JP2010069444A - Catalyst for decomposing ozone and method for manufacturing the same - Google Patents

Catalyst for decomposing ozone and method for manufacturing the same Download PDF

Info

Publication number
JP2010069444A
JP2010069444A JP2008241793A JP2008241793A JP2010069444A JP 2010069444 A JP2010069444 A JP 2010069444A JP 2008241793 A JP2008241793 A JP 2008241793A JP 2008241793 A JP2008241793 A JP 2008241793A JP 2010069444 A JP2010069444 A JP 2010069444A
Authority
JP
Japan
Prior art keywords
hydroxide
iron
manganese
catalyst
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008241793A
Other languages
Japanese (ja)
Inventor
Takeshi Sonoda
毅 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008241793A priority Critical patent/JP2010069444A/en
Publication of JP2010069444A publication Critical patent/JP2010069444A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for decomposing ozone, which has high ability to decompose ozone even under a condition of low temperature and high humidity. <P>SOLUTION: The catalyst for decomposing ozone contains manganese hydroxide, iron hydroxide and activated carbon. A method for manufacturing the catalyst for decomposing ozone includes a step of reacting water-soluble manganese salt and water-soluble iron salt with an alkali to obtain manganese hydroxide and iron hydroxide. A metal hydroxide is preferably used as the alkali. It is preferable that the metal salt, which is produced as a by-product when water-soluble manganese salt and water-soluble iron salt are reacted with the metal hydroxide, is made to remain in the catalyst as it is without washing it out. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、オゾン分解触媒及びこの製造方法に関する。   The present invention relates to an ozonolysis catalyst and a production method thereof.

マンガン及び銅の酸化物を含む触媒混合物が銀を0.1重量%以上含み、かつこの触媒混合物が300〜700℃で焼成されてなるオゾン分解触媒(特許文献1)や、水溶性マンガン化合物を焼成することなく活性炭に担持せしめた組成物からなるオゾン除去触媒(特許文献2)が知られている。   A catalyst mixture containing manganese and a copper oxide contains 0.1% by weight or more of silver, and an ozone decomposition catalyst (Patent Document 1) obtained by firing this catalyst mixture at 300 to 700 ° C., or a water-soluble manganese compound. An ozone removal catalyst (Patent Document 2) made of a composition supported on activated carbon without firing is known.

特開平7−132227号公報JP-A-7-132227 特開昭54−137478号公報JP 54-137478 A

従来の触媒では、低温度・高湿度下においてオゾン分解能が低いという問題がある。
本発明の目的は、低温度・高湿度下においても高いオゾン分解能をもつオゾン分解触媒を提供することである。
Conventional catalysts have a problem of low ozone resolution at low temperatures and high humidity.
An object of the present invention is to provide an ozonolysis catalyst having high ozone resolution even under low temperature and high humidity.

本発明のオゾン分解触媒の特徴は、水酸化マンガン、水酸化鉄及び活性炭を含有してなる点を要旨とする。   The feature of the ozonolysis catalyst of the present invention is that it contains manganese hydroxide, iron hydroxide and activated carbon.

本発明の製造方法の特徴は、上記のオゾン分解触媒の製造方法であって、
水溶性マンガン塩及び水溶性鉄塩とアルカリとを反応させて水酸化マンガン及び水酸化鉄を得る工程を含む点を要旨とする。
A feature of the production method of the present invention is a method for producing the above ozonolysis catalyst,
The gist is that it includes a step of reacting a water-soluble manganese salt and a water-soluble iron salt with an alkali to obtain manganese hydroxide and iron hydroxide.

本発明のオゾン分解触媒は、低温度(10〜25℃)・高湿度(85〜95%RH)下においても、高いオゾン分解能を発揮する。
本発明の製造方法によると、低温度(10〜25℃)・高湿度(85〜95%RH)下においても高いオゾン分解能を発揮するオゾン分解触媒を容易に調製できる。
また、本発明のオゾン分解触媒は、有害重金属を含まないため、触媒として使用中、人体に安全であるばかりでなく、触媒失活後の廃棄や処理においても安全性が高い。また、本発明のオゾン分解触媒は、安価な原料を用いることができるため、安価に調製できる。
The ozonolysis catalyst of the present invention exhibits high ozone resolution even at low temperatures (10 to 25 ° C.) and high humidity (85 to 95% RH).
According to the production method of the present invention, it is possible to easily prepare an ozonolysis catalyst that exhibits high ozone resolution even under low temperature (10 to 25 ° C.) and high humidity (85 to 95% RH).
Further, since the ozonolysis catalyst of the present invention does not contain harmful heavy metals, it is not only safe for the human body during use as a catalyst, but also has high safety in disposal and treatment after deactivation of the catalyst. Moreover, since the ozonolysis catalyst of this invention can use an inexpensive raw material, it can be prepared cheaply.

