JP2010071757A - Positioning apparatus and positioning method - Google Patents

Positioning apparatus and positioning method Download PDF

Info

Publication number
JP2010071757A
JP2010071757A JP2008238320A JP2008238320A JP2010071757A JP 2010071757 A JP2010071757 A JP 2010071757A JP 2008238320 A JP2008238320 A JP 2008238320A JP 2008238320 A JP2008238320 A JP 2008238320A JP 2010071757 A JP2010071757 A JP 2010071757A
Authority
JP
Japan
Prior art keywords
unit
tsp
signal
receiving
tsp signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008238320A
Other languages
Japanese (ja)
Inventor
Takayuki Yamada
隆之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2008238320A priority Critical patent/JP2010071757A/en
Publication of JP2010071757A publication Critical patent/JP2010071757A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positioning apparatus hardly affected by a noise and having a high reliability. <P>SOLUTION: The positioning apparatus is configured to include, a transmission unit 10 for transmitting a TSP (Time Stretched Pulse) signal in which the frequency component changes in a pulse, a plurality of receiving units 21, 22, 23 for receiving the TSP signal disposed at a predetermined distance from the transmission unit 10 and in mutually separated locations, a memory unit 30 for storing the position information of each of the receiving units 21, 22, 23, and a calculation unit 40 for calculating the time difference of the receiving of the TSP signal by each of the receiving units based on the changing pattern of the frequency component of the TSP signal received by each of the receiving units and calculating the position of the transmission unit 10 based on the time difference and the position information obtained from the memory unit 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、測位装置および測位方法に関するものである。   The present invention relates to a positioning device and a positioning method.

近年、カーナビゲーションシステムに代表されるGPS(Groval Positioning System)を利用した移動体の位置測定が広く行われている。しかし、衛星からの電波が届かない室内空間では機能しないといった問題があった。   In recent years, position measurement of a moving body using GPS (Global Positioning System) typified by a car navigation system has been widely performed. However, there is a problem that it does not function in indoor spaces where radio waves from satellites do not reach.

そこで、特許文献1(特開平6−130141号公報)には微弱電波を発信する無線送信機と、無線送信機から送信される微弱電波から受信電界強度情報を得る複数個の無線電界強度測定受信機と、複数個の無線電界強度測定受信機で受信された複数の受信電界強度情報を上記複数個の無線電界強度測定受信機毎に付設した情報伝送回線を介して結線されたコンピューターと、上記コンピューターに入力された上記情報伝送回線からの入力信号から各々の電界強度を比較した結果をディスプレイ表示する画像表示装置とから構成される測位装置が提案されている。また、この測位装置では、測位対象が複数個ある場合には個別の無線送信機は互いに異なる識別符合で変調された微弱電波を送信するように構成されている。
特開平6−130141号公報
Therefore, Patent Document 1 (Japanese Patent Laid-Open No. 6-130141) discloses a wireless transmitter that transmits weak radio waves and a plurality of radio field strength measurement receptions that obtain received field strength information from weak radio waves transmitted from the wireless transmitter. A computer connected to each of the plurality of radio field strength measurement receivers via an information transmission line provided with a plurality of reception field strength information received by the plurality of radio field strength measurement receivers, and There has been proposed a positioning device including an image display device that displays a result of comparing each electric field intensity from an input signal from the information transmission line input to a computer. Further, in this positioning device, when there are a plurality of positioning targets, the individual radio transmitters are configured to transmit weak radio waves modulated with different identification codes.
JP-A-6-130141

しかし、特許文献1の測位装置では、情報伝送回線からの入力信号から各々の電界強度を比較するという信号処理自体がノイズの影響を大きく受けるためにごく限られた条件下でなければ信頼性の高い測位はできないという問題がある。   However, in the positioning device of Patent Document 1, the signal processing itself of comparing the electric field strengths from the input signal from the information transmission line is greatly affected by noise, so that it is reliable unless the conditions are very limited. There is a problem that high positioning is not possible.

また、無線強度受信機と可搬型無線送信機が近距離である場合には、授受される無線信号の受信電界強度がほとんど変化しないため測定誤差が大きくなり測定自体が出来なくなる。逆に、無線強度受信機と可搬型無線送信機の距離が遠距離の場合には、ノイズの影響を受け易くなるために測定誤差が大きくなる。   Further, when the wireless strength receiver and the portable wireless transmitter are at a short distance, the received electric field strength of the transmitted and received wireless signals hardly changes, so that the measurement error becomes large and the measurement itself cannot be performed. Conversely, when the distance between the wireless strength receiver and the portable wireless transmitter is a long distance, the measurement error increases because it is easily affected by noise.

さらに、互いに異なる識別符号で変調した微弱電波は、それぞれ単一の周波数帯域の電波なので該当する周波数のノイズがあると識別符号が乱されて認識ができなくなるおそれもある。   Furthermore, since weak radio waves modulated with different identification codes are radio waves in a single frequency band, if there is noise of the corresponding frequency, there is a possibility that the identification code is disturbed and cannot be recognized.

本発明は、上記問題を解決するものであって、比較的広範囲な測定領域に適用でき、ノイズの影響を受けにくく信頼性の高い測位装置を低コストで提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a highly reliable positioning apparatus that can be applied to a relatively wide measurement region and is not easily affected by noise, at a low cost.

本発明によれば、測位装置は、パルス内で周波数成分が変化するTSP(Time Stretched Pulse)信号を発信する発信部と、前記発信部から所定の距離間隔を隔て、互いに離隔して配置された前記TSP信号を受信する複数の受信部と、前記各受信部の位置情報を格納している記憶部と、前記各受信部が受信した前記TSP信号の周波数成分の変化パターンに基づいて前記各受信部が前記TSP信号を受信した時間差を演算し、前記時間差と前記記憶部から取得した前記位置情報とに基づいて前記発信部の位置を演算する演算部と、を備えることができる。   According to the present invention, the positioning device is disposed apart from each other at a predetermined distance from the transmitter that transmits a TSP (Time Stretched Pulse) signal whose frequency component changes in the pulse. A plurality of reception units that receive the TSP signal, a storage unit that stores position information of each reception unit, and each reception based on a frequency component change pattern of the TSP signal received by each reception unit. A calculation unit that calculates a time difference when the unit receives the TSP signal, and calculates a position of the transmission unit based on the time difference and the position information acquired from the storage unit.

