JP2010064218A - Grinding wheel for polishing - Google Patents

Grinding wheel for polishing Download PDF

Info

Publication number
JP2010064218A
JP2010064218A JP2008234733A JP2008234733A JP2010064218A JP 2010064218 A JP2010064218 A JP 2010064218A JP 2008234733 A JP2008234733 A JP 2008234733A JP 2008234733 A JP2008234733 A JP 2008234733A JP 2010064218 A JP2010064218 A JP 2010064218A
Authority
JP
Japan
Prior art keywords
abrasive grains
polishing
metal oxide
oxide particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008234733A
Other languages
Japanese (ja)
Inventor
Hiroki Arao
弘樹 荒尾
Manabu Watanabe
学 渡辺
Akira Nakajima
昭 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2008234733A priority Critical patent/JP2010064218A/en
Publication of JP2010064218A publication Critical patent/JP2010064218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a desired smooth substrate with high precision and yield stably for a long time with no scratch. <P>SOLUTION: In a grinding wheel for polishing having a matrix and abrasive grains containing metal oxide particles, the pressure-collapsible abrasive grains have an average particle diameter in the range of 0.5-150 &mu;m, and an average compression strength in the range of 1-100 kgf/cm<SP>2</SP>. The metal oxide particles have an average particle diameter in the range of 2-300 nm, and are selected from silica, alumina, zirconia, ceria, titania, magnesia, and a compound of these oxide. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、金属酸化物粒子を含む砥粒とマトリックスとからなる研磨用砥石に関する。   The present invention relates to a polishing grindstone composed of abrasive grains containing metal oxide particles and a matrix.

半導体の集積回路付基板の製造においては、シリコンウェハー基板の厚さ調整、平滑化、研磨後に生じた加工歪みの除去等のために基板の研磨が行われている。また、コンピューターのハードディスクに使用されるガラス基板等も表面平滑化のために基板の研磨が行われている。
また、シリコンウェハー上に銅などの金属で回路を形成する際に凹凸あるいは段差が生じるので、これを研磨して表面の段差がなくなるように回路の金属部分を選択的に除去することが行われている。
また、シリコンウェハー上にアルミ配線を形成し、この上に絶縁膜としてシリカ等の酸化膜を設けると配線による凹凸が生じるので、この酸化膜を研磨して平坦化することも行われている。
In the manufacture of a semiconductor integrated circuit-attached substrate, the substrate is polished for adjusting the thickness of the silicon wafer substrate, smoothing it, removing processing distortions generated after polishing, and the like. Also, glass substrates used for computer hard disks are polished for surface smoothing.
Also, when forming a circuit with a metal such as copper on a silicon wafer, irregularities or steps are generated, and this is polished to selectively remove the metal part of the circuit so that there is no step on the surface. ing.
Further, when an aluminum wiring is formed on a silicon wafer and an oxide film such as silica is provided thereon as an insulating film, irregularities due to the wiring are generated. Therefore, the oxide film is polished and flattened.

これらの研磨は、通常、化学的機械的研磨法(CMP)が採用されている。具体的には、基板、あるいは凹凸を有する基板を回転している研磨パッドに押しつけるとともに、基板自体も回転させながら研磨材スラリー中に浸漬することにより、該スラリー中に含まれる研磨用砥粒が加重により基板に押しつけられ、凸部が除去されて平坦化される。
このような基板の研磨においては、研磨後の表面は段差や凹凸がなく平坦で、さらにミクロな傷(スクラッチ)等もなく平滑であることが求められており、また研磨速度が速いことも必要である。
研磨用砥粒としては、従来、シリカゾルやヒュームドシリカ、ヒュームドアルミナなどが用いられている。
In these polishing processes, a chemical mechanical polishing method (CMP) is usually employed. Specifically, by pressing the substrate or the substrate having irregularities against the rotating polishing pad and immersing it in the abrasive slurry while rotating the substrate itself, the abrasive grains contained in the slurry are It is pressed against the substrate by weighting, and the convex portion is removed and flattened.
In polishing such a substrate, the surface after polishing is required to be flat with no steps and irregularities, smooth without micro scratches, etc., and a high polishing rate is also required. It is.
Conventionally, silica sol, fumed silica, fumed alumina, and the like are used as polishing abrasive grains.

しかしながら、従来の砥粒を用いた場合、スクラッチが生じたり、ディッシング(過研磨)を伴うことがあり、長期にわたって安定的に凹凸のない平滑な基板を歩留まりよく生産できない場合があった。また、大量の処理液(使用済み研磨剤)が排出され、且つ、処理液が粒子の他、有機酸、アルカリ性溶液等を含むことから研磨処理廃液の処理が問題となっている。
また、硝酸、フッ化水素酸等を含むエッチング液を使用したウェットエッチング法およびエッチングガスを使用したドライエッチング法による研磨、平坦化も知られているが、生産性が低く、環境汚染等の原因となる廃液、廃ガスの処理も必要となる。
However, when conventional abrasive grains are used, scratches may occur or dishing (overpolishing) may occur, and a smooth substrate without irregularities may not be stably produced over a long period of time with a high yield. In addition, since a large amount of processing liquid (used abrasive) is discharged and the processing liquid contains organic acid, alkaline solution and the like in addition to particles, processing of the polishing processing waste liquid becomes a problem.
Polishing and flattening by wet etching using an etchant containing nitric acid, hydrofluoric acid, etc. and dry etching using etching gas are also known, but the productivity is low and causes environmental pollution. It becomes necessary to treat waste liquid and waste gas.

一方、近年、化学的機械的研磨法(CMP)に代わって、ウレタン樹脂やフェノール樹脂、シリコーンゴム等のマトリックスの中に砥粒を分散、固定させた砥石を用いて研磨する方法が提案されている(特許文献1:特開2001−260037号公報、特許文献2:特開2004−261942号公報、特許文献3:特開2002−261054号公報等を参照。)。
しかしながら、これらの砥石を用いた場合、マトリックスが固く、砥粒が強固に固定されているため、研磨加工中に砥石が摩耗して小さくなっても、摩耗した砥粒が脱落しにくく、砥石の表面に磨耗していない新たな砥粒が露出せず、このため、短時間で研磨速度が低下し、研磨を安定的に行うことができないことが指摘されている。このため、マトリックスにゴム粒子を用いることが提案されている(特許文献4:特開2007−181912号公報)。
On the other hand, in recent years, instead of chemical mechanical polishing (CMP), a method of polishing using a grindstone in which abrasive grains are dispersed and fixed in a matrix such as urethane resin, phenol resin, or silicone rubber has been proposed. (See Patent Document 1: Japanese Patent Application Laid-Open No. 2001-260037, Patent Document 2: Japanese Patent Application Laid-Open No. 2004-261944, Patent Document 3: Japanese Patent Application Laid-Open No. 2002-261054, etc.).
However, when these grindstones are used, since the matrix is hard and the abrasive grains are firmly fixed, even if the grindstone wears and becomes small during the polishing process, the worn abrasive grains are difficult to fall off, It has been pointed out that new abrasive grains that are not worn on the surface are not exposed, and therefore the polishing rate decreases in a short time, and polishing cannot be performed stably. For this reason, it has been proposed to use rubber particles in the matrix (Patent Document 4: Japanese Patent Application Laid-Open No. 2007-181912).

本願発明者等は、前記従来技術の砥石について検討した結果、いずれの砥石を用いた場合も研磨速度が暫時低下する傾向があり、研磨精度、研磨速度の再現性に劣り、特にマイクロスクラッチが生じ、再度化学的機械的研磨法(CMP)による研磨を必要とする等、長期にわたって安定的に凹凸のない平滑な基板を歩留まりよく効率的に生産できず、生産性、経済性に問題があり、改良の余地があることが判明した。
上記問題点に鑑み鋭意検討した結果、所定の加圧崩壊性を有する金属酸化物からなる砥粒を用いるとスクラッチの発生が抑制できることを見出して本発明を完成するに至った。
As a result of studying the prior art grindstones, the inventors of the present application have a tendency that the polishing rate tends to decrease for a while when using any of the grindstones, and the polishing accuracy and the reproducibility of the polishing rate are inferior. There is a problem in productivity and economy because it is impossible to produce a smooth substrate without unevenness stably over a long period of time, such as requiring polishing by chemical mechanical polishing (CMP) again. It turns out that there is room for improvement.
As a result of intensive studies in view of the above problems, the inventors have found that the use of abrasive grains made of a metal oxide having a predetermined pressure collapse property can suppress the occurrence of scratches, thereby completing the present invention.