水酸化マンガンとしては、水酸化マンガン(II){Mn(OH)}、オキソ水酸化マンガン(IV){MnO(OH)}、水酸化マンガン(III){Mn(OH)}及びこれらの混合物が含まれる。 As manganese hydroxide, manganese hydroxide (II) {Mn (OH) 2 }, oxo manganese hydroxide (IV) {MnO (OH) 2 }, manganese hydroxide (III) {Mn (OH) 3 } and these A mixture of

なお、水酸化マンガン(II)は、水中の酸素によって酸化されて、オキソ水酸化マンガン(IV)又は水酸化マンガン(III)になるため、オゾン分解工程や触媒調製工程等で、大部分がこれらに酸化されていると考えられる。   In addition, since manganese (II) hydroxide is oxidized by oxygen in water to become oxo manganese hydroxide (IV) or manganese hydroxide (III), most of them are in the ozonolysis process, catalyst preparation process, etc. It is thought that it is oxidized.

水酸化鉄としては、水酸化鉄(II){Fe(OH)}、水酸化鉄(III){Fe(OH)}、酸化水酸化鉄(III){FeO(OH)}及びこれらの混合物が含まれる。 As iron hydroxide, iron hydroxide (II) {Fe (OH) 2 }, iron hydroxide (III) {Fe (OH) 3 }, iron oxide hydroxide (III) {FeO (OH)} and these A mixture is included.

なお、水酸化鉄(II)は、酸素が存在する状態で容易に酸化されて、水酸化鉄(III)又は酸化水酸化鉄(III)へと変化するため、オゾン分解工程や触媒調製工程等で、大部分がこれらに酸化されていると考えられる。   In addition, since iron (II) hydroxide is easily oxidized in the presence of oxygen and changes to iron (III) hydroxide or iron (III) oxide hydroxide, an ozone decomposition step, a catalyst preparation step, etc. And most of them are thought to be oxidized to these.

活性炭としては、木材、コークス、ヤシガラ、石炭、オイルカーボン、フェノール樹脂、レーヨン、アクリロニトリル又は石炭ピッチ等を原料として、通常の方法で賦活されたものであれば制限なく使用できる。   The activated carbon can be used without limitation as long as it is activated by a usual method using wood, coke, coconut shell, coal, oil carbon, phenol resin, rayon, acrylonitrile, coal pitch or the like as a raw material.

活性炭は、粒径が150μm未満の粉末活性炭及び粒径が150μm以上の粒状活性炭(JIS K1474:2007)のいずれも使用できるが、粉末活性炭が好ましい。   As the activated carbon, both powdered activated carbon having a particle size of less than 150 μm and granular activated carbon having a particle size of 150 μm or more (JIS K1474: 2007) can be used, and powdered activated carbon is preferable.

活性炭の比表面積(m/g)は、500〜2500が好ましく、さらに好ましくは700〜2000である。 500-2500 are preferable and, as for the specific surface area (m < 2 > / g) of activated carbon, More preferably, it is 700-2000.

水酸化マンガンの含有量(重量%)は、水酸化マンガン、水酸化鉄及び活性炭の重量に基づいて、10〜30が好ましく、さらに好ましくは10〜20、特に好ましくは13〜16である。   The content (% by weight) of manganese hydroxide is preferably 10 to 30, more preferably 10 to 20, and particularly preferably 13 to 16, based on the weight of manganese hydroxide, iron hydroxide and activated carbon.

水酸化鉄の含有量(重量%)は、水酸化マンガン、水酸化鉄及び活性炭の重量に基づいて、40〜60が好ましく、さらに好ましくは45〜60、特に好ましくは47〜56である。   The content (% by weight) of iron hydroxide is preferably 40 to 60, more preferably 45 to 60, and particularly preferably 47 to 56, based on the weight of manganese hydroxide, iron hydroxide and activated carbon.

活性炭の含有量(重量%)は、水酸化マンガン、水酸化鉄及び活性炭の重量に基づいて、10〜50が好ましく、さらに好ましくは20〜40、特に好ましくは28〜40である。   The content (% by weight) of the activated carbon is preferably 10 to 50, more preferably 20 to 40, and particularly preferably 28 to 40 based on the weight of manganese hydroxide, iron hydroxide and activated carbon.

本発明のオゾン分解触媒の形状は特に制限されず、ハニカム状、円柱状、板状、パイプ状、球状又は紡錘状等のいずれでもよい。   The shape of the ozone decomposition catalyst of the present invention is not particularly limited, and may be any of a honeycomb shape, a columnar shape, a plate shape, a pipe shape, a spherical shape, a spindle shape, and the like.