また、本発明によれば、測位方法は、発信部がパルス内で周波数成分が変化するTSP(Time Stretched Pulse)信号を発信するステップと、前記発信部から所定の距離間隔を隔て、互いに離隔して配置された複数の受信部が前記TSP信号を受信するステップと、前記各受信部が受信した前記TSP信号の周波数成分の変化パターンに基づいて前記各受信部が前記TSP信号を受信した時間差を演算するステップと、前記時間差と前記各受信部の位置情報とに基づいて前記発信部の位置を演算するステップと、を備えることができる。   Further, according to the present invention, the positioning method includes a step of transmitting a TSP (Time Stretched Pulse) signal in which a frequency component changes in a pulse in a pulse, and a predetermined distance interval from the transmitter. A plurality of receiving units arranged in the manner of receiving the TSP signal, and a time difference at which the receiving unit receives the TSP signal based on a change pattern of a frequency component of the TSP signal received by the receiving unit. A step of calculating, and a step of calculating the position of the transmitting unit based on the time difference and the position information of each receiving unit.

TSP信号とは、インパルスの位相を周波数の2乗に比例して変化させることにより、時間軸を引き伸ばした信号である。パルス内で周波数が連続的に変化するので1つのパルス内に複数の周波数成分を含み、特定の周波数帯域にノイズがあっても当該周波数帯域を除いた周波数帯域にてTSP信号を判別することができる。また、TSP信号の周波数成分の変化パターンは、距離によって変化しないので、発信部と受信部とが遠距離にある場合の測位でも比較的誤差は小さくなる。よって、本発明の測位装置および測位方法は比較的広範囲な測定領域に適用でき、ノイズの影響を受けにくく高い信頼性を有する。   The TSP signal is a signal obtained by extending the time axis by changing the phase of the impulse in proportion to the square of the frequency. Since the frequency continuously changes in the pulse, a TSP signal can be discriminated in a frequency band excluding the frequency band including a plurality of frequency components in one pulse and having noise in a specific frequency band. it can. In addition, since the change pattern of the frequency component of the TSP signal does not change with distance, the error is relatively small even when positioning is performed when the transmitter and the receiver are at a long distance. Therefore, the positioning device and positioning method of the present invention can be applied to a comparatively wide measurement region, and are highly resistant to noise and have high reliability.

なお、発信部が発信する無線信号は、周波数成分がパルス内で変化する信号であればいずれでもよく、当業者に良く知られるチャープ波、Barker系列による位相符号化正弦波、M系列による位相符号化正弦波または相補系列による位相符号化正弦波などであっても構わない。また、ここで周波数成分の変化パターンとは、TSP信号の位相が時間軸方向に変化する様態を意味する。   The radio signal transmitted by the transmitting unit may be any signal as long as the frequency component changes in the pulse. A chirp wave, a phase-encoded sine wave based on a Barker sequence, a phase code based on an M sequence are well known to those skilled in the art. A sine wave or a phase-encoded sine wave using a complementary sequence may be used. Here, the frequency component change pattern means a state in which the phase of the TSP signal changes in the time axis direction.

本発明の測位装置における演算部は、前記各受信部のうち第1受信部および第2受信部を選択し、前記第1受信部が受信した第1TSP信号の変化パターンと前記第2受信部が受信した第2TSP信号の変化パターンとの類似度に基づいて、前記時間差として前記第1受信部の受信時刻と前記第2受信部の受信時刻との差を演算することができる。   The calculation unit in the positioning device of the present invention selects the first receiving unit and the second receiving unit among the receiving units, and the change pattern of the first TSP signal received by the first receiving unit and the second receiving unit are Based on the similarity to the change pattern of the received second TSP signal, the difference between the reception time of the first reception unit and the reception time of the second reception unit can be calculated as the time difference.

ここで前記第1受信部の受信時刻と前記第2受信部の受信時刻との差は、第1受信部の受信時刻および第2受信部の受信時刻そのものの差分でもよいし、第1受信部から演算部が第1TSP信号を取得した時刻と第2受信部から演算部が第2TSP信号を取得した時刻との差分でもよい。受信部と演算部との間の伝達時間はTSP信号が空間を伝達する時間より十分に短く、本発明の測位精度において無視できる。   Here, the difference between the reception time of the first reception unit and the reception time of the second reception unit may be a difference between the reception time of the first reception unit and the reception time itself of the second reception unit, or the first reception unit. May be the difference between the time when the arithmetic unit acquires the first TSP signal from the time when the arithmetic unit acquires the second TSP signal from the second receiver. The transmission time between the reception unit and the calculation unit is sufficiently shorter than the time during which the TSP signal is transmitted through the space, and can be ignored in the positioning accuracy of the present invention.

また、本発明の測位装置における演算部は、前記第1TSP信号および前記第2TSP信号のそれぞれを所定の周期でサンプリングして得られた複数のサンプリング値を用いて前記類似度を演算することができる。   In addition, the calculation unit in the positioning apparatus of the present invention can calculate the similarity using a plurality of sampling values obtained by sampling each of the first TSP signal and the second TSP signal at a predetermined period. .

サンプリング値を演算に直接用いることによって、受信したTSP信号のサンプリング値から信号波形を復元して、復元した信号波形を比較するといった処理を省くことができるため、装置の構成が比較的簡易となる。その結果、発信部の小型化、発信部の長寿命化、測位装置の消費電力低下等の効果を奏する。   By directly using the sampling value for the calculation, it is possible to omit the processing of restoring the signal waveform from the sampling value of the received TSP signal and comparing the restored signal waveform, so that the configuration of the apparatus becomes relatively simple. . As a result, there are effects such as downsizing the transmitter, extending the life of the transmitter, and reducing the power consumption of the positioning device.