特開2001−260037号公報JP 2001-260037 A 特開2004−261942号公報JP 2004-261842 A 特開2002−261054号公報Japanese Patent Laid-Open No. 2002-261054 特開2007−181912号公報JP 2007-181912 A

本発明は、スクラッチを生じることなく、長期にわたって高精度で安定的に歩留まり良く所望の平滑な基板を生産することのできる研磨用砥石を提供することを目的とする。   An object of the present invention is to provide a polishing grindstone capable of producing a desired smooth substrate with high yield and high yield stably over a long period without causing scratches.

本発明は、金属酸化物粒子を含む砥粒とマトリックスとからなる研磨用砥石であって、該砥粒の平均粒子径が0.5〜150μmの範囲にあり、平均圧縮強度が1〜100kgf/cm2の範囲の加圧崩壊性を有することを特徴としている。
前記金属酸化物粒子が、平均粒子径が2〜300nmの範囲にあり、シリカ、アルミナ、ジルコニア、セリア、チタニア、マグネシアおよびこれらの複合酸化物から選ばれる1種または2種以上の金属酸化物粒子であることが好ましい。
前記砥粒が金属酸化物粒子に加えてバインダーを含み、該バインダーが無機酸化物のゾルおよび/またはゲルあるいは有機樹脂であることが好ましい。
前記砥粒の平均細孔容積が0.1〜2.0ml/gの範囲にあることが好ましい。
前記砥粒の含有量が20〜80重量%の範囲にあることが好ましい。
The present invention is a polishing grindstone comprising abrasive grains containing metal oxide particles and a matrix, the average grain diameter of the abrasive grains is in the range of 0.5 to 150 μm, and the average compressive strength is 1 to 100 kgf / It is characterized by having a pressure disintegration property in the range of cm 2 .
One or more metal oxide particles selected from silica, alumina, zirconia, ceria, titania, magnesia and composite oxides thereof, wherein the metal oxide particles have an average particle diameter in the range of 2 to 300 nm. It is preferable that
The abrasive grains preferably contain a binder in addition to the metal oxide particles, and the binder is an inorganic oxide sol and / or gel or an organic resin.
It is preferable that the average pore volume of the abrasive grains is in the range of 0.1 to 2.0 ml / g.
It is preferable that the content of the abrasive grains is in the range of 20 to 80% by weight.

本発明の研磨用砥石は、所定の平均粒子径と所定の加圧崩壊性を有する金属酸化物粒子からなる砥粒とマトリックスからなるために、スクラッチを生じることなく、長期にわたって高精度で安定的に歩留まりよく所望の平滑な基板を生産することができる。
The polishing wheel of the present invention is composed of abrasive grains and matrix made of metal oxide particles having a predetermined average particle diameter and a predetermined pressure disintegration property, so that it is highly accurate and stable over the long term without causing scratches. Therefore, it is possible to produce a desired smooth substrate with a high yield.

以下、本発明に係る研磨用砥石について具体的に説明する。
研磨用砥石の全体構造
本発明に係る研磨用砥石は、金属酸化物粒子を含む砥粒とマトリックスとからなる研磨用砥石であって、該砥粒の平均粒子径が0.5〜150μmの範囲にあり、平均圧縮強度が1〜100kgf/cm2の範囲の加圧崩壊性を有することを特徴としている。
本発明の研磨用砥石は砥粒とマトリックスとからなり、砥粒がマトリックス中に分散した構造を有している。
Hereinafter, the polishing grindstone according to the present invention will be specifically described.
The overall structure of the polishing wheel The polishing wheel according to the present invention is a polishing wheel composed of abrasive grains containing metal oxide particles and a matrix, and the average particle diameter of the abrasive grains is in the range of 0.5 to 150 μm. And having an average compressive strength of 1-100 kgf / cm 2 in the range of pressure disintegration.
The polishing grindstone of the present invention comprises abrasive grains and a matrix, and has a structure in which abrasive grains are dispersed in the matrix.

砥粒
本発明の研磨用砥石を構成する砥粒は金属酸化物粒子が集合した概ね球状の粒子であり、所定範囲の加圧崩壊性を有している。該金属酸化物粒子は後述するように、バインダーにより接合されていても良い。
Abrasive Grains The abrasive grains constituting the polishing wheel of the present invention are generally spherical particles in which metal oxide particles are aggregated, and have a predetermined range of pressure disintegration. The metal oxide particles may be bonded with a binder as described later.

金属酸化物粒子
砥粒に用いる金属酸化物粒子としては、従来公知の研磨用金属酸化物粒子を用いることができるが、シリカ、アルミナ、ジルコニア、セリア、チタニア、マグネシアおよびこれらの複合酸化物から選ばれる1種または2種以上の金属酸化物粒子であることが好ましい。
複合酸化物として具体的には、シリカ・アルミナ、シリカ・ジルコニア、シリカ・セリア、シリカ・チタニア等が挙げられる。また、この複合酸化物からなる金属酸化物粒子には、例えばシリカコア粒子をジルコニア、チタニア、アルミナ、セリア等で被覆したコアシェル構造を有する金属酸化物粒子を含んでいる。
Metal oxide particles As the metal oxide particles used for the abrasive grains, conventionally known metal oxide particles for polishing can be used, but silica, alumina, zirconia, ceria, titania, magnesia, and composites thereof. One or more metal oxide particles selected from oxides are preferred.
Specific examples of the composite oxide include silica / alumina, silica / zirconia, silica / ceria, silica / titania and the like. The metal oxide particles made of the composite oxide include metal oxide particles having a core-shell structure in which, for example, silica core particles are coated with zirconia, titania, alumina, ceria, or the like.

金属酸化物粒子の平均粒子径は2〜300nm、さらには5〜200nmの範囲にあることが好ましい。金属酸化物粒子にこのようなゾル領域の微粒子を用いると、後述する平均圧縮強度の高い砥粒を得ることができる。
金属酸化物粒子の平均粒子径が2nm未満のものは得ることが困難であり、得られたとしても所望の加圧崩壊性を有する砥粒を得ることが困難である。
金属酸化物粒子の平均粒子径が300nmを越えると、後述するバインダーの使用の有無、バインダーの種類等によっても異なるが、得られる砥粒の加圧崩壊性が低すぎたり、砥粒が崩壊して金属酸化物粒子による研磨の際、金属酸化物粒子が大きすぎてスクラッチが生成したり残存することがある。
The average particle diameter of the metal oxide particles is preferably in the range of 2 to 300 nm, more preferably 5 to 200 nm. When such sol-region fine particles are used for the metal oxide particles, it is possible to obtain abrasive grains having a high average compressive strength, which will be described later.
It is difficult to obtain metal oxide particles having an average particle diameter of less than 2 nm, and even if obtained, it is difficult to obtain abrasive grains having desired pressure disintegration properties.
When the average particle diameter of the metal oxide particles exceeds 300 nm, the pressure disintegration of the resulting abrasive grains is too low or the abrasive grains collapse, although it depends on whether or not a binder described below is used and the type of binder. When polishing with metal oxide particles, the metal oxide particles may be too large to generate or remain scratches.

金属酸化物粒子の平均粒子径が200nm以下の場合は金属酸化物粒子同士の結合力が強く、バインダーを使用しなくても所望の加圧崩壊性を有する砥粒を得ることができる。金属酸化物粒子の平均粒子径が200nmを越えると金属酸化物粒子同士の結合力が弱くなるので、バインダーを使用することが好ましい。
なお、前記平均粒子径が200nm以下の金属酸化物粒子の範疇には、次述するバインダーを構成する無機酸化物のゾルおよび/またはゲルも含まれる。
When the average particle diameter of the metal oxide particles is 200 nm or less, the bonding force between the metal oxide particles is strong, and it is possible to obtain abrasive grains having a desired pressure disintegration property without using a binder. When the average particle diameter of the metal oxide particles exceeds 200 nm, the bonding force between the metal oxide particles becomes weak, so it is preferable to use a binder.
The category of the metal oxide particles having an average particle diameter of 200 nm or less includes inorganic oxide sols and / or gels constituting the binder described below.