本発明のオゾン分解触媒の大きさは、オゾンの分解効率の観点から小さい程よいが、オゾンとの接触効率及び圧損失等の観点から、体積(mm)として、14〜100が好ましく、さらに好ましくは21〜42である。 The size of the ozone decomposition catalyst of the present invention is preferably as small as possible from the viewpoint of ozone decomposition efficiency. However, from the viewpoint of contact efficiency with ozone, pressure loss, and the like, the volume (mm 3 ) is preferably 14 to 100, and more preferably. Is 21-42.

本発明のオゾン分解触媒の製造方法は、水酸化マンガン、水酸化鉄及び活性炭が均一に混合されていれば制限はない。たとえば、(1)水溶性マンガン塩及び水溶性鉄塩とアルカリとを反応させて水酸化マンガン及び水酸化鉄を得る工程を含む方法、並びに(2)水酸化マンガン、水酸化鉄及び活性炭を均一混合して調製する方法が挙げられる。   The production method of the ozonolysis catalyst of the present invention is not limited as long as manganese hydroxide, iron hydroxide and activated carbon are uniformly mixed. For example, (1) a method including a step of reacting a water-soluble manganese salt and a water-soluble iron salt with an alkali to obtain manganese hydroxide and iron hydroxide; and (2) uniform mixing of manganese hydroxide, iron hydroxide and activated carbon. The method of mixing and preparing is mentioned.

(1)の方法において、活性炭の存在下で、水溶性マンガン塩及び水溶性鉄塩とアルカリとを反応させて水酸化マンガン及び水酸化鉄を得ると共に、本発明のオゾン分解触媒を調製してもよいし、水溶性マンガン塩及び水溶性鉄塩とアルカリとを反応させて水酸化マンガン及び水酸化鉄を得てから、これと活性炭とを混合して本発明のオゾン分解触媒を調製してもよい。   In the method (1), water-soluble manganese salt and water-soluble iron salt are reacted with alkali in the presence of activated carbon to obtain manganese hydroxide and iron hydroxide, and the ozonolysis catalyst of the present invention is prepared. Alternatively, water-soluble manganese salt and water-soluble iron salt are reacted with alkali to obtain manganese hydroxide and iron hydroxide, and this is mixed with activated carbon to prepare the ozonolysis catalyst of the present invention. Also good.

水溶性マンガン塩としては、水100gに対する溶解度が1g以上のマンガン塩を意味し、たとえば、塩化マンガン(II){MnCl}、硫酸マンガン(II){MnSO}、硝酸マンガン(II){Mn(NO}、酢酸マンガン(II){Mn(CHCOO)}、チオシアン酸マンガン(II){Mn(SCN)}及びこれらの水和物が挙げられる。 The water-soluble manganese salt means a manganese salt having a solubility in 100 g of water of 1 g or more. For example, manganese chloride (II) {MnCl 2 }, manganese sulfate (II) {MnSO 4 }, manganese nitrate (II) {Mn (NO 3 ) 2 }, manganese (II) acetate {Mn (CH 3 COO) 2 }, manganese (II) thiocyanate {Mn (SCN) 2 } and hydrates thereof.

水溶性鉄塩としては、水100gに対する溶解度が1g以上の鉄塩を意味し、たとえば、酢酸鉄(II){Fe(Ac)}、チオシアン鉄(III){Fe(SCN)}、塩化鉄(II){FeCl}、塩化鉄(III){FeCl}、硝酸鉄(II){Fe(NO}、硝酸鉄(III){Fe(NO}、硫酸鉄(II){FeSO}、塩基性硫酸鉄(III){Fe(OH)SO}、硫酸鉄(III){Fe(SO}及びこれらの水和物が挙げられる。 The water-soluble iron salt means an iron salt having a solubility of 1 g or more in 100 g of water. For example, iron (II) acetate {Fe (Ac) 2 }, thiocyanic iron (III) {Fe (SCN) 3 }, chloride Iron (II) {FeCl 2 }, iron chloride (III) {FeCl 3 }, iron nitrate (II) {Fe (NO 3 ) 2 }, iron nitrate (III) {Fe (NO 3 ) 3 }, iron sulfate ( II) {FeSO 4 }, basic iron sulfate (III) {Fe (OH) SO 4 }, iron sulfate (III) {Fe 2 (SO 4 ) 3 } and hydrates thereof.

アルカリとしては、金属水酸化物、金属炭酸塩及びアンモニアが含まれる。
金属水酸化物としては、アルカリ金属水酸化物(水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等)及びアルカリ土類金属水酸化物(水酸化マグネシウム、水酸化カルシウム及び水酸化バリウム等)等が挙げられる。
Alkalis include metal hydroxides, metal carbonates and ammonia.
Examples of metal hydroxides include alkali metal hydroxides (such as lithium hydroxide, sodium hydroxide and potassium hydroxide) and alkaline earth metal hydroxides (such as magnesium hydroxide, calcium hydroxide and barium hydroxide). Can be mentioned.