さらに、本発明の測位装置における演算部は、第1TSP信号から得られたサンプリング値と第2TSP信号から得られたサンプリング値とをそれぞれの時間成分の差が一定となるように一対一で対応付けて乗算し、かつ乗算して得られた値を累積平均して周期パターンの類似度を表し、周期パターンの類似度が最大となる時間成分の差を前記時間差とすることができる。   Furthermore, the arithmetic unit in the positioning device of the present invention associates the sampling value obtained from the first TSP signal and the sampling value obtained from the second TSP signal on a one-to-one basis so that the difference between the respective time components is constant. The values obtained by the multiplication are accumulated and averaged to represent the similarity of the periodic patterns, and the difference in time components that maximizes the similarity of the periodic patterns can be used as the time difference.

上述のような演算処理は、相互相関関数処理と呼ばれる手法である。二つの信号波形におけるサンプリング値を掛け合わせて累積し、平均化する手法なので、一部の周波数帯域にノイズによる影響が生じても、演算結果に対する影響を抑制することができる。   The arithmetic processing as described above is a technique called cross-correlation function processing. Since the sampling values in the two signal waveforms are multiplied, accumulated, and averaged, the influence on the calculation result can be suppressed even if the influence of noise occurs in some frequency bands.

さらに、本発明の測位装置の発信部は、前記TSP信号を発信する時間間隔を変化させることができる。これによって、TSP信号を受信する時間間隔に基づいて比較すべきTSP信号を特定することができる。   Furthermore, the transmitter of the positioning device of the present invention can change the time interval for transmitting the TSP signal. Thereby, the TSP signal to be compared can be specified based on the time interval for receiving the TSP signal.

さらに、本発明の測位装置は少なくとも3つの前記受信部を備え、前記演算部は空間内を移動する前記発信部の位置を三次元的にそれぞれ演算することができる。   Furthermore, the positioning device of the present invention includes at least three receiving units, and the calculating unit can calculate the position of the transmitting unit moving in space three-dimensionally.

さらに、本発明の測位装置は少なくとも2つの前記受信部を備え、前記演算部は所定の線上を移動する前記発信部の位置を演算することができる。   Furthermore, the positioning device of the present invention includes at least two receiving units, and the calculating unit can calculate the position of the transmitting unit moving on a predetermined line.

なお、TSP信号の周波数帯域は可聴域であってもよい。TSP信号が可聴域の周波数帯、すなわち音声信号にすることによって、発信部および受信部が市販の汎用品で構成することができるので、コストを抑えることができる。   Note that the frequency band of the TSP signal may be an audible range. By making the TSP signal an audible frequency band, that is, an audio signal, the transmitter and the receiver can be configured with commercially available general-purpose products, so that the cost can be reduced.

上記のように本発明の測位装置では、比較的広範囲な測定領域に適用でき、ノイズの影響を受けにくく信頼性の高い測位装置を低コストで提供できる。   As described above, the positioning device of the present invention can be applied to a relatively wide range of measurement areas, and can provide a highly reliable positioning device that is not easily affected by noise and at low cost.

図1は本発明の実施の形態である測位装置の構成図である。本実施形態の測位装置は、パルス内で周波数成分が変化するTSP(Time Stretched Pulse)信号を発信する発信部10と、発信部10から所定の距離間隔を隔て、互いに離隔して配置されたTSP信号を受信する複数の受信部21、22、23と、各受信部21、22、23の位置情報を格納している記憶部30と、各受信部が受信したTSP信号の周波数成分の変化パターンに基づいて各受信部がTSP信号を受信した時間差を演算し、時間差と記憶部30から取得した位置情報とに基づいて発信部10の位置を演算する演算部40と、を備えることができる。これによって、TSP信号は複数の周波数成分を含むので、特定の周波数のノイズから受ける影響が少なく、本実施形態の測位装置は高いノイズ耐性を有することができる。また、TSP信号の周波数成分の変化パターンは、発信部と受信部の距離に因って変化しないので、本実施形態の測位装置は比較的広範囲空間にて用いることができる。    FIG. 1 is a configuration diagram of a positioning apparatus according to an embodiment of the present invention. The positioning device of the present embodiment includes a transmitting unit 10 that transmits a TSP (Time Stretched Pulse) signal whose frequency component changes in a pulse, and TSPs that are spaced apart from each other by a predetermined distance from the transmitting unit 10. A plurality of receiving units 21, 22, and 23 that receive signals, a storage unit 30 that stores position information of each receiving unit 21, 22, and 23, and a frequency component change pattern of the TSP signal received by each receiving unit And a calculation unit 40 that calculates the time difference at which each reception unit receives the TSP signal based on the time difference and calculates the position of the transmission unit 10 based on the time difference and the position information acquired from the storage unit 30. Thus, since the TSP signal includes a plurality of frequency components, the influence of the noise of a specific frequency is small, and the positioning device of this embodiment can have high noise resistance. In addition, since the change pattern of the frequency component of the TSP signal does not change depending on the distance between the transmission unit and the reception unit, the positioning device of this embodiment can be used in a relatively wide space.

上述のTSP信号の周波数帯域は可聴域、すなわち音声信号であってもよい。TSP信号が可聴域の周波数帯であると、発信部10および受信部21、22、23が市販の汎用品で構成することができるので、コストを抑えることが可能である。   The frequency band of the above TSP signal may be an audible range, that is, an audio signal. When the TSP signal is in an audible frequency band, the transmitter 10 and the receivers 21, 22, and 23 can be configured with commercially available general-purpose products, so that the cost can be suppressed.

TSP信号は、インパルスの位相を周波数の2乗に比例して変化させることにより、時間軸を引き伸ばしたものである。図2に示すのはTSP−UP信号(位相を遅らせたもの)の波形およびスペクトログラムであり、下記式(1)、(2)で定義される。

Figure 2010071757
Figure 2010071757
ただし、jは虚数単位、NはTSP信号のサンプル長、mはTSP信号の幅を表すパラメータ(0≦m≦N/2)、上記式(1)においてnは0≦n≦N/2、上記式(2)においてnは(N/2)+1≦n<N である。 The TSP signal is obtained by extending the time axis by changing the phase of the impulse in proportion to the square of the frequency. FIG. 2 shows the waveform and spectrogram of the TSP-UP signal (with the phase delayed), which are defined by the following equations (1) and (2).
Figure 2010071757
Figure 2010071757
Here, j is an imaginary unit, N is a sample length of the TSP signal, m is a parameter indicating the width of the TSP signal (0 ≦ m ≦ N / 2), and n in the above formula (1) is 0 ≦ n ≦ N / 2, In the above formula (2), n is (N / 2) + 1 ≦ n <N.

