JP2010064214A - Double head surface grinder and double-sided grinding method of workpiece - Google Patents

Double head surface grinder and double-sided grinding method of workpiece Download PDF

Info

Publication number
JP2010064214A
JP2010064214A JP2008234505A JP2008234505A JP2010064214A JP 2010064214 A JP2010064214 A JP 2010064214A JP 2008234505 A JP2008234505 A JP 2008234505A JP 2008234505 A JP2008234505 A JP 2008234505A JP 2010064214 A JP2010064214 A JP 2010064214A
Authority
JP
Japan
Prior art keywords
static pressure
workpiece
grinding
thermal expansion
pressure pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008234505A
Other languages
Japanese (ja)
Inventor
Atsushi Shibanaka
篤志 芝中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Machine Systems Corp
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP2008234505A priority Critical patent/JP2010064214A/en
Publication of JP2010064214A publication Critical patent/JP2010064214A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high and stable grinding accuracy by uniformizing the clearance with respect to a workpiece over the entire surfaces thereof by reducing local thermal expansion of static pressure pads due to the influence of grinding heat, and by stabilizing the static pressure supporting force with respect to the workpiece over substantially the entire surface of the workpiece. <P>SOLUTION: A double head surface grinder includes: a pair of static pressure pads to non-contactedly support the thin plate-like workpiece from its both surfaces by static pressure of fluid; a carrier to rotate the workpiece non-contactedly supported by these static pressure pads; and grinding wheels which are disposed at notch portions of these static pressure pads and grind the workpiece. These static pressure pads, and a carrier ring disposed along the outer periphery of the carrier are composed of a material having a low thermal expansion coefficient. The material having the low thermal expansion coefficient is suitably a ceramic material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコンウェーハ等の薄板状のワークの両面を研削するための両頭平面研削盤及びワークの両面研削方法に関するものである。   The present invention relates to a double-head surface grinder for grinding both surfaces of a thin plate-like workpiece such as a silicon wafer and a method for both-side grinding of a workpiece.

シリコンウェーハ等の薄板状のワークの両面を研削する両頭平面研削盤としては、従来、特許文献1、2に記載されたものがある。この両頭平面研削盤は、ポケット部から供給された流体の静圧によりワークを両側から非接触支持する一対の静圧パッドと、この静圧パッドにより非接触支持されたワークを回転させるキャリアと、各静圧パッドの切り欠き部に配置され且つワークを研削する研削砥石とを備えている。   Conventionally, as a double-sided surface grinder for grinding both surfaces of a thin plate-like workpiece such as a silicon wafer, there are those described in Patent Documents 1 and 2. This double-head surface grinding machine has a pair of static pressure pads that non-contact support the work from both sides by the static pressure of the fluid supplied from the pocket portion, a carrier that rotates the work supported non-contact by the static pressure pad, And a grinding wheel that is disposed in a notch portion of each static pressure pad and grinds the workpiece.

静圧パッドには切り欠き部の内周縁に沿って円弧状の内周ポケット部が形成されると共に、この内周ポケット部に対して切り欠き部と反対側に周方向に多数の外周ポケット部が形成され、この各ポケット部相互間に各ポケット部を区画するランド部が形成されている。そして、各ポケット部内には、流体を供給するための供給孔が形成されている。   The static pressure pad is formed with an arc-shaped inner peripheral pocket portion along the inner peripheral edge of the cutout portion, and a large number of outer peripheral pocket portions in the circumferential direction opposite to the cutout portion with respect to the inner peripheral pocket portion. Are formed, and land portions are defined between the pocket portions to partition the pocket portions. And in each pocket part, the supply hole for supplying a fluid is formed.

そして、ワークの研削に際しては、静圧パッドの各供給孔から供給される流体の静圧によりワークを両面側から非接触支持した状態で、キャリアによりワークをその中心廻りに回転させながら、研削砥石の中心側から研削砥石面に研削水を供給しつつ研削砥石によりワークの両面を研削する。
特開2005−205528号公報 特開2007−96015号公報
When grinding the workpiece, the grinding wheel is rotated around its center by the carrier while the workpiece is supported in a non-contact manner from both sides by the static pressure of the fluid supplied from each supply hole of the static pressure pad. Both surfaces of the workpiece are ground by the grinding wheel while supplying grinding water to the surface of the grinding wheel from the center side.
JP 2005-205528 A JP 2007-96015 A

近年では、ワークがシリコンウェーハの場合には要求精度が高精度化し、加工精度の向上とその安定化が必要になっている。しかし、従来は複雑な形状でも加工し易いアルミニウム合金を母材とし、表面加工とアルミニウムイオン流出の防止のために表面をコーティング処理した静圧パッドが使用されている。このためワークの研削中に静圧パッドが研削熱の影響を受けて局部的な熱膨張が発生し、ワークの研削精度に悪影響を与えるという問題がある。   In recent years, when the workpiece is a silicon wafer, the required accuracy has been increased, and it has become necessary to improve and stabilize the processing accuracy. Conventionally, however, a static pressure pad is used which is made of an aluminum alloy which is easy to process even in a complicated shape and whose surface is coated to prevent surface outflow and aluminum ion outflow. For this reason, there is a problem in that the static pressure pad is affected by the grinding heat during the grinding of the workpiece to cause local thermal expansion, which adversely affects the grinding accuracy of the workpiece.

即ち、両頭平面研削盤では、その研削方法からワークの中央部は常に研削砥石と接触している。そのため組み付けられた静圧パッドの平面バラツキによる流体の圧力変動が生まれ、研削中のワークがその圧力変動を受けると研削点に応力が働き、ワークにその影響が転写され研削精度を悪化させてしまう。従って、静圧パッドの取り付け時の組み付け精度は平面度及び平行度を約10μm以内に収まるように調整している。   That is, in the double-head surface grinder, the center portion of the workpiece is always in contact with the grinding wheel because of the grinding method. As a result, fluid pressure fluctuations due to variations in the surface of the assembled hydrostatic pad occur, and when the workpiece being ground is subjected to the pressure fluctuations, stress acts on the grinding point, and the effect is transferred to the workpiece, degrading the grinding accuracy. . Therefore, the assembling accuracy when the hydrostatic pad is attached is adjusted so that the flatness and the parallelism are within about 10 μm.