金属炭酸塩としては、アルカリ金属炭酸塩(炭酸リチウム、炭酸ナトリウム、炭酸水素ナトリウム及び炭酸カリウム等)及びアルカリ土類金属炭酸塩(炭酸マグネシウム、炭酸カルシウム及び炭酸バリウム等)等が挙げられる。   Examples of the metal carbonate include alkali metal carbonates (such as lithium carbonate, sodium carbonate, sodium bicarbonate and potassium carbonate) and alkaline earth metal carbonates (such as magnesium carbonate, calcium carbonate and barium carbonate).

これらのうち、金属水酸化物及び金属炭酸塩が好ましく、さらに好ましくは金属水酸化物、特に好ましくはアルカリ土類水酸化物である。   Of these, metal hydroxides and metal carbonates are preferable, metal hydroxides are more preferable, and alkaline earth hydroxides are particularly preferable.

水溶性マンガン塩、水溶性鉄塩及び活性炭のそれぞれの使用量は、水酸化マンガン、水酸化鉄及び活性炭が上記範囲となる範囲であればよい。また、アルカリの使用量は、水溶性マンガン塩及び水溶性鉄塩の合計モル数に対して、1.05〜1.3倍のモル数が好ましく、さらに好ましくは1.1〜1.2倍のモル数である。   Each usage-amount of water-soluble manganese salt, water-soluble iron salt, and activated carbon should just be a range from which manganese hydroxide, iron hydroxide, and activated carbon become the said range. The amount of alkali used is preferably 1.05 to 1.3 times, more preferably 1.1 to 1.2 times the total number of moles of the water-soluble manganese salt and water-soluble iron salt. The number of moles.

水溶性マンガン塩及び水溶性鉄塩とアルカリとの反応は、溶媒中で行うことが好ましい。溶媒としては、水が好ましいが、反応を阻害しない限り、水に、有機バインダー(ポリビニルアルコール、塩化ビニリデン及びコーンスターチ等)、無機バインダー(アルミナゾル、シリカゾル及びチタニアゾル等)、水溶性溶剤(メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン、酢酸エチル、ジメチルスルホキシド及びジメチルホルムアミド等)及び/又は無機塩(硫酸カルシウム、硫酸マグネシウム、硫酸バリウム等)が含まれていてもよい。   The reaction of the water-soluble manganese salt or water-soluble iron salt with the alkali is preferably performed in a solvent. As the solvent, water is preferable. However, as long as the reaction is not inhibited, an organic binder (polyvinyl alcohol, vinylidene chloride, corn starch, etc.), an inorganic binder (alumina sol, silica sol, titania sol, etc.), a water-soluble solvent (methyl alcohol, ethyl sol) Alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, ethyl acetate, dimethyl sulfoxide, dimethylformamide and the like) and / or inorganic salts (calcium sulfate, magnesium sulfate, barium sulfate, etc.) may be contained.

溶媒を使用する場合、溶媒の使用量(重量%)は、水溶性マンガン塩、水溶性鉄塩及びアルカリの合計重量に基づいて、100〜1000が好ましく、さらに好ましくは150〜500、特に好ましくは200〜400である。   When a solvent is used, the amount (% by weight) of the solvent used is preferably 100 to 1000, more preferably 150 to 500, particularly preferably based on the total weight of the water-soluble manganese salt, water-soluble iron salt and alkali. 200-400.

水溶性マンガン塩及び水溶性鉄塩とアルカリとの反応温度(℃)としては、0〜100が好ましく、さらにこのましくは5〜50、特に好ましくは10〜40である。なお、この反応は中和反応であり、発熱を伴うため、局部発熱とならないよう、均一攪拌しながら行うと共に、必要により冷却することが好ましい。   The reaction temperature (° C.) between the water-soluble manganese salt and water-soluble iron salt and the alkali is preferably 0 to 100, more preferably 5 to 50, and particularly preferably 10 to 40. In addition, since this reaction is a neutralization reaction and is accompanied by heat generation, it is preferable to carry out with uniform stirring and to cool if necessary so as not to generate local heat generation.

水溶性マンガン塩及び水溶性鉄塩とアルカリとを反応させて得られる水酸化マンガン及び水酸化鉄(活性炭の存在下で反応した場合活性炭を含む)は、洗浄せずこのまま本発明のオゾン分解触媒としてもよいし、水等の溶媒で洗浄してから本発明のオゾン分解触媒としてもよい。
しかし、アルカリとして金属水酸化物を用いて、水溶性マンガン塩及び水溶性鉄塩と金属水酸化物とを反応させる場合、副生する金属塩は洗浄せずに残存させることが好ましい。この金属塩はバインダーとして作用するためである。
Manganese hydroxide and iron hydroxide obtained by reacting a water-soluble manganese salt or water-soluble iron salt with an alkali (including activated carbon when reacted in the presence of activated carbon) are not washed and remain in the ozonolysis catalyst of the present invention. Alternatively, the ozone decomposition catalyst of the present invention may be used after washing with a solvent such as water.
However, when a water-soluble manganese salt or a water-soluble iron salt is reacted with a metal hydroxide using a metal hydroxide as an alkali, it is preferable to leave the by-produced metal salt without washing. This is because this metal salt acts as a binder.