上記式(1)、(2)で定義されるTSP−UP信号をN点逆離散フーリエ変換(IDFT)することによって、TSP信号が得られる。下記式(3)はTSP信号の信号波形を表している。

Figure 2010071757
ただし、上記式(3)においてnは0≦n≦N−1である。 A TSP signal is obtained by performing N-point inverse discrete Fourier transform (IDFT) on the TSP-UP signal defined by the above equations (1) and (2). The following equation (3) represents the signal waveform of the TSP signal.
Figure 2010071757
However, in the said Formula (3), n is 0 <= n <= N-1.

本実施形態において、演算部40は、各受信部のうち第1受信部21および第2受信部22を選択し、第1受信部21が受信した第1TSP信号の変化パターンと第2受信部22が受信した第2TSP信号の変化パターンの類似度に基づいて、時間差として第1受信部21の受信時刻と第2受信部22の受信時刻との差を演算してもよい。なお、演算部40が選択する第1受信部および第2受信部は受信部21と受信部22の組合せに限らず、複数の受信部のうち2つを選択する組合せのいずれでもよい。   In the present embodiment, the calculation unit 40 selects the first reception unit 21 and the second reception unit 22 among the reception units, and the change pattern of the first TSP signal received by the first reception unit 21 and the second reception unit 22. The difference between the reception time of the first reception unit 21 and the reception time of the second reception unit 22 may be calculated as a time difference based on the similarity of the change pattern of the second TSP signal received by the. The first receiving unit and the second receiving unit selected by the calculation unit 40 are not limited to the combination of the receiving unit 21 and the receiving unit 22, and may be any combination of selecting two of the plurality of receiving units.

また、周波数成分の変化パターンは、TSP信号の波形が時間軸方向に変化する様態を意味しており、TSP信号に含まれる一つのパルス内における信号周期の変化パターンを含んでいる。   The frequency component change pattern means a state in which the waveform of the TSP signal changes in the time axis direction, and includes a signal period change pattern in one pulse included in the TSP signal.

さらに、本実施形態において、演算部40は、第1TSP信号および第2TSP信号のそれぞれを所定の周期でサンプリングして得られた複数のサンプリング値を用いて類似度を演算してもよい。   Further, in the present embodiment, the calculation unit 40 may calculate the similarity using a plurality of sampling values obtained by sampling each of the first TSP signal and the second TSP signal at a predetermined period.

通常、複数の信号波形を比較する装置であれば、受信したTSP信号のサンプリング値から信号波形を復元する処理や復元した信号波形を比較する処理を備える場合が多い。しかし、本実施形態において、上述のような処理は必ずしも備える必要がない。これらを省くことによって、簡易な装置構成とすることができる。これによって、発信部の小型化、発信部の長寿命化、測位装置の消費電力低下等の効果を奏する。   In general, an apparatus that compares a plurality of signal waveforms often includes a process for restoring a signal waveform from a sampled value of a received TSP signal and a process for comparing restored signal waveforms. However, in the present embodiment, the processing as described above is not necessarily provided. By omitting these, a simple device configuration can be obtained. As a result, there are effects such as downsizing of the transmitter, extending the life of the transmitter, and reducing power consumption of the positioning device.

さらに、本実施形態において、演算部40は、第1TSP信号から得られたサンプリング値と第2TSP信号から得られたサンプリング値とをそれぞれの時間成分の差が一定となるように一対一で対応付けて乗算し、かつ乗算して得られた値を累積平均して周期パターンの類似度を表し、周期パターンの類似度が最大となる時間成分の差を第1受信部21の受信時刻と第1受信部22の受信時刻との時間差としてもよい。   Furthermore, in the present embodiment, the arithmetic unit 40 associates the sampling value obtained from the first TSP signal and the sampling value obtained from the second TSP signal on a one-to-one basis so that the difference between the respective time components is constant. And a cumulative average of the values obtained by multiplication is used to represent the similarity of the periodic pattern, and the difference between the time components at which the similarity of the periodic pattern is maximized is expressed as the first reception unit 21 receiving time and the first It may be a time difference from the reception time of the reception unit 22.

上述のような演算処理は、相互相関関数処理と呼ばれる手法で、異なる二つの時系列信号がどれだけ類似しているかを評価するための手法である。たとえば、受信部21が受信したTSP信号の信号波形h1(t)、受信部22が受信したTSP信号の信号波形h2(t)としたとき、相互相関関数は下記式(4)で表される。

Figure 2010071757
ただし、τは時間の変数である。 The arithmetic processing as described above is a method called cross-correlation function processing, and is a method for evaluating how similar two different time series signals are. For example, when the signal waveform h1 (t) of the TSP signal received by the reception unit 21 and the signal waveform h2 (t) of the TSP signal received by the reception unit 22, the cross-correlation function is expressed by the following equation (4). .
Figure 2010071757
Where τ is a time variable.

上記式(4)は、N個のサンプリング値からなるh1(t)と、同じくN個のサンプリング値からなるh2(t)を時間軸にτだけずらしたh2(t+τ)とを、時間成分の差が一定となるように一対一で対応付けた部分をそれぞれ掛け合わせて累積し、平均化している。二つの信号波形が最も類似した点で上記式(4)が最大となる。   The above equation (4) is expressed as follows: h1 (t) composed of N sampling values and h2 (t + τ) obtained by shifting h2 (t) composed of N sampling values by τ on the time axis as time components. The parts associated one-to-one so as to make the difference constant are multiplied and accumulated and averaged. The above equation (4) is maximized in that the two signal waveforms are most similar.