バインダー
バインダーとしては金属酸化物のゾルおよび/またはゲルあるいは有機樹脂微粒子が好ましい。
金属酸化物のゾルとしては、シリカゾル、アルミナゾル、ジルコニアゾル、セリアゾル、チタニアゾル、マグネシアゾル、シリカ・アルミナゾル、シリカ・ジルコニアゾル、シリカ・セリアゾル、シリカ・チタニアゾル等が挙げられる。また、金属酸化物のゲルとしては、シリカゲル、アルミナゲル、ジルコニアゲル、セリアゲル、チタニアゲル、マグネシアゲル、シリカ・アルミナゲル、シリカ・ジルコニアゲル、シリカ・セリアゲル、シリカ・チタニアゲル等が挙げられる。
また、有機樹脂微粒子としては、ポリウレタン、スチレンーブタジエン共重合体、アクリルニトリルーブタジエン共重合体、ナイロン系、ポリエステル系、ポリオレフィン系、シリコーン系のエラストマー、ナイロン、ポリエステル、ポリオレフィン、ポリメチルメタクリレート、酢酸ビニルーアクリル酸エステル共重合体、エチレン−酢酸ビニル共重合体、アクリル酸エステル、ポリビニルアルコール、ポリスチレン、セルロース、セルロース誘導体、ガーガム等天然高分子が挙げられる。
The binder binder is preferably a metal oxide sol and / or gel or organic resin fine particles.
Examples of the metal oxide sol include silica sol, alumina sol, zirconia sol, ceria sol, titania sol, magnesia sol, silica / alumina sol, silica / zirconia sol, silica / ceria sol, silica / titania sol, and the like. Examples of the metal oxide gel include silica gel, alumina gel, zirconia gel, ceria gel, titania gel, magnesia gel, silica / alumina gel, silica / zirconia gel, silica / ceria gel, and silica / titania gel.
Organic resin fine particles include polyurethane, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, nylon-based, polyester-based, polyolefin-based, silicone-based elastomer, nylon, polyester, polyolefin, polymethyl methacrylate, acetic acid. Examples thereof include natural polymers such as vinyl-acrylic acid ester copolymers, ethylene-vinyl acetate copolymers, acrylic acid esters, polyvinyl alcohol, polystyrene, cellulose, cellulose derivatives, and gar gum.

バインダーに用いる無機酸化物のゾルおよび/またはゲルあるいは有機樹脂微粒子の平均粒子径は、2〜200nm、さらには5〜100nmの範囲にあることが好ましい。
平均粒子径が2nm未満のものは得ることが困難であり、平均粒子径が200nmを越えるとバインダー力が低下し所望の加圧崩壊性を有する砥粒を得ることが困難である。
また、上記において、無機酸化物のゾルを用いると比較的平均圧縮強度の高い砥粒が得られ、無機酸化物のゲルを用いると比較的平均圧縮強度の低い砥粒が得られる。
The average particle size of the inorganic oxide sol and / or gel or organic resin fine particles used for the binder is preferably in the range of 2 to 200 nm, more preferably 5 to 100 nm.
Those having an average particle diameter of less than 2 nm are difficult to obtain, and if the average particle diameter exceeds 200 nm, it is difficult to obtain abrasive grains having a desired pressure disintegration due to a decrease in binder force.
In the above, when an inorganic oxide sol is used, abrasive grains having a relatively high average compressive strength can be obtained, and when an inorganic oxide gel is used, abrasive grains having a relatively low average compressive strength can be obtained.

上記平均粒子径範囲の無機酸化物のゾルおよび/またはゲルは、それ自体が前記金属酸化物粒子と同様の研磨性能を有するので好適に用いることができる。
また、有機樹脂微粒子を用いた砥粒は研磨用砥石のマトリックスとの親和性が高く、このため研磨用砥石中で砥粒が高分散した研磨用砥石が得られ、スクラッチが無く研磨精度に優れている。
砥粒にバインダーを用いることによって、砥粒の平均圧縮強度、細孔容積を調節することができ、所望の研磨性能を有する砥粒を容易に得ることができる。
The inorganic oxide sol and / or gel having an average particle diameter in the above range can be suitably used because it itself has the same polishing performance as the metal oxide particles.
In addition, abrasive grains using organic resin fine particles have a high affinity with the matrix of the grinding wheel, so that a grinding wheel in which abrasive grains are highly dispersed in the grinding wheel can be obtained, and there is no scratch and excellent grinding accuracy. ing.
By using a binder for the abrasive grains, the average compressive strength and pore volume of the abrasive grains can be adjusted, and abrasive grains having desired polishing performance can be easily obtained.

砥粒に必要に応じてバインダー用いる場合、砥粒中のバインダーの含有量は、固形分として1〜99重量%、さらには5〜70重量%の範囲にあることが好ましい。
砥粒中のバインダーの含有量が固形分として1重量%未満の場合は、バインダーを用いる効果が充分得られず、砥粒の平均圧縮強度が低すぎる場合があり、研磨用砥石を成形する際に容易に崩壊し、得られる研磨用砥石を用いて研磨しても充分な研磨性能(所定の研磨速度を一定期間維持)が得られない場合がある。
砥粒中のバインダーの含有量が固形分として99重量%を越えると砥粒の平均圧縮強度が高すぎて、過研磨やスクラッチ発生の原因となる場合がある。
When a binder is used as necessary for the abrasive grains, the content of the binder in the abrasive grains is preferably in the range of 1 to 99% by weight, more preferably 5 to 70% by weight as the solid content.
When the content of the binder in the abrasive grains is less than 1% by weight as the solid content, the effect of using the binder may not be sufficiently obtained, and the average compressive strength of the abrasive grains may be too low. In some cases, sufficient polishing performance (maintaining a predetermined polishing rate for a certain period) may not be obtained even if polishing is performed using the obtained polishing grindstone.
If the content of the binder in the abrasive grains exceeds 99% by weight as the solid content, the average compressive strength of the abrasive grains is too high, which may cause overpolishing or scratching.

本発明では、金属酸化物粒子、バインダーの平均粒子径は超遠心式自動粒度分布測定装置(CAPA−700)で測定する。 In the present invention, the average particle size of the metal oxide particles and the binder is measured with an ultracentrifugal automatic particle size distribution analyzer (CAPA-700).

砥粒の特性
本発明の砥粒は平均圧縮強度が1〜100kgf/mm2、さらには2〜80kgf/mm2の範囲の加圧崩壊性を有することが好ましい。
平均圧縮強度が1kgf/mm2未満の場合は、研磨用砥石を成形する際に容易に崩壊し、得られる研磨用砥石を用いて研磨しても充分な研磨性能(所定の研磨速度を一定期間維持)が得られない場合がある。即ち、本願の金属酸化物粒子の集合体である砥粒が分散した研磨用砥石と異なり、個々の金属酸化物粒子が分散した従来の研磨用砥石と同様となる。
平均圧縮強度が100kgf/mm2を越えると、砥粒が崩壊しにくくなるため、研磨砥石の研磨面に新たな砥粒が露出しにくくなるため研磨速度が低下したり、スクラッチが生じる場合がある。
Characteristics of Abrasive Grains The abrasive grains of the present invention preferably have a compressive disintegration having an average compressive strength in the range of 1 to 100 kgf / mm 2 , more preferably 2 to 80 kgf / mm 2 .
When the average compressive strength is less than 1 kgf / mm 2 , it easily disintegrates when a polishing grindstone is formed, and sufficient polishing performance (predetermined polishing rate is maintained for a certain period of time even if polishing is performed using the obtained grindstone. Maintenance) may not be obtained. That is, unlike the grinding stone in which abrasive grains, which are aggregates of metal oxide particles of the present application, are dispersed, the same as in a conventional grinding stone in which individual metal oxide particles are dispersed.
When the average compressive strength exceeds 100 kgf / mm 2 , the abrasive grains are difficult to disintegrate, so that new abrasive grains are difficult to be exposed on the polishing surface of the polishing grindstone, so that the polishing rate may be reduced or scratches may occur. .