しかし、従来のアルミニウム合金を母材とした静圧パッドでは、研削精度の高精度化と安定化を実現することは困難であった。そこで、その不安定要素を解明するために、図10(a)及び(b)に示すように静圧パッド1の略中央部A1と、静圧パッド1の下部に形成された切り欠き部2の開口部3の後部B1及び前部C1の両側とに変位センサを取り付けて、静圧パッド1の各測定点の変位を測定したところ、図11に示すような結果が得られた。   However, it has been difficult to achieve high precision and stabilization of the grinding precision with a conventional hydrostatic pad using an aluminum alloy as a base material. Therefore, in order to elucidate the unstable element, as shown in FIGS. 10A and 10B, the substantially central portion A1 of the static pressure pad 1 and the notch 2 formed at the lower portion of the static pressure pad 1 are used. When displacement sensors were attached to both sides of the rear part B1 and the front part C1 of the opening 3 and the displacement at each measurement point of the static pressure pad 1 was measured, the results shown in FIG. 11 were obtained.

図11は1回の研削サイクルにおける測定結果を示し、Aは静圧パッドの略中央部A1の変位を、Bは静圧パッド1の後部B1の変位を、Cは静圧パッド1の前部C1の変位を夫々示す。またDはキャリアの外周部のキャリアリングよりも下でのドレン水温を示し、Eは研削砥石の駆動モータが消費する砥石電流値を示す。   FIG. 11 shows the measurement results in one grinding cycle, where A is the displacement of the substantially central portion A1 of the hydrostatic pad, B is the displacement of the rear B1 of the hydrostatic pad 1, and C is the front of the hydrostatic pad 1. The displacement of C1 is shown respectively. D indicates the drain water temperature below the carrier ring on the outer periphery of the carrier, and E indicates the grinding wheel current value consumed by the driving motor of the grinding wheel.

この図11の測定結果からも判るように、従来の静圧パッド1は熱膨張係数の高いアルミニウム合金を母材としているため、ワークの研削加工中にその研削熱の影響を非常に受け易く、局部的な熱膨張が発生している。特に静圧パッド1の中央領域4での変形量Xは、およそ片側で7μm以上になっており、ワークとの隙間が極端に狭くなっていることが判った。   As can be seen from the measurement results of FIG. 11, the conventional hydrostatic pad 1 is based on an aluminum alloy having a high coefficient of thermal expansion, so that it is very easily affected by the grinding heat during workpiece grinding. Local thermal expansion has occurred. In particular, the deformation amount X in the central region 4 of the static pressure pad 1 is approximately 7 μm or more on one side, and it has been found that the gap with the workpiece is extremely narrow.

これは、ワークを研削砥石で研削する際に発生する研削熱によって熱せられた研削水が、高速回転する研削砥石の遠心力を受けて、静圧パッド1の切り欠き部2の内周面に飛散し、静圧パッド1に局部的な熱膨張が発生するためである。   This is because the grinding water heated by the grinding heat generated when grinding the workpiece with the grinding wheel receives the centrifugal force of the grinding wheel rotating at high speed, and is applied to the inner peripheral surface of the notch portion 2 of the hydrostatic pad 1. This is because it scatters and local thermal expansion occurs in the static pressure pad 1.

因みに静圧パッド1がどのような形状に変形するかを捉えるために、静圧パッド1の取り付け状態をモデリングして、切り欠き部2の内周面側に熱影響を受けた静圧パッドの1形状を熱解析ソフトを用いて解析したところ、静圧パッド1のワーク側の全体が膨張するのではなく、図10(b)に示す略中央部A1及びその周辺部分を含む中央領域4が、図10(a)に二点鎖線で示すように略中央部A1を頂点として山形状に***することが判った。   Incidentally, in order to grasp what shape the static pressure pad 1 is deformed into, the attachment state of the static pressure pad 1 is modeled, and the static pressure pad affected by heat on the inner peripheral surface side of the notch portion 2 is modeled. When one shape was analyzed using thermal analysis software, the entire workpiece side of the static pressure pad 1 did not expand, but a central region 4 including a substantially central portion A1 and its peripheral portion shown in FIG. As shown by the two-dot chain line in FIG. 10 (a), it has been found that the peak is raised in a mountain shape with the substantially central portion A1 as the apex.

従って、静圧パッド1を如何に高精度に組み付けても、熱膨張係数の高いアルミニウム合金を母材とした静圧パッドを使用する限りは、静圧パッド1の形状が研削熱の影響によって崩れ、ワークを非接触支持している静圧パッド1とワークとの隙間が狭くなることにより、ポケットから供給される流体の圧力が上昇し、ワークの研削精度に悪影響を与えることになる。   Therefore, no matter how accurately the hydrostatic pad 1 is assembled, as long as the hydrostatic pad made of an aluminum alloy having a high thermal expansion coefficient is used, the shape of the hydrostatic pad 1 is destroyed by the influence of grinding heat. When the gap between the hydrostatic pad 1 that supports the workpiece in a non-contact manner and the workpiece becomes narrow, the pressure of the fluid supplied from the pocket increases, which adversely affects the grinding accuracy of the workpiece.

本発明は、このような従来の問題点に鑑み、研削熱の影響による静圧パッドの局部的な熱膨張が少なくワークとの隙間をその略全面で均一化でき、ワークに対する静圧支持力がワークの略全面で安定し研削精度の高精度化と安定化を実現することができる両頭平面研削盤及びワークの両面研削方法を提供することを目的とする。   In view of such a conventional problem, the present invention has little local thermal expansion of the static pressure pad due to the influence of grinding heat, can make the gap between the workpiece and the workpiece almost uniform, and has a static pressure supporting force on the workpiece. It is an object of the present invention to provide a double-head surface grinding machine and a double-sided grinding method for a workpiece that can be stabilized over substantially the entire surface of the workpiece and can achieve high precision and stabilization of grinding accuracy.