図4は、相互相関関数で受信時間差を演算する模式図である。信号波形h1(t)と比べて信号波形h2(t)との位相差がτである場合、h1(t)の波形を時間軸方向にτずらしたときがh1(t)とh2(t)との波形類似度が最も高く、上記式(4)の相互相関関数が最大値となる。すなわち、上記式(4)の相互相関関数が最大値となるτは、受信部21と受信部22との受信時間差と同値である。よって上記式(4)の相互相関関数を用いて受信時間差を演算することができる。   FIG. 4 is a schematic diagram for calculating a reception time difference using a cross-correlation function. When the phase difference from the signal waveform h2 (t) is τ compared to the signal waveform h1 (t), the time when the waveform of h1 (t) is shifted by τ in the time axis direction is h1 (t) and h2 (t). And the cross-correlation function of the above equation (4) is the maximum value. That is, τ at which the cross-correlation function of the above formula (4) is the maximum value is the same value as the reception time difference between the reception unit 21 and the reception unit 22. Therefore, the reception time difference can be calculated using the cross-correlation function of the above equation (4).

なお、相互相関関数は二つの信号波形におけるサンプリング値を掛け合わせて累積し、平均化する手法なので、一部の周波数帯域にノイズが生じても、その影響を抑えることができる。   The cross-correlation function is a method of multiplying and accumulating sampling values in two signal waveforms, and averaging them. Therefore, even if noise occurs in some frequency bands, the influence can be suppressed.

これまで受信部21と受信部22間の受信時間差を演算する処理について述べてきたが、同様に受信部22と受信部23間の受信時間差を演算する処理、受信部23と受信部21間の受信時間差を演算する処理も可能である。   The processing for calculating the reception time difference between the reception unit 21 and the reception unit 22 has been described so far. Similarly, the processing for calculating the reception time difference between the reception unit 22 and the reception unit 23, between the reception unit 23 and the reception unit 21. Processing for calculating the reception time difference is also possible.

発信部10は、TSP信号を発信する時間間隔を変化させることができる。これによって、TSP信号を受信する時間間隔に基づいて比較すべきTSP信号を特定することができる。図3を用いて詳しく説明する。各パルス間の時間間隔のが等間隔の場合、第1TSP信号のパルスBは、第2TSP信号のパルスA´、パルスB´およびパルスC´のいずれと比較して良いのか演算部40は判定できない。しかし、パルス間によって時間間隔が異なる場合、パルスAはパルスA´、パルスBはパルスB´、パルスCはパルスC´と比較することを演算部40はTSP信号を受信する時間間隔から判定することができる。   The transmission part 10 can change the time interval which transmits a TSP signal. Thereby, the TSP signal to be compared can be specified based on the time interval for receiving the TSP signal. This will be described in detail with reference to FIG. When the time interval between the pulses is equal, the arithmetic unit 40 cannot determine whether the pulse B of the first TSP signal can be compared with the pulse A ′, the pulse B ′, or the pulse C ′ of the second TSP signal. . However, when the time interval differs between pulses, the arithmetic unit 40 determines that the pulse A is compared with the pulse A ′, the pulse B is compared with the pulse B ′, and the pulse C is compared with the pulse C ′ from the time interval when the TSP signal is received. be able to.

図5は、本実施形態における測位方法のフローチャートである。発信部10がパルス内で周波数成分が変化するTSP(Time Stretched Pulse)信号を発信するステップ(ステップS101)と、発信部10から所定の距離間隔を隔て、互いに離隔して配置された複数の受信部21、22、23がTSP信号を受信するステップ(ステップS102)と、各受信部21、22、23が受信したTSP信号の周波数成分の変化パターンに基づいて各受信部がTSP信号を受信した時間差を演算するステップ(ステップS103)と、時間差と各受信部の位置情報とに基づいて発信部10の位置を演算するステップ(ステップS104)と、を備えることができる。   FIG. 5 is a flowchart of the positioning method in the present embodiment. The transmitting unit 10 transmits a TSP (Time Stretched Pulse) signal whose frequency component changes in the pulse (step S101), and a plurality of receptions arranged at a predetermined distance from the transmitting unit 10 and spaced apart from each other. Steps where the units 21, 22, and 23 receive the TSP signal (Step S102), and each receiving unit received the TSP signal based on the change pattern of the frequency component of the TSP signal received by each receiving unit 21, 22, and 23 A step of calculating the time difference (step S103) and a step of calculating the position of the transmitting unit 10 based on the time difference and the position information of each receiving unit (step S104) can be provided.

図6は衛星からの電波が届かない室内空間50において、本発明の測位装置を配置した一例を示した図である。発信部10は室内空間50内にてTSP信号を発信しており、受信部21、22、23はそれぞれTSP信号を受信している。演算部40は各受信部21、22、23がTSP信号を受信した受信時間差をTSP信号の波形類似度から演算する。さらに、演算された各受信時間差とTSP信号の伝播速度とによって発信部10から各受信部21、22、23までの距離間隔の差を演算することができる。本実施形態においては、距離間隔差A=(発信部10から受信部21までの距離間隔−発信部10から受信部22までの距離間隔)と、距離間隔差B=(発信部10から受信部22までの距離間隔−発信部10から受信部23までの距離間隔)と、距離間隔差C=(発信部10から受信部23までの距離間隔−発信部10から受信部21までの距離間隔)と、3つの距離間隔の差を演算することができる。   FIG. 6 is a diagram showing an example in which the positioning device of the present invention is arranged in an indoor space 50 where radio waves from a satellite do not reach. The transmitter 10 transmits a TSP signal in the indoor space 50, and the receivers 21, 22, and 23 each receive a TSP signal. The computing unit 40 computes the reception time difference at which the receiving units 21, 22, and 23 receive the TSP signal from the waveform similarity of the TSP signal. Furthermore, the difference in distance interval from the transmitter 10 to each receiver 21, 22, 23 can be calculated based on the calculated reception time difference and the propagation speed of the TSP signal. In the present embodiment, the distance interval difference A = (distance interval from the transmitting unit 10 to the receiving unit 21−the distance interval from the transmitting unit 10 to the receiving unit 22) and the distance interval difference B = (the transmitting unit 10 to the receiving unit). Distance interval from 22 to the distance interval from the transmission unit 10 to the reception unit 23) and distance interval difference C = (distance interval from the transmission unit 10 to the reception unit 23-distance interval from the transmission unit 10 to the reception unit 21) And the difference between the three distance intervals can be calculated.

