JP2010069428A - Dehumidifying apparatus - Google Patents

Dehumidifying apparatus Download PDF

Info

Publication number
JP2010069428A
JP2010069428A JP2008240499A JP2008240499A JP2010069428A JP 2010069428 A JP2010069428 A JP 2010069428A JP 2008240499 A JP2008240499 A JP 2008240499A JP 2008240499 A JP2008240499 A JP 2008240499A JP 2010069428 A JP2010069428 A JP 2010069428A
Authority
JP
Japan
Prior art keywords
filter member
adsorbent
air
knitted fabric
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008240499A
Other languages
Japanese (ja)
Inventor
Ippei Oda
一平 小田
Jun Inagaki
純 稲垣
Hiroyuki Kondo
広幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008240499A priority Critical patent/JP2010069428A/en
Publication of JP2010069428A publication Critical patent/JP2010069428A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dehumidifying apparatus having a filter member with superior fixed form stability and providing sufficient contact efficiency of the filter member with treating air. <P>SOLUTION: The dehumidifying apparatus includes the filter member 4, a rotation means 15 for rotating the filter member4, a treatment fan 6 for feeding air to the filter member 4, and a heating means 7 for drying the filter member 4, wherein the filter member 4 carries an adsorbing material on a three-dimensional braid using a binder, the three-dimensional braid includes textile fabrics of two layers of front and rear faces formed of fibers and connection fibers connecting the textile fabrics, the spaces between the textile fabrics of the two layers of the front and rear faces are fixed by the binder and adsorbing material, to thereby provide the sufficient contact efficiency of the filter member 4 with treating air. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、除湿装置に関する。   The present invention relates to a dehumidifying device.

高湿状態の室内を除湿するためや、室内での衣類乾燥をするために、一般に除湿装置が広く使用されている。従来、この種の除湿装置のフィルタ部材は、有機繊維を必須成分とする繊維基材に、吸湿剤および活性炭を担持してなる機能性基材をハニカム状構造体に成形したものが知られている(例えば、特許文献1参照)。   In order to dehumidify a room in a high humidity state or to dry clothes in a room, a dehumidifier is generally widely used. Conventionally, a filter member of this type of dehumidifying apparatus is known in which a functional base material formed by supporting a hygroscopic agent and activated carbon on a fiber base material containing organic fibers as an essential component is formed into a honeycomb structure. (For example, refer to Patent Document 1).

以下、従来の除湿装置について図6を参照しながら説明する。フィルタ部材101は芯材102を中心軸として、フィルタ部材の回転方向103を示す矢印の方向に回転駆動され、水分を含んだ被乾燥空気104はフィルタ部材101を通過する際に吸湿剤の作用により水分が吸着除去され、乾燥空気105が得られる。一方、フィルタ部材101を再生する再生空気106は熱源107で加熱されて高温空気108となり、高温空気108がフィルタ部材101から水分を除去することにより、フィルタ部材101を再生すると共に水分を含んだ高湿空気109が得られる。このようにして得られた乾燥空気105および高湿空気109は、使用目的に応じて所定の空間に供給されるものである。   Hereinafter, a conventional dehumidifier will be described with reference to FIG. The filter member 101 is driven to rotate in the direction of the arrow indicating the rotation direction 103 of the filter member with the core member 102 as the central axis, and the air to be dried 104 containing moisture is caused by the action of a hygroscopic agent when passing through the filter member 101. Water is adsorbed and removed, and dry air 105 is obtained. On the other hand, the regenerated air 106 that regenerates the filter member 101 is heated by the heat source 107 to become high-temperature air 108, and the high-temperature air 108 removes moisture from the filter member 101, thereby regenerating the filter member 101 and high moisture containing moisture. Wet air 109 is obtained. The dry air 105 and the high-humidity air 109 thus obtained are supplied to a predetermined space according to the purpose of use.

また、従来のフィルタ部材として、図7に示すように、ハニカム構造体の壁面201、202に0.05から5mm3の細孔203を開口比0.05から10%の範囲で穿ち、吸着効率を向上させたものが知られている(例えば、特許文献2参照)。
特開2003−038928号公報 実公平1−016507号公報
Further, as a conventional filter member, as shown in FIG. 7, 0.05 to 5 mm 3 pores 203 are bored in the range of 0.05 to 10% on the wall surfaces 201 and 202 of the honeycomb structure to increase the adsorption efficiency. What has been improved is known (see, for example, Patent Document 2).
JP 2003-038928 A No. 1-016507

このような特許文献1に記載の従来の除湿装置では、フィルタ部材が定型性に優れ、圧損が低い反面、処理空気が一定方向の平行流となり、フィルタ部材と処理空気との接触効率が十分に上げられないという課題があった。   In the conventional dehumidifying apparatus described in Patent Document 1, the filter member has excellent formability and low pressure loss, but the processing air becomes a parallel flow in a certain direction, and the contact efficiency between the filter member and the processing air is sufficiently high. There was a problem that it could not be raised.

また、特許文献2に記載の従来のフィルタ部材ではハニカム構造体の壁面に細孔を穿ち、フィルタ部材と処理空気との接触効率を高めているものの、細孔を多くしすぎると定型性が悪くなるため、フィルタ部材と処理空気との接触効率が十分に上げられないという課題があった。   Moreover, although the conventional filter member described in Patent Document 2 has pores formed on the wall surface of the honeycomb structure to enhance the contact efficiency between the filter member and the processing air, the regularity is poor when the number of pores is excessive. Therefore, there is a problem that the contact efficiency between the filter member and the processing air cannot be sufficiently increased.

本発明は、このような従来の課題を解決するものであり、定型性に優れ、フィルタ部材と処理空気との接触効率を十分に得ることができるフィルタ部材を備えた除湿装置を提供することを目的としている。   The present invention solves such a conventional problem, and provides a dehumidifying device having a filter member that is excellent in formability and can sufficiently obtain contact efficiency between the filter member and processing air. It is aimed.

本発明の除湿装置は、上記目的を達成するために、吸湿部と放湿部を有するフィルタ部材と、吸気口および排気口を有する本体ケースと、前記吸気口から吸気した被処理空気を前記吸湿部に通風して除湿し前記排気口から排気する処理ファンと、輻射熱および加熱空気もしくはいずれか一方によって前記放湿部から水分を放湿させる加熱手段と、前記フィルタ部材から放湿させた水分を結露させて回収する熱交換器と、前記加熱手段、前記放湿部、前記熱交換器の順に空気が循環しながら通過するように送風する再生ファンと、前記フィルタ部材を回転させて前記吸湿部と前記放湿部とを切り替える回転手段を備えた除湿装置において、前記フィルタ部材が三次元立体編物にバインダを用いて吸着材を担持させ、前記三次元立体編物が、繊維で構成される裏表二層の編地と、前記編地を連結する連結繊維からなり、前記裏表二層の編地間隔が前記バインダと前記吸着材により固定化されていることを特徴とした除湿装置である。   In order to achieve the above object, the dehumidifying device of the present invention provides a filter member having a moisture absorption part and a moisture release part, a body case having an intake port and an exhaust port, and the moisture to be treated sucked from the intake port. A processing fan that ventilates and dehumidifies the air through the section, and exhausts the air from the exhaust port; heating means that releases moisture from the moisture release section by radiant heat and / or heated air; and moisture dehumidified from the filter member A heat exchanger that recovers by condensation, a regenerative fan that blows air so as to pass through the heating means, the moisture release section, and the heat exchanger in this order, and the moisture absorption section by rotating the filter member And a dehumidifying device having a rotating means for switching between the moisture releasing unit, the filter member supports the adsorbent on the three-dimensional solid knitted fabric using a binder, and the three-dimensional solid knitted fabric is a fiber. A dehumidifying device comprising a back-and-front two-layer knitted fabric and a connecting fiber for connecting the knitted fabric, wherein the back-and-front two-layer knitted fabric interval is fixed by the binder and the adsorbent. It is.

また、フィルタ部材が回転軸を備えた円盤型であることを特徴とするものである。   Further, the filter member is a disk type having a rotation shaft.

また、フィルタ部材が、裏表二層の編地間隔がバインダと吸着材により、略平行に固定化されていることを特徴とするものである。   Further, the filter member is characterized in that the knitted fabric interval between the back and front two layers is fixed substantially in parallel by a binder and an adsorbent.

また、フィルタ部材において、連結繊維が屈曲していることを特徴とするものである。   In the filter member, the connecting fiber is bent.

また、フィルタ部材において、三次元立体編物を構成する繊維の少なくとも一部が無機繊維であることを特徴とするものである。   Further, in the filter member, at least a part of the fibers constituting the three-dimensional solid knitted fabric is an inorganic fiber.

また、フィルタ部材において、無機物で構成されるバインダを用いて繊維に吸着材を接着したことを特徴とするものである。   Further, the filter member is characterized in that an adsorbent is bonded to the fiber using a binder composed of an inorganic substance.

また、裏表二層の編地を構成する繊維および連結繊維の少なくとも一部が有機繊維であることを特徴とするものである。   In addition, at least a part of the fibers and the connecting fibers constituting the back and front two-layer knitted fabric are organic fibers.

また、含有する繊維を除去することを特徴とするものである。   Further, the fiber contained therein is removed.

また、フィルタ部材に含まれる有機物質を焼き飛ばしたことを特徴とするものである。   Further, the organic material contained in the filter member is burned off.

また、フィルタ部材が吸着材同士を保持する構造保持材を含むことを特徴とするものである。   Further, the filter member includes a structure holding material that holds the adsorbents together.

また、フィルタ部材において、吸着材がハイシリカゼオライトを含むことを特徴とするものである。   In the filter member, the adsorbent contains high silica zeolite.