得られた水酸化マンガン及び水酸化鉄(活性炭の存在下で反応した場合、活性炭を含む。)は、溶媒を使用した場合、デカンテーション及び/又は濾過等により、溶媒から取り出すが、このまま本発明のオゾン分解触媒としてもよく、湿式粉砕、乾燥、乾式粉砕、粒度調整及び/又は成型してもよい。乾燥してから成型することが好ましい。
湿式粉砕、乾燥、乾式粉砕、粒度調整及び成型は公知の方法が適用できる。
Manganese hydroxide and iron hydroxide obtained (including activated carbon when reacted in the presence of activated carbon) are removed from the solvent by decantation and / or filtration when the solvent is used. The ozonolysis catalyst may be wet pulverized, dried, dry pulverized, particle size adjusted and / or molded. It is preferable to mold after drying.
Known methods can be applied to wet pulverization, drying, dry pulverization, particle size adjustment and molding.

(2)の方法において、成型する場合、賦形助剤、補強剤及び/又は有機バインダー等を添加してもよい。   In the method (2), when molding, a shaping aid, a reinforcing agent and / or an organic binder may be added.

本発明のオゾン分解触媒は、固定床、移動床、流動床又は接触攪拌(スラリー方式、バッチ方式)のいずれの方式でもオゾンを効率よく分解することができる。   The ozonolysis catalyst of the present invention can efficiently decompose ozone by any system of fixed bed, moving bed, fluidized bed, or contact stirring (slurry system, batch system).

本発明のオゾン分解触媒は、低温度(10〜25℃)・高湿度(85〜95%RH)下においても、高いオゾン分解能を発揮するため、分解温度(℃)としては特に制限はなく、0〜100の範囲でよく、好ましくは5〜80、さらに好ましくは10〜60、特に好ましくは20〜50である。   The ozone decomposition catalyst of the present invention exhibits high ozone resolution even at low temperatures (10 to 25 ° C.) and high humidity (85 to 95% RH), so the decomposition temperature (° C.) is not particularly limited, It may be in the range of 0 to 100, preferably 5 to 80, more preferably 10 to 60, and particularly preferably 20 to 50.

相対湿度(%RH)としては、結露しない範囲であればよく、好ましくは0〜90であるが、40〜95(好ましくは45〜95、さらに好ましくは50〜90)の範囲であっても優れたオゾン分解効率を維持できる。   The relative humidity (% RH) may be in a range where no condensation occurs, and is preferably 0 to 90, but even in the range of 40 to 95 (preferably 45 to 95, more preferably 50 to 90) is excellent. Ozone decomposition efficiency can be maintained.

空間速度(Sv値:触媒1mによって処理する気体の1時間当たり体積:単位hr−1)は、出口のオゾン濃度の許容値によって適宜決定でき、出口のオゾン濃度が0.05ppm以下とした場合、たとえば、100〜2000(好ましくは100〜1000、さらに好ましくは100〜400)程度である。 The space velocity (Sv value: volume per hour of the gas treated by the catalyst 1 m 3 : unit hr −1 ) can be determined appropriately according to the allowable value of the ozone concentration at the outlet, and the ozone concentration at the outlet is 0.05 ppm or less. For example, it is about 100-2000 (preferably 100-1000, more preferably 100-400).

本発明のオゾン分解触媒は、低温度、高湿度又は低温・高湿においてもオゾンを効率よく分解することができるため、水処理等の多くの分野で発生する未反応のオゾンを効率よく分解処理して無害化することができる。   The ozone decomposition catalyst of the present invention can efficiently decompose ozone even at low temperature, high humidity, or low temperature / high humidity, and thus efficiently decomposes unreacted ozone generated in many fields such as water treatment. And can be detoxified.

