JP2010068643A - Electrostatic induction type power generation device and method for manufacturing the same - Google Patents

Electrostatic induction type power generation device and method for manufacturing the same Download PDF

Info

Publication number
JP2010068643A
JP2010068643A JP2008233330A JP2008233330A JP2010068643A JP 2010068643 A JP2010068643 A JP 2010068643A JP 2008233330 A JP2008233330 A JP 2008233330A JP 2008233330 A JP2008233330 A JP 2008233330A JP 2010068643 A JP2010068643 A JP 2010068643A
Authority
JP
Japan
Prior art keywords
electrode
power generation
generation device
electret
electrostatic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008233330A
Other languages
Japanese (ja)
Other versions
JP5305797B2 (en
Inventor
Eiji Kawasaki
栄嗣 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2008233330A priority Critical patent/JP5305797B2/en
Publication of JP2010068643A publication Critical patent/JP2010068643A/en
Application granted granted Critical
Publication of JP5305797B2 publication Critical patent/JP5305797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the power generation efficiency of an electrostatic induction type power generation device which converts kinetic energy into power-generating energy by utilizing an electret. <P>SOLUTION: An outer periphery support part 21 of a counter electrode part 20, having a configuration as a counter electrode 22, is movably supported on the outer periphery support part 21 by using a beam 23 is jointed via an insulating spacer 2, to a peripheral edge part of an electret electrode part 10 in which an electret electrode 12 is provided on a conductor 11. A lid member 3 of insulating material is jointed to the outer peripheral support part 21 of the counter electrode part 20, to form a vacuum space part 4, and the electret electrode 12 and the counter electrode 22 are arranged to face each other inside the vacuum space part 4. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、運動エネルギを電気エネルギに変換する静電誘導式発電デバイスに関し、特に、その発電効率を向上させる技術に関する。   The present invention relates to an electrostatic induction power generation device that converts kinetic energy into electrical energy, and more particularly to a technique for improving the power generation efficiency.

この種の静電誘導式発電デバイスとして、絶縁材料に電荷を注入したエレクトレットを利用したものがある(例えば、特許文献1、2参照)。エレクトレットを用いた静電誘導式発電デバイスは、導体上にエレクトレット電極を設けたエレクトレット電極部と、エレクトレット電極に対向させた対向電極を有する対向電極部とを有し、エレクトレット電極と対向電極のどちらか一方を他方に対して振動させる。これにより、エレクトレット電極に注入された電荷により対向電極に正電荷が静電誘導され、振動する電極側の振動周波数に応じた電気エネルギが発生し、両電極部間に電気的負荷を接続すれば、その電気的負荷に電流が流れる。従って、かかる静電誘導式発電デバイスは、例えば、人間の運動エネルギや車両の振動エネルギを利用して電気エネルギを発生させることができる。本デバイスは発電デバイスのみならず、加速度センサ、感震器等の各種センサにも応用できる。
特開2006−180450号公報 特開昭58−6118号公報
As this type of electrostatic induction power generation device, there is one using an electret in which an electric charge is injected into an insulating material (for example, see Patent Documents 1 and 2). An electrostatic induction power generation device using an electret has an electret electrode portion provided with an electret electrode on a conductor, and a counter electrode portion having a counter electrode opposed to the electret electrode. One of them is vibrated with respect to the other. As a result, a positive charge is electrostatically induced in the counter electrode due to the charge injected into the electret electrode, and electrical energy corresponding to the vibration frequency on the vibrating electrode side is generated, and an electrical load is connected between both electrode portions. , Current flows through the electrical load. Therefore, such an electrostatic induction power generation device can generate electrical energy using, for example, human kinetic energy or vehicle vibration energy. This device can be applied not only to power generation devices, but also to various sensors such as acceleration sensors and seismic sensors.
JP 2006-180450 A JP 58-6118 A

ところで、この種の静電誘導式発電デバイスの実用化に際しては、発電効率の高いデバイスが望まれている。しかしながら、上述した従来の静電誘導式発電デバイスでは、可動側の電極周囲に存在する空気がその電極の振動を妨げ(ダンピング作用)、発電効率を低下させる要因になっている。この空気によるダンピング作用の発電効率への悪影響は、特に、MEMS(Micro Electro Mechanical Systems)技術を利用してデバイスの小型化を図ろうとしたときに無視できないという問題がある。   By the way, when this type of electrostatic induction power generation device is put to practical use, a device with high power generation efficiency is desired. However, in the conventional electrostatic induction power generation device described above, air present around the movable electrode hinders the vibration of the electrode (damping action), which causes a decrease in power generation efficiency. The adverse effect of the damping action by air on the power generation efficiency has a problem that it cannot be ignored particularly when trying to reduce the size of the device using MEMS (Micro Electro Mechanical Systems) technology.

また、この種の静電誘導式発電デバイスの発電効率を向上させるためには、エレクトレットの電荷密度を高めることが望ましく、従来のエレクトレットより高い電荷密度が得られるエレクトレットが望まれている。   Further, in order to improve the power generation efficiency of this type of electrostatic induction power generation device, it is desirable to increase the charge density of the electret, and an electret capable of obtaining a higher charge density than the conventional electret is desired.

更に、従来のエレクトレットの製造方法としては、上述の特許文献2に記載された電子線照射エレクトレット法や熱エレクトレット法が用いられる。しかし、前者の方法は、外部から電荷を注入するので、経時安定性、熱安定性に乏しいという問題があり、後者の方法は、ガラス転移点より高い温度で処理するため、製造のスループットが悪かったり、材料が変形し微細な加工に適さなかったり等の問題がある。   Furthermore, as a conventional method for producing an electret, the electron beam irradiation electret method and the thermal electret method described in Patent Document 2 are used. However, since the former method injects charges from the outside, there is a problem that stability with time and thermal stability is poor, and the latter method is processed at a temperature higher than the glass transition point, so that the production throughput is poor. Or the material is deformed and not suitable for fine processing.

本発明は上記問題点に着目してなされたもので、デバイス構造の改良やエレクトレット材料を変更することで、従来よりも高い発電効率が得られる静電誘導式発電デバイスを提供することを目的とする。また、このような高い発電効率が得られる静電誘導式発電デバイスの製造方法を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object thereof is to provide an electrostatic induction power generation device that can obtain higher power generation efficiency than conventional ones by improving the device structure and changing the electret material. To do. It is another object of the present invention to provide a method for manufacturing an electrostatic induction power generation device that can obtain such high power generation efficiency.

このため、請求項1に記載の第1発明は、エレクトレット電極を設けたエレクトレット電極部と、前記エレクトレット電極と対向する対向電極を設けた対向電極部とを備え、前記エレクトレット電極と前記対向電極との相対運動により振動エネルギを発電エネルギに変換する静電誘導式発電デバイスであって、前記エレクトレット電極と前記対向電極とを真空の空間部内に対向配置する構成とした。   For this reason, 1st invention of Claim 1 is provided with the electret electrode part which provided the electret electrode, and the counter electrode part which provided the counter electrode which opposes the said electret electrode, The said electret electrode, the said counter electrode, An electrostatic induction power generation device that converts vibration energy into power generation energy by relative motion of the electret electrode and the counter electrode are arranged to face each other in a vacuum space.

かかる構成では、エレクトレット電極と対向電極とを真空の空間部内に対向配置したことで、可動する電極に対する空気によるダンピング作用をなくすことができるようになり、発電効率を高められるようになる。   In such a configuration, since the electret electrode and the counter electrode are arranged to face each other in the vacuum space, it is possible to eliminate the damping action by the air with respect to the movable electrode, and the power generation efficiency can be improved.

請求項2のように、前記エレクトレット電極を、アルカリガラスで形成するとよい。
かかる構成では、高い電荷密度を有するエレクトレット電極を形成することができるので、発電効率をより一層高められるようになる。
As in claim 2, the electret electrode may be formed of alkali glass.
In such a configuration, since the electret electrode having a high charge density can be formed, the power generation efficiency can be further improved.

請求項3のように、前記エレクトレット電極を、前記対向電極の形状パターンに対応した形状パターンのアルカリイオン欠乏領域を有する平板形状に形成するとよい。
かかる構成では、例えばストライプ形状の場合に比べて、放電が発生し易い電極のエッジ部分を少なくでき、異常放電が発生し難くなる。
According to a third aspect of the present invention, the electret electrode may be formed in a flat plate shape having an alkali ion deficient region having a shape pattern corresponding to the shape pattern of the counter electrode.
In such a configuration, for example, compared with a stripe shape, the edge portion of the electrode where discharge is likely to occur can be reduced, and abnormal discharge is less likely to occur.

請求項4のように、前記エレクトレット電極部と前記対向電極部のどちらか一方を電極が可動できる可動電極部とし他方を電極が固定された固定電極部とし、前記固定電極部の周縁部上に、絶縁スペーサを介して前記可動電極部を接合し、前記可動電極部の周縁部上に蓋部材を接合し、両電極部と前記絶縁スペーサと前記蓋部材とで前記真空空間部を形成してデバイスのユニットを構成するとよい。   As in claim 4, one of the electret electrode portion and the counter electrode portion is a movable electrode portion that can move the electrode, and the other is a fixed electrode portion to which the electrode is fixed, and on the peripheral portion of the fixed electrode portion. The movable electrode part is joined via an insulating spacer, a lid member is joined on the peripheral part of the movable electrode part, and the vacuum space part is formed by both the electrode part, the insulating spacer, and the lid member. A unit of the device may be configured.

請求項5のように、前記蓋部材を、固定電極を有する別の固定電極部で構成し、該別の固定電極部を枠状の絶縁スペーサを介して前記可動電極部の周縁部上に接合し、前記可動電極部の可動電極両側に固定電極を配置する構成とするとよい。
かかる構成では、固定電極の面積が2倍となり発電量が略2倍にできる。また、上下方向に対称な構造とすれば、デバイスユニットにおける上下方向の反り等の変形を抑制できる。更には、可動電極の両側に発生する静電吸引力が等価となり、異常放電を抑制しつつ可動電極と固定電極間の距離をより近接させることができる。
According to a fifth aspect of the present invention, the lid member is constituted by another fixed electrode portion having a fixed electrode, and the other fixed electrode portion is bonded onto the peripheral portion of the movable electrode portion via a frame-shaped insulating spacer. And it is good to set it as the structure which arrange | positions a fixed electrode on the movable electrode both sides of the said movable electrode part.
In such a configuration, the area of the fixed electrode is doubled, and the power generation amount can be almost doubled. Further, if the structure is symmetric in the vertical direction, deformation such as vertical warping in the device unit can be suppressed. Furthermore, the electrostatic attractive force generated on both sides of the movable electrode becomes equivalent, and the distance between the movable electrode and the fixed electrode can be made closer while suppressing abnormal discharge.

請求項6のように、前記ユニットを複数積層する構成とするよい。
かかる構成では、発電電力を増加できるようになる。
As in claim 6, a plurality of the units may be stacked.
With such a configuration, the generated power can be increased.

請求項7のように、前記積層構造において、下側ユニットの可動電極部周縁部に、絶縁スペーサを介して上側ユニットの固定電極部を接合し、当該固定電極部を下側ユニットの蓋部材として使用する構成とするとよい。
かかる構成では、部品点数を削減できるようになる。
As in claim 7, in the laminated structure, the fixed electrode part of the upper unit is joined to the peripheral part of the movable electrode part of the lower unit via an insulating spacer, and the fixed electrode part is used as a lid member of the lower unit. It is good to use the configuration.
With such a configuration, the number of parts can be reduced.

請求項8のように、前記ユニットを複数横方向に配置する構成としてもよい。この場合、請求項9のように、横方向に配置した複数のユニットの前記固定電極部、前記絶縁スペーサ、前記可動電極部及び前記蓋部材を一体形成する構成とするとよい。   As in claim 8, a plurality of the units may be arranged in the horizontal direction. In this case, as in a ninth aspect, the fixed electrode portion, the insulating spacer, the movable electrode portion, and the lid member of a plurality of units arranged in the lateral direction may be integrally formed.

請求項10のように、前記ユニットの下面側に、前記固定電極と可動電極のそれぞれに電気的に接続する各電極端子部を互いに電気的に絶縁して配置する構成とするとよい。
かかる構成では、フリップチップ実装が可能になり、本発明の静電誘導式発電デバイスを使用するモジュールの小型化及び低コスト化を図ることができるようになる。
According to a tenth aspect of the present invention, it is preferable that the electrode terminal portions that are electrically connected to the fixed electrode and the movable electrode are arranged on the lower surface side of the unit so as to be electrically insulated from each other.
With such a configuration, flip-chip mounting is possible, and it is possible to reduce the size and cost of a module that uses the electrostatic induction power generation device of the present invention.

請求項11に記載の第2発明は、エレクトレット電極を設けたエレクトレット電極部と、前記エレクトレット電極と対向する対向電極を設けた対向電極部とを備え、前記エレクトレット電極と前記対向電極との相対運動により振動エネルギを発電エネルギに変換する静電誘導式発電デバイスであって、前記エレクトレット電極をアルカリガラスで形成したことを特徴とする。
かかる構成では、高い電荷密度を有するエレクトレット電極を形成することができるので、発電効率を高められるようになる。
According to a second aspect of the present invention, there is provided an electret electrode portion provided with an electret electrode and a counter electrode portion provided with a counter electrode facing the electret electrode, and a relative motion between the electret electrode and the counter electrode The electrostatic induction power generation device that converts vibration energy into power generation energy by using the above-mentioned electret electrode made of alkali glass.
In such a configuration, an electret electrode having a high charge density can be formed, so that power generation efficiency can be increased.

第2発明において、請求項12のように、前記エレクトレット電極を、前記対向電極の形状パターンに対応した形状パターンのアルカリイオン欠乏領域を有する平板形状に形成するとよい。   In the second invention, as in the twelfth aspect, the electret electrode may be formed in a flat plate shape having an alkali ion deficient region having a shape pattern corresponding to the shape pattern of the counter electrode.

請求項13の本発明の製造方法は、請求項11又は12に記載の静電誘導式発電デバイスにおいて、前記アルカリガラスの一方の面に導電体を設け、前記アルカリガラスの他方の面にカソード電極を設け、前記アルカリガラスのガラス転移点未満の加熱温度で前記カソード電極と前記導電体間に約500V〜約1000Vの電圧を印加して前記アルカリガラスの導電体側にアルカリイオン欠乏領域を形成し、アルカリガラスを研磨して前記アルカリイオン欠乏領域を露出させ、前記導電体上に前記エレクトレット電極を形成することを特徴とする。   A manufacturing method according to a thirteenth aspect of the present invention is the electrostatic induction power generation device according to the eleventh or twelfth aspect, wherein a conductor is provided on one surface of the alkali glass, and a cathode electrode is formed on the other surface of the alkali glass. And applying a voltage of about 500 V to about 1000 V between the cathode electrode and the conductor at a heating temperature lower than the glass transition point of the alkali glass to form an alkali ion deficient region on the conductor side of the alkali glass, The alkali glass is polished to expose the alkali ion deficient region, and the electret electrode is formed on the conductor.

請求項14のように、前記加熱温度を、アルカリガラスの歪点以下とする。   As in claim 14, the heating temperature is set to be equal to or lower than the strain point of alkali glass.

第1発明の静電誘導式発電デバイスによれば、エレクトレット電極と対向電極を真空の空間部に対向配置する構成としたので、可動する電極に対する空気によるダンピング作用がなく、発電効率を向上できる。   According to the electrostatic induction power generation device of the first invention, since the electret electrode and the counter electrode are arranged opposite to the vacuum space, there is no air damping action on the movable electrode, and the power generation efficiency can be improved.

第2発明の静電誘導式発電デバイスによれば、エレクトレット電極をアルカリガラスで形成することでエレクトレット電極の電荷密度を向上することができ、発電効率を向上できる。   According to the electrostatic induction power generation device of the second invention, the charge density of the electret electrode can be improved by forming the electret electrode with alkali glass, and the power generation efficiency can be improved.

以下、本発明の実施形態を図面に基づいて説明する。
図1に、第1発明の静電誘導式発電デバイスの第1実施形態の縦断面模式図を示す。
図1において、本実施形態の静電誘導式発電デバイス1は、エレクトレット電極部10と、該エレクトレット電極部10の周縁部上に枠状の絶縁スペーサ2を介して接合された対向電極部20と、該対向電極部20の周縁部上に接合された蓋部材3とを備え、前記エレクトレット電極部10、絶縁スペーサ2、対向電極部20及び蓋部材3で、密閉した真空の空間部4を形成し、該空間部4内に後述するエレクトレット電極12と対向電極22とを対向配置した構成である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, the longitudinal cross-sectional schematic diagram of 1st Embodiment of the electrostatic induction power generation device of 1st invention is shown.
In FIG. 1, the electrostatic induction power generation device 1 of the present embodiment includes an electret electrode portion 10, a counter electrode portion 20 joined to a peripheral portion of the electret electrode portion 10 via a frame-shaped insulating spacer 2. And the lid member 3 joined on the peripheral edge of the counter electrode part 20, and the electret electrode part 10, the insulating spacer 2, the counter electrode part 20 and the lid member 3 form a sealed vacuum space part 4. The electret electrode 12 and the counter electrode 22 described later are disposed in the space 4 so as to face each other.

前記エレクトレット電極部10は、本実施形態では固定電極部に相当するもので、例えば四角形の平板状の導電基板11上の中央部に、例えばストライプ状に固定配置された固定電極となる前述のエレクトレット電極12を設けて構成されている。前記エレクトレット電極12は、例えば従来公知の方法等で絶縁材料の表面付近に電荷を注入して形成されている。   The electret electrode portion 10 corresponds to a fixed electrode portion in the present embodiment. For example, the electret described above is a fixed electrode fixedly arranged in a stripe shape, for example, at the center of a rectangular flat conductive substrate 11. An electrode 12 is provided. The electret electrode 12 is formed, for example, by injecting charges near the surface of an insulating material by a conventionally known method or the like.

前記対向電極部20は、本実施形態では可動電極部に相当するもので、導電材で形成されており、図2に示すように、枠状の外周支持部21に、エレクトレット電極12と同様のストライプ状に形成した可動電極となる前述の対向電極22を、梁23で図2中の矢印方向に振動可能に支持し、対向電極22がエレクトレット電極12に対して相対運動可能に対向配置して構成されている。   The counter electrode portion 20 corresponds to a movable electrode portion in the present embodiment, and is formed of a conductive material. As shown in FIG. 2, the counter electrode portion 20 is similar to the electret electrode 12 on a frame-shaped outer periphery support portion 21. The above-described counter electrode 22 which is a movable electrode formed in a stripe shape is supported by a beam 23 so as to be able to vibrate in the direction of the arrow in FIG. 2, and the counter electrode 22 is disposed so as to be capable of relative movement with respect to the electret electrode 12. It is configured.

前記蓋部材3は、対向電極部20との接合面側にキャビティ3Aを形成した絶縁材料で構成されている。   The lid member 3 is made of an insulating material in which a cavity 3 </ b> A is formed on the joint surface side with the counter electrode unit 20.

かかる発電デバイスの製造方法の一例を説明する。
対向電極部20は、例えば金属板(ステンレス等)を材料として、レーザ或いは超高圧水等によって図2のような形状に加工して形成する。この際、金属板を複数枚重ねて一括加工することでスループットを向上できる。エレクトレット電極部10は、従来と同様にして、導電基板11上に従来公知の方法等でエレクトレット電極12を形成する。これら両電極部10,20と絶縁スペーサ2及び蓋部材3を真空雰囲気中で接合する。これにより、図1のような発電デバイスのユニット1が完成する。
An example of a method for manufacturing such a power generation device will be described.
The counter electrode portion 20 is formed by processing a metal plate (stainless steel or the like) into a shape as shown in FIG. At this time, the throughput can be improved by collectively processing a plurality of metal plates. The electret electrode part 10 forms the electret electrode 12 on the conductive substrate 11 by a conventionally known method or the like in the same manner as before. These electrode portions 10 and 20 are joined to the insulating spacer 2 and the lid member 3 in a vacuum atmosphere. Thereby, the unit 1 of the power generation device as shown in FIG. 1 is completed.

また、発電デバイス1の小型化を図るために、対向電極部10にシリコンウエハを用い、半導体製造プロセス(フォトリソ+シリコン垂直エッチング)を利用して加工する。他の部材も半導体プロセスを活用してウエハ状態で加工する。これらを互いに接合して図1に示すユニット1を多数形成した後、最終工程として多数のユニットが一体形成されたウエハをユニット単位で分割して製造するようにすれば、発電デバイスのユニット1を一括して大量に生産することができる。   Further, in order to reduce the size of the power generation device 1, a silicon wafer is used for the counter electrode portion 10 and processed using a semiconductor manufacturing process (photolitho + silicon vertical etching). Other members are also processed in a wafer state using a semiconductor process. After joining these together to form a large number of units 1 shown in FIG. 1, as a final process, if a wafer in which a large number of units are integrally formed is divided and manufactured in units, then the unit 1 of the power generation device can be obtained. Can be mass produced in bulk.

次に、本実施形態の発電デバイス1の動作を説明する。
エレクトレット電極12と対向電極22は自然状態で互いに対向しており、このとき、エレクトレット電極12の電荷量に応じた電荷が対向電極22に誘導される。この状態で、可動電極である対向電極22が外部の振動を感知して図1の矢印方向に振動すると、エレクトレット電極12と対向電極22の対向する面積が変化し、対向電極22側の誘導電荷量が変化して電気エネルギが発生する。その結果、エレクトレット電極部10と対向電極部20との間に接続した電気負荷の抵抗5に電流が流れる。そして、エレクトレット電極12と対向電極22を真空の空間部4内に配置したことで、対向電極22の振動に対する空気抵抗がなく、対向電極22の振動を妨げる空気のダンピング作用をなくすことができる。従って、振動を感知した時の対向電極22の振動周波数が従来に比べて高くなり、発電効率を向上することができる。
Next, operation | movement of the electric power generation device 1 of this embodiment is demonstrated.
The electret electrode 12 and the counter electrode 22 are opposed to each other in a natural state. At this time, a charge corresponding to the charge amount of the electret electrode 12 is induced to the counter electrode 22. In this state, when the counter electrode 22, which is a movable electrode, senses external vibration and vibrates in the direction of the arrow in FIG. 1, the opposing area of the electret electrode 12 and the counter electrode 22 changes, and the induced charge on the counter electrode 22 side changes. The amount changes to generate electrical energy. As a result, a current flows through the resistor 5 of the electric load connected between the electret electrode unit 10 and the counter electrode unit 20. Since the electret electrode 12 and the counter electrode 22 are arranged in the vacuum space 4, there is no air resistance against vibration of the counter electrode 22, and air damping action that prevents vibration of the counter electrode 22 can be eliminated. Therefore, the vibration frequency of the counter electrode 22 when vibration is sensed is higher than in the prior art, and the power generation efficiency can be improved.

ストライプ構造のエレクトレット電極12及び対向電極22の幅が小さい程、よりわずかな振動で発電エネルギを発生させることができ、発電効率をより高めることができる。   As the width of the electret electrode 12 and the counter electrode 22 having the stripe structure is smaller, the power generation energy can be generated with a slight vibration, and the power generation efficiency can be further increased.

図3に、第1実施形態の変形例の縦断面模式図を示す。尚、図1の第1実施形態と同一部分には同一符号を付して説明を省略する。
この発電デバイス1′は、図1の実施形態とは逆に、対向電極部を固定電極部としエレクトレット電極部を可動電極部としたものである。この場合、図3に示すように、エレクトレット電極部30は、枠状の外周支持部31と、ストライプ構造のエレクトレット電極32と、梁33と、エレクトレット電極32を形成した平板状の可動部34とを備え、この可動部34を梁33で外周支持部31に図3中の矢印方向に振動可能に支持するよう構成されている。一方、対向電極部40は、四角形の平板状導電材41の中央部にエレクトレット電極32と対向する対向電極42を加工形成して構成されている。その他の構成は、図1の第1実施形態と同様である。
In FIG. 3, the longitudinal cross-sectional schematic diagram of the modification of 1st Embodiment is shown. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment of FIG. 1, and description is abbreviate | omitted.
In contrast to the embodiment of FIG. 1, the power generation device 1 ′ has a counter electrode portion as a fixed electrode portion and an electret electrode portion as a movable electrode portion. In this case, as shown in FIG. 3, the electret electrode section 30 includes a frame-shaped outer periphery support section 31, an electret electrode 32 having a stripe structure, a beam 33, and a plate-shaped movable section 34 on which the electret electrode 32 is formed. The movable portion 34 is supported by the beam 33 so as to be capable of vibrating in the direction of the arrow in FIG. On the other hand, the counter electrode part 40 is configured by processing and forming a counter electrode 42 facing the electret electrode 32 at the center of a rectangular flat conductive material 41. Other configurations are the same as those of the first embodiment shown in FIG.

図3の発電デバイス1′の動作は、第1実施形態とは逆に、エレクトレット電極32側が可動電極として振動を感知し、固定された対向電極42に対して相対的に振動することが第1実施形態と異なるだけで、その他は同じである。かかる発電デバイス1′においても、第1実施形態と同様の作用効果が得られる。   In the operation of the power generation device 1 ′ of FIG. 3, the first aspect is that the electret electrode 32 side senses vibration as a movable electrode and vibrates relative to the fixed counter electrode 42, contrary to the first embodiment. Other than the embodiment, the rest is the same. Also in this power generation device 1 ′, the same operational effects as those of the first embodiment can be obtained.

図4に、第1発明の第2実施形態の縦断面模式図を示す。尚、図1の第1実施形態と同一部分には同一符号を付して説明を省略する。
図4において、第2実施形態の発電デバイス50は、第1実施形態の蓋部材3を、エレクトレット電極部10と同一の構成の別のエレクトレット電極部10′で構成し、このエレクトレット電極部10′のエレクトレット電極12′を、対向電極22に対向させるように、枠状の絶縁スペーサ51を介して対向電極部20の周縁部上に接合することで、可動電極である対向電極22の両側に固定電極であるエレクトレット電極12,12′を配置する構成である。尚、図中の11′は、エレクトレット電極部10′の導電基板である。ここで、エレクトレット電極部10′が別の固定電極部に相当し、エレクトレット電極12′がその固定電極である。
In FIG. 4, the longitudinal cross-sectional schematic diagram of 2nd Embodiment of 1st invention is shown. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment of FIG. 1, and description is abbreviate | omitted.
In FIG. 4, the power generation device 50 of the second embodiment includes the lid member 3 of the first embodiment configured by another electret electrode portion 10 ′ having the same configuration as the electret electrode portion 10, and this electret electrode portion 10 ′. The electret electrode 12 ′ is fixed on both sides of the counter electrode 22, which is a movable electrode, by being joined to the peripheral edge of the counter electrode part 20 via a frame-like insulating spacer 51 so as to face the counter electrode 22. In this configuration, electret electrodes 12 and 12 ', which are electrodes, are arranged. In the figure, 11 'is a conductive substrate of the electret electrode portion 10'. Here, the electret electrode portion 10 'corresponds to another fixed electrode portion, and the electret electrode 12' is the fixed electrode.

かかる第2実施形態の発電デバイス50によれば、エレクトレット電極の数が第1実施形態の倍となるので、第1実施形態の発電デバイス1と比較して略2倍の発電量を発生させることができる。更に、図の上下方向が対称な構造となるため、デバイス50に反りが発生しない。しかも、対向電極22とエレクトレット電極10及び対向電極22とエレクトレット電極、10′間に発生する静電吸引力が等価となるため、対向電極22とエレクトレット電極10、10′間を第1実施形態の場合より、異常放電を抑制できる範囲で更に近接させることが可能となる。   According to the power generation device 50 of the second embodiment, since the number of electret electrodes is double that of the first embodiment, the amount of power generation is approximately twice that of the power generation device 1 of the first embodiment. Can do. Further, since the vertical direction of the figure is a symmetrical structure, the device 50 is not warped. Moreover, since the electrostatic attractive force generated between the counter electrode 22 and the electret electrode 10 and between the counter electrode 22 and the electret electrode 10 'is equivalent, the gap between the counter electrode 22 and the electret electrodes 10, 10' is the same as that of the first embodiment. In some cases, it is possible to make them closer to each other as long as abnormal discharge can be suppressed.

図5に、第2実施形態の変形例の縦断面模式図を示す。尚、図3の変形例と同一部分には同一符号を付して説明を省略する。
この変形例の発電デバイス50′は、図3に示した変形例と同様で、対向電極部を固定電極部としエレクトレット電極部を可動電極部とし、蓋部材に代えて、対向電極40と同一構成の別の固定電極として対向電極40′を設ける構成である。この場合、エレクトレット電極部30は、可動部34の上下面にエレクトレット電極32を設ける構成である。その他の構成は図4の第2実施形態と同様の構成であり、第2実施形態と同様の作用効果を有する。
In FIG. 5, the longitudinal cross-sectional schematic diagram of the modification of 2nd Embodiment is shown. In addition, the same code | symbol is attached | subjected to the part same as the modification of FIG. 3, and description is abbreviate | omitted.
The power generation device 50 ′ of this modification is the same as the modification shown in FIG. 3, and has the same configuration as the counter electrode 40 instead of the lid member, with the counter electrode portion serving as a fixed electrode portion and the electret electrode portion serving as a movable electrode portion. The counter electrode 40 'is provided as another fixed electrode. In this case, the electret electrode portion 30 is configured to provide the electret electrodes 32 on the upper and lower surfaces of the movable portion 34. The other structure is the same as that of 2nd Embodiment of FIG. 4, and has the same effect as 2nd Embodiment.

図6に、第1発明の第3実施形態の縦断面模式図を示す。
図6の発電デバイス60は、第1実施形態の発電デバイス1をユニットとして2つのユニット1を積層したものである。この場合、図1の発電デバイスユニット1を単純に積層してもよいが、図6に示すように、下側ユニット1の可動電極部である対向電極部20の周縁部に、絶縁スペーサ61を介して上側ユニットの固定電極部であるエレクトレット電極部10の導電基板11を接合し、このエレクトレット電極部10を下側ユニット1の蓋部材として使用する構成とするとよい。尚、図1の実施形態と同一部分には同一符号を付してある。
In FIG. 6, the longitudinal cross-sectional schematic diagram of 3rd Embodiment of 1st invention is shown.
The power generation device 60 of FIG. 6 is obtained by stacking two units 1 using the power generation device 1 of the first embodiment as a unit. In this case, the power generation device unit 1 of FIG. 1 may be simply laminated. However, as shown in FIG. 6, an insulating spacer 61 is provided on the peripheral portion of the counter electrode portion 20 that is the movable electrode portion of the lower unit 1. The conductive substrate 11 of the electret electrode part 10 that is a fixed electrode part of the upper unit is joined to the electret electrode part 10 as a lid member of the lower unit 1. In addition, the same code | symbol is attached | subjected to the same part as embodiment of FIG.

また、図7に、第1発明の第4実施形態の縦断面模式図を示す。
図7の発電デバイス70は、第2実施形態の発電デバイス50をユニットとして2つのユニット50を積層したものである。この場合、図4の発電デバイスユニット50を単純に積層してもよいが、図7に示すように、上側ユニット50の固定電極部であるエレクトレット電極部10と下側ユニット50の別の固定電極部であるエレクトレット電極部10′とを共通化し、図のように導電基板11の両側にエレクトレット電極12,12′を設け、下側ユニット50の絶縁スペーサ51上に接合して構成とするとよい。尚、図4の実施形態と同一部分には同一符号を付してある。
Moreover, in FIG. 7, the longitudinal cross-sectional schematic diagram of 4th Embodiment of 1st invention is shown.
The power generation device 70 of FIG. 7 is obtained by stacking two units 50 using the power generation device 50 of the second embodiment as a unit. In this case, the power generation device unit 50 of FIG. 4 may be simply stacked, but as shown in FIG. 7, the electret electrode portion 10 that is a fixed electrode portion of the upper unit 50 and another fixed electrode of the lower unit 50 The electret electrode portion 10 ′, which is a portion, is made common, and the electret electrodes 12 and 12 ′ are provided on both sides of the conductive substrate 11 as shown in the figure, and are joined onto the insulating spacer 51 of the lower unit 50. In addition, the same code | symbol is attached | subjected to the same part as embodiment of FIG.

図6及び図7の実施形態によれば、図1や図4の各発電デバイス1,50と比較して、積層したユニットを電気的に互いに並列接続すれば発電電流を積層数に略比例して増加でき、積層したユニットを電気的に互いに直列接続すれば発電電圧を積層数に略比例して増加できる。また、図6及び図7のように、上側ユニットのエレクトレット電極部10を下側ユニット1,50の蓋部材や別の固定電極部とする構成とすることで、発電デバイスユニット1,1′の積層構造の場合では蓋部材3は最上層のユニット1,50のみでよく蓋部材3の数を削減でき、発電デバイスユニット50,50′の積層構造の場合では導電基板10′の数を削減でき、それぞれ部品点数を削減できるので製造コストを低減できる。   According to the embodiment of FIGS. 6 and 7, compared with the power generation devices 1 and 50 of FIGS. 1 and 4, if the stacked units are electrically connected to each other in parallel, the generated current is substantially proportional to the number of stacked layers. If the stacked units are electrically connected to each other in series, the generated voltage can be increased approximately in proportion to the number of stacked layers. Further, as shown in FIGS. 6 and 7, the electret electrode portion 10 of the upper unit is configured as a lid member of the lower unit 1, 50 or another fixed electrode portion, so that the power generation device units 1, 1 ′ In the case of the laminated structure, the lid member 3 may be only the uppermost units 1 and 50, and the number of the lid members 3 can be reduced. In the case of the laminated structure of the power generation device units 50 and 50 ', the number of the conductive substrates 10' can be reduced. Since the number of parts can be reduced, manufacturing costs can be reduced.

尚、第3実施形態において、図1の発電デバイス1に代えて、図3の発電デバイス1′をユニットとして積層する構成でもよく、この場合も、図6と同様に、下側ユニット1′のエレクトレット電極部30の周縁部に、絶縁スペーサ61を介して上側ユニット1′の対向電極部40の導電材41を接合し、この対向電極部40を下側ユニット1′の蓋部材として使用する構成とするとよい。また、第4実施形態において、図4の発電デバイス50に代えて図5の発電デバイス50′を積層する構成でもよく、この場合も、上側ユニット50′の固定電極部である対向電極部40と下側ユニット50′の別の固定電極部である対向電極部40′とを共通化し、導電材41の両側に対向電極42,42′を形成し、下側ユニット50′の絶縁スペーサ51上に接合して構成とするとよい。
また、ユニットの積層数は、図6及び図7では2つとしたが、それぞれ3つ以上積層してもよいことは言うまでもない。
In the third embodiment, instead of the power generation device 1 in FIG. 1, the power generation device 1 ′ in FIG. 3 may be stacked as a unit. In this case, as in FIG. 6, the lower unit 1 ′ A structure in which the conductive material 41 of the counter electrode portion 40 of the upper unit 1 ′ is joined to the peripheral portion of the electret electrode portion 30 via the insulating spacer 61, and the counter electrode portion 40 is used as a lid member of the lower unit 1 ′. It is good to do. Moreover, in 4th Embodiment, it may be the structure which laminates | stacks the electric power generation device 50 'of FIG. 5 instead of the electric power generation device 50 of FIG. 4, and also in this case, with the counter electrode part 40 which is a fixed electrode part of upper unit 50', The counter electrode part 40 ', which is another fixed electrode part of the lower unit 50', is made common, and the counter electrodes 42 and 42 'are formed on both sides of the conductive material 41, on the insulating spacer 51 of the lower unit 50'. It is good to join and constitute.
Further, although the number of units stacked is two in FIGS. 6 and 7, it goes without saying that three or more units may be stacked.

図8に、第1発明の第5実施形態の縦断面模式図を示す。
図8の発電デバイス80は、第1実施形態の発電デバイス1をユニットとして2つのユニット1を横方向に並べて構成したものである。この場合、図1の発電デバイスユニット1を単純に横に並べて構成してもよいが、図8に示すように、横方向に並べた2つのユニット1,1の固定電極部であるエレクトレット電極部10の導電基板11、絶縁スペーサ2、可動電極部である対向電極部20の外周支持部21及び蓋部材3を共通化して一体形成する構成とするとよい。
In FIG. 8, the longitudinal cross-sectional schematic diagram of 5th Embodiment of 1st invention is shown.
The power generation device 80 of FIG. 8 is configured by arranging the two units 1 in the horizontal direction using the power generation device 1 of the first embodiment as a unit. In this case, the power generation device units 1 of FIG. 1 may be simply arranged side by side, but as shown in FIG. 8, electret electrode portions that are fixed electrode portions of the two units 1 and 1 arranged in the horizontal direction. The conductive substrate 11, the insulating spacer 2, the outer peripheral support portion 21 of the counter electrode portion 20, which is a movable electrode portion, and the lid member 3 may be configured in common and integrally formed.

本発明において、静電誘導式発電デバイスの発電効率をより向上させるには、エレクトレット電極部10と対向電極部20を大きくしてそれぞれのエレクトレット電極12と対向電極部22の面積を増大することが望ましい。しかし、エレクトレット電極部10と対向電極部20を大きくすると、導電基板11や蓋部材3が外からの圧力で変形し易くなり、エレクトレット電極12と対向電極22の間のギャップを均一に保持することが難しい。導電基板11や蓋部材3を厚くすれば変形し難くなるが、デバイスが大型化し重量も重くなるという問題がある。   In the present invention, in order to further improve the power generation efficiency of the electrostatic induction power generation device, it is possible to enlarge the electret electrode portion 10 and the counter electrode portion 20 to increase the area of each electret electrode 12 and the counter electrode portion 22. desirable. However, when the electret electrode portion 10 and the counter electrode portion 20 are enlarged, the conductive substrate 11 and the lid member 3 are easily deformed by external pressure, and the gap between the electret electrode 12 and the counter electrode 22 is uniformly maintained. Is difficult. If the conductive substrate 11 and the lid member 3 are thickened, it becomes difficult to be deformed, but there is a problem that the device becomes large and heavy.

図8の第5実施形態のように、2つのユニット1,1のエレクトレット電極部10の導電基板11、絶縁スペーサ2、対向電極部20の外周支持部21及び蓋部材3を共通化して一体形成する構成によれば、エレクトレット電極12と対向電極部22の面積が増大して発電効率を向上でき、しかも、絶縁スペーサ2と外周支持部21が、導電基板11と蓋部材3の変形を抑制する柱として機能するので、外部からの圧力に対しても導電基板11や蓋部材3が変形し難くなる。   As in the fifth embodiment of FIG. 8, the conductive substrate 11 of the electret electrode portion 10 of the two units 1, 1, the insulating spacer 2, the outer peripheral support portion 21 of the counter electrode portion 20, and the lid member 3 are made common and integrally formed. According to the configuration, the area of the electret electrode 12 and the counter electrode portion 22 can be increased to improve power generation efficiency, and the insulating spacer 2 and the outer peripheral support portion 21 can suppress deformation of the conductive substrate 11 and the lid member 3. Since it functions as a pillar, the conductive substrate 11 and the lid member 3 are not easily deformed by external pressure.

尚、図8では、図1の発電デバイス1に適用した例を示したが、図3〜図5の各デバイスについても適用できることは言うまでもない。   In addition, although the example applied to the electric power generation device 1 of FIG. 1 was shown in FIG. 8, it cannot be overemphasized that it is applicable also to each device of FIGS.

図9に、第1発明の第6実施形態の縦断面模式図を示す。
図9において、本実施形態の発電デバイス90は、エレクトレット電極部100を、絶縁基板101と、この絶縁基板101上に形成した導電薄膜102と、この導電薄膜102上に図1と同様のストライプ状に形成したエレクトレット電極103とで構成する。また、対向電極部110は、図1と同様に対向電極111、梁112及び外周支持部113で構成されているが、外周支持部113の厚さ(図の上下方向)を対向電極111及び梁112より厚く形成してエレクトレット電極部100の絶縁基板101外周部に直接接合する構成である。そして、絶縁基板101の下面から導電薄膜102と外周支持部113にそれぞれ電気的に接続するように電極端子部である一対の貫通電極端子91,91を貫通して設けてある。貫通電極端子91,91は、絶縁基板101によって互いに電気的に絶縁されている。エレクトレット電極103と対向電極111は、図1の発電デバイス1と同様に蓋部材3で閉塞された真空の空間部4内に配置されている。
In FIG. 9, the longitudinal cross-sectional schematic diagram of 6th Embodiment of 1st invention is shown.
In FIG. 9, the power generation device 90 of this embodiment includes an electret electrode unit 100 having an insulating substrate 101, a conductive thin film 102 formed on the insulating substrate 101, and a stripe shape similar to that in FIG. 1 on the conductive thin film 102. And the electret electrode 103 formed in the above. The counter electrode unit 110 includes the counter electrode 111, the beam 112, and the outer periphery support portion 113, as in FIG. 1. However, the thickness of the outer periphery support portion 113 (vertical direction in the figure) is set to the counter electrode 111 and the beam. It is configured to be thicker than 112 and directly bonded to the outer peripheral portion of the insulating substrate 101 of the electret electrode unit 100. A pair of through electrode terminals 91 and 91 that are electrode terminal portions are provided so as to be electrically connected to the conductive thin film 102 and the outer peripheral support portion 113 from the lower surface of the insulating substrate 101, respectively. The through electrode terminals 91 and 91 are electrically insulated from each other by the insulating substrate 101. The electret electrode 103 and the counter electrode 111 are arranged in a vacuum space 4 closed by the lid member 3 as in the power generation device 1 of FIG.

このように構成した発電デバイスユニット90は、ユニット90の下面に電気信号取り出し用の一対の貫通電極端子91,91を配置してあるので、フリップチップ実装が可能となる。これにより、この発電デバイス90を組込むモジュールの小型化が実現できる。また、ユニットを多数形成したウエハ状態で各ユニットに貫通電極端子91,91を取付けることが可能となり、ウエハをユニット単位で分割した後の電極端子取り付け工程を省略できる。従って、発電デバイス90の製造工程の効率化により製造コストを低減でき、発電デバイスの低コスト化を実現できる。   Since the power generation device unit 90 configured in this manner has a pair of through electrode terminals 91 and 91 for taking out electrical signals on the lower surface of the unit 90, flip chip mounting is possible. Thereby, size reduction of the module incorporating this electric power generation device 90 is realizable. In addition, the through electrode terminals 91 and 91 can be attached to each unit in a wafer state in which a large number of units are formed, and the electrode terminal attaching step after the wafer is divided into units can be omitted. Therefore, the manufacturing cost can be reduced by increasing the efficiency of the manufacturing process of the power generation device 90, and the cost reduction of the power generation device can be realized.

次に、第2発明の静電誘導式発電デバイスについて説明する。
第2発明の静電誘導式発電デバイスは、エレクトレット電極をアルカリガラスで形成することにより、エレクトレット電極の電荷密度を高めて発電デバイスの発電効率を向上させることを特徴とするものである。
Next, the electrostatic induction power generation device of the second invention will be described.
The electrostatic induction power generation device according to the second invention is characterized in that the electret electrode is made of alkali glass, thereby increasing the charge density of the electret electrode and improving the power generation efficiency of the power generation device.

一般的にガラスはSiO2、B23、Al23の単一ないしは複数の組合せで網目構造を形成する。アルカリガラスは、上述の網目構造にアルカリ金属(Na、K、Li等)の酸化物が網目修飾酸化物として導入されている。これらのアルカリイオンは、ガラス転移点未満の比較的低温で、外部からの電圧印加によって容易に移動することが知られている。その原理を活用した例として、シリコン/アルカリガラス(例えばパイレックス(登録商標))の陽極接合が有名であり、MEMS分野の主要な加工技術として広く活用されている。これは、ガラス内でNaイオンがカソード側に移動することによって、シリコンとの界面付近に、残された酸素イオンによるマイナスに帯電した層が形成される。本発明は、この原理を活用して形成した電荷密度の高いエレクトレット電極を備えた静電誘導式発電デバイスを提供するものである。 In general, glass forms a network structure with a single or a combination of SiO 2 , B 2 O 3 and Al 2 O 3 . In alkali glass, an oxide of an alkali metal (Na, K, Li, etc.) is introduced as a network-modified oxide into the above-described network structure. It is known that these alkali ions move easily by applying an external voltage at a relatively low temperature below the glass transition point. As an example utilizing the principle, anodic bonding of silicon / alkali glass (for example, Pyrex (registered trademark)) is well known and widely used as a main processing technique in the MEMS field. This is because Na ions move to the cathode side in the glass to form a negatively charged layer near the interface with silicon due to the remaining oxygen ions. The present invention provides an electrostatic induction power generation device including an electret electrode having a high charge density formed by utilizing this principle.

図10に、第2発明の静電誘導式発電デバイスの第1実施形態の縦断面模式図を示す。
図10において、本実施形態の発電デバイス200は、エレクトレット電極部210と、該エレクトレット電極部210の周縁部上に枠状の絶縁スペーサ201を介して接合された対向電極部220とを備え、後述するエレクトレット電極212と対向電極222を大気中で対向配置した構成である。そして、前記エレクトレット電極部210は、導電基板211と、エレクトレット電極212とを備えて構成され、前記エレクトレット電極212がアルカリガラスで形成されていること以外は、図1に示す第1発明の第1実施形態と同じ構成である。また、対向電極部220は、図1の第1発明の第1実施形態と同じ構成であり、外周支持部221と、対向電極222と、梁223とから構成されている。ここで、エレクトレット電極部210が固定電極部で、対向電極部220が可動電極部である。尚、図中、202は抵抗で、図1の抵抗5に相当するものである。
In FIG. 10, the longitudinal cross-sectional schematic diagram of 1st Embodiment of the electrostatic induction power generation device of 2nd invention is shown.
In FIG. 10, the power generation device 200 of the present embodiment includes an electret electrode portion 210 and a counter electrode portion 220 joined to the periphery of the electret electrode portion 210 via a frame-shaped insulating spacer 201. The electret electrode 212 and the counter electrode 222 are arranged to face each other in the atmosphere. The electret electrode section 210 includes a conductive substrate 211 and an electret electrode 212, and the first embodiment of the first invention shown in FIG. 1 except that the electret electrode 212 is formed of alkali glass. It is the same structure as embodiment. Further, the counter electrode unit 220 has the same configuration as that of the first embodiment of the first invention of FIG. 1, and includes an outer peripheral support unit 221, a counter electrode 222, and a beam 223. Here, the electret electrode part 210 is a fixed electrode part, and the counter electrode part 220 is a movable electrode part. In the figure, reference numeral 202 denotes a resistor, which corresponds to the resistor 5 in FIG.

かかる発電デバイス200によれば、アルカリガラスのエレクトレット電極212は、従来のポリテトラフルオロエチレン等のような高分子の絶縁材料で形成したエレクトレット電極に比べて電荷密度が高いので、発電デバイス200の発電効率を従来よりも向上できる。また、高温に曝した場合でもエレクトレット電極212の電荷が消失し難いので、経時安定性、熱安定性に優れた発電デバイスとすることができる。更に、エレクトレット電極212と対向電極222を、第1発明のように蓋部材3を設けて真空雰囲気の空間部4を形成し、この空間部4内に配置する構成にすれば、空気のダンピング作用を抑制でき、エレクトレット電極212の高い電荷密度との相乗効果により一層発電効率を向上できる。
尚、発電デバイス200の動作は、第1実施形態と同様であるので、ここでは説明を省略する。
According to the power generation device 200, the electret electrode 212 made of alkali glass has a higher charge density than the conventional electret electrode formed of a polymer insulating material such as polytetrafluoroethylene. Efficiency can be improved than before. In addition, since the electric charge of the electret electrode 212 is not easily lost even when exposed to a high temperature, a power generation device having excellent temporal stability and thermal stability can be obtained. Further, if the electret electrode 212 and the counter electrode 222 are configured so as to form the space portion 4 in the vacuum atmosphere by providing the lid member 3 as in the first invention and arrange in the space portion 4, the air damping action The power generation efficiency can be further improved by a synergistic effect with the high charge density of the electret electrode 212.
In addition, since operation | movement of the electric power generation device 200 is the same as that of 1st Embodiment, description is abbreviate | omitted here.

図10の発電デバイス200に適用したエレクトレット電極212の製造方法について、図11に示す製造工程の説明図に従って説明する。   A method for manufacturing the electret electrode 212 applied to the power generation device 200 of FIG. 10 will be described with reference to the explanatory view of the manufacturing process shown in FIG.

導電体231(酸化可能な金属や半導体、例えば、シリコン、アルミニウム、シリコン上にアルミニウムを成膜したもの等)とアルカリガラス232(導電体と熱膨張率が整合したもの)をそれぞれ平坦な面に加工して接触させる(工程(a))。   Conductor 231 (oxidizable metal or semiconductor, for example, silicon, aluminum, aluminum film formed on silicon, etc.) and alkali glass 232 (conductor and thermal expansion coefficient matched) are each flat. Process and contact (step (a)).

次に、アルカリガラス232の他方の面にカソード電極233を接触させ、全体をヒータ234でアルカリガラス232のガラス転移点未満、好ましくはガラスの歪点以下の温度(約200℃〜約400℃程度)で加熱する(工程(b))。   Next, the cathode electrode 233 is brought into contact with the other surface of the alkali glass 232, and the whole is heated by the heater 234 to a temperature below the glass transition point of the alkali glass 232, preferably below the strain point of the glass (about 200 ° C. to about 400 ° C. ) (Step (b)).

次に、導電体231をアノード電極として、アルカリガラス232の厚さ方向に電圧(約500V〜約1000V程度)を印加する(工程(c))。   Next, a voltage (about 500 V to about 1000 V) is applied in the thickness direction of the alkali glass 232 using the conductor 231 as an anode electrode (step (c)).

これにより、アルカリガラス232中のアルカリイオン235がカソード電極233側に移動・析出し、アノード電極側にはアルカリイオンの欠乏領域236(エレクトレット層になる)が形成され、導電体231と接合(陽極接合)される(工程(d))。この欠乏領域236はアルカリガラス232の他の領域よりも高抵抗となるので、印加電圧が集中し、ガラス材質、温度、電圧によって決まる厚さに収束する。即ち、アルカリガラス232の材質、温度、電圧によって、エレクトレット層の厚さ、電荷密度を設計・制御することができるとういう特徴を有する。   As a result, the alkali ions 235 in the alkali glass 232 move and precipitate on the cathode electrode 233 side, and an alkali ion-deficient region 236 (becomes an electret layer) is formed on the anode electrode side, which is bonded to the conductor 231 (anode (Step (d)). Since the depletion region 236 has a higher resistance than other regions of the alkali glass 232, the applied voltage concentrates and converges to a thickness determined by the glass material, temperature, and voltage. That is, the thickness and charge density of the electret layer can be designed and controlled by the material, temperature, and voltage of the alkali glass 232.

次に、アルカリイオン235の再拡散を防ぐため、冷却後に電圧を遮断する。尚、電圧遮断後、直ちに冷却するようにしても良い(工程(e))。   Next, in order to prevent re-diffusion of the alkali ions 235, the voltage is cut off after cooling. In addition, you may make it cool immediately after a voltage interruption (process (e)).

最後に、カソード電極233を取り除き、アルカリガラス232を研磨してアルカリイオン欠乏領域236を露出させた後、フォトリソとエッチング或いはダイシングカット等を利用して所定のパターンに加工して導電体231(図10の導電体211となる)上にエレクトレット電極212を形成する。これにより、図10のような導電体211上にエレクトレット電極212を有するエレクトレット電極部210が完成する(工程(f))。   Finally, the cathode electrode 233 is removed, the alkali glass 232 is polished to expose the alkali ion deficient region 236, and then processed into a predetermined pattern using photolithography and etching or dicing cut, etc., to form the conductor 231 (FIG. The electret electrode 212 is formed on the ten conductors 211). Thereby, the electret electrode part 210 which has the electret electrode 212 on the conductor 211 like FIG. 10 is completed (process (f)).

図12に、第2発明に係る静電誘導式発電デバイスの第2実施形態の縦断面模式図を示す。尚、図10の第1実施形態と同一部分には同一符号を付してある。
図12において、本実施形態の発電デバイス240は、エレクトレット電極部250のアルカリガラスからなるエレクトレット電極252を、ストライプ状のアルカリイオン欠乏領域252Aを有する平板形状に形成して構成したものである。その他の構成は図10の発電デバイス200と同じである。尚、本実施形態では、絶縁材料からなる蓋部材3を設けてエレクトレット電極252と対向電極222を真空の空間部4内に配置した構成を示してあるが、図10と同様に大気中に配置する構成でもよいことは言うまでもない。
In FIG. 12, the longitudinal cross-sectional schematic diagram of 2nd Embodiment of the electrostatic induction type electric power generation device which concerns on 2nd invention is shown. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment of FIG.
In FIG. 12, the power generation device 240 of this embodiment is configured by forming an electret electrode 252 made of alkali glass of the electret electrode portion 250 into a flat plate shape having a stripe-shaped alkali ion deficient region 252A. Other configurations are the same as those of the power generation device 200 of FIG. In the present embodiment, the cover member 3 made of an insulating material is provided, and the electret electrode 252 and the counter electrode 222 are arranged in the vacuum space 4. Needless to say, it may be configured as follows.

かかる構成の発電デバイス240によれば、図10の第1実施形態の効果に加えて、エレクトレット電極252を平板形状としたことにより、対向電極222とエレクトレット電極252が共にストライプ形状の場合に比べて電極エッジ部分で発生し易い異常放電を抑制できるので、対向電極222とエレクトレット電極252をより近接させて配置することが可能となる。従って、発電デバイスの発電効率をより向上できると共に、より一層の小型化を図れる。   According to the power generation device 240 having such a configuration, in addition to the effect of the first embodiment of FIG. 10, the electret electrode 252 has a flat plate shape, so that both the counter electrode 222 and the electret electrode 252 have a stripe shape. Since abnormal discharge that is likely to occur at the electrode edge portion can be suppressed, the counter electrode 222 and the electret electrode 252 can be disposed closer to each other. Therefore, the power generation efficiency of the power generation device can be further improved, and further downsizing can be achieved.

図12の発電デバイス240に適用したエレクトレット電極252の製造方法について、図13に示す製造工程の説明図に従って説明する。尚、図11と同一部分には同一符号を付してある。   A method for manufacturing the electret electrode 252 applied to the power generation device 240 of FIG. 12 will be described with reference to the explanatory view of the manufacturing process shown in FIG. The same parts as those in FIG. 11 are denoted by the same reference numerals.

この製造工程は、工程(a)で導電体261とアルカリガラス262とを接触させる前に、導電体261に予め所定のパターン(本実施形態ではストライプの凹凸形状)を加工する。その後の工程(b)〜(f)は、図11の場合と同様である。   In this manufacturing process, before the conductor 261 and the alkali glass 262 are brought into contact with each other in the step (a), a predetermined pattern (in the present embodiment, a striped uneven shape) is processed in advance on the conductor 261. The subsequent steps (b) to (f) are the same as those in FIG.

この製造方法によれば、工程(d)で、アルカリガラス262には、導電体261の凹凸形状に整合したパターンでアルカリイオン欠乏領域236(図中の斜線部分)が形成される。その後、工程(e)を経て工程(f)で、アルカリガラス262を平板形状に研磨してアルカリイオン欠乏領域236を露出させる。これにより、導電体261(図12の導電体251となる)上にストライプ状のアルカリイオン欠乏領域236(図12のアルカリイオン欠乏領域252Aとなる)の形成された平板形状のエレクトレット電極252を有するエレクトレット電極部250が完成する。   According to this manufacturing method, in the step (d), the alkali ion deficient region 236 (shaded portion in the drawing) is formed in the alkali glass 262 with a pattern that matches the uneven shape of the conductor 261. Thereafter, after passing through step (e), in step (f), the alkali glass 262 is polished into a flat plate shape to expose the alkali ion deficient region 236. As a result, the plate-like electret electrode 252 in which the striped alkali ion deficient region 236 (which becomes the alkali ion deficient region 252A in FIG. 12) is formed on the conductor 261 (which becomes the conductor 251 in FIG. 12) is provided. The electret electrode part 250 is completed.

図1、図3〜図9に示す第1発明の各実施形態では、高分子の絶縁材料を利用したエレクトレット電極を利用した例を示したが、第2発明のアルカリガラスからなるエレクトレット電極を利用してもよいことは言うまでもない。
また、第1及び第2発明の各実施形態において、エレクトレット電極及び対向電極を、ストライプ構造としたが、この構造に限らず、例えば市松構造やリング構造でもよく、可動電極側が振動したときに、エレクトレット電極と対向電極との対向面積の変化ができるだけ大きくなるような構造とすることが望ましい。
また、第1及び第2発明の各実施形態では、可動電極が1軸方向にのみ振動する構成であるが、可動電極と固定電極とが間隔を有して相対運動する構成であればよく、例えば平面の複数軸方向に振動する構成や回転する構成としてもよい。
In each embodiment of the first invention shown in FIGS. 1 and 3 to 9, an example using an electret electrode using a polymer insulating material has been shown, but an electret electrode made of alkali glass of the second invention is used. Needless to say.
Further, in each embodiment of the first and second inventions, the electret electrode and the counter electrode have a stripe structure, but not limited to this structure, for example, a checkered structure or a ring structure may be used, and when the movable electrode side vibrates, It is desirable to have a structure in which the change in the facing area between the electret electrode and the counter electrode is as large as possible.
In each embodiment of the first and second inventions, the movable electrode is configured to vibrate only in one axial direction. However, the movable electrode and the fixed electrode may be configured to move relative to each other with an interval between them. For example, it is good also as a structure which vibrates in the multi-axis direction of a plane, or a structure rotated.

第1発明に係る静電誘導式発電デバイスの第1実施形態を示す縦断面模式図The longitudinal cross-sectional schematic diagram which shows 1st Embodiment of the electrostatic induction type electric power generation device which concerns on 1st invention. 同上第1実施形態の対向電極部(可動電極部)の平面図The top view of the counter electrode part (movable electrode part) of 1st Embodiment same as the above. 第1実施形態の変形例を示す縦断面模式図Schematic diagram of a longitudinal section showing a modification of the first embodiment 第1発明に係る静電誘導式発電デバイスの第2実施形態を示す縦断面模式図The longitudinal cross-sectional schematic diagram which shows 2nd Embodiment of the electrostatic induction type electric power generation device which concerns on 1st invention. 第2実施形態の変形例を示す縦断面模式図Schematic diagram of a longitudinal section showing a modification of the second embodiment 第1発明に係る静電誘導式発電デバイスの第3実施形態を示す縦断面模式図Fig. 3 is a schematic longitudinal sectional view showing a third embodiment of the electrostatic induction power generating device according to the first invention. 第1発明に係る静電誘導式発電デバイスの第4実施形態を示す縦断面模式図The longitudinal cross-sectional schematic diagram which shows 4th Embodiment of the electrostatic induction type electric power generation device which concerns on 1st invention. 第1発明に係る静電誘導式発電デバイスの第5実施形態を示す縦断面模式図A longitudinal cross-sectional schematic diagram showing a fifth embodiment of the electrostatic induction power generating device according to the first invention 第1発明に係る静電誘導式発電デバイスの第6実施形態を示す縦断面模式図The longitudinal cross-sectional schematic diagram which shows 6th Embodiment of the electrostatic induction type electric power generation device which concerns on 1st invention. 第2発明に係る静電誘導式発電デバイスの第1実施形態を示す縦断面模式図Longitudinal schematic view showing the first embodiment of the electrostatic induction power generating device according to the second invention 同上第1実施形態のエレクトレット電極の製造工程の説明図Explanatory drawing of the manufacturing process of the electret electrode of 1st Embodiment same as the above. 第2発明に係る静電誘導式発電デバイスの第2実施形態を示す縦断面模式図A longitudinal cross-sectional schematic diagram showing a second embodiment of the electrostatic induction power generation device according to the second invention 同上第2実施形態のエレクトレット電極の製造工程の説明図Explanatory drawing of the manufacturing process of the electret electrode of 2nd Embodiment same as the above.

符号の説明Explanation of symbols

1、1′、50、50′、60,70,80,90,200,240 発電デバイス
2 絶縁スペーサ
3 蓋部材
4 空間部
10、10′、30、100、210、250 エレクトレット電極部
20、40、40′、110、220 対向電極部
91 貫通電極端子
1, 1 ′, 50, 50 ′, 60, 70, 80, 90, 200, 240 Power generation device 2 Insulating spacer 3 Lid member 4 Space portion 10, 10 ′, 30, 100, 210, 250 Electret electrode portion 20, 40 40 ′, 110, 220 Counter electrode portion 91 Through electrode terminal

Claims (14)

エレクトレット電極を設けたエレクトレット電極部と、前記エレクトレット電極と対向する対向電極を設けた対向電極部とを備え、前記エレクトレット電極と前記対向電極との相対運動により振動エネルギを発電エネルギに変換する静電誘導式発電デバイスであって、
前記エレクトレット電極と前記対向電極とを真空の空間部内に対向配置する構成としたことを特徴とする静電誘導式発電デバイス。
An electret electrode portion provided with an electret electrode and a counter electrode portion provided with a counter electrode opposed to the electret electrode, and electrostatic energy that converts vibration energy into generated energy by relative movement of the electret electrode and the counter electrode An inductive power generation device,
An electrostatic induction power generation device characterized in that the electret electrode and the counter electrode are arranged to face each other in a vacuum space.
前記エレクトレット電極を、アルカリガラスで形成したことを特徴とする請求項1に記載の静電誘導式発電デバイス。   The electrostatic induction power generation device according to claim 1, wherein the electret electrode is formed of alkali glass. 前記エレクトレット電極を、前記対向電極の形状パターンに対応した形状パターンのアルカリイオン欠乏領域を有する平板形状に形成したことを特徴とする請求項2に記載の静電誘導式発電デバイス。   The electrostatic induction power generation device according to claim 2, wherein the electret electrode is formed in a flat plate shape having an alkali ion deficient region having a shape pattern corresponding to the shape pattern of the counter electrode. 前記エレクトレット電極部と前記対向電極部のどちらか一方を電極が可動できる可動電極部とし他方を電極が固定された固定電極部とし、前記固定電極部の周縁部上に、絶縁スペーサを介して前記可動電極部を接合し、前記可動電極部の周縁部上に蓋部材を接合し、両電極部と前記絶縁スペーサと前記蓋部材とで前記真空空間部を形成してデバイスのユニットを構成した請求項1〜3のいずれか1つに記載の静電誘導式発電デバイス。   Either one of the electret electrode part and the counter electrode part is a movable electrode part that can move the electrode, and the other is a fixed electrode part to which the electrode is fixed, and an insulating spacer is provided on the periphery of the fixed electrode part. A device unit is formed by joining a movable electrode part, joining a lid member on a peripheral part of the movable electrode part, and forming the vacuum space part by both the electrode part, the insulating spacer, and the lid member. Item 4. The electrostatic induction power generation device according to any one of Items 1 to 3. 前記蓋部材を、固定電極を有する別の固定電極部で構成し、該別の固定電極部を枠状の絶縁スペーサを介して前記可動電極部の周縁部上に接合し、前記可動電極部の可動電極両側に固定電極を配置する構成とした請求項4に記載の静電誘導式発電デバイス。   The lid member is composed of another fixed electrode portion having a fixed electrode, and the other fixed electrode portion is joined onto a peripheral edge portion of the movable electrode portion via a frame-shaped insulating spacer. The electrostatic induction power generation device according to claim 4, wherein fixed electrodes are arranged on both sides of the movable electrode. 前記ユニットを複数積層することを特徴とする請求項4又は5に記載の静電誘導式発電デバイス。   The electrostatic induction power generation device according to claim 4, wherein a plurality of the units are stacked. 前記積層構造において、下側ユニットの可動電極部周縁部に、絶縁スペーサを介して上側ユニットの固定電極部を接合し、当該固定電極部を下側ユニットの蓋部材として使用する構成とした請求項6に記載の静電誘導式発電デバイス。   In the laminated structure, the fixed electrode part of the upper unit is joined to the peripheral part of the movable electrode part of the lower unit via an insulating spacer, and the fixed electrode part is used as a lid member of the lower unit. 6. The electrostatic induction power generation device according to 6. 前記ユニットを複数横方向に配置することを特徴とする請求項4又は5に記載の静電誘導式発電デバイス。   The electrostatic induction power generation device according to claim 4 or 5, wherein a plurality of the units are arranged in a lateral direction. 横方向に配置した複数のユニットの前記固定電極部、前記絶縁スペーサ、前記可動電極部及び前記蓋部材を一体形成する構成とした請求項8に記載の静電誘導式発電デバイス。   The electrostatic induction power generation device according to claim 8, wherein the fixed electrode portion, the insulating spacer, the movable electrode portion, and the lid member of a plurality of units arranged in a lateral direction are integrally formed. 前記ユニットの下面側に、前記固定電極と可動電極のそれぞれに電気的に接続する各電極端子部を互いに電気的に絶縁して配置する構成とした請求項4〜9のいずれか1つに記載の静電誘導式発電デバイス。   10. The structure according to claim 4, wherein the electrode terminal portions that are electrically connected to the fixed electrode and the movable electrode are arranged on the lower surface side of the unit so as to be electrically insulated from each other. Electrostatic induction power generation device. エレクトレット電極を設けたエレクトレット電極部と、前記エレクトレット電極と対向する対向電極を設けた対向電極部とを備え、前記エレクトレット電極と前記対向電極との相対運動により振動エネルギを発電エネルギに変換する静電誘導式発電デバイスであって、
前記エレクトレット電極をアルカリガラスで形成したことを特徴とする静電誘導式発電デバイス。
An electret electrode portion provided with an electret electrode and a counter electrode portion provided with a counter electrode opposed to the electret electrode, and electrostatic energy that converts vibration energy into generated energy by relative movement of the electret electrode and the counter electrode An inductive power generation device,
An electrostatic induction power generation device, wherein the electret electrode is formed of alkali glass.
前記エレクトレット電極を、前記対向電極の形状パターンに対応した形状パターンのアルカリイオン欠乏領域を有する平板形状に形成したことを特徴とする請求項11に記載の静電誘導式発電デバイス。   The electrostatic induction power generation device according to claim 11, wherein the electret electrode is formed in a flat plate shape having an alkali ion deficient region having a shape pattern corresponding to the shape pattern of the counter electrode. 請求項11又は12に記載の静電誘導式発電デバイスにおいて、
前記アルカリガラスの一方の面に導電体を設け、前記アルカリガラスの他方の面にカソード電極を設け、前記アルカリガラスのガラス転移点未満の加熱温度で前記カソード電極と前記導電体間に約500V〜約1000Vの電圧を印加して前記アルカリガラスの導電体側にアルカリイオン欠乏領域を形成し、アルカリガラスを研磨して前記アルカリイオン欠乏領域を露出させ、前記導電体上に前記エレクトレット電極を形成することを特徴とする静電誘導式発電デバイスの製造方法。
The electrostatic induction power generation device according to claim 11 or 12,
A conductor is provided on one surface of the alkali glass, a cathode electrode is provided on the other surface of the alkali glass, and a heating temperature lower than the glass transition point of the alkali glass is about 500 V to between the cathode electrode and the conductor. Applying a voltage of about 1000 V to form an alkali ion deficient region on the conductor side of the alkali glass, polishing the alkali glass to expose the alkali ion deficient region, and forming the electret electrode on the conductor A method of manufacturing an electrostatic induction power generation device characterized by the above.
前記加熱温度を、アルカリガラスの歪点以下とする請求項13に記載の静電誘導式発電デバイスの製造方法。   The method for manufacturing an electrostatic induction power generation device according to claim 13, wherein the heating temperature is set to be equal to or lower than a strain point of alkali glass.
JP2008233330A 2008-09-11 2008-09-11 Electrostatic induction power generation device and manufacturing method thereof Active JP5305797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233330A JP5305797B2 (en) 2008-09-11 2008-09-11 Electrostatic induction power generation device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233330A JP5305797B2 (en) 2008-09-11 2008-09-11 Electrostatic induction power generation device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010068643A true JP2010068643A (en) 2010-03-25
JP5305797B2 JP5305797B2 (en) 2013-10-02

Family

ID=42193730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233330A Active JP5305797B2 (en) 2008-09-11 2008-09-11 Electrostatic induction power generation device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5305797B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044747A (en) * 2010-08-17 2012-03-01 Seiko Epson Corp Electrostatic induction generation device
JP2012044823A (en) * 2010-08-23 2012-03-01 Seiko Epson Corp Electrostatic induction power generation device, and electrostatic induction power generation equipment
JP2012095421A (en) * 2010-10-26 2012-05-17 Nippon Telegr & Teleph Corp <Ntt> Electrostatic transducer and manufacturing method of electrostatic transducer
JP2012095422A (en) * 2010-10-26 2012-05-17 Nippon Telegr & Teleph Corp <Ntt> Electrostatic conversion apparatus and method for manufacturing the same
JP2012253868A (en) * 2011-06-01 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Electrostatic conversion device and method of manufacturing electrostatic conversion device
JP2013013256A (en) * 2011-06-29 2013-01-17 Aoi Electronics Co Ltd Electret film and vibration power generating element using the same
JP2013055724A (en) * 2011-09-01 2013-03-21 Kansai Univ Power generator
JP2013115921A (en) * 2011-11-29 2013-06-10 Ngk Insulators Ltd Electrostatic induction type mechanoelectrical transducer
WO2013088645A1 (en) * 2011-12-12 2013-06-20 パナソニック株式会社 Micro-electromechanical generator and electric device using same
JP2013240139A (en) * 2012-05-11 2013-11-28 Aoi Electronics Co Ltd Electrostatic type converter, electrostatic type transformer, and ac voltage generator
EP2704170A2 (en) 2012-08-30 2014-03-05 Aoi Electronics Co. Ltd. Method for forming electret containing positive ions
EP2704169A2 (en) 2012-08-30 2014-03-05 Aoi Electronics Co. Ltd. Method for manufacturing three-dimensionally shaped comb-tooth electret electrode
JP5460872B2 (en) * 2010-07-16 2014-04-02 パナソニック株式会社 Micro-electromechanical generator and electrical equipment using the same
US9425709B2 (en) 2012-02-22 2016-08-23 Aoi Electronics Co., Ltd. Vibration driven power generation element and method of manufacture thereof
CN110299864A (en) * 2019-05-19 2019-10-01 北京工业大学 Piezoelectricity based on collision-static combined type energy accumulator device
WO2020027510A1 (en) * 2018-07-30 2020-02-06 경희대학교산학협력단 Electrostatic power generator using ionic elastomer
WO2020170988A1 (en) * 2019-02-22 2020-08-27 株式会社鷺宮製作所 Vibrating power generation element and manufacturing method for vibrating power generation element
CN112042106A (en) * 2018-05-08 2020-12-04 国立大学法人东京大学 Vibration power generation element and vibration power generation device
CN113906666A (en) * 2019-06-06 2022-01-07 国立大学法人东京大学 Electrostatic device, electrostatic device intermediate, and method for manufacturing electrostatic device intermediate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device
JP2006196654A (en) * 2005-01-13 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacturing method thereof
JP2007312551A (en) * 2006-05-19 2007-11-29 Univ Of Tokyo Electrostatic induction type converting device
JP2008067451A (en) * 2006-09-05 2008-03-21 Taiheiyo Cement Corp Energy conversion equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device
JP2006196654A (en) * 2005-01-13 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacturing method thereof
JP2007312551A (en) * 2006-05-19 2007-11-29 Univ Of Tokyo Electrostatic induction type converting device
JP2008067451A (en) * 2006-09-05 2008-03-21 Taiheiyo Cement Corp Energy conversion equipment

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460872B2 (en) * 2010-07-16 2014-04-02 パナソニック株式会社 Micro-electromechanical generator and electrical equipment using the same
US9190936B2 (en) 2010-07-16 2015-11-17 Panasonic Corporation Micro-electromechanical generator and electric apparatus using same
JP2012044747A (en) * 2010-08-17 2012-03-01 Seiko Epson Corp Electrostatic induction generation device
US8564169B2 (en) 2010-08-23 2013-10-22 Seiko Epson Corporation Electrostatic induction generation device and electrostatic induction generation apparatus having a movable electrode formed between a first fixed electrode substrate and a second fixed electrode substrate
JP2012044823A (en) * 2010-08-23 2012-03-01 Seiko Epson Corp Electrostatic induction power generation device, and electrostatic induction power generation equipment
US20140015374A1 (en) * 2010-08-23 2014-01-16 Seiko Epson Corporation Electrostatic induction generation device and electrostatic induction generation apparatus having a movable electrode formed between a first fixed electrode substrate and a second fixed electrode substrate
JP2012095421A (en) * 2010-10-26 2012-05-17 Nippon Telegr & Teleph Corp <Ntt> Electrostatic transducer and manufacturing method of electrostatic transducer
JP2012095422A (en) * 2010-10-26 2012-05-17 Nippon Telegr & Teleph Corp <Ntt> Electrostatic conversion apparatus and method for manufacturing the same
JP2012253868A (en) * 2011-06-01 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Electrostatic conversion device and method of manufacturing electrostatic conversion device
JP2013013256A (en) * 2011-06-29 2013-01-17 Aoi Electronics Co Ltd Electret film and vibration power generating element using the same
JP2013055724A (en) * 2011-09-01 2013-03-21 Kansai Univ Power generator
US9413272B2 (en) 2011-09-01 2016-08-09 Rohm Co., Ltd. Power generation device having a dielectric body and an electret
JP2013115921A (en) * 2011-11-29 2013-06-10 Ngk Insulators Ltd Electrostatic induction type mechanoelectrical transducer
JP5307955B1 (en) * 2011-12-12 2013-10-02 パナソニック株式会社 Micro-electromechanical generator and electrical equipment using the same
WO2013088645A1 (en) * 2011-12-12 2013-06-20 パナソニック株式会社 Micro-electromechanical generator and electric device using same
US9425709B2 (en) 2012-02-22 2016-08-23 Aoi Electronics Co., Ltd. Vibration driven power generation element and method of manufacture thereof
JP2013240139A (en) * 2012-05-11 2013-11-28 Aoi Electronics Co Ltd Electrostatic type converter, electrostatic type transformer, and ac voltage generator
JP2014049557A (en) * 2012-08-30 2014-03-17 Aoi Electronics Co Ltd Manufacturing method of stereoscopic interdigital electret electrode
US8865498B2 (en) 2012-08-30 2014-10-21 Aoi Electronics Co., Ltd. Method for manufacturing three-dimensionally shaped comb-tooth electret electrode
EP2704169A2 (en) 2012-08-30 2014-03-05 Aoi Electronics Co. Ltd. Method for manufacturing three-dimensionally shaped comb-tooth electret electrode
US9263192B2 (en) 2012-08-30 2016-02-16 Aoi Electronics Co., Ltd. Method for forming electret containing positive ions
EP2704170A2 (en) 2012-08-30 2014-03-05 Aoi Electronics Co. Ltd. Method for forming electret containing positive ions
CN112042106A (en) * 2018-05-08 2020-12-04 国立大学法人东京大学 Vibration power generation element and vibration power generation device
US20210336559A1 (en) * 2018-07-30 2021-10-28 University-Industry Cooperation Group Of Kyung Hee University Triboelectric nanogenerator using ionic elastomer
WO2020027510A1 (en) * 2018-07-30 2020-02-06 경희대학교산학협력단 Electrostatic power generator using ionic elastomer
JP2020137337A (en) * 2019-02-22 2020-08-31 株式会社鷺宮製作所 Vibration power generation element and manufacturing method for vibration power generation element
WO2020170988A1 (en) * 2019-02-22 2020-08-27 株式会社鷺宮製作所 Vibrating power generation element and manufacturing method for vibrating power generation element
CN113316891A (en) * 2019-02-22 2021-08-27 株式会社鹭宫制作所 Vibration power generation element and method for manufacturing vibration power generation element
CN110299864A (en) * 2019-05-19 2019-10-01 北京工业大学 Piezoelectricity based on collision-static combined type energy accumulator device
CN110299864B (en) * 2019-05-19 2023-06-30 北京工业大学 Piezoelectric-electrostatic composite energy harvester device based on collision
CN113906666A (en) * 2019-06-06 2022-01-07 国立大学法人东京大学 Electrostatic device, electrostatic device intermediate, and method for manufacturing electrostatic device intermediate

Also Published As

Publication number Publication date
JP5305797B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5305797B2 (en) Electrostatic induction power generation device and manufacturing method thereof
US8549715B2 (en) Piezoelectric microspeaker and method of fabricating the same
US8674582B2 (en) Vibration power generator, vibration power generating device and communication device having vibration power generating device mounted thereon
JP5676377B2 (en) Electret film and vibration power generation element using the same
WO2017090380A1 (en) Resonator device and method for producing same
US8482357B2 (en) Transverse acoustic wave resonator, oscillator having the resonator and method for making the resonator
WO2013024658A1 (en) Electronic component
CN105307974A (en) MEMS device with getter layer
TW202104065A (en) Mems having a large fluidically effective surface
US20130038175A1 (en) Vibration power generation device
CN201740612U (en) Double-side simultaneous electrostatic sealing structure type force sensor
JP2015068646A (en) Physical quantity sensor and method for manufacturing the same
US10756651B2 (en) Power generating element and power generating device
CN105712290A (en) Production method of MEMS (Micro Electro Mechanical Systems) electrostatic driver
JP6021383B2 (en) Substrate and semiconductor device
JP6330777B2 (en) Capacitive MEMS sensor
WO2020246116A1 (en) Electrostatic device, electrostatic device intermediate body and production method
WO2020246115A1 (en) Electrostatic device and method for manufacturing electrostatic device
JP2014230398A (en) Electrostatic transformer
JP2013258281A (en) Electronic apparatus
JP2012174947A (en) Laminated piezoelectric actuator
US20240083740A1 (en) MEMS Element and Vibration-Driven Energy Harvesting Device
JP2011017628A (en) Dynamic quantity sensor and method of manufacturing the same
JP5589371B2 (en) Manufacturing method of semiconductor sensor
JP2010021252A (en) Variable capacitance element, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150