature of the insulating oil is, for example, about 80 to 120 ° C, more preferably 80 to 100 ° C. When the impregnation with the insulating oil is completed, the cable core is taken out from the tank, and the metal sheath 5 is formed outside the core. Then, the anticorrosion layer 6 and the iron wire fitting are formed on the metal sheath 5. If necessary, a reinforcing layer is also formed on the metal sheath 5 or on the anticorrosion layer 6.

この絶縁油の含浸に際して、本発明方法では絶縁油を所定圧力に加圧するまでの昇圧過程または所定圧力に加圧した後、圧力を一時的に減圧する。この絶縁油の加圧は、連続的又は段階的に圧力を漸増させることが好ましい。この圧力の漸増により、絶縁層3の変形などが抑制される。   In the impregnation with the insulating oil, in the method of the present invention, the pressure is temporarily reduced after the pressurizing process until the insulating oil is pressurized to a predetermined pressure or after the pressure is increased to the predetermined pressure. The pressurization of the insulating oil is preferably performed by gradually or gradually increasing the pressure. Due to this gradual increase in pressure, deformation of the insulating layer 3 and the like are suppressed.

減圧する時期は、絶縁層3にある程度絶縁油が浸透した含浸中間段階に行うことが好ましい。絶縁層3に絶縁油が浸透される極初期の段階で上記減圧を行うことは、絶縁油の含浸に加圧が寄与しないことになり、含浸に要する総時間がかえって長期化することになる。例えば、絶縁層3のほぼ中間まで絶縁油を含浸した時点で減圧を行えばよい。   The time of depressurization is preferably performed in an intermediate stage of impregnation in which insulating oil has penetrated into insulating layer 3 to some extent. If the pressure reduction is performed at the very initial stage where the insulating oil is infiltrated into the insulating layer 3, the pressure does not contribute to the impregnation of the insulating oil, and the total time required for the impregnation is rather prolonged. For example, the pressure may be reduced when the insulating oil is impregnated almost to the middle of the insulating layer 3.

減圧後の到達圧力や減圧の回数は、絶縁テープの特性、例えばPPLPのPP比や、絶縁テープの巻回数に応じて適宜選択すればよい。例えば、PP比の高いPPLPを用いている場合、減圧幅を大きく、即ち減圧後の到達圧力を低くすることが好ましいと考えられる。また、絶縁テープの巻回数が多い場合、減圧工程を複数回行っても良い。   The ultimate pressure after depressurization and the number of times of depressurization may be appropriately selected according to the characteristics of the insulating tape, for example, the PP ratio of PPLP and the number of windings of the insulating tape. For example, when PPLP having a high PP ratio is used, it is considered preferable to increase the pressure reduction range, that is, lower the ultimate pressure after pressure reduction. Further, when the number of windings of the insulating tape is large, the decompression step may be performed a plurality of times.

また、減圧割合も、絶縁テープの特性、例えばPPLPのPP比や、絶縁テープの巻回数に応じて選択すればよい。あまり急激な減圧は、絶縁層3が変形する虞があるため、漸減することが好適である。   The decompression ratio may be selected according to the characteristics of the insulating tape, for example, the PP ratio of PPLP and the number of windings of the insulating tape. It is preferable to reduce the pressure suddenly because the insulating layer 3 may be deformed.

さらに、一時的な絶縁油の圧力の減圧を行った後、再度加圧して、絶縁油の含浸を行えばよい。この再加圧の条件も上述した加圧条件と同様に考えられる。   Further, after temporarily reducing the pressure of the insulating oil, the pressure may be increased again to impregnate the insulating oil. This re-pressurization condition can be considered similarly to the pressurization condition described above.

そして、必要に応じて、上記減圧と再加圧を適宜繰り返しても良い。   And as needed, you may repeat the said pressure reduction and repressurization suitably.