以下、特記しない限り、部は重量部を意味し、%は重量%を意味する。
<実施例1>
硫酸マンガン7水和物{MnSO・7HO}35部(0.126モル部)及び硫酸鉄7水和物{FeSO・7HO}157部(0.565モル部)を水道水1000部に溶解して水溶液を得た後、約25℃で、この水溶液を溶解しながら、水酸化カルシウム{Ca(OH)}60部(0.811モル部)を徐々に添加して、水酸化マンガン及び水酸化鉄を生成させた。
この水酸化マンガン及び水酸化鉄をデカンテーションにより水溶液から分離してから、約25℃で24時間かけて風乾して粉末を得た。この粉末と活性炭{武田薬品工業株式会社製ハニカム成型用活性炭、比表面積800m/g、使用量は水分を含まない活性炭のみの重量に換算した。}20部とを均一混合してから、造粒機{不二パラダル株式会社製EXDF60型}に仕込み、粒径3mm×長さ6〜30mmの円柱状に造粒した後、約25℃で24時間かけて風乾し、さらに105℃で1時間乾燥して、本発明のオゾン分解触媒(1){水酸化マンガン16%、水酸化鉄56%、活性炭28%}を得た。
Hereinafter, unless otherwise specified, parts mean parts by weight and% means% by weight.
<Example 1>
Manganese sulfate heptahydrate {MnSO 4 · 7H 2 O} 35 parts (0.126 mol part) and iron sulfate heptahydrate {FeSO 4 · 7H 2 O} 157 parts (0.565 mol part) After dissolving in 1000 parts to obtain an aqueous solution, while dissolving the aqueous solution at about 25 ° C., 60 parts (0.811 mol parts) of calcium hydroxide {Ca (OH) 2 } was gradually added, Manganese hydroxide and iron hydroxide were produced.
The manganese hydroxide and iron hydroxide were separated from the aqueous solution by decantation and then air-dried at about 25 ° C. for 24 hours to obtain a powder. This powder and activated carbon {Takeda Pharmaceutical Co., Ltd. honeycomb-forming activated carbon, specific surface area 800 m 2 / g, the amount used was converted to the weight of only activated carbon not containing moisture. } After 20 parts is uniformly mixed, the mixture is charged into a granulator {EXDF60 type manufactured by Fuji Paradal Co., Ltd.] and granulated into a columnar shape having a particle diameter of 3 mm × length of 6 to 30 mm, and then is heated at about 25 ° C. It was air-dried over time and further dried at 105 ° C. for 1 hour to obtain an ozone decomposition catalyst (1) of the present invention (manganese hydroxide 16%, iron hydroxide 56%, activated carbon 28%).

<実施例2>
活性炭の使用量を「20部」から「30部」に変更したこと以外、実施例1と同様にして、本発明のオゾン分解触媒(2){水酸化マンガン13%、水酸化鉄47%、活性炭40%}を得た。
<Example 2>
Except having changed the usage-amount of activated carbon from "20 parts" to "30 parts", it is the same as Example 1, and the ozone decomposition catalyst (2) {manganese hydroxide 13%, iron hydroxide 47%, Activated carbon 40%} was obtained.

<比較例1>
活性炭を用いなかったこと以外、実施例1と同様にして、比較用のオゾン分解触媒(H1){水酸化マンガン22%、水酸化鉄78%}を得た。
<Comparative Example 1>
A comparative ozone decomposition catalyst (H1) {manganese hydroxide 22%, iron hydroxide 78%} was obtained in the same manner as in Example 1 except that activated carbon was not used.

<比較例2>
硫酸マンガン7水和物の使用量を「35部(0.126モル部)」から「5部(0.018モル部)」に変更したこと、水酸化カルシウムの使用量を「60部(0.811モル部)」から「52部(0.703モル部)」に変更したこと、及び活性炭を用いなかったこと以外、実施例1と同様にして、比較用のオゾン分解触媒(H2){水酸化マンガン4%、水酸化鉄96%}を得た。
<Comparative example 2>
The amount of manganese sulfate heptahydrate used was changed from “35 parts (0.126 mol part)” to “5 parts (0.018 mol part)”, and the amount of calcium hydroxide used was “60 parts (0 .811 mol parts) ”to“ 52 parts (0.703 mol parts) ”, and no activated carbon was used in the same manner as in Example 1, except that the comparative ozone decomposition catalyst (H2) { Manganese hydroxide 4%, iron hydroxide 96%} were obtained.

実施例及び比較例で得たオゾン分解触媒を用いて、触媒層に、オゾンを含む混合空気を連続して流入させて、触媒層入口のオゾン濃度(CIN)と触媒層出口のオゾン濃度(COUT)とを測定し、次式から、オゾン分解率(%)を算出し、結果を表1に示した。   Using the ozone decomposition catalysts obtained in Examples and Comparative Examples, mixed air containing ozone was continuously flowed into the catalyst layer, and the ozone concentration (CIN) at the catalyst layer inlet and the ozone concentration (COUT) at the catalyst layer outlet. The ozone decomposition rate (%) was calculated from the following equation, and the results are shown in Table 1.

(オゾン分解率)={(CIN)−(COUT)}×100/(CIN)
(Ozone decomposition rate) = {(CIN) − (COUT)} × 100 / (CIN)

また、触媒層出口のオゾン濃度(COUT)が0.05ppmを超え始めたとき(オゾンがリークし始めたとき)の時間及びこのときのオゾン分解率を表1に示した。   Table 1 shows the time when the ozone concentration (COUT) at the catalyst layer outlet began to exceed 0.05 ppm (when ozone began to leak) and the ozone decomposition rate at this time.