また、フィルタ部材において、メソ孔を有する吸着材を含むことを特徴とするものである。   Further, the filter member includes an adsorbent having mesopores.

また、フィルタ部材において、熱触媒を担持させたことを特徴とするものである。   Further, the filter member is characterized in that a thermal catalyst is supported.

また、フィルタ部材における吸着材の担持量分布が空気の通風方向に沿って変動しており、前記吸着材の量が被処理空気を供給する側に近い場所で少なくなっていることを特徴とするものである。   In addition, the carrying amount distribution of the adsorbent in the filter member varies along the direction of air flow, and the amount of the adsorbent is reduced at a location close to the supply side of the air to be treated. Is.

また、吸着剤担持量の異なる複数のフィルタ部材を気体の送風方向に沿う向きで積層し、吸着材担持量が被処理空気を供給する側に近い場所で少なくなることを特長とするものである。   In addition, a plurality of filter members having different adsorbent carrying amounts are stacked in a direction along the gas blowing direction, and the adsorbent carrying amount is reduced in a place near the side to which the air to be treated is supplied. .

また、裏表二層の編地の開口の大きさが異なる三次元立体編物を複数枚重ねてフィルタ部材とし、開口の大きい側から被処理空気を供給することを特徴とするものである。   In addition, a plurality of three-dimensional solid knitted fabrics having different opening sizes in the back and front two-layer knitted fabric are stacked to form a filter member, and the air to be treated is supplied from the side having the larger opening.

本発明によれば、定型性に優れ、フィルタ部材と処理空気との接触効率を十分に得ることができるフィルタ部材を備えた除湿装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dehumidification apparatus provided with the filter member which is excellent in a fixed form property and can fully obtain the contact efficiency of a filter member and process air can be provided.

本発明の請求項1記載の発明は、吸湿部と放湿部を有するフィルタ部材と、吸気口および排気口を有する本体ケースと、前記吸気口から吸気した被処理空気を前記吸湿部に通風して除湿し前記排気口から排気する処理ファンと、輻射熱および加熱空気もしくはいずれか一方によって前記放湿部から水分を放湿させる加熱手段と、前記フィルタ部材から放湿させた水分を結露させて回収する熱交換器と、前記加熱手段、前記放湿部、前記熱交換器の順に空気が循環しながら通過するように送風する再生ファンと、前記フィルタ部材を回転させて前記吸湿部と前記放湿部とを切り替える回転手段を備えた除湿装置において、前記フィルタ部材が三次元立体編物にバインダを用いて吸着材を担持させ、前記三次元立体編物が、繊維で構成される裏表二層の編地と、前記編地を連結する連結繊維からなり、前記裏表二層の編地間隔が前記バインダと前記吸着材により固定化されていることを特徴とする除湿装置である。三次元立体編物なので、表裏二層の編地および編地を連結する繊維の表面および繊維間に吸着材を保持することができるため、ハニカム構造体などの面状のものを加工した基材と比較して吸着材担持量を多くすることができる。また、吸着材担持後のフィルタ部材が三次元の多孔体となり、表面積が広く、被処理空気と吸着材の接触効率を向上させることができる。また、通風路が確保されているため、低圧損にすることができる。また、繊維同士が密に絡み合っているため、絡み合った場所に吸着材を保持しやすいという作用を得ることができる。また、裏表二層の編地間隔がバインダと吸着材により固定化されているため、強度が増し、定型性に優れる。また、表裏二層の編地および編地を連結する繊維の表面および繊維間に吸着材を保持することができるため、基材の占有体積が小さくてすみ、熱容量が小さく、再生エネルギーが少なくてすむ省エネ性に優れた除湿装置とすることができる。   According to the first aspect of the present invention, a filter member having a moisture absorption part and a moisture release part, a main body case having an intake port and an exhaust port, and air to be treated sucked from the intake port are passed through the moisture absorption part. A processing fan that dehumidifies and exhausts air from the exhaust port, a heating means that releases moisture from the moisture release section by radiant heat and / or heated air, and moisture that has been released from the filter member is condensed and collected. A heat exchanger, a heating fan, a moisture release unit, a regeneration fan that blows air so as to pass through the heat exchanger in order, and a filter member that rotates to absorb the moisture absorption unit and the moisture release unit. In the dehumidifying device provided with a rotating means for switching between parts, the filter member supports a three-dimensional solid knitted fabric with an adsorbent using a binder, and the three-dimensional solid knitted fabric is composed of fibers. And knitted fabric layers consist connecting fibers connecting the knitted fabric, the knitted fabric interval of the sides two layers is dehumidifying apparatus characterized by being immobilized by the adsorbent and the binder. Because it is a three-dimensional solid knitted fabric, it is possible to hold the adsorbent between the front and back two-layer knitted fabric and the surface of the fiber connecting the knitted fabric, and between the fibers. In comparison, the amount of adsorbent supported can be increased. Moreover, the filter member after carrying the adsorbent becomes a three-dimensional porous body, has a large surface area, and can improve the contact efficiency between the air to be treated and the adsorbent. Moreover, since the ventilation path is ensured, a low pressure loss can be achieved. Moreover, since the fibers are intertwined closely, an effect that the adsorbent can be easily held in the intertwined place can be obtained. Moreover, since the knitted fabric interval between the back and front two layers is fixed by the binder and the adsorbent, the strength increases and the formability is excellent. Also, since the adsorbent can be held between the front and back two-layer knitted fabric and the surface of the fiber connecting the knitted fabric and between the fibers, the occupied volume of the substrate can be small, the heat capacity is small, and the regeneration energy is small. It can be a dehumidifying device excellent in energy saving.

また、フィルタ部材が回転軸を備えた円盤型であることを特徴としたものであり、フィルタ部材を軸を中心として回転させることによって、連続的にフィルタ部材の加熱と再生を繰り返すことができる。   Further, the filter member is a disc type having a rotation shaft, and heating and regeneration of the filter member can be repeated continuously by rotating the filter member around the shaft.

また、フィルタ部材が、裏表二層の編地間隔がバインダと吸着材により、略平行に固定化されていることを特徴としたものであり、被処理空気を均一にフィルタ部材に供給することができるため、被処理空気を効率よくフィルタ部材に接触させることができる。   Further, the filter member is characterized in that the knitted fabric interval between the back and front two layers is fixed substantially in parallel by the binder and the adsorbent, and the air to be treated can be uniformly supplied to the filter member. Therefore, the air to be treated can be efficiently brought into contact with the filter member.

また、フィルタ部材において、連結繊維が屈曲していることを特徴としたものであり、湾曲した通風路になるため、吸着材と被処理空気を含む空気の接触時間を長くすることができ、吸着効率を向上させることができる。また、同じ厚さでも通風距離を長くできるため、フィルタ部材を薄くでき、除湿装置をコンパクトにできる。また、開口投影面積が小さいため、加熱手段から供給される熱を効率よくフィルタ部材が受けることができ、少ないエネルギーで効率よく再生できる。   Further, the filter member is characterized in that the connecting fiber is bent, and since the curved ventilation path is formed, the contact time between the adsorbent and the air including the air to be treated can be increased, and the adsorption is performed. Efficiency can be improved. In addition, since the ventilation distance can be increased even with the same thickness, the filter member can be thinned, and the dehumidifier can be made compact. Further, since the aperture projection area is small, the filter member can efficiently receive the heat supplied from the heating means, and can be efficiently regenerated with less energy.

また、フィルタ部材において、三次元立体編物を構成する繊維の少なくとも一部が無機繊維であることを特徴としたものであり、無機繊維なので加熱再生による繊維の劣化が少なく、長期間にわたりフィルタ部材の強度が確保できる。   Further, in the filter member, at least a part of the fibers constituting the three-dimensional solid knitted fabric is an inorganic fiber, and since it is an inorganic fiber, there is little deterioration of the fiber due to heat regeneration, and the filter member has a long period of time. Strength can be secured.

また、フィルタ部材において、無機物で構成されるバインダを用いて繊維に吸着材を接着したことを特徴としたものであり、無機物で構成されるバインダであれば、加熱再生時の劣化が少なく、長期間にわたって吸着材を強固に固定することができる。   Further, the filter member is characterized in that an adsorbent is adhered to the fiber using a binder composed of an inorganic substance. If the binder is composed of an inorganic substance, the deterioration during heating regeneration is small and long. The adsorbent can be firmly fixed over a period of time.

また、裏表二層の編地を構成する繊維および連結繊維の少なくとも一部が有機繊維であることを特徴とするものであり、有機繊維は無機繊維にくらべて、繊維の曲げ強さが強く、弾性があり、加工性に優れるため、ローター部材の変形を防止し、厚み方向の寸法精度を高めることができる。また、ヒートセットできるため、フィルタを任意の形状に加工した後、加熱して安定化させることができる。   Further, at least a part of the fibers constituting the back and front two-layer knitted fabric and the connecting fibers are organic fibers, and the organic fibers are stronger in bending strength than the inorganic fibers, Since it has elasticity and is excellent in workability, deformation of the rotor member can be prevented and dimensional accuracy in the thickness direction can be increased. Moreover, since it can heat set, after processing a filter into arbitrary shapes, it can heat and stabilize.

また、含有する繊維を除去することを特徴とするものであり、フィルタ部材の熱容量が小さくなるため、再生に用いるエネルギーを少なくでき、省エネにすることができる。   Moreover, it is characterized by removing the fibers contained therein, and since the heat capacity of the filter member is reduced, the energy used for regeneration can be reduced and energy can be saved.

また、フィルタ部材に含まれる有機物質を焼き飛ばしたことを特徴としたものであり、フィルタ部材の熱容量が小さくなるため、再生に用いるエネルギーを少なくでき、省エネ性に優れた除湿装置とすることができる。   In addition, the organic material contained in the filter member is burned out, and since the heat capacity of the filter member is reduced, the energy used for regeneration can be reduced, and a dehumidifying device with excellent energy saving can be obtained. it can.