演算された3つの距離間隔の差と記憶部30に格納されている各受信部21、22、23の位置情報とに基づいて、受信部21と受信部22との距離間隔が距離間隔差Aである曲面61と、受信部22と受信部23との距離間隔が距離間隔差Bである曲面62と、受信部23と受信部21との距離間隔が距離間隔差Cである曲面63と、(図5では便宜上いずれも曲線として図示される)を定めることができる。曲面61、曲面62および曲面63が交差する位置が、発信部10の位置として特定される。以上説明したように、本実施形態の測位装置は、少なくとも3つの受信部21、22、23を備え、演算部40は、空間内を移動する発信部10の位置を三次元的にそれぞれ演算することができる。なお、受信部は3つに限らず、増やすことによってより精度の高い測位が可能である。   Based on the calculated difference between the three distance intervals and the position information of each of the reception units 21, 22, and 23 stored in the storage unit 30, the distance interval between the reception unit 21 and the reception unit 22 is the distance interval difference A. A curved surface 61 whose distance interval between the receiving unit 22 and the receiving unit 23 is a distance interval difference B, and a curved surface 63 whose distance interval between the receiving unit 23 and the receiving unit 21 is a distance interval difference C; (Both are shown as curves in FIG. 5 for convenience). The position where the curved surface 61, the curved surface 62, and the curved surface 63 intersect is specified as the position of the transmitting unit 10. As described above, the positioning device of the present embodiment includes at least three receiving units 21, 22, and 23, and the calculating unit 40 calculates the position of the transmitting unit 10 that moves in the space in three dimensions. be able to. Note that the number of receiving units is not limited to three, and positioning with higher accuracy is possible by increasing the number of receiving units.

以上、図面を参照して本実施形態について述べたが、これらは本発明の一形態であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although this embodiment was described with reference to drawings, these are one form of this invention, and various structures other than the above are also employable.

たとえば、記憶部に格納されている受信部の位置情報は、各受信部の配置によって変化するものであり、本発明の測位装置は受信部の位置情報を適時変更できる手段を備えてもよい。これによって、各受信部の配置変更に対応することができる。   For example, the position information of the receiving unit stored in the storage unit changes depending on the arrangement of each receiving unit, and the positioning device of the present invention may include means that can change the position information of the receiving unit in a timely manner. As a result, it is possible to cope with a change in the arrangement of each receiving unit.

また、TSP信号の各パルス間を異なる時間間隔で配列することによって、演算部40は比べるべきパルスを判定可能であると上述したが、たとえばTSP信号に含まれる各パルスのパルス長を変えるなど、それぞれのパルスに特性を持たせることでも、同様に演算部40は比べるべきパルスを判定可能とすることができる。   In addition, as described above, the operation unit 40 can determine the pulse to be compared by arranging the pulses of the TSP signal at different time intervals. For example, the pulse length of each pulse included in the TSP signal is changed. Similarly, by giving each pulse a characteristic, the calculation unit 40 can also determine a pulse to be compared.

さらに、TSP信号の伝播速度はその空間の気温によって変化するので、演算部は、TSP信号が伝播する空間の気温を測定する手段を含み、測定された気温に基づいてTSP信号の伝播速度を演算可能な構成としてもよい。これによって、より精度の高い測位が可能である。   Further, since the propagation speed of the TSP signal varies depending on the temperature of the space, the calculation unit includes means for measuring the temperature of the space through which the TSP signal propagates, and calculates the propagation speed of the TSP signal based on the measured temperature. It is good also as a possible structure. As a result, positioning with higher accuracy is possible.

さらに、上記実施形態では受信部を3つ備える構成としたが、少なくとも2つの受信部を備えることによって、演算部は、既知の線上を移動する発信部の位置を演算することができる。たとえば、図6の空間50内において、記憶部30等に予めその位置を表す情報が格納されており、演算部40が必要なときに当該情報を取得することが可能な既知の線上に発信部10が位置するとき、各受信部21、22がTSP信号を受信した時間差と各受信部21、22の位置情報から演算して求められる曲面61と既知の線とが交差する点を発信部10の位置と特定することができる。ただし、既知の線は以下の条件を満たさなくてはならない。すなわち、発信部10が当該既知の線上のどの位置にあっても、演算して求められる曲面61と当該既知の線との交点が一点でなければならない。上記条件を満たす線上であれば、当該既知の線は直線でも曲線でも構わない。また、既知の線は、発信部10の幅方向の移動を無視できるだけであって、それを排除するものではない。なお、トンネル等の閉空間であれば、必然的に発信部の移動経路が限定されるので、上記と同様に少なくとも2つの受信部を備えることで測位が可能である。ただし、上記閉空間内においては、少なくとも2つの受信部が発信部から直接TSP信号を受信できるように受信部を配置する必要があるため、閉空間が曲がっている等の理由で2つの受信部では発信部から直接TSP信号を受信できない発信位置が存在する場合、3つ以上受信部を配置するとよい。   Furthermore, in the said embodiment, although it was set as the structure provided with three receiving parts, the calculating part can calculate the position of the transmission part which moves on a known line by providing at least two receiving parts. For example, in the space 50 of FIG. 6, information indicating the position is stored in advance in the storage unit 30 or the like, and the transmitting unit is placed on a known line from which the calculation unit 40 can acquire the information when necessary. 10 is located, a point at which the curved surface 61 obtained by calculating from the time difference at which each receiving unit 21 and 22 receives the TSP signal and the positional information of each receiving unit 21 and 22 intersects a known line intersects with the transmitting unit 10. Can be identified as However, the known line must meet the following conditions: That is, no matter where the transmitting unit 10 is on the known line, the intersection of the curved surface 61 obtained by calculation and the known line must be one point. The known line may be a straight line or a curve as long as the line satisfies the above conditions. Further, the known line can only ignore the movement of the transmitter 10 in the width direction, but does not exclude it. In the case of a closed space such as a tunnel, the transmission path of the transmission unit is inevitably limited, so that positioning is possible by providing at least two reception units as described above. However, in the closed space, since it is necessary to arrange the receiving unit so that at least two receiving units can directly receive the TSP signal from the transmitting unit, there are two receiving units because the closed space is bent. Then, when there is a transmission position where the TSP signal cannot be directly received from the transmission unit, three or more reception units may be arranged.