触媒量:226mL
混合ガス流量:1.34L/分
触媒層入口オゾン濃度(CIN):2000ppm
温度:20〜30℃
空間速度(Sv値):356hr−1
相対湿度:65〜85%RH
Catalyst amount: 226 mL
Mixed gas flow rate: 1.34 L / min Catalyst layer inlet ozone concentration (CIN): 2000 ppm
Temperature: 20-30 ° C
Space velocity (Sv value): 356 hr −1
Relative humidity: 65-85% RH

Figure 2010069444
Figure 2010069444


実施例1で得たオゾン分解触媒について、温度及び相対湿度を表2のように変更して、上記と同様に評価し、結果を表2に示した。   The ozonolysis catalyst obtained in Example 1 was evaluated in the same manner as described above with the temperature and relative humidity changed as shown in Table 2, and the results are shown in Table 2.

Figure 2010069444
Figure 2010069444



表1から明らかなように、本発明のオゾン分解触媒は、比較用のオゾン分解触媒に比べて、低温度・高湿度下においても高いオゾン分解能を発揮した。
また、表2から明らかなように、本発明のオゾン分解触媒は、様々な温度・湿度条件においても高いオゾン分解率を発揮した。
As is clear from Table 1, the ozone decomposition catalyst of the present invention exhibited a high ozone resolution even at a low temperature and high humidity, as compared with a comparative ozone decomposition catalyst.
As is clear from Table 2, the ozonolysis catalyst of the present invention exhibited a high ozonolysis rate even under various temperature and humidity conditions.

Claims (6)

水酸化マンガン、水酸化鉄及び活性炭を含有してなることを特徴とするオゾン分解触媒。 An ozonolysis catalyst comprising manganese hydroxide, iron hydroxide and activated carbon. 水酸化マンガン、水酸化鉄及び活性炭の重量に基づいて、水酸化マンガンの含有量が10〜30、水酸化鉄の含有量が40〜60、活性炭の含有量が10〜50である請求項1に記載のオゾン分解触媒。 The manganese hydroxide content is 10 to 30, the iron hydroxide content is 40 to 60, and the activated carbon content is 10 to 50 based on the weight of manganese hydroxide, iron hydroxide, and activated carbon. The ozonolysis catalyst according to 1. 請求項1又は2に記載のオゾン分解触媒の製造方法であって、
水溶性マンガン塩及び水溶性鉄塩とアルカリとを反応させて水酸化マンガン及び水酸化鉄を得る工程を含むことを特徴とする製造方法。
A method for producing an ozonolysis catalyst according to claim 1 or 2,
A production method comprising a step of reacting a water-soluble manganese salt and a water-soluble iron salt with an alkali to obtain manganese hydroxide and iron hydroxide.
アルカリが金属水酸化物又は金属炭酸塩である請求項3に記載の製造方法。 The production method according to claim 3, wherein the alkali is a metal hydroxide or a metal carbonate. 水溶性マンガン塩及び水溶性鉄塩と金属水酸化物又は金属炭酸塩とを反応させて副生する金属塩を洗浄せずに残存させる請求項4に記載の製造方法。 The production method according to claim 4, wherein the water-soluble manganese salt and the water-soluble iron salt are reacted with a metal hydroxide or a metal carbonate to leave the by-produced metal salt without washing. さらに、水酸化マンガン及び水酸化鉄と活性炭とを混合する工程を含む請求項3〜5のいずれかに記載の製造方法。 Furthermore, the manufacturing method in any one of Claims 3-5 including the process of mixing manganese hydroxide and iron hydroxide, and activated carbon.
JP2008241793A 2008-09-19 2008-09-19 Catalyst for decomposing ozone and method for manufacturing the same Pending JP2010069444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241793A JP2010069444A (en) 2008-09-19 2008-09-19 Catalyst for decomposing ozone and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241793A JP2010069444A (en) 2008-09-19 2008-09-19 Catalyst for decomposing ozone and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010069444A true JP2010069444A (en) 2010-04-02