本発明は、薄板状のワークを両面から流体の静圧により非接触支持する一対の静圧パッドと、該静圧パッドにより非接触支持された前記ワークを回転させるキャリアと、前記各静圧パッドの切り欠き部に配置され且つ前記ワークを研削する研削砥石とを備えた両頭平面研削盤において、熱膨張係数の低い材料により前記各静圧パッドを構成したものである。前記キャリアの外周部に配置されたキャリアリングを熱膨張係数の低い材料により構成してもよい。前記熱膨張係数の低い材料はセラミック材であることが望ましい。   The present invention provides a pair of static pressure pads for non-contact support of a thin plate-like workpiece from both sides by the static pressure of a fluid, a carrier for rotating the workpiece supported by the static pressure pad in a non-contact manner, and each of the static pressure pads In the double-headed surface grinder provided with a grinding wheel for grinding the workpiece, each static pressure pad is made of a material having a low thermal expansion coefficient. You may comprise the carrier ring arrange | positioned at the outer peripheral part of the said carrier with the material with a low thermal expansion coefficient. The material having a low coefficient of thermal expansion is preferably a ceramic material.

また別の本発明は、一対の静圧パッドの非接触支持面側に供給される流体の静圧により薄板状のワークを両側から非接触支持した状態で前記ワークを回転させながら、前記各静圧パッドの切り欠き部に配置された研削砥石により前記ワークの両面を研削するに際し、前記各静圧パッドに熱膨張係数の低い材料を用いるものである。前記熱膨張係数の低い材料はセラミック材であることが望ましい。   In another aspect of the present invention, each of the static pressure pads is rotated while the thin plate-like workpiece is supported in a non-contact support from both sides by the static pressure of the fluid supplied to the non-contact support surface side of the pair of static pressure pads. In grinding both surfaces of the workpiece with a grinding wheel disposed in the notch portion of the pressure pad, a material having a low thermal expansion coefficient is used for each of the static pressure pads. The material having a low coefficient of thermal expansion is preferably a ceramic material.

本発明によれば、各静圧パッドに熱膨張係数の低い材料を使用することにより、研削熱の影響による静圧パッドの局部的な熱膨張が少なくワークとの隙間をその略全面で均一化でき、ワークに対する静圧支持力がワークの略全面で安定し研削精度の高精度化と安定化を実現することができる利点がある。   According to the present invention, by using a material having a low coefficient of thermal expansion for each static pressure pad, there is little local thermal expansion of the static pressure pad due to the influence of grinding heat, and the gap between the workpiece and the workpiece is made uniform over almost the entire surface. In addition, there is an advantage that the static pressure support force for the workpiece is stabilized on substantially the entire surface of the workpiece and the grinding accuracy can be improved and stabilized.

特に熱膨張係数の低い材料としてはセラミック材、ステンレス鋼等の材料を使用することが可能であるため、アルミニウム合金を使用する従来に比較して材料の剛性が向上して、静圧パッド自体の加工精度(平面度や平行度)を高精度に製作することができる利点もある。   In particular, it is possible to use materials such as ceramic materials and stainless steel as materials having a low coefficient of thermal expansion. Therefore, the rigidity of the material is improved as compared with the conventional case using an aluminum alloy, and the static pressure pad itself is improved. There is also an advantage that processing accuracy (flatness and parallelism) can be manufactured with high accuracy.

以下、本発明の実施例を図面に基づいて詳述する。図1〜図4は本発明を横型両頭平面研削盤に採用した第1の実施例を例示する。横型両頭平面研削盤は、図1〜図3に示すように、薄板状のワークWを両面から水等の流体の静圧により非接触支持する左右一対の静圧パッド10と、この静圧パッド10により非接触支持されたワークWを回転させるキャリア11と、各静圧パッド10の切り欠き部12に配置され且つワークWを研削する左右一対の研削砥石13とを備えている。   Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 4 illustrate a first embodiment in which the present invention is employed in a horizontal double-sided surface grinding machine. As shown in FIGS. 1 to 3, the horizontal double-head surface grinding machine includes a pair of left and right static pressure pads 10 that non-contact support a thin plate-like workpiece W by static pressure of a fluid such as water from both sides, and the static pressure pad. 10 is provided with a carrier 11 for rotating the workpiece W supported in a non-contact manner by 10 and a pair of left and right grinding wheels 13 which are disposed in the notch 12 of each static pressure pad 10 and grind the workpiece W.

静圧パッド10は横軸心上に遠近方向に摺動自在に配置されたパッド取り付け台14に着脱自在に装着されている。静圧パッド10、パッド取り付け台14は下部側に円形状の切り欠き部12,15を有し、この切り欠き部12,15を除く全体が略円形状に形成されている。   The static pressure pad 10 is detachably mounted on a pad mounting base 14 slidably disposed on the horizontal axis in the perspective direction. The static pressure pad 10 and the pad mounting base 14 have circular cutout portions 12 and 15 on the lower side, and the entirety excluding the cutout portions 12 and 15 is formed in a substantially circular shape.

静圧パッド10は熱膨張係数の低い材料、例えばアルミナ等のセラミック材Sを母材として構成されており、ワークWと対向する非接触支持面25側に凸状のランド部16〜20と、このランド部16〜20により区画された複数個のポケット部21〜23とを有し、その各ポケット部21〜23内に静圧水(流体)の供給孔24が設けられている。   The static pressure pad 10 is composed of a material having a low thermal expansion coefficient, for example, a ceramic material S such as alumina as a base material, and has land portions 16 to 20 that are convex on the non-contact support surface 25 side facing the workpiece W, A plurality of pocket portions 21 to 23 defined by the land portions 16 to 20 are provided, and a hydrostatic pressure (fluid) supply hole 24 is provided in each of the pocket portions 21 to 23.