以上のように、絶縁層3に絶縁油を含浸する過程で、絶縁油を所定圧力に加圧した後、一旦減圧することで、絶縁油の加圧に伴う圧縮により狭小化された含浸経路を一時的に開放することができる。この含浸経路の開放により、広がった含浸経路内に絶縁油を引き込むことができ、絶縁油を絶縁層3に含浸する過程の合計時間を短縮することができる。   As described above, in the process of impregnating the insulating layer 3 with the insulating oil, after the insulating oil is pressurized to a predetermined pressure, the pressure is once reduced to reduce the impregnation path narrowed by the compression accompanying the pressurization of the insulating oil. It can be temporarily opened. By opening the impregnation path, the insulating oil can be drawn into the expanded impregnation path, and the total time of the process of impregnating the insulating layer 3 with the insulating oil can be shortened.

特に、PPLPを絶縁層に用いた場合、絶縁油の加圧圧力はPPフィルム3aが受けて含浸経路となるクラフト紙3bを圧縮することになる。そのため、PPLPを用いた絶縁層3に絶縁油を含浸する場合、上記減圧により含浸経路の開放を行うことで、含浸時間の短縮効果が一層顕著に現れると考えられる。   In particular, when PPLP is used for the insulating layer, the pressurized pressure of the insulating oil is received by the PP film 3a and compresses the kraft paper 3b serving as an impregnation path. Therefore, when the insulating layer 3 using PPLP is impregnated with insulating oil, it is considered that the effect of shortening the impregnation time appears more remarkably by opening the impregnation path by the reduced pressure.

本発明ソリッドケーブルの製造方法は、大容量の海底ケーブルなどに利用されるソリッドケーブルの製造に好適に利用できる。   The method for producing a solid cable of the present invention can be suitably used for producing a solid cable used for a large-capacity submarine cable or the like.

本発明に係るソリッドケーブルの一例を示す断面図である。It is sectional drawing which shows an example of the solid cable which concerns on this invention.

符号の説明Explanation of symbols

1 導体 2 内部半導電層 3 絶縁層
3a 樹脂フィルム(PPフィルム) 3b クラフト紙
4 外部半導電層 5 金属シース 6 防食層
DESCRIPTION OF SYMBOLS 1 Conductor 2 Internal semiconductive layer 3 Insulating layer 3a Resin film (PP film) 3b Kraft paper 4 External semiconductive layer 5 Metal sheath 6 Anticorrosion layer

Claims (6)

絶縁層に絶縁油を加圧状態にて含浸する工程を備えるソリッドケーブルの製造方法であって、
前記加圧状態で絶縁油の圧力を一旦減圧する工程を備えることを特徴とするソリッドケーブルの製造方法。
A method for producing a solid cable comprising a step of impregnating an insulating layer with insulating oil in a pressurized state,
A method for producing a solid cable, comprising the step of temporarily reducing the pressure of the insulating oil in the pressurized state.
前記絶縁層は、樹脂フィルムを含むことを特徴とする請求項1に記載のソリッドケーブルの製造方法。   The method for manufacturing a solid cable according to claim 1, wherein the insulating layer includes a resin film. 前記絶縁層の少なくとも一部は、樹脂フィルムの片面又は両面にクラフト紙が一体化された複合テープを導体の外側に巻回して構成されてなることを特徴とする請求項1または2に記載のソリッドケーブルの製造方法。   The at least part of the insulating layer is formed by winding a composite tape in which kraft paper is integrated on one side or both sides of a resin film, around the outside of the conductor. Solid cable manufacturing method. この複合テープがスーパーカレンダー掛けして製造されてなることを特徴とする請求項3に記載のソリッドケーブルの製造方法。   4. The method for producing a solid cable according to claim 3, wherein the composite tape is produced by supercalendering. 前記絶縁油は、60℃での粘度が10cst以上500cst未満の中粘度油であることを特徴とする請求項1〜4のいずれか1項に記載のソリッドケーブルの製造方法。   The method for producing a solid cable according to any one of claims 1 to 4, wherein the insulating oil is a medium viscosity oil having a viscosity at 60 ° C of 10 cst or more and less than 500 cst. 前記絶縁油は、60℃での粘度が500cst以上の高粘度油であることを特徴とする請求項1〜4のいずれか1項に記載のソリッドケーブルの製造方法。   The method for manufacturing a solid cable according to claim 1, wherein the insulating oil is a high-viscosity oil having a viscosity at 60 ° C. of 500 cst or more.
JP2008243262A 2008-09-22 2008-09-22 Solid cable manufacturing method Expired - Fee Related JP5354159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243262A JP5354159B2 (en) 2008-09-22 2008-09-22 Solid cable manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243262A JP5354159B2 (en) 2008-09-22 2008-09-22 Solid cable manufacturing method