Family

ID=42201720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241793A Pending JP2010069444A (en) 2008-09-19 2008-09-19 Catalyst for decomposing ozone and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010069444A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121813A (en) * 2020-09-15 2020-12-25 北京山美水美臭氧高科技有限公司 Alkaline earth metal modified Mn-based ozone oxidation catalyst and application thereof
CN112759064A (en) * 2021-01-04 2021-05-07 华东理工大学 Ozone catalytic oxidation system and treatment method of coal chemical industry concentrated solution
CN113149179A (en) * 2021-03-12 2021-07-23 中南大学 Method for improving ozone degradation of landfill leachate
CN115487823A (en) * 2022-10-19 2022-12-20 西南石油大学 Preparation method and application of high-humidity-resistance ozonolysis catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157123A (en) * 1989-08-29 1991-07-05 Nippon Kayaku Co Ltd Ozone decomposition agent
JPH0435223B2 (en) * 1983-06-27 1992-06-10 Mitsui Mining & Smelting Co
JPH0549862A (en) * 1991-08-23 1993-03-02 Nippon Kayaku Co Ltd Method for deodorization and treating agent therefor
JPH0957111A (en) * 1995-08-26 1997-03-04 Seibu Giken:Kk Catalyst carrier capable of regulating temperature or ozone decomposition element
JPH11179207A (en) * 1997-12-22 1999-07-06 Mitsui Mining & Smelting Co Ltd Catalyst for decomposition of ozone and its production
JP2002233718A (en) * 2001-02-13 2002-08-20 Nippon Pure Tec Kk Filtering material for air filter
JP2006312137A (en) * 2005-05-09 2006-11-16 Toyobo Co Ltd Ozone decomposing agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435223B2 (en) * 1983-06-27 1992-06-10 Mitsui Mining & Smelting Co
JPH03157123A (en) * 1989-08-29 1991-07-05 Nippon Kayaku Co Ltd Ozone decomposition agent
JPH0549862A (en) * 1991-08-23 1993-03-02 Nippon Kayaku Co Ltd Method for deodorization and treating agent therefor
JPH0957111A (en) * 1995-08-26 1997-03-04 Seibu Giken:Kk Catalyst carrier capable of regulating temperature or ozone decomposition element
JPH11179207A (en) * 1997-12-22 1999-07-06 Mitsui Mining & Smelting Co Ltd Catalyst for decomposition of ozone and its production
JP2002233718A (en) * 2001-02-13 2002-08-20 Nippon Pure Tec Kk Filtering material for air filter
JP2006312137A (en) * 2005-05-09 2006-11-16 Toyobo Co Ltd Ozone decomposing agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012026333; SAM, S. et al: 'Preparation of MnFe2O4 Nanoceramic Particles by Soft Chemical Routes' International Journal of Applied Science and Engineering Vol.9, No.4, 201112, p.223-239 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121813A (en) * 2020-09-15 2020-12-25 北京山美水美臭氧高科技有限公司 Alkaline earth metal modified Mn-based ozone oxidation catalyst and application thereof
CN112121813B (en) * 2020-09-15 2023-05-30 北京山美水美臭氧高科技有限公司 Alkaline earth metal modified Mn-based ozone oxidation catalyst and application thereof
CN112759064A (en) * 2021-01-04 2021-05-07 华东理工大学 Ozone catalytic oxidation system and treatment method of coal chemical industry concentrated solution
CN113149179A (en) * 2021-03-12 2021-07-23 中南大学 Method for improving ozone degradation of landfill leachate
CN113149179B (en) * 2021-03-12 2022-10-04 中南大学 Method for improving ozone degradation of landfill leachate
CN115487823A (en) * 2022-10-19 2022-12-20 西南石油大学 Preparation method and application of high-humidity-resistance ozonolysis catalyst

Similar Documents

Publication Publication Date Title
CN1021637C (en) Dehydrogenation catalyst
JP2010069444A (en) Catalyst for decomposing ozone and method for manufacturing the same
JP5422320B2 (en) Catalyst for decomposing volatile organic compounds and method for decomposing volatile organic compounds
JP4955952B2 (en) Production method of activated carbon
CN111377522B (en) Method for treating wastewater by ozone catalytic wet oxidation
JP2584527B2 (en) Shaped particles suitable for use as catalysts
JP5551144B2 (en) Activated carbon and its manufacturing method
TW200302752A (en) Catalyst composition for oxychlorination
JP5483723B2 (en) Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
CN106423147B (en) Preparation method of filter element material, filter element material and air purifier
JPH0212620B2 (en)
JP5547455B2 (en) Hypochlorite decomposition catalyst, method for producing the same, and method for using the same
JP3636912B2 (en) Method for producing catalyst for producing ethylene oxide
CN105819564A (en) Treatment method for paraformaldehyde wastewater
JPH053404B2 (en)
JP4210255B2 (en) Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5833313B2 (en) Detoxifying agent and method for exhaust gas containing metal hydride
JPH0780299A (en) Metal oxide added activated carbon catalyst
JP2006016270A (en) Basic metal compound-carrying carbon and its production method
CN110368929A (en) A kind of toilet ammonia decontamination nano catalytic material and preparation method thereof
JPS6361931B2 (en)
JPH0456662B2 (en)
JPS63197548A (en) Manganese and ferrite catalyst
JPH0158170B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002