本発明における平均圧縮強度は微小圧縮試験機(島津製作所製:MCTM―200)を用い、1個の砥粒について、一定の負荷速度で荷重(設定値:1gf)を負荷し、砥粒が破壊または大きく変形したときの荷重(破壊強度)を測定し、これを10個の砥粒について測定し、その平均値として求める。ついで、下記式により算出した。但し、P:破壊強度(gf)、d:粒子径(mm)である。
平均圧縮強度(gf/mm2)=2.8xP/πxd2
The average compressive strength in the present invention is measured by using a micro compression tester (manufactured by Shimadzu Corporation: MCTM-200) and applying a load (set value: 1 gf) at a constant load speed for one abrasive grain. Alternatively, the load (breaking strength) when greatly deformed is measured, and this is measured for 10 abrasive grains, and the average value is obtained. Subsequently, it computed by the following formula. However, P: fracture strength (gf), d: particle diameter (mm).
Average compressive strength (gf / mm 2 ) = 2.8 × P / πxd 2

砥粒の平均細孔容積は、平均圧縮強度が前記範囲にあれば特に限定されないが、0.1〜2.0ml/g、特に0.2〜1.7ml/gの範囲にあることが好ましい。
砥粒の平均細孔容積が0.1ml/g未満の場合は、バインダーの有無、種類、配合量等によっても異なるが、平均圧縮強度が100Kgfを越える場合があり、砥粒が崩壊しにくくなるため、研磨砥石の研磨面に新たな砥粒が露出しにくくなるため研磨速度が低下したり、スクラッチが生じる場合がある。
砥粒の平均細孔容積が2.0ml/gを越えると、研磨用砥石を成形する際に容易に崩壊し、得られる研磨用砥石を用いて研磨しても充分な研磨性能が得られない場合がある。
本発明における細孔容積は、Quantachrone corporation社 Autosorb1を用いた窒素吸着法(液体窒素温度、相対圧:0.999)で測定する。
The average pore volume of the abrasive grains is not particularly limited as long as the average compressive strength is in the above range, but is preferably in the range of 0.1 to 2.0 ml / g, particularly 0.2 to 1.7 ml / g. .
When the average pore volume of the abrasive grains is less than 0.1 ml / g, the average compressive strength may exceed 100 Kgf depending on the presence / absence, type, blending amount, etc. of the binder, and the abrasive grains are difficult to disintegrate. For this reason, it is difficult for new abrasive grains to be exposed on the polishing surface of the polishing grindstone, so that the polishing rate may decrease or scratches may occur.
When the average pore volume of the abrasive grains exceeds 2.0 ml / g, it easily disintegrates when forming a polishing grindstone, and sufficient polishing performance cannot be obtained even by polishing with the obtained polishing grindstone. There is a case.
The pore volume in the present invention is measured by a nitrogen adsorption method (liquid nitrogen temperature, relative pressure: 0.999) using Quantachron Corporation Autosorb1.

砥粒の製造方法
このような砥粒であって無機酸化物のゾルおよび/またはゲルをバインダーとする砥粒については、本願出願人の出願による特開昭61−174103号公報に開示した方法に準拠して製造することができる。
具体的には、前記金属酸化物粒子と無機酸化物のゾルおよび/またはゲルとの混合分散液を噴霧乾燥雰囲気温度が概ね10〜150℃、好ましくは40〜120℃、湿度が3〜13vol%、好ましくは5〜9vol%の気流中に噴霧して乾燥することによって得ることができる。この様な条件で噴霧乾燥すると真球状の砥粒が得られ、スクラッチの生じない砥粒を得ることができる。
Abrasive Grain Manufacturing Method With regard to such an abrasive grain and using an inorganic oxide sol and / or gel as a binder, the method disclosed in Japanese Patent Application Laid-Open No. 61-174103 filed by the applicant of the present application is used. Can be manufactured in compliance.
Specifically, the mixed dispersion of the metal oxide particles and inorganic oxide sol and / or gel has a spray drying atmosphere temperature of approximately 10 to 150 ° C., preferably 40 to 120 ° C., and a humidity of 3 to 13 vol%. , Preferably, it can obtain by spraying and drying in 5-9 vol% airflow. When spray-dried under such conditions, spherical particles can be obtained, and abrasive particles free from scratches can be obtained.

また、樹脂をバインダーとする砥粒については、本願出願人の出願による特開2001−323070号公報に開示した方法に準拠して製造することができる。
具体的には、前記金属酸化物粒子と前記樹脂微粒子との混合分散液を同様に噴霧乾燥することに得ることができる。
さらに、得られた砥粒は、そのまま使用することができるが、必要に応じて加熱処理し、所望の平均圧縮強度に調整して用いることもできる。
Moreover, about the abrasive grain which uses resin as a binder, it can manufacture based on the method disclosed by Unexamined-Japanese-Patent No. 2001-32070 by the application of this application.
Specifically, it can be obtained by spray-drying a mixed dispersion of the metal oxide particles and the resin fine particles in the same manner.
Furthermore, although the obtained abrasive grains can be used as they are, they can be heat-treated as necessary and adjusted to a desired average compressive strength.

本発明に用いる砥粒は、下記式(1)で表される有機珪素化合物で表面処理されていてもよい。
SiX4 ・・・・・(1)
(但し、式中、Xは炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素であって、互いに同一であっても異なっていてもよい。)
具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルメチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、等が挙げられる。
The abrasive used in the present invention may be surface-treated with an organosilicon compound represented by the following formula (1).
SiX 4 (1)
(In the formula, X is an alkoxy group having 1 to 4 carbon atoms, a silanol group, halogen, or hydrogen, which may be the same or different.)
Specifically, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methylmethyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, Phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3, 3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltrie Xysilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acryloxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltri Excisilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acrylooxy Propyltrimethoxysilane, γ- (meth) acrylooxypropyltriethoxysilane Run, γ- (meth) acrylooxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyl Triethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoro Propyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltri Tokishishiran, N- phenyl--γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, and the like.

このような有機ケイ素化合物で表面処理されていると、後述するマトリックスに均一に高分散した研磨用砥石を得ることができ、研磨速度が安定化するとともに、スクラッチを抑制される傾向にある。
砥粒の表面処理は、従来公知の方法によって行うことができ、例えば、砥粒のアルコール分散液に有機ケイ素化合物を加え、水および必要に応じて酸またはアルカリを加水分解触媒として加え、有機ケイ素化合物を加水分解することによって行うことができる。
When the surface treatment is performed with such an organosilicon compound, a polishing grindstone uniformly and highly dispersed in a matrix described later can be obtained, and the polishing rate is stabilized and scratches tend to be suppressed.
The surface treatment of the abrasive grains can be performed by a conventionally known method. For example, an organosilicon compound is added to an alcohol dispersion of abrasive grains, and water and, if necessary, an acid or alkali are added as a hydrolysis catalyst. This can be done by hydrolyzing the compound.

研磨用砥石
研磨用砥石中の砥粒の含有量は20〜80重量%、さらには30〜70重量%の範囲にあることが好ましい。
研磨用砥石中の砥粒の含有量が20重量%未満の場合は、砥粒が少ないために充分な研磨速度が得られず、80重量%を越えると後述するマトリックスが少ないために、研磨用砥石の成型が困難であったり、成型できたとしても研磨の際に砥粒が順次崩壊する前に砥粒が脱離し、スクラッチを生じたり、研磨速度が一定にならず、長期にわたって高精度で安定的に研磨できるという本願効果が得られない場合がある。
Grinding wheel The content of abrasive grains in the grinding wheel is preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
When the content of the abrasive grains in the polishing stone is less than 20% by weight, a sufficient polishing rate cannot be obtained due to the small number of abrasive grains. Even if it is difficult to mold the grinding stone, or even if it can be molded, the abrasive grains are detached before the abrasive grains are disintegrated sequentially, causing scratches, and the polishing rate is not constant. In some cases, the effect of the present application that the polishing can be performed stably cannot be obtained.

マトリックス
本発明の研磨用砥石を構成するマトリックスとしては、研磨用砥石に用いられる従来公知のマトリックスを用いることができる。
具体的には、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂等が挙げられる。
Matrix As the matrix constituting the polishing grindstone of the present invention, a conventionally known matrix used for the polishing grindstone can be used.
Specifically, polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, silicone rubber and other thermoplastic resins, urethane resins, melamine resins, silicon resins , Butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, ultraviolet curable acrylic resin, and the like.

研磨用砥石中のマトリックスの含有量は20〜80重量%、さらには30〜70重量%の範囲にあることが好ましい。
研磨用砥石中のマトリックスの含有量は20重量%未満の場合は、マトリックスが少ないために、研磨用砥石の成型が困難であったり、成型できたとしても研磨の際に砥粒が順次崩壊する前に砥粒が脱離し、スクラッチを生じたり、研磨速度が一定にならず、長期にわたって高精度で安定的に研磨できるという本願効果が得られない場合がある。
研磨用砥石中のマトリックスの含有量は80重量%を越えると砥粒が少ないために充分な研磨速度が得られない場合がある。
The content of the matrix in the grinding wheel is preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
When the content of the matrix in the polishing grindstone is less than 20% by weight, since the matrix is small, it is difficult to mold the grindstone, or even if the grindstone can be molded, the abrasive grains sequentially collapse during polishing. In some cases, the effect of the present application that the abrasive grains are detached and scratches occur, the polishing rate is not constant, and the polishing can be performed stably with high accuracy over a long period of time may not be obtained.
When the content of the matrix in the polishing grindstone exceeds 80% by weight, a sufficient polishing rate may not be obtained because there are few abrasive grains.

このような研磨用砥石は、特許文献1,2,3および4等に開示されている従来公知の方法によって製造することができる。
例えば、オルガノポリシロキサンと補強性シリカ粉末を過熱混練して調製したシリコーンゴムベースコンパウンドに砥粒を混合して研磨用砥石形成用組成物を調製し、加熱下プレス成型して研磨用砥石を得ることができる(特許文献3)。
あるいは、ゴム粒子と砥粒を混合し、所定形状に圧縮成型し、150〜250℃で熱処理することによって得ることができる(特許文献4)。
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定するものではない。
Such a polishing grindstone can be manufactured by a conventionally known method disclosed in Patent Documents 1, 2, 3, and 4 and the like.
For example, a composition for forming a grinding wheel is prepared by mixing abrasive grains with a silicone rubber base compound prepared by heating and kneading organopolysiloxane and reinforcing silica powder, and press molding under heating to obtain a grinding wheel. (Patent Document 3).
Or it can obtain by mixing a rubber particle and an abrasive grain, compression-molding to a predetermined shape, and heat-processing at 150-250 degreeC (patent document 4).
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

砥粒(1)の調製
内容積150Lのタンクにシリカゾル(日揮触媒化成(株)製:CataloidS-20L、平均粒子径15nm、SiO2濃度20重量%)100kgを入れ、これにシリカゲル粉末(日本アエロジル(株)製:アエロジル-380FC、比表面積380m/g、平均粒子径7nm)20kgを入れて均一になるまで充分に撹拌した。ついで、サンドミル(アシザワ製作所製:パールミル50STS)にて、滞留時間が30分となる速度で連続粉砕した。得られた混合スラリーの粘度は26cpであった。
このスラリーを対向式2流体ノズルに供給し、処理液量20L/Hr、ノズル圧力0.38MPa、乾燥雰囲気温度120℃、湿度7.2VOl%、の条件下に噴霧乾燥した。
この粉末を420℃で3時間加熱処理して砥粒(1)を調製した。
得られた砥粒(1)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Preparation of abrasive grains (1) Into a tank with an internal volume of 150L, 100 kg of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid S-20L, average particle diameter 15 nm, SiO 2 concentration 20% by weight) is placed, and silica gel is added thereto. 20 kg of powder (manufactured by Nippon Aerosil Co., Ltd .: Aerosil-380FC, specific surface area of 380 m 2 / g, average particle diameter of 7 nm) was added and sufficiently stirred until uniform. Subsequently, it was continuously pulverized by a sand mill (manufactured by Ashizawa Seisakusho Co., Ltd .: Pearl Mill 50STS) at a speed at which the residence time was 30 minutes. The viscosity of the obtained mixed slurry was 26 cp.
This slurry was supplied to an opposed two-fluid nozzle and spray-dried under the conditions of a treatment liquid amount of 20 L / Hr, a nozzle pressure of 0.38 MPa, a drying atmosphere temperature of 120 ° C., and a humidity of 7.2 VOL%.
This powder was heat-treated at 420 ° C. for 3 hours to prepare abrasive grains (1).
With respect to the obtained abrasive grain (1), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(1)の調製
砥粒(1)100重量部とマトリックスとしてゴム粒子(NBR硬化ゴム、平均粒子径120μm)100重量部とを均一に混合し、100kg/cm2の圧力でリング状に圧縮成型し、引き続き150℃で10分間圧縮加熱して研磨用砥石(1)を得た。
研磨用砥石は、外径300mm、内径100mm、厚さ10mmとした。
得られた研磨用砥石(1)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
Preparation of grinding wheel (1) Abrasive grain (1) 100 parts by weight and 100 parts by weight of rubber particles (NBR cured rubber, average particle diameter 120 μm) as a matrix are uniformly mixed to obtain 100 kg / cm 2 The product was compression-molded into a ring shape with pressure, and subsequently compressed and heated at 150 ° C. for 10 minutes to obtain a grinding wheel (1).
The grinding wheel for polishing had an outer diameter of 300 mm, an inner diameter of 100 mm, and a thickness of 10 mm.
With respect to the obtained grinding wheel (1), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

初期研磨性能(1)
研磨用砥石(1)を台板に接着し、研磨用砥石(1)の平面部を接触させ、ガラス基板を下記の条件で研磨した。研磨速度は研磨前後のガラス基板の重量変化を元に算出し、スクラッチは目視観察結果を下記の基準で評価し、結果を表に示す。
砥石回転数:30m/sec(周縁部)
砥石加圧 :150g/cm2
研磨液 :水
ワーク :ガラス基板(ホウ珪酸ガラス)
研磨時間 :2分30秒
Initial polishing performance (1)
The polishing grindstone (1) was adhered to the base plate, the flat portion of the polishing grindstone (1) was brought into contact, and the glass substrate was polished under the following conditions. The polishing rate is calculated based on the change in weight of the glass substrate before and after polishing, and the scratch is evaluated by visual observation results according to the following criteria, and the results are shown in the table.
Grinding wheel rotation speed: 30m / sec (peripheral part)
Grinding wheel pressurization: 150 g / cm 2
Polishing liquid: Water Workpiece: Glass substrate (borosilicate glass)
Polishing time: 2 minutes 30 seconds

スクラッチ
研磨表面を超微細欠陥可視化マクロ装置(Vision Psytech社製MICROMAX)を使用し観察し、以下の基準で評価した。
表面は平滑で傷は殆ど認められない : ○
表面は平滑であるが傷が僅かに認められる : △
表面は平滑に欠け傷が認められる : X
The scratched surface was observed using an ultra-fine defect visualization macro device (MICROMAX manufactured by Vision Psytech) and evaluated according to the following criteria.
The surface is smooth and scars are hardly recognized: ○
The surface is smooth but slightly scratched: △
The surface is smooth and chipped: X

経時研磨性能(2)
上記、初期研磨性能(1)の条件で、ガラス基板を変更して5回研磨を行った後、6回目の研磨時の研磨速度、スクラッチの観察結果を表に示す。
Polishing performance over time (2)
Table 5 shows the polishing rate and scratch observation results during the sixth polishing after the glass substrate was changed and polished five times under the conditions of the initial polishing performance (1).