ポケット部21〜23には切り欠き部12に近い側に形成された内周ポケット部21と、切り欠き部12から遠い側に形成された外周ポケット部22,23とがある。内周ポケット部21はその切り欠き部12に沿って長い円弧状であって、周方向に複数個、例えば2個形成されている。外周ポケット部22,23は内周ポケット部21を挟んで切り欠き部12と反対側に周方向に複数個、例えば4個あり、内周側ポケット部21の数よりも多くなっている。   The pocket portions 21 to 23 include an inner peripheral pocket portion 21 formed on the side close to the notch portion 12 and outer peripheral pocket portions 22 and 23 formed on the side far from the notch portion 12. The inner peripheral pocket portion 21 has a long arc shape along the cutout portion 12, and a plurality of, for example, two inner peripheral pocket portions 21 are formed in the circumferential direction. There are a plurality of, for example, four outer peripheral pocket portions 22, 23 in the circumferential direction on the opposite side of the notch portion 12 across the inner peripheral pocket portion 21, and the number is larger than the number of the inner peripheral pocket portions 21.

ランド部16〜20は各ポケット部21〜23を区画するように網目状に形成され、そのランド部17〜20には流体を逃がす溝26が形成されている。ランド部16〜20には、切り欠き部12に沿って周方向に形成された内周ランド部16と、静圧パッド10の外周に沿って周方向に形成され且つ両端が内周ランド部16の両端に接続された外周ランド部17と、内周ポケット部21及び外周ポケット部22,23間に内周ランド部16に沿って周方向に形成され且つ両端が外周ランド部17に接続された中間ランド部18と、静圧パッド10の略中央部から静圧パッド10の径方向に上下に延び且つ内周ランド部16、外周ランド部17及び中間ランド部18に夫々接続された縦ランド部19と、この縦ランド部19の両側に所定の間隔を置いて斜め方向に形成され且つ両端が外周ランド部17及び中間ランド部18に接続された斜めランド部20とがある。   The land portions 16 to 20 are formed in a mesh shape so as to partition the pocket portions 21 to 23, and grooves 26 for allowing fluid to escape are formed in the land portions 17 to 20. The land portions 16 to 20 include an inner peripheral land portion 16 formed in the circumferential direction along the notch portion 12, and a circumferential direction formed along the outer periphery of the static pressure pad 10, and both ends of the inner peripheral land portion 16. The outer peripheral land portion 17 connected to both ends of the inner peripheral pocket portion 21, the inner peripheral pocket portion 21, and the outer peripheral pocket portions 22, 23 are formed in the circumferential direction along the inner peripheral land portion 16, and both ends are connected to the outer peripheral land portion 17. An intermediate land portion 18 and a vertical land portion extending vertically from the substantially central portion of the static pressure pad 10 in the radial direction of the static pressure pad 10 and connected to the inner peripheral land portion 16, the outer peripheral land portion 17, and the intermediate land portion 18, respectively. 19 and an oblique land portion 20 which is formed in an oblique direction with a predetermined interval on both sides of the vertical land portion 19 and whose both ends are connected to the outer peripheral land portion 17 and the intermediate land portion 18.

各ポケット部21〜23には、このポケット部21〜23内に静圧水(流体)を供給する供給孔24が形成されている。この供給孔24は各ポケット部21〜23に夫々複数個設けられているが、内周ポケット部21、外周ポケット部22の供給孔24は、静圧パッド10の略中央を通る縦ランド部19の両側周辺に集中的に配置されている。特に内周ポケット部21の供給孔24は縦ランド部19の近傍の数が多くなるように周方向の両端に複数個ずつ配置されている。各供給孔24は静圧パッド10内又は静圧パッド10の非接触支持面25と反対の裏側に形成された供給通路24aを介して裏側の供給口(図示省略)に連通されている。中間ランド部18、縦ランド部19及び斜めランド部20には、静圧水を静圧パッド10の外周側に逃がすための溝26が形成されている。   In each of the pocket portions 21 to 23, supply holes 24 for supplying static pressure water (fluid) into the pocket portions 21 to 23 are formed. A plurality of supply holes 24 are provided in each of the pocket portions 21 to 23, but the supply holes 24 of the inner peripheral pocket portion 21 and the outer peripheral pocket portion 22 are vertical land portions 19 that pass through substantially the center of the static pressure pad 10. It is intensively arranged around both sides. In particular, a plurality of supply holes 24 in the inner peripheral pocket portion 21 are arranged at both ends in the circumferential direction so that the number of the vicinity of the vertical land portion 19 is increased. Each supply hole 24 communicates with a supply port (not shown) on the back side through a supply passage 24 a formed in the static pressure pad 10 or on the back side opposite to the non-contact support surface 25 of the static pressure pad 10. In the intermediate land portion 18, the vertical land portion 19, and the oblique land portion 20, a groove 26 for allowing static pressure water to escape to the outer peripheral side of the static pressure pad 10 is formed.

キャリア11は一対の静圧パッド10間でワークWを回転可能に支持するもので、ワークWが内周孔に横方向に着脱自在に嵌合するキャリア板27と、静圧パッド10の外周の段部36に対応して外周部に配置され且つキャリア板27の外周側を着脱自在に支持するキャリアリング28とを備えている。キャリアリング28は周方向に複数個の支持ローラ(図示省略)により回転自在に支持され、内周ギヤ29に噛合する駆動ギヤ30により回転駆動される。駆動ギヤ30は一方の静圧パッド10、パッド取り付け台14の上部の通孔31に挿通された駆動軸32により装着されている。   The carrier 11 supports the workpiece W so as to be rotatable between the pair of static pressure pads 10, a carrier plate 27 in which the workpiece W is detachably fitted in the inner peripheral hole in the lateral direction, and the outer periphery of the static pressure pad 10. A carrier ring 28 is provided on the outer peripheral portion corresponding to the step portion 36 and detachably supports the outer peripheral side of the carrier plate 27. The carrier ring 28 is rotatably supported by a plurality of support rollers (not shown) in the circumferential direction and is driven to rotate by a drive gear 30 that meshes with an inner peripheral gear 29. The drive gear 30 is mounted by a drive shaft 32 inserted into one of the static pressure pads 10 and the through hole 31 at the top of the pad mounting base 14.