本発明の実施の形態である測位装置の構成図である。It is a block diagram of the positioning apparatus which is embodiment of this invention. TSP信号の波形とスペクトログラムを表す図である。It is a figure showing the waveform and spectrogram of a TSP signal. 相互相関関数で受信時間差を演算する模式図である。It is a schematic diagram which calculates a reception time difference with a cross correlation function. 相互相関関数で受信時間差を演算する模式図である。It is a schematic diagram which calculates a reception time difference with a cross correlation function. 本発明の実施の形態である測位方法のフローチャートである。It is a flowchart of the positioning method which is embodiment of this invention. 本発明の測位装置を室内空間に配置した一例を示した図である。It is the figure which showed an example which has arrange | positioned the positioning apparatus of this invention in indoor space.

符号の説明Explanation of symbols

10 発信部
21 受信部
22 受信部
23 受信部
30 記憶部
40 演算部
50 室内空間
61 曲面
62 曲面
63 曲面
DESCRIPTION OF SYMBOLS 10 Transmission part 21 Reception part 22 Reception part 23 Reception part 30 Storage part 40 Calculation part 50 Indoor space 61 Curved surface 62 Curved surface 63 Curved surface

Claims (9)

パルス内で周波数成分が変化するTSP(Time Stretched Pulse)信号を発信する発信部と、
前記発信部から所定の距離間隔を隔て、互いに離隔して配置された前記TSP信号を受信する複数の受信部と、
前記各受信部の位置情報を格納している記憶部と、
前記各受信部が受信した前記TSP信号の周波数成分の変化パターンに基づいて前記各受信部が前記TSP信号を受信した時間差を演算し、前記時間差と前記記憶部から取得した前記位置情報とに基づいて前記発信部の位置を演算する演算部と、
を備えることを特徴とする測位装置。
A transmitting unit that transmits a TSP (Time Stretched Pulse) signal whose frequency component changes in a pulse;
A plurality of receiving units for receiving the TSP signals arranged at a predetermined distance from the transmitting unit and spaced apart from each other;
A storage unit storing position information of each receiving unit;
Based on the change pattern of the frequency component of the TSP signal received by each receiving unit, the receiving unit calculates a time difference at which the TSP signal is received, and based on the time difference and the position information acquired from the storage unit. A calculation unit for calculating the position of the transmission unit;
A positioning device comprising:
前記演算部は、複数の前記受信部のうち第1受信部および第2受信部を選択し、前記第1受信部が受信した第1TSP信号の変化パターンと前記第2受信部が受信した第2TSP信号の変化パターンとの類似度に基づいて、前記時間差として前記第1受信部の受信時刻と前記第2受信部の受信時刻との差を演算することを特徴とする請求項1に記載の測位装置。   The computing unit selects a first receiving unit and a second receiving unit from among the plurality of receiving units, and the change pattern of the first TSP signal received by the first receiving unit and the second TSP received by the second receiving unit. The positioning according to claim 1, wherein a difference between a reception time of the first reception unit and a reception time of the second reception unit is calculated as the time difference based on a similarity with a signal change pattern. apparatus. 前記演算部は、前記第1TSP信号および前記第2TSP信号のそれぞれを所定の周期でサンプリングして得られた複数のサンプリング値を用いて前記類似度を演算することを特徴とする請求項2に記載の測位装置。   The calculation unit according to claim 2, wherein the calculation unit calculates the similarity using a plurality of sampling values obtained by sampling each of the first TSP signal and the second TSP signal at a predetermined period. Positioning device. 前記演算部は、前記第1TSP信号から得られたサンプリング値と前記第2TSP信号から得られたサンプリング値とをそれぞれの時間成分の差が一定となるように一対一で対応付けて乗算し、かつ乗算して得られた値を累積平均して前記類似度を表し、前記類似度が最大となる前記時間成分の差を前記時間差とすることを特徴とする請求項3に記載の測位装置。   The computing unit multiplies the sampling value obtained from the first TSP signal and the sampling value obtained from the second TSP signal in a one-to-one correspondence so that the difference between the respective time components is constant, and 4. The positioning device according to claim 3, wherein a value obtained by multiplication is cumulatively averaged to represent the similarity, and a difference between the time components that maximizes the similarity is defined as the time difference. 前記発信部は、前記TSP信号を発信する時間間隔を変化させることを特徴とする請求項1乃至4いずれかに記載の測位装置。   The positioning device according to claim 1, wherein the transmission unit changes a time interval for transmitting the TSP signal. 少なくとも3つの前記受信部を備え、
前記演算部は、空間内を移動する前記発信部の位置を三次元的にそれぞれ演算することを特徴とする請求項1乃至5いずれかに記載の測位装置。
Comprising at least three receiving units;
The positioning device according to claim 1, wherein the calculation unit calculates the position of the transmission unit moving in space three-dimensionally.
少なくとも2つの前記受信部を備え、
前記演算部は、既知の線上を移動する前記発信部の位置を演算することを特徴とする請求項1乃至5いずれかに記載の測位装置。
Comprising at least two receiving units;
The positioning device according to claim 1, wherein the calculation unit calculates a position of the transmission unit that moves on a known line.
前記TSP信号の周波数帯域が可聴域であることを特徴とする請求項1乃至7いずれかに記載の測位装置。   The positioning device according to any one of claims 1 to 7, wherein the frequency band of the TSP signal is an audible range. 発信部がパルス内で周波数成分が変化するTSP(Time Stretched Pulse)信号を発信するステップと、
前記発信部から所定の距離間隔を隔て、互いに離隔して配置された複数の受信部が前記TSP信号を受信するステップと、
前記各受信部が受信した前記TSP信号の周波数成分の変化パターンに基づいて前記各受信部が前記TSP信号を受信した時間差を演算するステップと、
前記時間差と前記各受信部の位置情報とに基づいて前記発信部の位置を演算するステップと、
を備えることを特徴とする測位方法。
A transmitting unit transmitting a TSP (Time Stretched Pulse) signal whose frequency component changes in a pulse;
A plurality of receiving units arranged at a predetermined distance from the transmitting unit and spaced apart from each other, and receiving the TSP signal;
Calculating a time difference at which each receiving unit receives the TSP signal based on a change pattern of a frequency component of the TSP signal received by each receiving unit;
Calculating the position of the transmitter based on the time difference and the position information of each receiver;
A positioning method characterized by comprising:
JP2008238320A 2008-09-17 2008-09-17 Positioning apparatus and positioning method Pending JP2010071757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238320A JP2010071757A (en) 2008-09-17 2008-09-17 Positioning apparatus and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238320A JP2010071757A (en) 2008-09-17 2008-09-17 Positioning apparatus and positioning method