研磨用砥石(2)の調製
実施例1において、砥粒(1)100重量部とゴム粒子300重量部とを均一に混合した以外は同様にして研磨用砥石(2)を得た。
得られた研磨用砥石(2)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
Obtained in Preparation <br/> Example 1 of the polishing grindstone (2), abrasive grains (1) 100 parts by weight of rubber particles 300 parts by weight of a uniformly except mixed Similarly polishing grindstone (2) It was.
With respect to the obtained grinding wheel (2), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

研磨用砥石(3)の調製
実施例1において、砥粒(1)300重量部とゴム粒子100重量部とを均一に混合した以外は同様にして研磨用砥石(3)を得た。
得られた研磨用砥石(3)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
Obtained in Preparation <br/> Example 1 abrasive stone (3), abrasive grains (1) 300 parts by weight of the rubber particles 100 parts by weight except for uniformly mixed in the same manner polishing stone (3) It was.
With respect to the obtained grinding wheel (3), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

砥粒(2)の調製
実施例1において、処理液量5L/Hrで噴霧乾燥した以外は同様にして砥粒(2)を調製した。
得られた砥粒(2)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
In preparing <br/> Example 1 abrasive (2), except that spray dried with a processing solution volume 5L / Hr was prepared abrasive grains (2) in the same manner.
With respect to the obtained abrasive grain (2), the average particle diameter, the pore volume and the average compressive strength were measured, and the results are shown in the table.

研磨用砥石(4)の調製
実施例1において、砥粒(2)を用いた以外は同様にして研磨用砥石(4)を得た。
得られた研磨用砥石(4)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 of the polishing grindstone (4) to obtain abrasive grains for polishing in the same manner except for using (2) the grinding wheel (4).
With respect to the obtained grinding wheel (4), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

砥粒(3)の調製
実施例1において、処理液量40L/Hrで噴霧乾燥した以外は同様にして砥粒(3)を調製した。
得られた砥粒(3)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
In abrasive (3) Preparation <br/> Example 1, except that spray dried with a processing solution volume 40L / Hr was prepared abrasive grains (3) in a similar manner.
With respect to the obtained abrasive grain (3), the average particle diameter, the pore volume and the average compressive strength were measured, and the results are shown in the table.

研磨用砥石(5)の調製
実施例1において、砥粒(3)を用いた以外は同様にして研磨用砥石(5)を得た。
得られた研磨用砥石(5)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 abrasive stone (5), except for using abrasive grains (3) to obtain a polishing grindstone in the same manner (5).
With respect to the obtained grinding wheel (5), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

砥粒(4)の調製
実施例1において、シリカゾル(日揮触媒化成(株)製:Cataloid SI-45P、平均粒子径45nm、SiO2濃度20重量%、)100kg、シリカゲル粉末(日本アエロジル(株)製:アエロジル-380FC、比表面積380m/g、平均粒子径7nm)20kgを用いた以外は同様にして砥粒(4)を調製した。
得られた砥粒(4)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Preparation of abrasive grains (4) In Example 1, silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-45P, average particle diameter 45 nm, SiO 2 concentration 20% by weight) 100 kg, silica gel powder (Japan) Abrasives (4) was prepared in the same manner except that 20 kg (Aerosil Co., Ltd .: Aerosil-380FC, specific surface area 380 m 2 / g, average particle diameter 7 nm) was used.
With respect to the obtained abrasive grain (4), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(6)の調製
実施例1において、砥粒(4)を用いた以外は同様にして研磨用砥石(6)を得た。
得られた研磨用砥石(6)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 of the polishing grindstone (6), to obtain abrasive grains (4) grinding wheel (6) for polishing in the same manner, except that the catalyst.
With respect to the obtained grinding wheel (6), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

砥粒(5)の調製
内容積150Lのタンクにシリカゾル(日揮触媒化成(株)製:Cataloid SS-160、平均粒子径160nm、SiO2濃度20重量%、)100kgを入れ、これにシリカゲル粉末(日本アエロジル(株)製:アエロジル-380FC、比表面積380m/g、平均粒子径7nm)20kgを入れて均一になるまで充分に撹拌した。ついで、サンドミル(アシザワ製作所製:パールミル50STS)にて、滞留時間が30分となる速度で連続粉砕した。得られた混合スラリーの粘度は20cpであった。
このスラリーを対向式2流体ノズルに供給し、処理液量20L/Hr、ノズル圧力0.38MPa、乾燥雰囲気温度120℃、湿度7.2VOl%、の条件下に噴霧乾燥した。
この粉末を420℃で3時間加熱処理して砥粒(5)を調製した。
得られた砥粒(5)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Preparation of abrasive grains (5) Into a tank with an internal volume of 150 L, 100 kg of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SS-160, average particle diameter 160 nm, SiO 2 concentration 20% by weight) was placed. 20 kg of silica gel powder (manufactured by Nippon Aerosil Co., Ltd .: Aerosil-380FC, specific surface area of 380 m 2 / g, average particle diameter of 7 nm) was added and sufficiently stirred until uniform. Subsequently, it was continuously pulverized by a sand mill (manufactured by Ashizawa Seisakusho Co., Ltd .: Pearl Mill 50STS) at a speed at which the residence time was 30 minutes. The viscosity of the obtained mixed slurry was 20 cp.
This slurry was supplied to an opposed two-fluid nozzle and spray-dried under the conditions of a treatment liquid amount of 20 L / Hr, a nozzle pressure of 0.38 MPa, a drying atmosphere temperature of 120 ° C., and a humidity of 7.2 VOL%.
This powder was heat-treated at 420 ° C. for 3 hours to prepare abrasive grains (5).
With respect to the obtained abrasive grain (5), the average particle diameter, the pore volume and the average compressive strength were measured, and the results are shown in the table.

研磨用砥石(7)の調製
実施例1において、砥粒(5)を用いた以外は同様にして研磨用砥石(7)を得た。
得られた研磨用砥石(7)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 abrasive stone (7) to obtain abrasive grains in the polishing grindstone in the same manner except for using (5) (7).
With respect to the obtained grinding wheel (7), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

砥粒(6)の調製
内容積150Lのタンクに水80kgを入れ、これにシリカゲル粉末(日本アエロジル(株)製:アエロジル-380FC、比表面積380m/g、平均粒子径7nm)20kgを入れて均一になるまで充分に撹拌した。ついで、サンドミル(アシザワ製作所製:パールミル50STS)にて、滞留時間が30分となる速度で連続粉砕した。得られた混合スラリーの粘度は50cp重量%であった。
このスラリーを対向式2流体ノズルに供給し、処理液量20L/Hr、ノズル圧力0.38MPa、乾燥雰囲気温度120℃、湿度7.2VOl%、の条件下に噴霧乾燥した。
この粉末を420℃で3時間加熱処理して砥粒(6)を調製した。
得られた砥粒(6)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Preparation of abrasive grains (6) 80 kg of water is placed in a tank having an internal volume of 150 L, and silica gel powder (manufactured by Nippon Aerosil Co., Ltd .: Aerosil-380FC, specific surface area 380 m 2 / g, average particle diameter 7 nm) 20 kg was added and stirred sufficiently until uniform. Subsequently, it was continuously pulverized by a sand mill (manufactured by Ashizawa Seisakusho Co., Ltd .: Pearl Mill 50STS) at a speed at which the residence time was 30 minutes. The viscosity of the obtained mixed slurry was 50 cp% by weight.
This slurry was supplied to an opposed two-fluid nozzle and spray-dried under the conditions of a treatment liquid amount of 20 L / Hr, a nozzle pressure of 0.38 MPa, a drying atmosphere temperature of 120 ° C., and a humidity of 7.2 VOL%.
This powder was heat-treated at 420 ° C. for 3 hours to prepare abrasive grains (6).
With respect to the obtained abrasive grain (6), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(8)の調製
実施例1において、砥粒(6)を用いた以外は同様にして研磨用砥石(8)を得た。
得られた研磨用砥石(8)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 of the polishing grindstone (8), to obtain a polishing grindstone (8) In the same manner, except for using the abrasive grains (6).
With respect to the obtained grinding wheel (8), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

砥粒(7)の調製
内容積150Lのタンクにシリカゾル(日揮触媒化成(株)製:CataloidS-30L、平均粒子径15nm、SiO2濃度30重量%、)120kgを入れ、これに樹脂微粒子としてポリカーボネート系ポリウレタンの水分散液(自己乳化型、固形分濃度30重量%、平均粒子径60nm)40kgを入れて均一になるまで充分に撹拌した。
ついで、水を加えて固形分濃度20重量%のスラリーとした。
このスラリーを対向式2流体ノズルに供給し、処理液量60L/Hr、空/液比=2100、空気流速マッハ1.1、乾燥雰囲気温度70℃、湿度5VOl%、の条件下に噴霧乾燥した。得られた粉末を95℃で2時間加熱処理して砥粒(7)を調製した。
得られた砥粒(7)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Preparation of abrasive grains (7 ) 120 kg of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid S-30L, average particle diameter 15 nm, SiO 2 concentration 30% by weight) is placed in a tank with an internal volume of 150 L. 40 kg of an aqueous dispersion of polycarbonate polyurethane (self-emulsifying type, solid content concentration 30% by weight, average particle size 60 nm) was added as resin fine particles and sufficiently stirred until uniform.
Next, water was added to form a slurry having a solid content concentration of 20% by weight.
This slurry was supplied to an opposed two-fluid nozzle and spray-dried under the conditions of a processing liquid amount of 60 L / Hr, an air / liquid ratio of 2100, an air flow rate of Mach 1.1, a drying atmosphere temperature of 70 ° C., and a humidity of 5 VOl%. . The obtained powder was heat-treated at 95 ° C. for 2 hours to prepare abrasive grains (7).
For the obtained abrasive grains (7), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(9)の調製
実施例1において、砥粒(7)を用いた以外は同様にして研磨用砥石(9)を得た。
得られた研磨用砥石(9)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 of the polishing grindstone (9) to obtain abrasive polishing stone (9) In the same manner, except for using (7).
With respect to the obtained grinding wheel (9), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

砥粒(8)の調製
実施例7において、シリカゾルの代わりにセリアゾル(日揮触媒化成(株)製:平均粒子径15nm、SiO2濃度12重量%、)を用いた以外は同様にして砥粒(8)を調製した。
得られた砥粒(8)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Preparation of abrasive grains (8) In Example 7, ceria sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: average particle size 15 nm, SiO 2 concentration 12 wt%) was used in the same manner as in Example 7 except that silica sol was used. Thus, abrasive grains (8) were prepared.
With respect to the obtained abrasive grain (8), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(10)の調製
実施例1において、砥粒(8)を用いた以外は同様にして研磨用砥石(10)を得た。
得られた研磨用砥石(10)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 abrasive stone (10), to obtain a polishing stone (10) In the same manner except for using abrasive grains (8).
With respect to the obtained grinding wheel (10), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

比較例1Comparative Example 1

研磨用砥石(R1)の調製
砥粒としてシリカゾル(触媒化成工業(株)製:Cataloid SS−160、平均粒子径160nm、SiO2濃度10重量%、)100重量部とマトリックスとしてゴム粒子(NBR硬化ゴム、平均粒子径120μm)10重量部とを均一に混合し、60℃で12時間乾燥した後、100kg/cm2の圧力でリング状に圧縮成型し、引き続き150℃で10分間圧縮加熱して研磨用砥石(R1)を得た。
得られた研磨用砥石(R1)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
Preparation of grinding wheel (R1 ) 100 parts by weight of silica sol (catalyst chemical industry Co., Ltd .: Cataloid SS-160, average particle diameter 160 nm, SiO 2 concentration 10% by weight) as abrasive grains and rubber as a matrix 10 parts by weight of particles (NBR cured rubber, average particle size 120 μm) are uniformly mixed, dried at 60 ° C. for 12 hours, and then compression-molded into a ring shape at a pressure of 100 kg / cm 2 , and then at 150 ° C. for 10 minutes. A grinding wheel (R1) was obtained by compression heating.
With respect to the obtained grinding wheel (R1), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

比較例2Comparative Example 2

砥粒(R2)
実施例1において、粉末を420℃で3時間加熱処理しなかった以外は同様にして砥粒(R2)を調製した。
得られた砥粒(R2)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Abrasive grain (R2)
Abrasive grains (R2) were prepared in the same manner as in Example 1, except that the powder was not heat-treated at 420 ° C. for 3 hours.
For the obtained abrasive grains (R2), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(R2)の調製
実施例1において、砥粒(R2)を用いた以外は同様にして研磨用砥石(R2)を得た。
得られた研磨用砥石(R2)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 of the polishing grindstone (R2), to obtain a polishing grindstone (R2) in the same manner except for using abrasive grains (R2).
With respect to the obtained grinding wheel (R2), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

比較例3Comparative Example 3

砥粒(R3)
実施例1において、粉末を900℃で3時間加熱処理した以外は同様にして砥粒(R3)を調製した。
得られた砥粒(R3)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Abrasive grain (R3)
Abrasive grains (R3) were prepared in the same manner as in Example 1, except that the powder was heat treated at 900 ° C. for 3 hours.
For the obtained abrasive grains (R3), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(R3)の調製
実施例1において、砥粒(R3)を用いた以外は同様にして研磨用砥石(R3)を得た。
得られた研磨用砥石(R3)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 of the polishing grindstone (R3), to obtain a polishing grindstone (R3) in the same manner except for using abrasive grains (R3).
With respect to the obtained grinding wheel (R3), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

比較例4Comparative Example 4

砥粒(R4)
実施例1と同様に、内容積150Lのタンクにシリカゾル(日揮触媒化成(株)製:CataloidS-20L、平均粒子径15nm、SiO2濃度20重量%)100kgを入れ、これにシリカゲル粉末(日本アエロジル(株)製:アエロジル-380FC、比表面積380m/g、平均粒子径7nm)20kgを入れて均一になるまで充分に撹拌した。ついで、サンドミル(アシザワ製作所製:パールミル50STS)にて、滞留時間が30分となる速度で連続粉砕して混合スラリーを調製した。
このスラリーをアトマイザー方式の噴霧乾燥装置にて、アトマイザー回転数:5000rpm、乾燥雰囲気温度120℃の条件下に噴霧乾燥した。この粉末を420℃で3時間加熱処理して砥粒(R4)を調製した。
得られた砥粒(R4)について、平均粒子径、細孔容積および平均圧縮強度を測定し、結果を表に示す。
Abrasive grain (R4)
In the same manner as in Example 1, 100 kg of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid S-20L, average particle diameter 15 nm, SiO 2 concentration 20% by weight) is placed in a tank having an internal volume of 150 L, and silica gel powder (Nippon Aerosil) (Co., Ltd. product: Aerosil-380FC, specific surface area 380 m 2 / g, average particle diameter 7 nm) 20 kg was added and stirred well until uniform. Next, a mixed slurry was prepared by continuous grinding with a sand mill (manufactured by Ashizawa Seisakusho Co., Ltd .: Pearl Mill 50STS) at a speed at which the residence time was 30 minutes.
This slurry was spray-dried in an atomizer-type spray drying apparatus under the conditions of an atomizer rotation speed: 5000 rpm and a drying atmosphere temperature of 120 ° C. This powder was heat-treated at 420 ° C. for 3 hours to prepare abrasive grains (R4).
For the obtained abrasive grains (R4), the average particle diameter, pore volume and average compressive strength were measured, and the results are shown in the table.

研磨用砥石(R4)の調製
実施例1において、砥粒(R4)を用いた以外は同様にして研磨用砥石(R4)を得た。
得られた研磨用砥石(R4)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
In preparing <br/> Example 1 of the polishing grindstone (R4), to obtain a polishing grindstone (R4) in the same manner except for using abrasive grains (R4).
The obtained polishing wheel (R4) was measured for initial polishing performance (1) and time-dependent polishing performance (2), and the results are shown in the table.

比較例5Comparative Example 5

研磨用砥石(R5)の調製
砥粒としてシリカ粒子(日揮触媒化成(株)製:真絲球SW、平均粒子径5μm、シリカ単粒子)100重量部とマトリックスとしてゴム粒子(NBR硬化ゴム、平均粒子径120μm)100重量部とを均一に混合し、100kg/cm2の圧力でリング状に圧縮成型し、引き続き150℃で10分間圧縮加熱して研磨用砥石(R5)を得た。
得られた研磨用砥石(R5)について、初期研磨性能(1)および経時研磨性能(2)を測定し、結果を表に示す。
Preparation of grinding wheel for polishing (R5) Silica particles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: true sphere SW, average particle diameter 5 μm, single silica particles) as abrasive grains and rubber particles (NBR cured) as matrix 100 parts by weight of rubber (average particle size 120 μm) were uniformly mixed, compression-molded into a ring shape at a pressure of 100 kg / cm 2 , and then compressed and heated at 150 ° C. for 10 minutes to obtain a grinding wheel (R5). .
With respect to the obtained polishing grindstone (R5), the initial polishing performance (1) and the temporal polishing performance (2) were measured, and the results are shown in the table.

Figure 2010064218
Figure 2010064218

Claims (5)

金属酸化物粒子を含む砥粒とマトリックスとからなる研磨用砥石であって、該砥粒の平均粒子径が0.5〜150μmの範囲にあり、平均圧縮強度が1〜100kgf/mm2の範囲の加圧崩壊性を有することを特徴とする研磨用砥石。 A polishing grindstone comprising abrasive grains containing metal oxide particles and a matrix, wherein the average grain diameter of the abrasive grains is in the range of 0.5 to 150 μm, and the average compressive strength is in the range of 1 to 100 kgf / mm 2 . A polishing grindstone characterized by having a pressure disintegration property. 前記金属酸化物粒子が、平均粒子径が2〜300nmの範囲にあり、シリカ、アルミナ、ジルコニア、セリア、チタニア、マグネシアおよびこれらの複合酸化物から選ばれる1種または2種以上の金属酸化物粒子であることを特徴とする請求項1に記載の研磨用砥石。   One or more metal oxide particles selected from silica, alumina, zirconia, ceria, titania, magnesia, and composite oxides thereof, wherein the metal oxide particles have an average particle diameter in the range of 2 to 300 nm. The polishing grindstone according to claim 1, wherein: 前記砥粒が金属酸化物粒子に加えてバインダーを含み、該バインダーが無機酸化物のゾルおよび/またはゲルあるいは有機樹脂微粒子であることを特徴とする請求項1または2に記載の研磨用砥石。   3. The polishing grindstone according to claim 1, wherein the abrasive grains contain a binder in addition to metal oxide particles, and the binder is an inorganic oxide sol and / or gel or organic resin fine particles. 前記砥粒の平均細孔容積が0.1〜2.0ml/gの範囲にあることを特徴とする請求項1〜3のいずれかに記載の研磨用砥石。   The polishing grindstone according to any one of claims 1 to 3, wherein an average pore volume of the abrasive grains is in a range of 0.1 to 2.0 ml / g. 前記砥粒の含有量が20〜80重量%の範囲にあることを特徴とする請求項1〜4のいずれかに記載の研磨用砥石。   The polishing grindstone according to any one of claims 1 to 4, wherein the content of the abrasive grains is in the range of 20 to 80% by weight.
JP2008234733A 2008-09-12 2008-09-12 Grinding wheel for polishing Pending JP2010064218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234733A JP2010064218A (en) 2008-09-12 2008-09-12 Grinding wheel for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234733A JP2010064218A (en) 2008-09-12 2008-09-12 Grinding wheel for polishing

Publications (1)

Publication Number Publication Date
JP2010064218A true JP2010064218A (en) 2010-03-25

Family

ID=42190251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234733A Pending JP2010064218A (en) 2008-09-12 2008-09-12 Grinding wheel for polishing

Country Status (1)

Country Link
JP (1) JP2010064218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202491A (en) * 2019-05-27 2019-09-06 中国铁路南昌局集团有限公司科学技术研究所 It is a kind of to be polished grinding wheel based on rare earth material with graphene-based novel steel rail
JP2020073436A (en) * 2017-12-27 2020-05-14 日揮触媒化成株式会社 Porous silica particles and their manufacturing method
CN113474122A (en) * 2019-02-11 2021-10-01 3M创新有限公司 Abrasive article and methods of making and using the same
WO2022185793A1 (en) * 2021-03-03 2022-09-09 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174103A (en) * 1985-01-23 1986-08-05 Shokubai Kasei Kogyo Kk Production of porous spherical and pulverous powder consisting of metallic oxide
JP2001323070A (en) * 2000-03-08 2001-11-20 Catalysts & Chem Ind Co Ltd Spherical composite particle and cosmetic blended with the same
JP2004268152A (en) * 2003-03-05 2004-09-30 Tokyo Magnetic Printing Co Ltd Polishing film
JP2006181683A (en) * 2004-12-28 2006-07-13 Ricoh Co Ltd Polishing tool and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174103A (en) * 1985-01-23 1986-08-05 Shokubai Kasei Kogyo Kk Production of porous spherical and pulverous powder consisting of metallic oxide
JP2001323070A (en) * 2000-03-08 2001-11-20 Catalysts & Chem Ind Co Ltd Spherical composite particle and cosmetic blended with the same
JP2004268152A (en) * 2003-03-05 2004-09-30 Tokyo Magnetic Printing Co Ltd Polishing film
JP2006181683A (en) * 2004-12-28 2006-07-13 Ricoh Co Ltd Polishing tool and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073436A (en) * 2017-12-27 2020-05-14 日揮触媒化成株式会社 Porous silica particles and their manufacturing method
KR20200102445A (en) 2017-12-27 2020-08-31 닛키 쇼쿠바이카세이 가부시키가이샤 Porous silica particles and manufacturing method thereof
CN113474122A (en) * 2019-02-11 2021-10-01 3M创新有限公司 Abrasive article and methods of making and using the same
CN113474122B (en) * 2019-02-11 2024-04-26 3M创新有限公司 Abrasive articles and methods of making and using the same
CN110202491A (en) * 2019-05-27 2019-09-06 中国铁路南昌局集团有限公司科学技术研究所 It is a kind of to be polished grinding wheel based on rare earth material with graphene-based novel steel rail
WO2022185793A1 (en) * 2021-03-03 2022-09-09 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same

Similar Documents

Publication Publication Date Title
US7497885B2 (en) Abrasive articles with nanoparticulate fillers and method for making and using them
Chen et al. Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
EP1020501A3 (en) Aqueous chemical mechanical polishing dispersion composition, wafer surface polishing process and manufacturing process of a semiconductor device
JP2010153782A (en) Polishing method for substrate
KR101917410B1 (en) Polishing composition, and polishing method and substrate production method using same
JP2009161371A (en) Silica sol and manufacturing method thereof
TWI828668B (en) Polishing composition and polishing method using the same
JP2010064218A (en) Grinding wheel for polishing
WO2014179419A1 (en) Chemical mechanical planarization slurry composition comprising composite particles, process for removing material using said composition, cmp polishing pad and process for preparing said composition
TWI811552B (en) Synthetic grinding stone
JP2015116731A (en) Substrate with repellent coating film and manufacturing method therefor
JP4636869B2 (en) Method for producing porous silica-based particles and porous silica-based particles obtained from the method
JP4883967B2 (en) Method for producing porous silica-based particles and porous silica-based particles obtained from the method
KR20040080935A (en) Polishing Slurry
JP2006315110A (en) Abrasive material, manufacturing method and polishing method
WO2010140671A1 (en) Silicon wafer polishing method and silicon wafer
Chen et al. Polystyrene-core silica-shell composite abrasives: the influence of core size on oxide chemical mechanical planarization
JP2000243733A (en) Element isolation forming method
JP6680423B1 (en) Abrasive, glass polishing method, and glass manufacturing method
CN1379803A (en) Improved CMP products
CN114539813A (en) Non-spherical silica particles, preparation method thereof and polishing solution
WO2002060648A1 (en) Polishing film and method for manufacture thereof
TW201425403A (en) Magnetic abrasive finished elastic abrasive material and it&#39;s method for manufacturing
JP2004261942A (en) Polishing grinding wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Effective date: 20131105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131229

A02 Decision of refusal

Effective date: 20140603

Free format text: JAPANESE INTERMEDIATE CODE: A02