なお、キャリアリング28は、ワークWの研削中の挙動に影響があるため、ワークWの研削熱によって熱せられた研削水が飛散しても熱膨張し難くなるように、静圧パッド10と同様に熱膨張係数の低い材料、例えばアルミナ等のセラミック材S、又はステンレス鋼を母材として構成することが望ましい。   Since the carrier ring 28 has an influence on the behavior of the workpiece W during grinding, the carrier ring 28 is similar to the static pressure pad 10 so that it is difficult to thermally expand even if the grinding water heated by the grinding heat of the workpiece W is scattered. Further, it is desirable to use a material having a low thermal expansion coefficient, for example, a ceramic material S such as alumina, or stainless steel as a base material.

研削砥石13はカップ型等であって、静圧パッド10の軸心と平行に配置された一対の砥石軸33の対向端側の砥石取り付け台34に着脱自在に装着されている。研削砥石13はワークWの研削時にその中心部と外周部とを通過可能な直径を有する。各砥石軸33は軸心方向に移動可能であり、この各砥石軸33には研削砥石13の中心側から研削砥石面に研削水を供給する供給通路35が形成されている。なお、砥石軸33は研削時には図外の砥石駆動モータにより回転駆動される。   The grinding wheel 13 is a cup type or the like, and is detachably mounted on a grindstone mounting base 34 on the opposite end side of a pair of grinding wheel shafts 33 arranged in parallel with the axis of the hydrostatic pad 10. The grinding wheel 13 has a diameter capable of passing through the center portion and the outer peripheral portion when the workpiece W is ground. Each grindstone shaft 33 is movable in the axial direction, and each grindstone shaft 33 is formed with a supply passage 35 for supplying grinding water from the center side of the grinding grindstone 13 to the grinding wheel surface. The grinding wheel shaft 33 is rotationally driven by a grinding wheel drive motor (not shown) during grinding.

この横型両頭平面研削盤を使用してシリコンウェーハ等のワークWを研削する場合には、次のように行う。静圧パッド10の各供給孔24から水等の静圧流体を供給して、静圧パッド10により流体の静圧を介してワークWを両面から非接触状態で静圧支持すると共に、キャリア11によりワークWを図2のP矢印方向に回転させる。そして、砥石軸33の供給通路35から研削水を研削砥石13内へと供給しながら、図2のQ矢印方向に回転する研削砥石13によりワークWの両面を研削する。   When the workpiece W such as a silicon wafer is ground using the horizontal double-sided surface grinder, the following is performed. A static pressure fluid such as water is supplied from each supply hole 24 of the static pressure pad 10, and the workpiece W is statically supported in a non-contact state from both sides by the static pressure pad 10 through the static pressure of the fluid. Thus, the workpiece W is rotated in the direction of arrow P in FIG. Then, both surfaces of the workpiece W are ground by the grinding wheel 13 rotating in the direction of the arrow Q in FIG. 2 while supplying the grinding water into the grinding wheel 13 from the supply passage 35 of the grinding wheel shaft 33.

研削砥石13内に供給された研削水は、高速回転する研削砥石13の遠心力を受けて図1に矢印で示すように外周の砥石面側へと流れ、研削砥石13でワークWを研削する際に発生する研削熱によって熱せられた後、遠心力によって静圧パッド10の切り欠き部12の内周面へと飛散する。   The grinding water supplied into the grinding wheel 13 receives the centrifugal force of the grinding wheel 13 rotating at high speed, and flows to the outer grinding wheel surface side as indicated by an arrow in FIG. 1, and the workpiece W is ground by the grinding wheel 13. After being heated by the grinding heat generated at the time, it is scattered to the inner peripheral surface of the notch 12 of the static pressure pad 10 by centrifugal force.

しかし、熱膨張係数の低いアルミナ等のセラミック材Sを母材とする静圧パッド10を使用することにより、研削熱による静圧パッド10の熱膨張を抑えることができる。この結果、静圧パッド10の非接触支持面25の略全面において、静圧パッド10とワークWとの隙間変化が小さくなり、全体的に両者の隙間を略均一に保つことができるため、ワークWを非接触支持する流体の局部的な圧力変化を抑えることが可能となる。従って、研削時のワークWに余計な応力を与えずに研削できることになり、ワークWの研削精度の高精度化とその安定化を実現することができる。   However, by using the static pressure pad 10 whose base material is a ceramic material S such as alumina having a low thermal expansion coefficient, thermal expansion of the static pressure pad 10 due to grinding heat can be suppressed. As a result, the change in the gap between the static pressure pad 10 and the workpiece W is reduced over substantially the entire surface of the non-contact support surface 25 of the static pressure pad 10, and the gap between the two can be kept substantially uniform as a whole. It becomes possible to suppress the local pressure change of the fluid that supports W in a non-contact manner. Therefore, grinding can be performed without applying extra stress to the workpiece W during grinding, and the grinding accuracy of the workpiece W can be increased and stabilized.

因みにアルミナを母材とした静圧パッド10を製作して、従来のアルミ合金製の静圧パッド1と同様の各部A1〜C1での研削熱の影響による変位A〜Cを測定したところ、図4に示すような測定結果が得られた。この図4の変位Aからも判るように、静圧パッド10の母材を熱膨張係数の低いアルミナに変更することによって、静圧パッド10の略中央部A1の変位量Yは、従来のアルミニウム合金製の場合に比較して約1/3程度に抑えることができた。   Incidentally, a hydrostatic pad 10 made of alumina as a base material was manufactured, and displacements A to C due to the influence of grinding heat at the respective parts A1 to C1 similar to those of the conventional aluminum alloy hydrostatic pad 1 were measured. The measurement result as shown in 4 was obtained. As can be seen from the displacement A in FIG. 4, by changing the base material of the static pressure pad 10 to alumina having a low coefficient of thermal expansion, the displacement amount Y of the substantially central portion A1 of the static pressure pad 10 is reduced to the conventional aluminum. Compared to the case of the alloy, it could be suppressed to about 1/3.