Publications (2)

Publication Number Publication Date
JP2010073661A true JP2010073661A (en) 2010-04-02
JP5354159B2 JP5354159B2 (en) 2013-11-27

Family

ID=42205235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243262A Expired - Fee Related JP5354159B2 (en) 2008-09-22 2008-09-22 Solid cable manufacturing method

Country Status (1)

Country Link
JP (1) JP5354159B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103008A (en) * 2008-10-24 2010-05-06 Sumitomo Electric Ind Ltd Solid cable
JP2013175645A (en) * 2012-02-27 2013-09-05 Hitachi Industrial Equipment Systems Co Ltd Oil-filled transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161944A (en) * 1994-12-09 1996-06-21 Fujikura Ltd High-viscosity-oil-impregnated insulated cable
JP2000268652A (en) * 1999-03-19 2000-09-29 Sumitomo Electric Ind Ltd Manufacture of solid power cable
JP2001093352A (en) * 1999-09-22 2001-04-06 Sumitomo Electric Ind Ltd Of cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161944A (en) * 1994-12-09 1996-06-21 Fujikura Ltd High-viscosity-oil-impregnated insulated cable
JP2000268652A (en) * 1999-03-19 2000-09-29 Sumitomo Electric Ind Ltd Manufacture of solid power cable
JP2001093352A (en) * 1999-09-22 2001-04-06 Sumitomo Electric Ind Ltd Of cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103008A (en) * 2008-10-24 2010-05-06 Sumitomo Electric Ind Ltd Solid cable
JP2013175645A (en) * 2012-02-27 2013-09-05 Hitachi Industrial Equipment Systems Co Ltd Oil-filled transformer

Also Published As

Publication number Publication date
JP5354159B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5369507B2 (en) Submarine solid cable manufacturing method and submarine solid cable
JP5354159B2 (en) Solid cable manufacturing method
JP3437750B2 (en) Method for producing laminated paper for electrical insulation and oil immersion power cable using the laminated paper
JP3803162B2 (en) DC high viscosity oil immersion power cable
WO1997004466A1 (en) Power cable, manufacturing method and impregnating compound
JP3803139B2 (en) DC oil immersion power cable
JP2002245867A (en) Oil impregnated dc solid cable
JP3614484B2 (en) High viscosity oil immersion insulated cable
JP5954610B2 (en) Composite paper solid submarine cable for DC
JP3429234B2 (en) DC transmission line
JP2011216292A (en) Direct current oil immersed power cable
JPS6329414A (en) Dc electric cable
JP3819098B2 (en) Oil immersion power cable and its installation method
JP3973722B2 (en) DC oil immersion power cable
JP3533290B2 (en) Oil immersion paper solid cable
JP2011216262A (en) Direct-current oil immersed power cable
JP2003059362A (en) Manufacturing method for oil-impregnated paper solid cable
JP2001325839A (en) Superconducting cable
JPH10248154A (en) Connection in oil-impregnated power cable
JP3429233B2 (en) DC submarine solid cable
JP3547563B2 (en) DC oil immersion power cable
US2057562A (en) Electric cable
JP2000276954A (en) Oil-impregnated solid power cable and its manufacture
JPS6151362B2 (en)
CN115912737A (en) Stator coil containing thermal stress relaxation layer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5354159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees