JP2010066474A - Optical connection structure - Google Patents

Optical connection structure Download PDF

Info

Publication number
JP2010066474A
JP2010066474A JP2008232213A JP2008232213A JP2010066474A JP 2010066474 A JP2010066474 A JP 2010066474A JP 2008232213 A JP2008232213 A JP 2008232213A JP 2008232213 A JP2008232213 A JP 2008232213A JP 2010066474 A JP2010066474 A JP 2010066474A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
substrate
connection structure
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008232213A
Other languages
Japanese (ja)
Inventor
Kyoichi Sasaki
恭一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2008232213A priority Critical patent/JP2010066474A/en
Publication of JP2010066474A publication Critical patent/JP2010066474A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical connection structure, capable of positioning the end of an optical fiber with ease and high accuracy, without occupying a large space on a substrate, even when connecting the optical fiber disposed on the substrate in parallel, with the substrate to a light-emitting/receiving element mounted so that the optical axis faces a vertical direction, with respect to the substrate. <P>SOLUTION: The structure comprises at least an optical fiber, having a tip abraded at an angle of 45° and bent in an S-shape, and the light-emitting/receiving element connected/fixed electrically so that the optical axis is made to face the vertical direction, with respect to the substrate. The optical fiber whose tip is bent in the S-shape is mounted so that the abraded end covers the light-emitting/receiving element, and the end of the optical fiber whose tip is bent into an S-shape is aligned to a light-emitting/receiving part of the light-emitting/receiving element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光ファイバを受発光素子に接続するための光学接続構造に関するものである。   The present invention relates to an optical connection structure for connecting an optical fiber to a light emitting / receiving element.

従来より、基板上で光機能部品を接続するのに光ファイバを有する光学接続構造が用いられている。光学接続構造には、フェルールに光ファイバを装着して基板に沿って光機能部品に突き合わせるといった基板と平行方向に接続するものと、基板に対し垂直方向に開口された接続点を持つ光機能部品に光ファイバの先端を斜めに切断して接触させるといった基板と垂直方向に接続するものとがある。   Conventionally, an optical connection structure having an optical fiber is used to connect optical functional components on a substrate. In the optical connection structure, an optical fiber having a connection point opened in a direction perpendicular to the substrate, which is connected in parallel to the substrate, such as attaching an optical fiber to the ferrule and butting the optical functional component along the substrate Some components are connected in a vertical direction to a substrate such that the tip of the optical fiber is cut obliquely and brought into contact with the component.

基板と平行方向に接続する光学接続構造では、一般的にハウジングやフェルールを備えた光コネクタ等が使用され、位置合わせをして突き合わせることにより安定して接続を行うことができる。しかしながら、ハウジングやフェルールが基板上で大きなスペースを占有してしまうという問題点があった。   In an optical connection structure for connecting in parallel with a substrate, an optical connector having a housing or a ferrule is generally used, and stable connection can be achieved by positioning and butting. However, there is a problem that the housing and the ferrule occupy a large space on the substrate.

また、基板と垂直方向に接続する光学接続構造では、レーザーによる光を照射しながら光ファイバの位置合わせを行うアクティブアライメントが行われているが、高い精度が要求されるため、容易に安定して接続を行うことが難しく、例えば光機能部品と光ファイバとの接触の際に、光機能部品を破損させる恐れがあった。   In addition, in the optical connection structure that connects to the substrate in the vertical direction, active alignment is performed to align the optical fiber while irradiating light from the laser. However, high accuracy is required, so it is easy and stable. It is difficult to connect, and for example, the optical functional component may be damaged when the optical functional component contacts the optical fiber.

レンズ等の反射層を用いて非接触で光学接続させることも可能であるが、部品点数が多くなり、反射層と光機能部品、光ファイバとの位置合わせで接続にかかる時間も長くなり、高コストになる問題点があった(例えば、特許文献1参照。)。   Although it is possible to optically connect non-contact using a reflective layer such as a lens, the number of components increases, and the time required for connection increases due to the alignment of the reflective layer with optical functional components and optical fibers. There has been a problem of cost (for example, see Patent Document 1).

特開平9−026515号公報Japanese Patent Laid-Open No. 9-026515

本発明は、以上のような問題点に鑑みて成されたものであり、その目的とするところは、基板に対して垂直方向に光軸が向くように実装された受発光素子に、基板上で基板に対して平行に配設された光ファイバを接続する場合においても、基板上で大きなスペースを占有することなく、光ファイバの端部の位置決めが高精度かつ容易にできる光学接続構造を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light emitting / receiving element mounted so that the optical axis is perpendicular to the substrate, on the substrate. Even when connecting optical fibers arranged parallel to the substrate, an optical connection structure that can easily and accurately position the end of the optical fiber without occupying a large space on the substrate is provided. There is to do.

本発明の光学接続構造は、少なくとも、先端を45°に研磨した先端S字屈曲光ファイバと、基板に対して垂直方向に光軸が向くように電気的に接続・固定された受発光素子とからなり、上記先端S字屈曲光ファイバは、研磨された端部が上記受発光素子を覆うように装着され、上記先端S字屈曲光ファイバの端部が上記受発光素子の受発光部に位置合わせされていることを特徴としている。   The optical connection structure of the present invention includes at least a tip S-shaped bent optical fiber whose tip is polished at 45 °, and a light emitting / receiving element electrically connected and fixed so that the optical axis is perpendicular to the substrate. The tip S-shaped bent optical fiber is mounted so that the polished end covers the light receiving / emitting element, and the end of the tip S-shaped bent optical fiber is positioned at the light receiving / emitting portion of the light receiving / emitting element. It is characterized by being combined.

また、本発明においては、光ファイバ固定部材をさらに備え、この光ファイバ固定部材は、先端S字屈曲光ファイバの先端部を受発光素子の受発光部に位置合わせするように支持するとともに、先端S字屈曲光ファイバを基板に対して平行に固定することが好ましい。   In the present invention, the optical fiber fixing member further includes an optical fiber fixing member that supports the tip portion of the S-shaped bent optical fiber so as to align with the light emitting / receiving portion of the light emitting / receiving element. It is preferable to fix the S-shaped bent optical fiber parallel to the substrate.

本発明の光学接続構造によれば、基板に対して垂直方向に光軸が向くように実装された受発光素子に、基板上で基板に対して平行に配設された光ファイバを接続する場合においても、光ファイバの端部の位置合わせが高精度かつ容易にできることは勿論、他の部材を用いることなく基板上に光ファイバを直接配設できるため、接続の安定性が高く、さらに、基板の厚さ方向においては、光ファイバを受発光素子の厚さ分屈曲させるだけで大きなスペースを占有することがないため、光ファイバの入出力位置の自由度が高いといった効果が得られる。   According to the optical connection structure of the present invention, when an optical fiber disposed parallel to the substrate on the substrate is connected to the light receiving and emitting element mounted so that the optical axis is perpendicular to the substrate However, since the optical fiber can be directly positioned on the substrate without using other members, the end position of the optical fiber can be aligned with high precision and ease, and the connection stability is high. In the thickness direction, the optical fiber is bent by the thickness of the light emitting / receiving element, and does not occupy a large space. Therefore, an effect that the degree of freedom of the input / output position of the optical fiber is high can be obtained.

次に、図面を用いて本発明の光学接続構造の実施形態について具体的に説明する。
図1は本発明の光学接続構造の一実施形態を示した図である。本発明の光学接続構造は、図1に示されているように、先端をS字型に屈曲した光ファイバ1と、基板2に対して垂直方向に光軸が向くように固定された受発光素子3とから構成されている。
Next, an embodiment of the optical connection structure of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a view showing an embodiment of the optical connection structure of the present invention. As shown in FIG. 1, the optical connection structure of the present invention is an optical fiber 1 whose tip is bent into an S-shape, and light receiving and emitting light fixed so that its optical axis is perpendicular to the substrate 2. It is comprised from the element 3.

本発明の光学接続構造における光ファイバ1は、先端がS字型に屈曲されるとともに45°研磨されたものであることが必須である。ここで、本発明における光ファイバの先端S字屈曲とは、光ファイバの先端が受発光素子の厚さ分屈曲されたものを意味している。このような構成によれば、光ファイバ1を受発光素子3の厚さ分だけ基板2の厚さ方向に屈曲させるとともに先端を45°研磨することにより、基板に対して垂直方向に光軸が向くように実装された受発光素子に、基板上で基板に対して平行に配線された光ファイバを高精度かつ容易に位置合わせすることができる。   It is essential that the optical fiber 1 in the optical connection structure of the present invention has its tip bent into an S shape and polished at 45 °. Here, the S-shaped bending of the optical fiber in the present invention means that the tip of the optical fiber is bent by the thickness of the light emitting / receiving element. According to such a configuration, the optical fiber 1 is bent in the thickness direction of the substrate 2 by the thickness of the light emitting / receiving element 3 and the tip is polished by 45 °, so that the optical axis is perpendicular to the substrate. An optical fiber wired in parallel to the substrate on the substrate can be aligned with the light emitting / receiving element mounted so as to face with high accuracy and easily.

さらに、本発明においては、他の部材を用いることなく光ファイバ上に直接配設されているため、接続の安定性を高くすることができる。また、本発明では、光ファイバを受発光素子の厚さ分だけ基板の厚さ方向に屈曲させているため、基板上で大きなスペースを占有することなく接続構造を形成でき、さらには、このようなコンパクトな構造により、光ファイバの入出力位置の自由度を高くすることもできる。   Furthermore, in the present invention, since it is directly disposed on the optical fiber without using other members, the stability of the connection can be increased. In the present invention, since the optical fiber is bent in the thickness direction of the substrate by the thickness of the light emitting / receiving element, a connection structure can be formed without occupying a large space on the substrate. With this compact structure, the degree of freedom of the input / output position of the optical fiber can be increased.

また、本発明における光ファイバは、単心の光ファイバであっても、複数本の光ファイバを樹脂等によりテープ化したテープ心線等であってもよく、一度に接続される光ファイバの数量に制限はない。このような光ファイバとしては、用途に応じて適宜選択することができるが、本発明においては石英製の光ファイバであることが好ましく、さらには、光ファイバ材料を塑性変形させて形成されたものであることが好ましい。また、光ファイバにおける屈折率分布は、ステップ分布やクレーデッド分布等、使用目的により適宜選択することができる。   The optical fiber in the present invention may be a single-core optical fiber or a tape core obtained by tapeting a plurality of optical fibers with a resin or the like, and the number of optical fibers connected at one time. There is no limit. Such an optical fiber can be appropriately selected according to the application, but in the present invention, it is preferably a quartz optical fiber, and further, formed by plastically deforming an optical fiber material. It is preferable that Further, the refractive index distribution in the optical fiber can be appropriately selected depending on the purpose of use, such as a step distribution and a crazed distribution.

さらに、本発明においては、図2に示したように、光ファイバ固定部材4を備えることが好ましい。この光ファイバ固定部材4は、先端S字屈曲光ファイバ1の先端部を受発光素子の受発光部に位置合わせするように支持するとともに、先端S字屈曲光ファイバ1を基板2に対して平行に固定する部材である。この光ファイバ固定部材によれば、光ファイバ1の端部を受発光素子4の受発光部に高精度にかつ容易に位置合わせすることができる。   Furthermore, in the present invention, as shown in FIG. 2, it is preferable to include an optical fiber fixing member 4. The optical fiber fixing member 4 supports the tip of the S-shaped bent optical fiber 1 so that the tip of the S-shaped bent optical fiber 1 is aligned with the light emitting / receiving portion of the light emitting / receiving element, and the tip S-shaped bent optical fiber 1 is parallel to the substrate 2. It is a member fixed to. According to this optical fiber fixing member, the end of the optical fiber 1 can be easily aligned with the light emitting / receiving portion of the light emitting / receiving element 4 with high accuracy.

また、本発明においては、光ファイバ固定部材4の光ファイバ1を支持・固定する側面に、V溝または貫通孔を設けることが好ましい。このV溝または貫通孔に光ファイバ1を収容しつつ位置合わせすることにより、光ファイバ固定部材4の幅方向に対する光ファイバ1の位置合わせ精度を向上させることができる。   Moreover, in this invention, it is preferable to provide a V groove or a through-hole in the side surface which supports and fixes the optical fiber 1 of the optical fiber fixing member 4. By aligning the optical fiber 1 while accommodating the optical fiber 1 in this V-groove or through-hole, the alignment accuracy of the optical fiber 1 with respect to the width direction of the optical fiber fixing member 4 can be improved.

本発明における基板及び光ファイバ固定部材に用いられる材料は、接続される光ファイバの材料や、要求される強度や位置合わせ精度により適宜選択されるが、特に熱的寸法変化が小さいプラスチック、セラミック、金属等で作製されたものが好ましく使用される。プラスチック材料としては、結晶性高分子、非晶性高分子、複合材料等を用いることができる。結晶性高分子としては、PPS(ポリフェニルサルファイド)、PEEK(ポリエーテルエーテルケトン)等が好ましく、非晶性高分子としては、液晶ポリマー等が好ましく、複合材料としては、ガラス混入エポキシ材料等が好ましい。なお、プラスチック材料は、はん田リフローに耐えうるものが好ましい。本発明における光学接続構造は、受発光素子、及び光ファイバのレイアウトによっては、上下逆転して使用することも可能であり、基板の設置方向は特に限定されない。   The material used for the substrate and the optical fiber fixing member in the present invention is appropriately selected depending on the material of the optical fiber to be connected, the required strength and alignment accuracy, and in particular, plastic, ceramic, Those made of metal or the like are preferably used. As the plastic material, a crystalline polymer, an amorphous polymer, a composite material, or the like can be used. As the crystalline polymer, PPS (polyphenyl sulfide), PEEK (polyether ether ketone) and the like are preferable. As the amorphous polymer, a liquid crystal polymer and the like are preferable. As the composite material, a glass-mixed epoxy material and the like are used. preferable. The plastic material is preferably one that can withstand the rice field reflow. The optical connection structure in the present invention can be used upside down depending on the layout of the light emitting / receiving element and the optical fiber, and the installation direction of the substrate is not particularly limited.

さらに、本発明においては、光ファイバの先端と受発光素子の受発光部との間に、屈折率整合材料を介在させることが好ましい。この屈折率整合材料としては、本発明の光学接続構造が用いられる環境条件や製造プロセス等に合わせて適宜選択されたものを使用することができる。なお、屈折率整合材料は、液状でも固体状でも良く、例えばオイル状、グリス状、ジェル状、フィルム状でもよい。   Furthermore, in the present invention, it is preferable to interpose a refractive index matching material between the tip of the optical fiber and the light emitting / receiving portion of the light emitting / receiving element. As the refractive index matching material, a material appropriately selected according to the environmental conditions, the manufacturing process and the like in which the optical connection structure of the present invention is used can be used. The refractive index matching material may be liquid or solid, and may be, for example, oil, grease, gel, or film.

また、上記のような本発明の光学接続構造は、図3に示したような、基板2上において先端S字屈曲光ファイバ1に接続された受発光素子3と、この受発光素子3を駆動する受発光素子駆動用ICチップ5とが実装された光伝送モジュールに好適に適用することもできる。なお、ここで示した光伝送モジュールは、光ファイバ1が光ファイバ固定部材4により固定されており、さらに、ボールグリッドアレイが基板2に設けられた実施形態であるが、本発明に適用できる光伝送モジュールはこれに限定されるものではない。   Further, the optical connection structure of the present invention as described above is configured to drive the light emitting / receiving element 3 and the light emitting / receiving element 3 connected to the S-shaped bent optical fiber 1 on the substrate 2 as shown in FIG. It can also be suitably applied to an optical transmission module on which the light emitting / receiving element driving IC chip 5 is mounted. The optical transmission module shown here is an embodiment in which the optical fiber 1 is fixed by the optical fiber fixing member 4 and the ball grid array is provided on the substrate 2. However, the optical transmission module can be applied to the present invention. The transmission module is not limited to this.

<実施例1>
光ファイバとして、4心テープ心線(石英マルチモード光ファイバ、コア:グレーデッドインデックス50ミクロン、住友電工社製)を用い、受発光素子として、マルチモード1×4VCSELアレイ(Optowell社製、波長850nm)を用いて、図1に示した構成の光学接続構造を作製した。なお、光ファイバは、ガスバーナーを使用して、曲率半径1mm、屈曲角30°で逆方向に2回屈曲させ、S字形態を形成させたものである。
<Example 1>
A 4-fiber ribbon (quartz multimode optical fiber, core: graded index 50 microns, manufactured by Sumitomo Electric) is used as the optical fiber, and a multimode 1 × 4 VCSEL array (manufactured by Optowell, wavelength 850 nm) is used as the light emitting / receiving element. ) Was used to produce an optical connection structure having the configuration shown in FIG. The optical fiber is bent in the opposite direction twice using a gas burner with a radius of curvature of 1 mm and a bending angle of 30 ° to form an S-shape.

<実施例2>
実施例1と同様の光ファイバ及び受発光素子を用い、さらに、光ファイバ固定部材を用いた以外は実施例1と同様にして、図2に示した構成の光学接続構造を作製した。なお、光ファイバ固定部材4は、図4に示したように、V字角度が60°の位置合わせ用V溝を有したPPS(ポリフェニルサルファイド)製のものであり、光ファイバ1をV溝内に固定した際には、光ファイバ側面突出量が5μmとなる構成のものであった。
<Example 2>
An optical connection structure having the configuration shown in FIG. 2 was produced in the same manner as in Example 1 except that the same optical fiber and light emitting / receiving element as those in Example 1 were used and an optical fiber fixing member was used. As shown in FIG. 4, the optical fiber fixing member 4 is made of PPS (polyphenyl sulfide) having an alignment V groove having a V-shaped angle of 60 °, and the optical fiber 1 is formed into a V groove. When fixed inside, the protruding amount of the side surface of the optical fiber was 5 μm.

<実施例3>
実施例1と同様の光ファイバ及び受発光素子を用い、さらに、基板に貫通孔6を、また、基板両面に光ファイバ固定部材4を設けた以外は実施例1と同様にして、図5に示した構成の光学接続構造を作製した。図に示すように光ファイバはS字屈曲で貫通孔6を通り抜けさせることで基板の裏へ導くこともできる。なお、両光ファイバ固定部材4は、図4に示したように、V字角度が60°の位置合わせ用V溝を有したPPS(ポリフェニルサルファイド)製のものであり、光ファイバ1をV溝内に固定した際には、光ファイバ側面突出量が5μmとなる構成のものであった。
<Example 3>
FIG. 5 shows the same optical fiber and light emitting / receiving element as in Example 1 except that a through hole 6 is provided in the substrate and optical fiber fixing members 4 are provided on both sides of the substrate. An optical connection structure having the structure shown was produced. As shown in the figure, the optical fiber can be guided to the back of the substrate by passing through the through hole 6 by S-bending. As shown in FIG. 4, both optical fiber fixing members 4 are made of PPS (polyphenyl sulfide) having an alignment V groove with a V-shaped angle of 60 °, and the optical fiber 1 is made of V When fixed in the groove, the protruding amount of the side surface of the optical fiber was 5 μm.

上記のようにして実施例の光学接続構造を5組作製した結果、実施例1〜3の光学接続構造における接続損失は、各光ファイバ平均が1.8dB、1.6dB及び1.7dBであり、接続毎のばらつき平均が0.5dB、0.3dB及び0.35dBであった。このように、本願発明の光学接続構造においては、好適に接続損失が低減されることが示された。また、実施例3においては、基板上面の光ファイバを下面に配線することができ、光ファイバの配線の自由度が実証できた。   As a result of producing five sets of the optical connection structures of the examples as described above, the connection loss in the optical connection structures of Examples 1 to 3 is 1.8 dB, 1.6 dB, and 1.7 dB for each optical fiber average. The average variation for each connection was 0.5 dB, 0.3 dB, and 0.35 dB. Thus, it was shown that the connection loss is suitably reduced in the optical connection structure of the present invention. Further, in Example 3, the optical fiber on the upper surface of the substrate could be wired on the lower surface, and the degree of freedom of the optical fiber wiring could be verified.

本発明の光学接続構造の一実施形態を示した図である。It is the figure which showed one Embodiment of the optical connection structure of this invention. 本発明の光学接続構造の他の実施形態を示した図である。It is the figure which showed other embodiment of the optical connection structure of this invention. 本発明の光学接続構造を用いた光伝送モジュールの実施形態を示した図である。It is the figure which showed embodiment of the optical transmission module using the optical connection structure of this invention. 本発明における光ファイバ固定部材の位置合わせ用V溝を示した図である。It is the figure which showed the V groove for position alignment of the optical fiber fixing member in this invention. 本発明の光学接続構造の他の実施形態を示した図である。It is the figure which showed other embodiment of the optical connection structure of this invention.

符号の説明Explanation of symbols

1…光ファイバ、2…基板、3…受発光素子、4…光ファイバ固定部材、
5…受発光素子駆動用ICチップ、6…貫通孔。
DESCRIPTION OF SYMBOLS 1 ... Optical fiber, 2 ... Board | substrate, 3 ... Light emitting / receiving element, 4 ... Optical fiber fixing member,
5 ... IC chip for light emitting / receiving element driving, 6 ... through hole.

Claims (5)

少なくとも、先端を45°に研磨した先端S字屈曲光ファイバと、
基板に対して垂直方向に光軸が向くように電気的に接続・固定された受発光素子とからなり、
上記先端S字屈曲光ファイバは、研磨された端部が上記受発光素子を覆うように装着され、
上記先端S字屈曲光ファイバの端部が上記受発光素子の受発光部に位置合わせされていることを特徴とする光学接続構造。
At least a tip S-shaped bent optical fiber having a tip polished to 45 °;
It consists of light receiving and emitting elements that are electrically connected and fixed so that the optical axis is perpendicular to the substrate.
The tip S-shaped bent optical fiber is mounted such that a polished end covers the light emitting / receiving element,
An optical connection structure, wherein an end of the S-shaped bent optical fiber is aligned with a light receiving / emitting portion of the light receiving / emitting element.
光ファイバ固定部材をさらに備え、
上記光ファイバ固定部材は、前記先端S字屈曲光ファイバの先端部を前記受発光素子の受発光部に位置合わせするように支持するとともに、上記先端S字屈曲光ファイバを前記基板に対して平行に固定することを特徴とする請求項1に記載の光学接続構造。
An optical fiber fixing member;
The optical fiber fixing member supports the tip of the S-shaped bent optical fiber so that the tip of the S-shaped bent optical fiber is aligned with the light emitting / receiving portion of the light emitting / receiving element, and the tip S-shaped bent optical fiber is parallel to the substrate. The optical connection structure according to claim 1, wherein the optical connection structure is fixed to the optical connection structure.
前記光ファイバ固定部材は、前記光ファイバを支持・固定する側面に、V溝または貫通孔を有し、そこに上記光ファイバを収容しつつ位置合わせすることを特徴とする請求項1または2に記載の光学接続構造。   3. The optical fiber fixing member according to claim 1, wherein the optical fiber fixing member has a V-groove or a through hole on a side surface for supporting and fixing the optical fiber, and the optical fiber fixing member is aligned while accommodating the optical fiber therein. The optical connection structure described. 前記先端S字屈曲光ファイバの屈曲部は、光ファイバ材料を塑性変形させて形成されていることを特徴とする請求項1〜3のいずれかに記載の光学接続構造。   The optical connection structure according to claim 1, wherein the bent portion of the distal S-shaped bent optical fiber is formed by plastic deformation of an optical fiber material. 請求項1〜4のいずれかに記載の光学接続構造により光ファイバに接続された受発光素子と、受発光素子駆動用ICチップとが実装されていることを特徴とする光伝送モジュール。   5. An optical transmission module comprising a light emitting / receiving element connected to an optical fiber by the optical connection structure according to claim 1 and an IC chip for driving the light receiving / emitting element.
JP2008232213A 2008-09-10 2008-09-10 Optical connection structure Withdrawn JP2010066474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232213A JP2010066474A (en) 2008-09-10 2008-09-10 Optical connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232213A JP2010066474A (en) 2008-09-10 2008-09-10 Optical connection structure

Publications (1)

Publication Number Publication Date
JP2010066474A true JP2010066474A (en) 2010-03-25

Family

ID=42192118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232213A Withdrawn JP2010066474A (en) 2008-09-10 2008-09-10 Optical connection structure

Country Status (1)

Country Link
JP (1) JP2010066474A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046799A1 (en) * 2011-09-28 2013-04-04 株式会社フジクラ Cable having connector and method for manufacturing cable having connector
JP2013073100A (en) * 2011-09-28 2013-04-22 Fujikura Ltd Cable with connector and method of manufacturing cable with connector
JP2013080597A (en) * 2011-10-03 2013-05-02 Fujikura Ltd Cable with connector and manufacturing method therefor
JP2013080059A (en) * 2011-10-03 2013-05-02 Fujikura Ltd Cable with connector, and method for manufacturing cable with connector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046799A1 (en) * 2011-09-28 2013-04-04 株式会社フジクラ Cable having connector and method for manufacturing cable having connector
JP2013073100A (en) * 2011-09-28 2013-04-22 Fujikura Ltd Cable with connector and method of manufacturing cable with connector
CN103339544A (en) * 2011-09-28 2013-10-02 株式会社藤仓 Cable having connector and method for manufacturing cable having connector
US8740476B2 (en) 2011-09-28 2014-06-03 Fujikura Ltd. Connectored cable and method for manufacturing connectored cable
US9335491B2 (en) 2011-09-28 2016-05-10 Fujikura Ltd. Connectored cable and method for manufacturing connectored cable
JP2013080597A (en) * 2011-10-03 2013-05-02 Fujikura Ltd Cable with connector and manufacturing method therefor
JP2013080059A (en) * 2011-10-03 2013-05-02 Fujikura Ltd Cable with connector, and method for manufacturing cable with connector

Similar Documents

Publication Publication Date Title
JP4577376B2 (en) Manufacturing method of optical waveguide
JP5734709B2 (en) Optical connector and electronic information device
KR102438309B1 (en) Connector member for optical waveguide, optical connector kit using same, and optical wiring obtained thereby
US8164043B2 (en) Optical module with fiber holding ferrule
JP2015515027A (en) Optical fiber tray, optical fiber module, and optical fiber processing method
JP2006301610A (en) Optical coupling device
JP2006209068A (en) Optical waveguide, optical waveguide module, and method for manufacturing optical waveguide module
JP2007072007A (en) Optical waveguide module
JP2007178852A (en) Optical wiring board and optical module using the same
JP2008158001A (en) Photocoupler
JP2004212847A (en) Optical coupler
WO2016196035A1 (en) Planar tapered waveguide coupling elements and optical couplings for photonic circuits
JP6146580B2 (en) Optical fiber connector and optical communication module
JP2010066474A (en) Optical connection structure
JP2002048949A (en) Optical waveguide connecting structure, and optical element/optical fiber mounting structure
JP2005227721A (en) Optical connector, optical module, and method for manufacturing optical connector
JP2005202025A (en) Method of connecting optical components, optical interconnection system and optical-fiber-wiring module
JP4609311B2 (en) Optical transceiver
JP2011053717A (en) Optical path changing connector
JP4607063B2 (en) Manufacturing method of optical path conversion connector
JP5059715B2 (en) Optical connection structure
JP2005345708A (en) Optical waveguide film, its manufacturing method and splicing method
WO2020091015A1 (en) Optical connection component
WO2021230292A1 (en) Optical wiring component
JP2010066472A (en) Optical connection structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206