なお、静圧パッド10の中央部を通る縦ランド部19の両側近傍に静圧水の供給孔24が集中して配置されているため、その各供給孔24から供給される静圧水によって静圧パッド10の略中央部の熱膨張を抑えることもできる。   Since the hydrostatic water supply holes 24 are concentrated in the vicinity of both sides of the vertical land portion 19 passing through the central portion of the hydrostatic pad 10, It is also possible to suppress the thermal expansion of the substantially central portion of the pressure pad 10.

また例えばアルミナの場合にはアルミニウム合金に比較して約5倍のヤング率を有する等、静圧パッド10の母材にセラミック材Sを使用することによりその剛性が向上して、静圧パッド10自体の加工精度(平面度や平行度)を高精度に製作することができる。   Further, for example, in the case of alumina, the rigidity is improved by using the ceramic material S as a base material of the static pressure pad 10 such that the Young's modulus is about five times that of an aluminum alloy. The processing accuracy (flatness and parallelism) of itself can be manufactured with high accuracy.

図5は本発明の第2の実施例を例示する。静圧パッド10はアルミナ等のセラミック材Sを母材として構成されると共に、その静圧パッド10内には研削熱の熱影響を受け易い略中央部に対応して冷却通路38が形成されており、この冷却通路38を流れる冷却水により、静圧パッド10の熱影響を受け易い中央部分を内側から強制冷却するようになっている。   FIG. 5 illustrates a second embodiment of the present invention. The static pressure pad 10 is composed of a ceramic material S such as alumina as a base material, and a cooling passage 38 is formed in the static pressure pad 10 corresponding to a substantially central portion that is easily affected by the heat of grinding. In addition, the cooling water flowing through the cooling passage 38 forcibly cools the central portion of the hydrostatic pad 10 that is easily affected by heat from the inside.

冷却通路38は静圧パッド10の略中央部につづら折り、その他の所定形状に集中的に形成されている。また冷却通路38の両端は非接触支持面25と反対の裏側に開口する供給口39と排出口40とに接続され、供給口39から供給された冷却水(冷媒)が、この冷却通路38の静圧パッド10の中央側から外側へと流れる間に、静圧パッド10の熱影響を受け易い中央部分を内側から強制冷却する。なお、冷却水の流れは逆でもよい。他の構成は第1の実施例と同じである。   The cooling passage 38 is folded in a substantially central portion of the static pressure pad 10 and is concentrated in other predetermined shapes. Further, both ends of the cooling passage 38 are connected to a supply port 39 and a discharge port 40 which are opened on the opposite side opposite to the non-contact support surface 25, and cooling water (refrigerant) supplied from the supply port 39 is supplied to the cooling passage 38. While flowing from the center side of the static pressure pad 10 to the outside, the central portion that is susceptible to the thermal effect of the static pressure pad 10 is forcibly cooled from the inside. The cooling water flow may be reversed. Other configurations are the same as those of the first embodiment.

このように静圧パッド10をセラミック材Sを母材として構成する他、静圧パッド10内にその略中央部に対応して冷却通路38を形成して、この冷却通路38を流れる冷却水により静圧パッド10の略中央部を内側から強制冷却することにより、静圧パッド10の中央部分の熱膨張を抑えることができる。   As described above, the static pressure pad 10 is formed by using the ceramic material S as a base material, and a cooling passage 38 is formed in the static pressure pad 10 corresponding to the substantially central portion thereof, and the cooling water flowing through the cooling passage 38 is used. By forcibly cooling the substantially central portion of the static pressure pad 10 from the inside, thermal expansion of the central portion of the static pressure pad 10 can be suppressed.

特に静圧パッド10をセラミック材Sにより構成することにより、冷却通路38を容易に形成することができる。即ち、焼成前のセラミック原料を積層して所定形状に成型する際に、その内部に消失型等を入れて成型する等により、静圧パッド10の略中央部分に冷却通路38を形成し、その後に焼成すればよいので、機械加工により冷却通路38を形成する場合に比較して、複雑な回路構成の冷却通路38を容易に設けることができる。   In particular, when the static pressure pad 10 is made of the ceramic material S, the cooling passage 38 can be easily formed. That is, when the ceramic raw material before firing is laminated and molded into a predetermined shape, a cooling passage 38 is formed in a substantially central portion of the static pressure pad 10 by, for example, putting an extinguishing mold into the inside and forming it. Therefore, the cooling passage 38 having a complicated circuit configuration can be easily provided as compared with the case where the cooling passage 38 is formed by machining.

従って、静圧パッド10の熱影響を受け易い部分に集中的に冷却通路38を配置することも可能であり、冷却水により静圧パッド10を効率的に強制冷却することができる。   Therefore, it is possible to concentrate the cooling passage 38 in a portion where the static pressure pad 10 is easily affected by heat, and the static pressure pad 10 can be efficiently and forcibly cooled by the cooling water.

なお、静圧パッド10内の冷却通路38は薄板状のセラミック原料を複数枚積層することにより設けてもよい。   The cooling passage 38 in the static pressure pad 10 may be provided by laminating a plurality of thin plate-like ceramic raw materials.

図6は本発明の第3の実施例を例示する。この実施例では、静圧パッド10の略中央部分の内、その少なくともランド部16,18,19に対応する部分を強制的に冷却するように、静圧パッド10内に冷却通路38が設けられている。他の構成は第1又は第2の実施例と同じである。   FIG. 6 illustrates a third embodiment of the present invention. In this embodiment, a cooling passage 38 is provided in the static pressure pad 10 so as to forcibly cool at least the portion corresponding to the land portions 16, 18, 19 of the substantially central portion of the static pressure pad 10. ing. Other configurations are the same as those in the first or second embodiment.

静圧パッド10が研削熱の熱影響により熱膨張する場合、凹入状に形成されたポケット部21〜23よりも凸状のランド部16,18,19の膨張が問題となる。従って、少なくとも中央部分のランド部16,18,19に対応して冷却通路38を設けることにより、最重要部分を効率的に強制冷却することができる。   When the static pressure pad 10 is thermally expanded due to the heat effect of grinding heat, the expansion of the land portions 16, 18, and 19 that are more convex than the pocket portions 21 to 23 formed in a recessed shape becomes a problem. Therefore, by providing the cooling passage 38 corresponding to at least the land portions 16, 18, and 19 in the central portion, the most important portion can be efficiently and forcibly cooled.

図7は本発明の第4の実施例を例示する。この実施例では、静圧パッド10の内、熱影響を受け易い中央部分と他の部分とで熱膨張係数の異なるセラミック材S1,S2が使用されている。   FIG. 7 illustrates a fourth embodiment of the present invention. In this embodiment, ceramic materials S1 and S2 having different coefficients of thermal expansion are used in the central portion and other portions that are easily affected by heat in the static pressure pad 10.

即ち、熱膨張係数の低いセラミック材S1,S2の内でも、静圧パッド10の熱影響を受け易い中央部分には熱膨張係数のより低いセラミック材S1が使用され、中央部分を除く他の部分、すなわち中央部分よりも比較的熱影響を受け難い周辺部分には、中央部分のセラミック材S1よりも熱膨張係数の高いセラミック材S2が使用されている。他の構成は第1の実施例と同じである。   That is, among the ceramic materials S1 and S2 having a low thermal expansion coefficient, the ceramic material S1 having a lower thermal expansion coefficient is used in the central portion that is susceptible to the thermal influence of the static pressure pad 10, and the other portions other than the central portion are used. That is, the ceramic material S2 having a higher thermal expansion coefficient than the ceramic material S1 of the central portion is used in the peripheral portion that is relatively less susceptible to heat than the central portion. Other configurations are the same as those of the first embodiment.

このように熱膨張係数の異なるセラミック材S1,S2を組み合わせることにより、静圧パッド10全体の熱膨張が略均一になるようにすることも可能である。   Thus, by combining ceramic materials S1 and S2 having different thermal expansion coefficients, it is possible to make the thermal expansion of the entire static pressure pad 10 substantially uniform.

図8、図9は本発明の第5の実施例を例示する。この実施例では、静圧パッド10の内、ポケット部21〜23に対応する部分以外の部分の略全体が非多孔質のセラミック材Sにより構成されると共に、ポケット部21〜23の底部側に、静圧水供給領域42を構成する多孔質のセラミック材S3が設けられている。そして、静圧パッド10の裏側の供給通路24aから多孔質のセラミック材S3を経て各ポケット部21〜23に略均等に静圧水を供給するようになっている。静圧水供給領域42はポケット部21〜23の底部の略全面に対応している。なお、他の構成は第1の実施例と同様である。   8 and 9 illustrate a fifth embodiment of the present invention. In this embodiment, substantially the entire portion of the static pressure pad 10 other than the portion corresponding to the pocket portions 21 to 23 is made of the non-porous ceramic material S, and on the bottom side of the pocket portions 21 to 23. A porous ceramic material S3 constituting the hydrostatic water supply region 42 is provided. Then, static pressure water is supplied from the supply passage 24a on the back side of the static pressure pad 10 to the pocket portions 21 to 23 through the porous ceramic material S3 substantially evenly. The hydrostatic water supply region 42 corresponds to substantially the entire bottom surface of the pocket portions 21 to 23. Other configurations are the same as those of the first embodiment.

このように多孔質のセラミック材S3によりポケット部21〜23の底部の略全面に静圧水供給領域42を形成し、この静圧水供給領域42の略全面から非接触支持面25側へと静圧水を供給するようにしてもよい。   As described above, the porous ceramic material S3 forms the static pressure water supply region 42 on substantially the entire bottom surface of the pocket portions 21 to 23, and from the substantially entire surface of the static pressure water supply region 42 to the non-contact support surface 25 side. You may make it supply static pressure water.

なお、この実施例では、ポケット部21〜23の底部側の厚さ方向の全体を多孔質のセラミック材S3により構成しているが、厚さ方向のポケット部21〜23側の一部を多孔質のセラミック材S3により構成するのみでもよい。   In this embodiment, the whole thickness direction on the bottom side of the pocket portions 21 to 23 is constituted by the porous ceramic material S3. However, a part of the pocket portions 21 to 23 side in the thickness direction is porous. It may be configured only by the quality ceramic material S3.

以上、本発明の各実施例について詳述したが、この実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。例えば、各実施例では熱膨張係数の低い材料としてセラミック材S〜S2を例示しているが、セラミック材S〜S2に代替してステンレス鋼、その他の低熱膨張材を使用することも可能である。またその場合にも、熱膨張係数の異なる低熱膨張材を組み合わせて使用してもよい。   As mentioned above, although each Example of this invention was explained in full detail, it is not limited to this Example, A various change is possible in the range which does not deviate from the meaning of this invention. For example, although the ceramic materials S to S2 are illustrated as materials having a low thermal expansion coefficient in each embodiment, stainless steel and other low thermal expansion materials can be used instead of the ceramic materials S to S2. . Also in that case, low thermal expansion materials having different thermal expansion coefficients may be used in combination.