また、フィルタ部材が吸着材同士を保持する構造保持材を含むことを特徴としたものであり、フィルタ部材の定型性、強度を向上できる。   In addition, the filter member includes a structure holding material that holds the adsorbents together, and the formability and strength of the filter member can be improved.

また、フィルタ部材において、吸着材がハイシリカゼオライトを含むことを特徴としたものであり、表面積が大きく、吸着性能に優れ、加熱再生しても構造が長期にわたり保たれるため、長期間にわたり高い性能を維持できる。   Further, the filter member is characterized in that the adsorbent contains high silica zeolite, has a large surface area, excellent adsorption performance, and maintains its structure over a long period of time even when heated and regenerated. Performance can be maintained.

また、フィルタ部材において、メソ孔を有する吸着材を含むことを特徴としたものであり、孔径を任意に変更することで、特定の物質や湿度で効率よく作用するフィルタ部材とすることができ、再生エネルギーの少なくてすむ除湿装置とすることができ、省エネである。   In addition, the filter member is characterized by including an adsorbent having mesopores, and by arbitrarily changing the pore diameter, it can be a filter member that works efficiently with a specific substance or humidity, It can be a dehumidifier that requires less regenerative energy and is energy saving.

また、フィルタ部材において、熱触媒を担持させたことを特徴としたものであり、加熱再生時に臭気成分などフィルタ部材に付着した物質を分解できるという効果を有する。   Further, the filter member is characterized in that a thermal catalyst is supported, and has an effect that a substance adhering to the filter member such as an odor component at the time of heating regeneration can be decomposed.

また、フィルタ部材における吸着材の担持量分布が空気の通風方向に沿って変動しており、前記吸着材の量が被処理空気を供給する側に近い場所で少なくなっていることを特徴としたもので、湿度の高い被処理空気が最初に接するフィルタ部材では、吸着材が水分を多く吸着し、フィルタ部材を通過するに従い吸着材が水分を吸着できる量が少なくなるが、湿度の高い被処理空気が最初に接する部分には吸着材が相対的に少なく、最後に接する部分に吸着材が多い構成にフィルタ部材がなっているため、フィルタ部材全体で吸着量の偏りが少なく、効率のよい水分吸着と再生を行うことができる。   In addition, the amount distribution of the adsorbent in the filter member varies along the direction of air flow, and the amount of the adsorbent decreases in a place near the side to which the air to be treated is supplied. However, in the filter member that comes into contact with the air to be treated at a high humidity first, the adsorbent adsorbs a lot of moisture, and the amount of the adsorbent that can adsorb moisture decreases as it passes through the filter member. Since the filter member is configured so that there is relatively little adsorbent in the part where the air first contacts and there is a large amount of adsorbent in the part where the air comes into contact last, there is little bias in the amount of adsorption throughout the filter member, and efficient moisture Adsorption and regeneration can be performed.

また、吸着剤担持量の異なる複数のフィルタ部材を気体の送風方向に沿う向きで積層し、吸着材担持量が被処理空気を供給する側に近い場所で少なくなることを特長としたものであり、湿度の高い被処理空気が最初に接するフィルタ部材では、吸着材が水分を多く吸着し、フィルタ部材を通過するに従い吸着材が水分を吸着できる量が少なくなるが、湿度の高い被処理空気が最初に接する部分には吸着材が相対的に少なく、最後に接する部分に吸着材が多い構成にフィルタ部材がなっているため、フィルタ部材全体で吸着量の偏りが少なく、効率のよい水分吸着と再生を行うことができる。   In addition, a plurality of filter members having different adsorbent carrying amounts are stacked in a direction along the gas blowing direction, and the adsorbent carrying amount is reduced in a place near the side to which the air to be treated is supplied. In the filter member that comes into contact with the high-humidity treated air first, the adsorbent adsorbs a large amount of moisture, and the amount that the adsorbent can adsorb moisture decreases as it passes through the filter member. Since the filter member is configured so that there is relatively little adsorbent in the first contact portion and more adsorbent in the last contact portion, the adsorption amount of the entire filter member is small and efficient moisture adsorption Playback can be performed.

また、裏表二層の編地の開口の大きさが異なる三次元立体編物を複数枚重ねてフィルタ部材とし、開口の大きい側から被処理空気を供給することを特徴としたものであり、湿度の高い被処理空気が最初に接するフィルタ部材では、吸着材が水分を多く吸着し、フィルタ部材を通過するに従い吸着材が水分を吸着できる量が少なくなるが、湿度の高い被処理空気が最初に接する部分には吸着材が相対的に少なく、最後に接する部分に吸着材が多い構成にフィルタ部材がなっているため、フィルタ部材全体で吸着量の偏りが少なく、効率のよい水分吸着と再生を行うことができる。   In addition, a plurality of three-dimensional solid knitted fabrics having different opening sizes in the back and front two-layer knitted fabric are stacked to form a filter member, and air to be treated is supplied from the side having the larger opening. In the filter member that comes into contact with high air to be treated first, the adsorbent adsorbs a lot of moisture, and the amount of water that can be adsorbed by the adsorbent decreases as it passes through the filter member. Since the filter member is configured so that there is relatively little adsorbent in the part and there is much adsorbent in the part that comes into contact with the end, there is little bias in the amount of adsorption in the entire filter member, and efficient moisture adsorption and regeneration are performed. be able to.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態)
図1は本発明の実施の形態における除湿装置である。図1に示すように本発明の除湿装置は、本体の外郭を形成した本体ケース1に吸気口2および排気口3が開口している。本体ケース1には、吸気口2からフィルタ部材4を介し排気口3へ通ずる白矢符に示す処理風路5と、処理風路内に送風し被処理空気をフィルタ部材4に送風する処理ファン6と、加熱手段7、フィルタ部材4、熱交換器8の順に連通した黒矢符に示す環状の再生風路9と、再生風路内の空気を循環させ加熱手段7を介してフィルタ部材4に送風する再生ファン10が備えられている。また、本体ケース1内には、処理ファン6によって吸気口2から本体ケース1内に取り入れた空気と再生風路内の空気を熱交換し、再生風路内の空気を冷却結露させる熱交換器8を備えている。
(Embodiment)
FIG. 1 shows a dehumidifying device according to an embodiment of the present invention. As shown in FIG. 1, in the dehumidifying apparatus of the present invention, an intake port 2 and an exhaust port 3 are opened in a main body case 1 that forms an outline of the main body. The main body case 1 includes a processing air path 5 indicated by a white arrow leading from the intake port 2 through the filter member 4 to the exhaust port 3, and a processing fan that blows air into the processing air path and blows air to be processed to the filter member 4. 6, the heating means 7, the filter member 4, and the heat exchanger 8, and the annular regeneration air passage 9 indicated by a black arrow, and the air in the regeneration air passage are circulated and the filter member 4 is circulated through the heating means 7. A regenerative fan 10 for blowing air is provided. Further, in the main body case 1, a heat exchanger that exchanges heat between the air taken into the main body case 1 from the air inlet 2 by the processing fan 6 and the air in the regeneration air passage, and cools and condenses the air in the regeneration air passage. 8 is provided.

加熱手段7は、処理ファン6によって処理風路内に吸気されてフィルタ部材4を通過する方向の後段側に取り付けられ、また、フィルタ部材4は本体ケース1内に回転自在に取り付けられており、また、処理風路内に介在し処理風路を通過する空気から吸湿する吸湿部11と、再生風路内に介在し再生風路を通過する空気に対して放湿する放湿部12とに区分されている。   The heating means 7 is attached to the rear stage side in the direction in which it is sucked into the processing air passage by the processing fan 6 and passes through the filter member 4, and the filter member 4 is rotatably mounted in the main body case 1. Further, a moisture absorbing section 11 that absorbs moisture from the air that passes through the processing air path and is interposed in the processing air path, and a moisture releasing section 12 that releases moisture to the air that is interposed in the regeneration air path and passes through the reproducing air path. It is divided.

上記した構成においてその動作および除湿作用について説明する。   The operation and dehumidifying action in the above configuration will be described.

処理ファン6を作動させることによって吸気口2から本体ケース1内に吸気された空気はフィルタ部材4の吸湿部11を通過して除湿され、排気口3より本体ケース1外へと排出される。このときフィルタ部材4には合わせて臭気および菌も吸着される。   By operating the processing fan 6, the air sucked into the main body case 1 from the air inlet 2 passes through the moisture absorbing portion 11 of the filter member 4 and is dehumidified, and is discharged out of the main body case 1 through the exhaust port 3. At this time, odor and bacteria are also adsorbed to the filter member 4 together.

一方、再生ファン10から吹出された空気は、加熱手段7によって加熱されて高温となり、フィルタ部材4の放湿部12を通過してフィルタ部材4から水分を放湿させる。この放湿された水分を含み高湿状態となった空気は熱交換器8へと向かう。ここで、熱交換器8の作用によりこの高湿状態となった空気は露点温度以下に冷却され、熱交換器8内面に結露が生ずる。生じた結露水はその自重により落下し、再生風路下部に設けられた水抜き穴13を通じて落下し、本体ケース1下部に備えられたタンク14に回収される。熱交換器8にて冷却された空気は、再生ファン10に吸込まれ、再生風路内を循環することになる。   On the other hand, the air blown out from the regeneration fan 10 is heated by the heating means 7 and becomes high temperature, passes through the moisture releasing portion 12 of the filter member 4, and moisture is released from the filter member 4. The air that has been humidified and that has been in a highly humid state is directed to the heat exchanger 8. Here, the air that has been in a high humidity state by the action of the heat exchanger 8 is cooled below the dew point temperature, and condensation occurs on the inner surface of the heat exchanger 8. The generated condensed water falls due to its own weight, falls through a drain hole 13 provided at the lower part of the regeneration air passage, and is collected in a tank 14 provided at the lower part of the main body case 1. The air cooled by the heat exchanger 8 is sucked into the regeneration fan 10 and circulates in the regeneration air passage.

また、フィルタ部材4の外周には回転手段15が設けられており、この回転手段15の作動によりフィルタ部材4が回転駆動すると吸湿部11と放湿部12とが切り替わり、フィルタ部材4は連続的に水分の吸着と脱着を繰り返すことができるようになっている。   Further, a rotating means 15 is provided on the outer periphery of the filter member 4. When the filter member 4 is driven to rotate by the operation of the rotating means 15, the moisture absorbing portion 11 and the moisture releasing portion 12 are switched, and the filter member 4 is continuous. In addition, moisture adsorption and desorption can be repeated.

上記構成において、本発明の除湿装置ではフィルタ部材4を繊維で構成される裏表二層の編地と、編地を連結する連結繊維からなり、裏表二層の編地間隔がバインダと吸着材により固定化された三次元立体編物とすることによって、定型性に優れた構成としている。   In the above-described configuration, the dehumidifying device of the present invention includes the back and front two-layer knitted fabric in which the filter member 4 is made of fibers and connecting fibers that connect the knitted fabric, and the knitted fabric interval between the back and front two layers is determined by the binder and the adsorbent. By adopting a fixed three-dimensional solid knitted fabric, the configuration has excellent formability.

また、フィルタ部材4は回転軸を備えた円盤型の形状であり、フィルタ部材を回転軸を中心として回転させることによって、連続的に吸湿と放湿を繰り返すことができる構成となっている。なお、ここでは一例としてフィルタ部材が円盤型の形状で、連続的にフィルタ部材の吸湿と放湿を繰り返すことができる構成を示したが、本発明はこれに限定されるものではなく、フィルタ部材を断続的に吸着と再生が行われるように、フィルタ部材の位置を除湿装置内で入れ替える構成としてもよい。   Further, the filter member 4 has a disk shape having a rotation shaft, and is configured such that moisture absorption and moisture release can be repeated continuously by rotating the filter member around the rotation shaft. Note that, here, as an example, the filter member has a disk shape, and the configuration in which moisture absorption and moisture release of the filter member can be continuously repeated is shown. However, the present invention is not limited to this, and the filter member It is good also as a structure which replaces the position of a filter member within a dehumidifier so that adsorption | suction and reproduction | regeneration may be performed intermittently.

また、フィルタ部材4は担持された吸着材の量が、上記処理風路において、フィルタ部材4に被処理空気を供給する吸気口2側で吸着材の量が少なく、処理空気を除湿装置の外へ排出する排気口3側に吸着材の量が多くなるように吸着材が担持されており、フィルタ部材4全体で吸着量の偏りが少なく、効率のよい水分吸着と再生を行うことができる構成となっている。なお、ここでは一例としてフィルタ部材4が1枚で吸着材量の偏りをもった構成を示したが、特にこれに限定されるものではなく、吸着材の担持量の異なる複数のフィルタ部材を積層して、被処理空気を供給する吸気口2側で吸着材の量が少なく、処理空気を除湿装置の外へ排出する排気口3側に吸着材の量が多くなるような構成としてもよい。   Further, the amount of adsorbent carried on the filter member 4 is small on the side of the intake port 2 for supplying the air to be treated to the filter member 4 in the processing air passage, and the processing air is removed from the dehumidifier. The adsorbent is supported so that the amount of adsorbent increases on the exhaust port 3 side to be discharged to the exhaust gas, and the adsorption amount is less biased in the entire filter member 4 so that efficient moisture adsorption and regeneration can be performed. It has become. Here, as an example, a configuration in which one filter member 4 has a bias in the amount of adsorbent is shown. However, the present invention is not particularly limited to this, and a plurality of filter members having different adsorbent carrying amounts are stacked. The amount of the adsorbent may be small on the side of the intake port 2 that supplies the air to be treated, and the amount of adsorbent may be increased on the side of the exhaust port 3 that discharges the processing air to the outside of the dehumidifier.

図2は本発明の除湿機に搭載したフィルタ部材の斜視図、図3は編地と連結繊維の開口部分の拡大斜視図、図4は三次元立体編物を構成する繊維の編目部分の拡大図である。フィルタ部材21は、略正六角形の開口22を有する二枚の編地23、24と連結繊維25からなる三次元立体編物である。Aは開口22の最長対角線を示し、Bは厚みを示している。片側の編地を構成する編目26のうちのひとつから、連結繊維25が反対側の編地を構成する編目に延び、二枚の編地を曲線的に連結しており、前記編地23、24および連結繊維25によって形成される編目26の間隙に吸着材27を保持している。吸着材27は編目26以外の繊維表面にも、図示しないバインダによって保持されており、フィルタ部材21の全体が吸着材27によって被覆されている。   2 is a perspective view of a filter member mounted on the dehumidifier of the present invention, FIG. 3 is an enlarged perspective view of an opening portion of a knitted fabric and a connecting fiber, and FIG. 4 is an enlarged view of a fiber stitch portion constituting a three-dimensional solid knitted fabric. It is. The filter member 21 is a three-dimensional solid knitted fabric composed of two knitted fabrics 23 and 24 each having a substantially regular hexagonal opening 22 and a connecting fiber 25. A indicates the longest diagonal line of the opening 22, and B indicates the thickness. From one of the stitches 26 constituting the knitted fabric on one side, the connecting fiber 25 extends to the stitch constituting the knitted fabric on the opposite side, connecting the two knitted fabrics in a curvilinear manner, The adsorbent 27 is held in the gap between the stitches 26 formed by the 24 and the connecting fibers 25. The adsorbent 27 is also held on the fiber surface other than the stitches 26 by a binder (not shown), and the entire filter member 21 is covered with the adsorbent 27.

本発明のフィルタ部材は三次元立体編物なので、二次元の繊維織物や編物に比べてフィルタ部材の表面積が大きく、吸着材担持量を多くすることができる。また、吸着材担持後のフィルタ部材が三次元の多孔体となり、臭気や水分などの気体成分と吸着材の接触時間を長くすることができるため、空気がフィルタを一回通過した際の除湿性能を向上させることができる。また、二次元織物を複数枚重ねたものに比べて、通風路が確保されているため、低圧損にすることができる。また、織物に比べて編物なので形状安定性がよく、強度にも優れるという作用を有する。さらに、編物の編目部分がバインダと吸着材によって接着・固定化されているので、フィルタに対する圧縮・引っ張りなどの変形要因に対して強度が強く、形状安定性がよい。また、繊維同士が密に絡み合っているため、絡み合った場所に吸着材を保持しやすいという作用を有する。また、編目同士が接着されているので形状安定性と定型性がよいという作用を有する。   Since the filter member of the present invention is a three-dimensional solid knitted fabric, the surface area of the filter member is larger than that of a two-dimensional fiber woven fabric or knitted fabric, and the adsorbent carrying amount can be increased. In addition, the filter member after carrying the adsorbent becomes a three-dimensional porous body, and the contact time between the gas component such as odor and moisture and the adsorbent can be extended, so the dehumidification performance when the air passes through the filter once. Can be improved. Moreover, since the ventilation path is ensured compared with what piled up two or more two-dimensional fabrics, it can be set as a low voltage | pressure loss. Moreover, since it is a knitted fabric compared with a textile fabric, it has the effect of having good shape stability and excellent strength. Furthermore, since the stitch portion of the knitted fabric is bonded and fixed by the binder and the adsorbent, the strength is strong against deformation factors such as compression and tension on the filter, and the shape stability is good. In addition, since the fibers are intertwined closely, the adsorbent is easily held in the intertwined place. Further, since the stitches are bonded to each other, the shape stability and the formability are good.

また、表裏二層の編地間隔が吸着材とバインダにより略平行に固定化されていてもよく、被処理空気を均一にフィルタ部材に供給することができるため、被処理空気を効率よくフィルタ部材に接触させることができる。また、フィルタ部材は中央に軸を備えることによって円盤状に回転するが、裏表二層の編地間隔がバインダと吸着材により、略平行に固定化されているので、中心軸から円周への距離や厚みBは常に一定となる。フィルタ部材が固定化されていない場合、除湿装置の本体とフィルタ部材の隙間間隔がフィルタ部材の回転時に変動することとなり、被処理空気の一部が除湿装置の通常の風路外へ漏れることとなるため、処理風路5と再生風路9の空気が混合してしまい、効率的に吸脱着させることができなくなり、余分なエネルギーが必要となるため好ましくない。また、略平行に固定化されているのでフィルタ部材の重心を中心軸上にすることができる。この結果、フィルタ部材を安定して回転させることができ、回転手段15にかかる負荷を最小にすることができる。   In addition, the knitted fabric interval between the front and back layers may be fixed substantially in parallel by the adsorbent and the binder, and the air to be treated can be uniformly supplied to the filter member. Can be contacted. In addition, the filter member rotates in a disk shape by providing a shaft at the center, but the knitted fabric interval between the back and front two layers is fixed substantially in parallel by the binder and the adsorbent, so the center shaft extends from the circumference to the circumference. The distance and thickness B are always constant. If the filter member is not fixed, the clearance between the main body of the dehumidifying device and the filter member will fluctuate when the filter member rotates, and part of the air to be treated will leak outside the normal air path of the dehumidifying device. Therefore, the air in the processing air path 5 and the regenerating air path 9 is mixed, and it is not possible to efficiently absorb and desorb, which is not preferable because extra energy is required. Moreover, since it is fixed substantially parallel, the center of gravity of the filter member can be on the central axis. As a result, the filter member can be stably rotated, and the load applied to the rotating means 15 can be minimized.

また、表裏二層の編地および編地を連結する繊維の表面および繊維間に吸着材を保持することができるため、ハニカム構造に比べて吸着材担持量を増やすことができる。   Further, since the adsorbent can be held between the front and back two-layer knitted fabric and the fiber surface connecting the knitted fabric and between the fibers, the adsorbent carrying amount can be increased as compared with the honeycomb structure.

また、表裏二層の編地および編地を連結する繊維の表面および繊維間に吸着材を保持することができるため、基材の占有体積が小さくてすみ、熱容量が小さく、加熱する際の投入エネルギーが少なく、冷却する際に素早く温度低下するフィルタ部材を得ることができる。   In addition, since the adsorbent can be held between the front and back two-layer knitted fabric and the surface of the fiber connecting the knitted fabric and between the fibers, the volume occupied by the substrate can be small, the heat capacity is small, and charging is performed when heating. It is possible to obtain a filter member that has low energy and quickly decreases in temperature when cooled.

裏表二層の編地を構成する繊維および連結繊維は、無機繊維であってもよい。無機繊維としては、金属、ガラス、セラミックなどが挙げられるが,熱に対する強度を有していることが望ましい。金属としては、鉄・ステンレス・アルミ・銅・銀・金繊維などが挙げられる。セラミックとしては、アルミナ、シリカ、ウォラストナイト、チタン酸カリウム繊維などが挙げられる。ガラス繊維は樹脂繊維のように熱による劣化をうけることがなく、長期にわたって信頼性の高い三次元立体編物を得ることができる。   The fibers and the connecting fibers constituting the two layers of the back and front layers may be inorganic fibers. Examples of inorganic fibers include metals, glass, ceramics, etc., but it is desirable to have heat resistance. Examples of the metal include iron, stainless steel, aluminum, copper, silver, and gold fiber. Examples of the ceramic include alumina, silica, wollastonite, and potassium titanate fiber. Glass fibers are not subject to deterioration due to heat unlike resin fibers, and a highly reliable three-dimensional solid knitted fabric can be obtained over a long period of time.

三次元立体編物を構成する繊維は、耐熱性と担持強度が確保できる材質であれば完全に無機物である必要はなく、有機繊維である樹脂繊維や天然繊維などを利用して、繊維表面にチタンやシリカやアルミナや金属などの被膜をコーティングあるいは蒸着して、繊維の表面部分を無機物にして利用してもよい。   The fibers that make up the three-dimensional solid knitted fabric do not have to be completely inorganic as long as the material can ensure heat resistance and supporting strength, and the surface of the fiber is made of organic fibers such as resin fibers and natural fibers. Alternatively, the surface portion of the fiber may be used as an inorganic material by coating or vapor-depositing a film such as silica, alumina or metal.

編地を連結する連結繊維は、有機繊維を無機繊維と混合して利用してもよい。連結繊維は三次元立体編物の立体形状を安定化させるために、適度な弾力性と強度が必要である。とくにフィルタ部材を製造する際の吸着材担持工程や乾燥工程では、フィルタ部材に応力や熱がかかるため変形が生じやすい。有機繊維にくらべると無機繊維は曲げ強度が弱くコシがないため、無機繊維で立体編物を作成すると、変形が生じやすくなる。そこで、有機繊維と無機繊維を混合して編物を構成することによって形状を安定化させることができる。   As the connecting fiber for connecting the knitted fabric, an organic fiber may be mixed with an inorganic fiber and used. The connecting fiber needs appropriate elasticity and strength in order to stabilize the three-dimensional shape of the three-dimensional solid knitted fabric. In particular, in the adsorbent supporting process and the drying process when manufacturing the filter member, the filter member is easily deformed because stress and heat are applied. Compared to organic fibers, inorganic fibers have weak bending strength and are not stiff. Therefore, when a three-dimensional knitted fabric is made of inorganic fibers, deformation tends to occur. Therefore, the shape can be stabilized by mixing organic fibers and inorganic fibers to form a knitted fabric.

有機繊維としては、ポリエステル、ナイロン、アクリル等の合成繊維、羊毛、綿等の天然繊維、あるいはキュプラ等の再生繊維など、各種材質を用いることができる。繊維の材質を選択することにより、たとえば、ポリエステルなど硬質の繊維を用いた場合には、開口の形状や厚み、フィルタ部材の形状を維持することが容易となる。   As the organic fibers, various materials such as synthetic fibers such as polyester, nylon, and acrylic, natural fibers such as wool and cotton, and regenerated fibers such as cupra can be used. By selecting the material of the fiber, for example, when a hard fiber such as polyester is used, it is easy to maintain the shape and thickness of the opening and the shape of the filter member.

バインダとしては、無機物で構成されるものが好ましいが、耐熱性があり、繊維を接着できるものであれば特に問題はなく、Na2O、K2O、LiO2などのケイ酸塩からなるアルカリシリケート塗料、シリカゾル、アルミナゾルなどの無機コロイド、ケイ素、チタン、アルミなどのアルコキシド類とその加水分解物、リン酸アルミニウム系塗料、重クロム酸系塗料、セメント類、硫酸カルシウム、粘土、シリコーン、フッ素樹脂などが挙げられる。 The binder is preferably composed of an inorganic material, but there is no particular problem as long as it has heat resistance and can adhere fibers, and an alkali composed of a silicate such as Na 2 O, K 2 O, LiO 2 or the like. Silicate paints, inorganic colloids such as silica sol and alumina sol, alkoxides such as silicon, titanium and aluminum and their hydrolysates, aluminum phosphate paints, dichromate paints, cements, calcium sulfate, clay, silicone, fluororesin Etc.

立体形状を保持できる範囲において、三次元立体編物を構成する繊維の全部またはその一部が除去されてもよい。繊維の除去手段としては、酸、アルカリなどで繊維を溶解する方法、水溶性の繊維を水に溶解させて除去する方法、加熱して繊維を酸化分解する方法などが挙げられる。また、編物繊維では、編物の製造を容易にするため、潤滑剤として界面活性剤や潤滑油を繊維に塗布することがある。この場合、立体編物を構成する有機繊維あるいは繊維に付着している界面活性剤や潤滑油等の有機物質が燃焼する温度以上で処理を行い、含有する有機物質を焼き飛ばすとよい。有機物質を焼き飛ばすことで、熱容量が小さく、加熱する際の投入エネルギーが少なく、冷却する際に素早く温度低下するフィルタ部材を得ることができる。   As long as the three-dimensional shape can be maintained, all or a part of the fibers constituting the three-dimensional solid knitted fabric may be removed. Examples of the fiber removing means include a method of dissolving the fiber with acid, alkali, etc., a method of removing the water-soluble fiber by dissolving it in water, and a method of oxidizing and decomposing the fiber by heating. In the case of a knitted fiber, a surfactant or lubricating oil may be applied to the fiber as a lubricant in order to facilitate the production of the knitted fabric. In this case, the organic fiber constituting the three-dimensional knitted fabric or the organic substance such as a surfactant or lubricating oil adhering to the fiber may be treated at a temperature higher than the burning temperature to burn off the contained organic substance. By burning off the organic material, it is possible to obtain a filter member having a small heat capacity, little input energy when heating, and a temperature drop rapidly when cooling.

フィルタ部材には、吸着材同士を保持する構造保持材を含んでいてもよい。特にフィルタ部材の製造工程において繊維の全部または一部を除去する場合には、構造保持材を含んでいたほうがよい。構造保持材としては、耐熱性があり、吸着剤よりも大きいものがよい。形状は繊維状、針状、板状のものが好ましく、ベントナイト、セピオライト、チタン酸カリウム、ガラス繊維、アルミナ繊維、針状酸化亜鉛などが挙げられる。   The filter member may include a structure holding material that holds the adsorbents together. In particular, when all or part of the fiber is removed in the manufacturing process of the filter member, it is better to include a structure holding material. The structure holding material is heat resistant and preferably larger than the adsorbent. The shape is preferably fibrous, needle-like, or plate-like, and examples include bentonite, sepiolite, potassium titanate, glass fiber, alumina fiber, and needle-like zinc oxide.

裏表二層の編地の開口は、開口の最長対角線Aが0.1mm以上10mm以下であることが好ましく、より好ましくは2〜6mmである。これによって、十分な開口をもち、通気性能に優れたフィルタ部材とすることができる。   The opening of the two layers of the back and front knitted fabric is preferably such that the longest diagonal line A of the opening is 0.1 mm or more and 10 mm or less, more preferably 2 to 6 mm. Accordingly, a filter member having a sufficient opening and excellent air permeability can be obtained.

フィルタ部材の厚みは1mm以上30mm以下であることが好ましく、被処理空気と十分な接触面積を有するフィルタ部材とすることができる。このとき、複数枚のフィルタ部材を積層してもよい。裏表二層の編地の開口の大きさが異なる三次元立体編物を複数枚重ねてフィルタ部材とし、開口の大きい側から被処理空気を供給することで、湿度の高い被処理空気が最初に接するフィルタ部材では、吸着材が水分を多く吸着し、フィルタ部材を通過するに従い吸着材が水分を吸着できる量が少なくなるが、湿度の高い被処理空気が最初に接する部分には吸着材が相対的に少なく、最後に接する部分に吸着材が多い構成にフィルタ部材がなっているため、フィルタ部材全体で吸着量の偏りが少なく、効率のよい水分吸着と再生を行うことができる。   The thickness of the filter member is preferably 1 mm or more and 30 mm or less, and the filter member can have a sufficient contact area with the air to be treated. At this time, a plurality of filter members may be laminated. A plurality of three-dimensional solid knitted fabrics with different opening sizes in the back and front two-layer knitted fabrics are used as filter members, and the air to be treated comes into contact with the air first by supplying the air to be treated from the side with the large opening. In the filter member, the adsorbent adsorbs a lot of moisture, and the amount of the adsorbent that can adsorb moisture decreases as it passes through the filter member. Since the filter member is configured to have a large amount of adsorbent at the last contact portion, the adsorption amount of the entire filter member is less biased and efficient moisture adsorption and regeneration can be performed.

連結繊維は屈曲していてもよく、湾曲した通風路になるため、吸着材と水分を含む空気の接触時間を長くすることができ、除湿性能が向上するという作用を得ることができる。   Since the connecting fiber may be bent and becomes a curved ventilation path, the contact time between the adsorbent and the air containing moisture can be increased, and the effect of improving the dehumidifying performance can be obtained.

吸着材としては吸湿性を有するものであれば特に問題はなく、ゼオライト、シリカゲル、珪藻土、活性炭、活性アルミナ、塩化カルシウム、塩化リチウム、ポリアクリル酸ナトリウムなどの高吸水性高分子などが挙げられ、ハイシリカゼオライト(Si/Al=16以上)が好適である。   There is no particular problem as long as it has hygroscopicity as an adsorbent, and examples include high water absorption polymers such as zeolite, silica gel, diatomaceous earth, activated carbon, activated alumina, calcium chloride, lithium chloride, and sodium polyacrylate. High silica zeolite (Si / Al = 16 or more) is preferred.

フィルタ部材は、メソ孔を有する吸着材を含んでいてもよい。メソとは細孔(ミクロポア)とマクロポアの中間を意味しており、20〜100nmの孔径が揃った吸着材をメソ多孔体と呼ぶ。メソ多孔体は、ケイ素やアルミニウムなどの塩と界面活性剤を混合し、水熱重合する方法や、層状ポリシリケートであるカネマイトの層間ナトリウムイオンをアルキルトリメチルアンモニウムイオンに置換するイオン交換反応を経て調製する方法、ケイ素のアルコキシドをゾルゲル法で熟成後に焼成する方法、カオリナイトを550〜900℃で熱処理した後、酸を用いてアルミニウム成分を選択的に溶解除去する方法などで得ることができ、SBA、MCM、FSM、二元細孔シリカなどが挙げられる。   The filter member may include an adsorbent having mesopores. The meso means an intermediate between the pores (micropores) and the macropores, and the adsorbent having a uniform pore diameter of 20 to 100 nm is called a mesoporous material. The mesoporous material is prepared by mixing a salt such as silicon or aluminum with a surfactant and hydrothermally polymerizing it, or by an ion exchange reaction that replaces the interlayer sodium ion of the layered polysilicate Kanemite with an alkyltrimethylammonium ion. A method in which a silicon alkoxide is aged by a sol-gel method, a method in which kaolinite is heat-treated at 550 to 900 ° C., and an aluminum component is selectively dissolved and removed using an acid. , MCM, FSM, and dual pore silica.

フィルタ部材は、熱触媒を含んでいてもよい。フィルタ部材に熱触媒を担持することにより、フィルタ部材の加熱再生時に、フィルタ部材に吸着した臭気などの分解が可能となる。熱触媒は吸着材の中に含まれていても、吸着材とは別に担持していてもよい。   The filter member may contain a thermal catalyst. By supporting the thermal catalyst on the filter member, the odor adsorbed on the filter member can be decomposed when the filter member is heated and regenerated. The thermal catalyst may be contained in the adsorbent or may be supported separately from the adsorbent.

また、フィルタ部材4を回転移動させる回転手段15としては、ACインダクタモータを使用すれば良く、モータの軸にギアを締着してフィルタ部材4の外周に設けたギアに噛み合わせれば容易に回転駆動が可能である。   As the rotating means 15 for rotating and moving the filter member 4, an AC inductor motor may be used. If the gear is fastened to the shaft of the motor and meshed with the gear provided on the outer periphery of the filter member 4, it can be easily rotated. It can be driven.

また、再生部を加熱する加熱手段7としては、例えば、ニクロムヒーター、セラミックヒーター、シーズヒーター、輻射ヒーター等の電気式ヒーターを用いれば良く、更にはヒーターに限らず再生空気を昇温可能なものであれば良いのであって、内部に高温の流体が流れる熱交換器を使用することも可能である。その熱交換器の内部を流す高温の流体としては、温水ボイラ、CO2ヒートポンプ給湯機、コージェネ排熱等を熱源とする温水、或いは直膨式ヒートポンプを熱源とするR134A、R410A、CO2等の冷媒を用いれば良い。   Further, as the heating means 7 for heating the regeneration unit, for example, an electric heater such as a nichrome heater, a ceramic heater, a sheathed heater, or a radiation heater may be used. However, it is also possible to use a heat exchanger in which a high-temperature fluid flows. As a high-temperature fluid that flows inside the heat exchanger, hot water boiler, CO2 heat pump water heater, hot water that uses cogeneration exhaust heat or the like as a heat source, or refrigerant such as R134A, R410A, or CO2 that uses a direct expansion heat pump as a heat source. Use it.

以下、本発明を実施例にて詳細に説明するが、本発明は、以下の記載に何ら限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted at all.

(実施例1)フィルタ部材製造方法1
フィルタ部材を作成するために、図2、図3に示すような三次元立体編物を利用した。用いた三次元立体編物は、略正六角形の開口を有する二枚の編地23、24と連結繊維25からなっている。開口22の最長対角線Aは5mm、厚みBは8mmである。連結繊維25には単繊維径55μm(330/10dtex)を10本束ねたポリエステルマルチフィラメントを使用している。以下、フィルタ部材製造方法の詳細を示す。バインダとしての珪酸リチウムと水を重量比1:7の割合で混合し、これに吸着材としての粒子径2μmのハイシリカゼオライトを珪酸リチウムに対し重量比で2倍となるように攪拌しながら加え、スラリとした。作成したスラリに三次元立体編物をディップし、送風乾燥した。乾燥後、所望の吸着材量になるまで再びディップと送風乾燥を繰り返し、所望の吸着材量とした後、200度で7時間焼成し、フィルタ部材を作成した。作成したフィルタ部材の連結繊維は屈曲しており、フィルタ部材の開口部から見ると連結繊維が開口部の一部をふさぐように伸びている。フィルタ部材の厚み方向から断面を見ると、連結繊維が波状に規則配列されており、連結繊維間が屈曲して連通した通風路を形成している様子が観察された。
(Example 1) Filter member manufacturing method 1
In order to create the filter member, a three-dimensional solid knitted fabric as shown in FIGS. 2 and 3 was used. The used three-dimensional solid knitted fabric is composed of two knitted fabrics 23 and 24 having substantially regular hexagonal openings and connecting fibers 25. The longest diagonal line A of the opening 22 is 5 mm, and the thickness B is 8 mm. The connecting fiber 25 is a polyester multifilament in which 10 single fiber diameters of 55 μm (330/10 dtex) are bundled. Details of the filter member manufacturing method will be described below. Lithium silicate as a binder and water are mixed at a weight ratio of 1: 7, and a high silica zeolite having a particle diameter of 2 μm as an adsorbent is added to the lithium silicate with stirring so that the weight ratio is doubled. It was a slurry. A three-dimensional three-dimensional knitted fabric was dipped into the prepared slurry and dried by blowing. After drying, dip and air drying were repeated again until the desired amount of adsorbent was reached, and after setting the desired amount of adsorbent, it was baked at 200 degrees for 7 hours to create a filter member. The connecting fiber of the produced filter member is bent, and when viewed from the opening of the filter member, the connecting fiber extends so as to block a part of the opening. When the cross section was viewed from the thickness direction of the filter member, it was observed that the connecting fibers were regularly arranged in a wave shape, and the connecting fibers were bent to form a ventilating path.

(実施例2)フィルタ部材製造方法2
実施例1で作成したフィルタ部材を、700度で2時間焼成し、フィルタ部材に含まれる有機物成分を焼き飛ばした。焼き飛ばしにより、骨格が吸着材とバインダのみで構成されたフィルタ部材とすることができ、熱容量の低いフィルタ部材とすることができた。作成したフィルタ部材は形状が維持されており、フィルタ部材の開口部から見ると連結繊維のあった部分が開口部の一部をふさぐように伸びている。フィルタ部材の厚み方向から断面を見ると、連結繊維のあった部分が波状に規則配列されており、屈曲して連通した通風路を形成している様子が観察された。
(Example 2) Filter member manufacturing method 2
The filter member created in Example 1 was baked at 700 degrees for 2 hours to burn off organic components contained in the filter member. By burning off, it was possible to obtain a filter member having a skeleton composed only of an adsorbent and a binder, and a filter member having a low heat capacity. The shape of the created filter member is maintained, and when viewed from the opening of the filter member, the portion where the connecting fibers are present extends so as to block a part of the opening. When the cross-section was viewed from the thickness direction of the filter member, it was observed that the portions where the connecting fibers were present were regularly arranged in a wavy shape, forming a ventilating path that was bent and communicated.

(実施例3)フィルタ部材製造方法3
編物を構成する繊維をポリエステルから無機繊維であるガラス繊維に変え、実施例1と同じ形状の三次元立体編物を作成した。開口の最長対角線Aは5mm、厚みBは8mmである。連結繊維には繊維径55μmを10本束ねたガラス繊維マルチフィラメントを使用している。ガラス繊維を使用することで、耐久性に優れたフィルタ部材を得ることができる。以下、フィルタ部材製造方法の詳細を示す。バインダとしての珪酸リチウムと水を重量比1:7の割合で混合し、これに吸着材としての粒子径2μmのハイシリカゼオライトを珪酸リチウムに対し重量比で2倍となるように攪拌しながら加え、スラリとした。作成したスラリに三次元立体編物をディップし、送風乾燥した。乾燥後、所望の吸着材量になるまで再びディップと送風乾燥を繰り返し、所望の吸着材量とした後、200度で7時間焼成し、フィルタ部材を作成した。作成したフィルタ部材の連結繊維は屈曲しており、フィルタ部材の開口部から見ると連結繊維が開口部の一部をふさぐように伸びている。フィルタ部材の厚み方向から断面を見ると、連結繊維が波状に規則配列されており、連結繊維間が屈曲して連通した通風路を形成している様子が観察された。
(Example 3) Filter member manufacturing method 3
A fiber constituting the knitted fabric was changed from polyester to glass fiber, which was an inorganic fiber, to create a three-dimensional solid knitted fabric having the same shape as in Example 1. The longest diagonal line A of the opening is 5 mm, and the thickness B is 8 mm. As the connecting fiber, a glass fiber multifilament in which ten fiber diameters of 55 μm are bundled is used. By using glass fiber, a filter member having excellent durability can be obtained. Details of the filter member manufacturing method will be described below. Lithium silicate as a binder and water are mixed at a weight ratio of 1: 7, and a high silica zeolite having a particle diameter of 2 μm as an adsorbent is added to the lithium silicate with stirring so that the weight ratio is doubled. It was a slurry. A three-dimensional three-dimensional knitted fabric was dipped into the prepared slurry and dried by blowing. After drying, dip and air drying were repeated again until the desired amount of adsorbent was reached, and after setting the desired amount of adsorbent, it was baked at 200 degrees for 7 hours to create a filter member. The connecting fiber of the produced filter member is bent, and when viewed from the opening of the filter member, the connecting fiber extends so as to block a part of the opening. When the cross section was viewed from the thickness direction of the filter member, it was observed that the connecting fibers were regularly arranged in a wave shape, and the connecting fibers were bent to form a ventilating path.

(実施例4)フィルタ部材の除湿性能
実施例1で作成したフィルタ部材を 直径18cmの円盤状にカットし、20℃、湿度60%の空気中に保管した。フィルタ部材の初期重量を測定後、200℃で重量が一定となるまで乾燥させた。乾燥後のフィルタ部材重量を測定した結果、乾燥前にくらべて12.9(g)の重量減少が観察され、フィルタ部材が水を脱着したことがわかった。再度20℃、湿度60%の空気中に保管したところ、初期重量とほぼ同じ値まで重量が増加し、フィルタ部材が水を吸着したことがわかった。
(Example 4) Dehumidifying performance of filter member The filter member prepared in Example 1 was cut into a disk shape having a diameter of 18 cm and stored in air at 20 ° C and a humidity of 60%. After measuring the initial weight of the filter member, it was dried at 200 ° C. until the weight became constant. As a result of measuring the weight of the filter member after drying, a weight reduction of 12.9 (g) was observed as compared with that before drying, and it was found that the filter member desorbed water. When stored again in air at 20 ° C. and 60% humidity, it was found that the weight increased to almost the same value as the initial weight, and the filter member adsorbed water.

比較品として、同一厚みでハイシリカゼオライトを含む市販ハニカムフィルタを直径18cmの円盤状にカットした。20℃、湿度60%の空気中に保管して初期重量を測定後、200℃で重量が一定となるまで乾燥させた。乾燥後のフィルタ部材重量を測定した結果、乾燥前にくらべて14.9(g)の重量減少が観察され、フィルタ部材が水を脱着したことがわかった。再度20℃、湿度60%の空気中に保管したところ、初期重量とほぼ同じ値まで重量が増加し、フィルタ部材が水を吸着したことがわかった。これらの結果から、実施例1で作成した開発品フィルタ部材と、比較品ハニカムフィルタのいずれも、除湿フィルタとして利用できることがわかった。   As a comparative product, a commercially available honeycomb filter having the same thickness and containing high silica zeolite was cut into a disk shape having a diameter of 18 cm. After storing in air at 20 ° C. and humidity 60% and measuring the initial weight, it was dried at 200 ° C. until the weight became constant. As a result of measuring the weight of the filter member after drying, a weight reduction of 14.9 (g) was observed compared with that before drying, and it was found that the filter member desorbed water. When stored again in air at 20 ° C. and 60% humidity, it was found that the weight increased to almost the same value as the initial weight, and the filter member adsorbed water. From these results, it was found that both the developed product filter member prepared in Example 1 and the comparative product honeycomb filter can be used as a dehumidifying filter.

次に、フィルタの水分吸着速度を測定した。200℃で重量が一定となるまで乾燥させた開発品フィルタ部材および比較品フィルタを、20℃、湿度60%の空気中に置き、重量変化を測定した。結果を図6に示す。重量増加が4(g)に達するまでの時間は、開発品フィルタ部材は35分であったが、比較品ハニカムフィルタでは38分となり、開発品フィルタ部材のほうが水の吸着速度が速いことがわかった。   Next, the moisture adsorption rate of the filter was measured. The developed product filter member and the comparative product filter dried at 200 ° C. until the weight became constant were placed in air at 20 ° C. and 60% humidity, and the change in weight was measured. The results are shown in FIG. The time required for the weight increase to reach 4 (g) was 35 minutes for the developed filter member, but 38 minutes for the comparative honeycomb filter, indicating that the developed filter member has a faster water adsorption rate. It was.

吸着と脱着のサイクルを繰り返す除湿機に用いる除湿フィルタとしては、吸着速度が速いフィルタの方が望ましい。三次元立体編物を利用したフィルタ部材を用いて、吸脱着サイクルを最適化することにより、優れた除湿性能を有する除湿機を得ることができる。   As a dehumidifying filter used in a dehumidifier that repeats the adsorption and desorption cycles, a filter having a high adsorption rate is desirable. A dehumidifier having excellent dehumidifying performance can be obtained by optimizing the adsorption / desorption cycle using a filter member using a three-dimensional solid knitted fabric.

定型性に優れ、フィルタ部材と処理空気との接触効率を十分に得ることができるフィルタ部材を備えた除湿装置を提供することができ、除湿機、脱臭機、空気清浄機、空気調和装置などの用途に適用できる。   It is possible to provide a dehumidifier having a filter member that has excellent formability and can sufficiently obtain contact efficiency between the filter member and the processing air, such as a dehumidifier, a deodorizer, an air purifier, and an air conditioner. Applicable to usage.

本発明の実施の形態の除湿装置を示す概略断面図Schematic sectional view showing a dehumidifying device of an embodiment of the present invention 同除湿装置のフィルタ部材の斜視図The perspective view of the filter member of the dehumidifier 同除湿装置のフィルタ部材の開口部分の拡大斜視図The enlarged perspective view of the opening part of the filter member of the dehumidifier 同除湿装置のフィルタ部材の編目部分の拡大図The enlarged view of the stitch part of the filter member of the dehumidifier 本発明の実施例4の経過時間と水の吸着量の関係を示すグラフThe graph which shows the relationship between the elapsed time of Example 4 of this invention, and the adsorption amount of water. 従来の除湿装置を示す概略断面図Schematic sectional view showing a conventional dehumidifier 従来のフィルタ部材を示す概略断面図Schematic sectional view showing a conventional filter member

符号の説明Explanation of symbols

1 本体ケース
2 吸気口
3 排気口
4 フィルタ部材
5 処理風路
6 処理ファン
7 加熱手段
8 熱交換器
9 再生風路
10 再生ファン
11 吸湿部
12 放湿部
13 水抜き穴
14 タンク
15 回転手段
22 開口
23 編地
24 編地
25 連結繊維
26 編目
27 吸着材
101 フィルタ部材
102 芯材
103 フィルタ部材の回転方向
104 水分を含んだ被乾燥空気
105 乾燥空気
106 再生空気
107 熱源
108 高温空気
109 高湿空気
201 壁面
202 壁面
203 細孔
DESCRIPTION OF SYMBOLS 1 Main body case 2 Intake port 3 Exhaust port 4 Filter member 5 Process air path 6 Process fan 7 Heating means 8 Heat exchanger 9 Regeneration air path 10 Regeneration fan 11 Moisture absorption part 12 Moisture release part 13 Drain hole 14 Tank 15 Rotation means 22 Opening 23 Knitted fabric 24 Knitted fabric 25 Connecting fiber 26 Stitch 27 Adsorbent 101 Filter member 102 Core material 103 Direction of rotation of filter member 104 Air to be dried 105 Dry air 106 Regenerated air 107 Heat source 108 High temperature air 109 High humidity air 201 wall surface 202 wall surface 203 pore

Claims (16)

吸湿部と放湿部を有するフィルタ部材と、吸気口および排気口を有する本体ケースと、前記吸気口から吸気した被処理空気を前記吸湿部に通風して除湿し前記排気口から排気する処理ファンと、輻射熱および加熱空気もしくはいずれか一方によって前記放湿部から水分を放湿させる加熱手段と、前記フィルタ部材から放湿させた水分を結露させて回収する熱交換器と、前記加熱手段、前記放湿部、前記熱交換器の順に空気が循環しながら通過するように送風する再生ファンと、前記フィルタ部材を回転させて前記吸湿部と前記放湿部とを切り替える回転手段を備えた除湿装置において、前記フィルタ部材が三次元立体編物にバインダを用いて吸着材を担持させ、前記三次元立体編物が、繊維で構成される裏表二層の編地と、前記編地を連結する連結繊維からなり、前記裏表二層の編地間隔が前記バインダと前記吸着材により固定化されていることを特徴とする除湿装置。 A filter member having a moisture absorption part and a moisture release part, a main body case having an intake port and an exhaust port, and a processing fan for venting the air to be processed sucked from the intake port through the moisture absorption unit and dehumidifying the exhausted air from the exhaust port Heating means for releasing moisture from the moisture release unit by radiant heat and heated air or any one of them, a heat exchanger for condensing and collecting moisture released from the filter member, the heating means, A dehumidifying device comprising a regenerative fan that blows air so that air passes through the moisture-releasing part and the heat exchanger in this order, and a rotating unit that rotates the filter member to switch between the moisture-absorbing part and the moisture-releasing part. The filter member carries an adsorbent on a three-dimensional solid knitted fabric using a binder, and the three-dimensional solid knitted fabric connects the back and front two-layer knitted fabric composed of fibers and the knitted fabric. Consists linked fibers, dehumidifiers knitting interval of the sides two layers, characterized in that it is immobilized by the adsorbent and the binder. フィルタ部材が回転軸を備えた円盤型であることを特徴とする請求項1記載の除湿装置。 2. The dehumidifying device according to claim 1, wherein the filter member is a disc type having a rotating shaft. フィルタ部材が、裏表二層の編地間隔がバインダと吸着材により、略平行に固定化されていることを特徴とする請求項1または2に記載の除湿装置。 The dehumidifying device according to claim 1 or 2, wherein the filter member is fixed so that the knitted fabric interval between the front and back layers is substantially parallel by a binder and an adsorbent. フィルタ部材において、連結繊維が屈曲していることを特徴とする請求項1乃至3いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 3, wherein the connecting fiber is bent in the filter member. フィルタ部材において、三次元立体編物を構成する繊維の少なくとも一部が無機繊維であることを特徴とする請求項1乃至4いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 4, wherein in the filter member, at least a part of fibers constituting the three-dimensional solid knitted fabric is inorganic fibers. フィルタ部材において、無機物で構成されるバインダを用いて繊維に吸着材を接着したことを特徴とする請求項1乃至5いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 5, wherein in the filter member, an adsorbent is bonded to the fiber using a binder composed of an inorganic substance. 裏表二層の編地を構成する繊維および連結繊維の少なくとも一部が有機繊維であることを特徴とする請求項1乃至6いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 6, wherein at least a part of the fibers and the connecting fibers constituting the double-sided knitted fabric are organic fibers. 含有する繊維を除去することを特徴とする請求項1乃至7いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 7, wherein fibers contained therein are removed. フィルタ部材に含まれる有機物質を焼き飛ばしたことを特徴とする請求項1乃至8いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 8, wherein an organic substance contained in the filter member is burned off. フィルタ部材が吸着材同士を保持する構造保持材を含むことを特徴とする請求項1乃至9いずれかに記載の除湿装置。 The dehumidifier according to claim 1, wherein the filter member includes a structure holding material that holds the adsorbents. フィルタ部材において、吸着材がハイシリカゼオライトを含むことを特徴とする請求項1乃至10いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 10, wherein in the filter member, the adsorbent contains high silica zeolite. フィルタ部材において、メソ孔を有する吸着材を含むことを特徴とする請求項1乃至11いずれかに記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 11, wherein the filter member includes an adsorbent having mesopores. フィルタ部材において、熱触媒を担持させたことを特徴とする請求項1乃至12いずれかに記載の除湿装置。 The dehumidifier according to any one of claims 1 to 12, wherein the filter member carries a thermal catalyst. フィルタ部材における吸着材の担持量分布が空気の通風方向に沿って変動しており、前記吸着材の量が被処理空気を供給する側に近い場所で少なくなっていることを特徴とする請求項1乃至13いずれかに記載の除湿装置。 The amount distribution of the adsorbent on the filter member varies along the direction of air flow, and the amount of the adsorbent decreases at a location close to the supply side of the air to be treated. The dehumidifying device according to any one of 1 to 13. 吸着剤担持量の異なる複数のフィルタ部材を気体の送風方向に沿う向きで積層し、吸着材担持量が被処理空気を供給する側に近い場所で少なくなることを特徴とする請求項1乃至14いずれかに記載の除湿装置。 15. A plurality of filter members having different adsorbent carrying amounts are stacked in a direction along a gas blowing direction, and the adsorbent carrying amount is reduced at a location near the side to which the air to be treated is supplied. The dehumidification apparatus in any one. 裏表二層の編地の開口の大きさが異なる三次元立体編物を複数枚重ねてフィルタ部材とし、開口の大きい側から被処理空気を供給することを特徴とする請求項1乃至15いずれかに記載の除湿装置。 The air to be treated is supplied from the side having the larger opening, wherein a plurality of three-dimensional three-dimensional knitted fabrics having different opening sizes in the back and front two-layer knitted fabric are stacked to form a filter member. The dehumidifying device described.
JP2008240499A 2008-09-19 2008-09-19 Dehumidifying apparatus Pending JP2010069428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240499A JP2010069428A (en) 2008-09-19 2008-09-19 Dehumidifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240499A JP2010069428A (en) 2008-09-19 2008-09-19 Dehumidifying apparatus

Publications (1)

Publication Number Publication Date
JP2010069428A true JP2010069428A (en) 2010-04-02

Family

ID=42201706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240499A Pending JP2010069428A (en) 2008-09-19 2008-09-19 Dehumidifying apparatus

Country Status (1)

Country Link
JP (1) JP2010069428A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183460A (en) * 2011-03-04 2012-09-27 Osaka Gas Co Ltd Dehumidification body and desiccant dehumidifier including the same
JP2012187483A (en) * 2011-03-09 2012-10-04 Osaka Gas Co Ltd Dehumidification body and desiccant dehumidifying apparatus equipped with the same
JP2016179040A (en) * 2015-03-24 2016-10-13 セーレン株式会社 Deodorization filter
CN108022860A (en) * 2016-10-31 2018-05-11 细美事有限公司 Apparatus and method for handling substrate
DE102012106422B4 (en) 2012-07-17 2018-08-02 Institut Für Luft- Und Kältetechnik Gemeinnützige Gmbh Heat and fabric transfer and use
US10099173B2 (en) 2014-09-05 2018-10-16 Sharp Kabushiki Kaisha Humidity controlling apparatus
US10195563B2 (en) 2014-10-06 2019-02-05 Sharp Kabushiki Kaisha Dehumidification device
US10252213B2 (en) 2014-10-14 2019-04-09 Sharp Kabushiki Kaisha Dehumidification device
US11383201B2 (en) 2017-09-04 2022-07-12 Sharp Kabushiki Kaisha Humidity controller
GB2543763B (en) * 2015-10-26 2022-08-31 Univ Of Bolton Filtration apparatus with sustainability benefits
US11618005B2 (en) 2017-09-01 2023-04-04 Sharp Kabushiki Kaisha Hygroscopic material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183460A (en) * 2011-03-04 2012-09-27 Osaka Gas Co Ltd Dehumidification body and desiccant dehumidifier including the same
JP2012187483A (en) * 2011-03-09 2012-10-04 Osaka Gas Co Ltd Dehumidification body and desiccant dehumidifying apparatus equipped with the same
DE102012106422B4 (en) 2012-07-17 2018-08-02 Institut Für Luft- Und Kältetechnik Gemeinnützige Gmbh Heat and fabric transfer and use
US10099173B2 (en) 2014-09-05 2018-10-16 Sharp Kabushiki Kaisha Humidity controlling apparatus
US10195563B2 (en) 2014-10-06 2019-02-05 Sharp Kabushiki Kaisha Dehumidification device
US10252213B2 (en) 2014-10-14 2019-04-09 Sharp Kabushiki Kaisha Dehumidification device
JP2016179040A (en) * 2015-03-24 2016-10-13 セーレン株式会社 Deodorization filter
GB2543763B (en) * 2015-10-26 2022-08-31 Univ Of Bolton Filtration apparatus with sustainability benefits
CN108022860A (en) * 2016-10-31 2018-05-11 细美事有限公司 Apparatus and method for handling substrate
US11618005B2 (en) 2017-09-01 2023-04-04 Sharp Kabushiki Kaisha Hygroscopic material
US11383201B2 (en) 2017-09-04 2022-07-12 Sharp Kabushiki Kaisha Humidity controller

Similar Documents

Publication Publication Date Title
JP2010069428A (en) Dehumidifying apparatus
JP4660587B2 (en) Odor and harmful gas treatment system using rotary regenerative heat exchanger and its apparatus
US20180328601A1 (en) Heat recovery adsorber as ventilation system in buildings
JPH0118335B2 (en)
JP2011036768A (en) Dehumidifier
TW200907258A (en) Dehumidifier and dehumidification method
JP4958459B2 (en) Manufacturing method of dehumidifying rotor
KR20150003716A (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
US20160199778A1 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
JP2005201624A (en) Dehumidifying method and dehumidifier
JP2011027332A (en) Heat exchanger and heat pump type desiccant system
JP2008224111A (en) Deodorizing device
JP4906367B2 (en) How to operate the dehumidifier
JP2006289257A (en) Dehumidifier
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP2006068623A (en) Dehumidifier
JP2010069427A (en) Filter member and dehumidifying apparatus using the same
JP5037908B2 (en) Dehumidification rotor and manufacturing method thereof
JP2009022931A (en) Dehumidifier
JP2009030974A (en) Small desiccant air conditioning system
JP2022158649A (en) Adsorption/desorption element and humidity controller
JP2010196993A (en) Desiccant air conditioner and method of operating the same
JP5649024B2 (en) Dehumidifying filter and desiccant air conditioner using the same
JP2008086943A (en) Dehumidifier
TWI404687B (en) Dehumidification rotor and method for manufacturing same