Publications (1)

Publication Number Publication Date
JP2010071757A true JP2010071757A (en) 2010-04-02

Family

ID=42203699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238320A Pending JP2010071757A (en) 2008-09-17 2008-09-17 Positioning apparatus and positioning method

Country Status (1)

Country Link
JP (1) JP2010071757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061667A1 (en) * 2012-10-15 2014-04-24 シナノケンシ株式会社 Device for measuring coordinates by radio
JP2017049173A (en) * 2015-09-03 2017-03-09 株式会社Ihiエアロスペース Method and system for detecting position of radio wave transmission source
JP2020176902A (en) * 2019-04-17 2020-10-29 株式会社Ihi Time difference measuring device and arrival direction estimation device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107987A (en) * 1988-10-17 1990-04-19 Olympus Optical Co Ltd Ultrasonic apparatus for diagnosis
JPH06130141A (en) * 1992-09-17 1994-05-13 Tokyo Denshi Sekkei Kk Concurrent measurement and display for location of a plurality of radio wave sources
JPH0915314A (en) * 1995-03-20 1997-01-17 General Electric Co <Ge> System and method for determining position of material body
JPH11304906A (en) * 1998-04-20 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Sound-source estimation device and its recording medium with recorded program
JP2001262634A (en) * 2000-03-16 2001-09-26 Osaka Gas Co Ltd Piping structure investigation method and its device
JP2005265747A (en) * 2004-03-22 2005-09-29 Osaka Gas Co Ltd Piping system identification method
JP2005337848A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Ultrasonic distance measuring device
JP2008008748A (en) * 2006-06-29 2008-01-17 Mitsubishi Electric Corp Locating device for wireless frequency signal source
JP2008151660A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Delay time detection device, delay time detection method, delay time detection machine, and delay time detection program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107987A (en) * 1988-10-17 1990-04-19 Olympus Optical Co Ltd Ultrasonic apparatus for diagnosis
JPH06130141A (en) * 1992-09-17 1994-05-13 Tokyo Denshi Sekkei Kk Concurrent measurement and display for location of a plurality of radio wave sources
JPH0915314A (en) * 1995-03-20 1997-01-17 General Electric Co <Ge> System and method for determining position of material body
JPH11304906A (en) * 1998-04-20 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Sound-source estimation device and its recording medium with recorded program
JP2001262634A (en) * 2000-03-16 2001-09-26 Osaka Gas Co Ltd Piping structure investigation method and its device
JP2005265747A (en) * 2004-03-22 2005-09-29 Osaka Gas Co Ltd Piping system identification method
JP2005337848A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Ultrasonic distance measuring device
JP2008008748A (en) * 2006-06-29 2008-01-17 Mitsubishi Electric Corp Locating device for wireless frequency signal source
JP2008151660A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Delay time detection device, delay time detection method, delay time detection machine, and delay time detection program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061667A1 (en) * 2012-10-15 2014-04-24 シナノケンシ株式会社 Device for measuring coordinates by radio
JP2017049173A (en) * 2015-09-03 2017-03-09 株式会社Ihiエアロスペース Method and system for detecting position of radio wave transmission source
JP2020176902A (en) * 2019-04-17 2020-10-29 株式会社Ihi Time difference measuring device and arrival direction estimation device
JP7267825B2 (en) 2019-04-17 2023-05-02 株式会社Ihi Time difference measuring device and direction of arrival estimating device

Similar Documents

Publication Publication Date Title
US9945945B2 (en) Signal processing apparatus, object detecting apparatus, apparatus provided with object detecting function, and object detecting method
CN110462430B (en) Radar apparatus
CN109541599B (en) Object detection method and device
US11846696B2 (en) Reduced complexity FFT-based correlation for automotive radar
CN104569961B (en) Radar ranging method based on spectrum zooming
CN102857961A (en) Time difference measuring method for communication signals with frequency shift
US9310483B2 (en) Device and method for transceiving ultrasonic wave
WO2015136823A1 (en) Target extraction system, target extraction method, and information processing device and control method and control program for same
CA2765746A1 (en) Environment estimation in a wireless communication system
US20170205493A1 (en) Method for location determination using radio signals
JP2020125948A (en) Radar device
US20210389416A1 (en) System and method for radar interference mitigation
US20190025419A1 (en) Moving object detection system and moving object detection method
EP3335058B1 (en) Processing received radiation reflected from a target
JP2010071757A (en) Positioning apparatus and positioning method
JP4815840B2 (en) Sound wave propagation distance estimation method and sound wave propagation distance estimation apparatus
JP2010127771A (en) Synthetic aperture sonar, and method and program for correcting phase error of synthetic aperture sonar
JP2014222168A (en) Radar system
JP4771875B2 (en) Radio frequency signal source location device
US20220268876A1 (en) Spatial position calculation device
JP2007240485A (en) Pulse radar system and distance measuring method
JP2013160508A (en) Radar device evaluation system and radar device evaluation method
CN113325408A (en) Noise estimation method, device and related equipment
CN109597060B (en) Radar speed measurement method and device
CN113009432B (en) Method, device and equipment for improving measurement accuracy and target detection accuracy

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211