静圧パッド10の非接触支持面25側にはランド部16〜20、ポケット部21〜23、溝26が配置されているが、その配置は実施例に例示するものに限らず、他の配置を採用してもよい。横型両頭平面研削盤の他、縦型にも採用可能である。またワークWはシリコンウェーハ以外のものでもよい。   Land portions 16 to 20, pocket portions 21 to 23, and grooves 26 are arranged on the non-contact support surface 25 side of the static pressure pad 10, but the arrangement is not limited to those illustrated in the embodiment, and other arrangements are also possible. May be adopted. In addition to horizontal double-sided surface grinders, it can also be used in vertical types. The workpiece W may be other than a silicon wafer.

本発明の第1の実施例を示す横型両頭平面研削盤の断面図である。1 is a cross-sectional view of a horizontal double-sided surface grinding machine showing a first embodiment of the present invention. 同静圧パッド等の側面図である。It is side views, such as the static pressure pad. 同図2のZ−Z線断面図である。FIG. 3 is a sectional view taken along line ZZ in FIG. 同測定結果を示す図である。It is a figure which shows the same measurement result. 本発明の第2の実施例を示す静圧パッドの一部破断側面図である。It is a partially broken side view of the static pressure pad which shows the 2nd Example of this invention. 本発明の第3の実施例を示す静圧パッドの一部破断側面図である。It is a partially broken side view of the hydrostatic pad which shows the 3rd example of the present invention. 本発明の第4の実施例を示す静圧パッドの一部破断側面図である。It is a partially broken side view of the static pressure pad which shows the 4th example of the present invention. 本発明の第5の実施例を示す静圧パッドの側面図である。It is a side view of the static pressure pad which shows the 5th Example of this invention. 同断面図である。FIG. (a)は従来の静圧パッドの正面図、(b)はその斜視図である。(A) is the front view of the conventional static pressure pad, (b) is the perspective view. 従来の測定結果を示す図である。It is a figure which shows the conventional measurement result.

符号の説明Explanation of symbols

W ワーク
10 静圧パッド
11 キャリア
12 切り欠き部
13 研削砥石
S セラミック材
S1 セラミック材
S2 セラミック材
S3 セラミック材
W Work 10 Static pressure pad 11 Carrier 12 Notch 13 Grinding wheel S Ceramic material S1 Ceramic material S2 Ceramic material S3 Ceramic material

Claims (5)

薄板状のワークを両面から流体の静圧により非接触支持する一対の静圧パッドと、該静圧パッドにより非接触支持された前記ワークを回転させるキャリアと、前記各静圧パッドの切り欠き部に配置され且つ前記ワークを研削する研削砥石とを備えた両頭平面研削盤において、熱膨張係数の低い材料により前記各静圧パッドを構成したことを特徴とする両頭平面研削盤。 A pair of static pressure pads that non-contact support a thin plate-like workpiece from both sides by static pressure of fluid, a carrier that rotates the workpiece supported non-contact by the static pressure pad, and a notch portion of each static pressure pad A double-sided surface grinding machine comprising a grinding wheel for grinding the workpiece, wherein each static pressure pad is made of a material having a low thermal expansion coefficient. 前記キャリアの外周部に配置されたキャリアリングを熱膨張係数の低い材料により構成したことを特徴とする請求項1に記載の両頭平面研削盤。 The double-sided surface grinder according to claim 1, wherein the carrier ring disposed on the outer periphery of the carrier is made of a material having a low coefficient of thermal expansion. 前記熱膨張係数の低い材料はセラミック材であることを特徴とする請求項1又は2に記載の両頭平面研削盤。 3. The double-head surface grinding machine according to claim 1, wherein the material having a low thermal expansion coefficient is a ceramic material. 一対の静圧パッドの非接触支持面側に供給される流体の静圧により薄板状のワークを両側から非接触支持した状態で前記ワークを回転させながら、前記各静圧パッドの切り欠き部に配置された研削砥石により前記ワークの両面を研削するに際し、前記各静圧パッドに熱膨張係数の低い材料を用いることを特徴とするワークの両面研削方法。 While rotating the workpiece in a state where the thin plate-like workpiece is supported in non-contact support from both sides by the static pressure of the fluid supplied to the non-contact support surface side of the pair of static pressure pads, A method for double-side grinding a workpiece, wherein a material having a low coefficient of thermal expansion is used for each of the static pressure pads when grinding both surfaces of the workpiece with a grinding wheel arranged. 前記熱膨張係数の低い材料はセラミック材であることを特徴とする請求項4に記載のワークの両面研削方法。 5. The double-side grinding method for a workpiece according to claim 4, wherein the material having a low thermal expansion coefficient is a ceramic material.
JP2008234505A 2008-09-12 2008-09-12 Double head surface grinder and double-sided grinding method of workpiece Pending JP2010064214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234505A JP2010064214A (en) 2008-09-12 2008-09-12 Double head surface grinder and double-sided grinding method of workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234505A JP2010064214A (en) 2008-09-12 2008-09-12 Double head surface grinder and double-sided grinding method of workpiece

Publications (1)

Publication Number Publication Date
JP2010064214A true JP2010064214A (en) 2010-03-25

Family

ID=42190247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234505A Pending JP2010064214A (en) 2008-09-12 2008-09-12 Double head surface grinder and double-sided grinding method of workpiece

Country Status (1)

Country Link
JP (1) JP2010064214A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131745A (en) * 2008-10-31 2010-06-17 Sumco Techxiv株式会社 Double-head grinder for wafer, and double-head grinding method
JP2013524484A (en) * 2010-03-26 2013-06-17 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Hydrostatic pad pressure adjustment in simultaneous double-sided wafer grinder
JP2014104515A (en) * 2012-11-23 2014-06-09 Koyo Mach Ind Co Ltd Thermal deformation prevention device of static pressure pad in double-side grinding apparatus and double-side grinding apparatus
JP2015058482A (en) * 2013-09-17 2015-03-30 光洋機械工業株式会社 Static pressure pad for duplex surface grinder and duplex surface grinding method of workpiece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569312A (en) * 1991-05-16 1993-03-23 Ibiden Co Ltd Method and jig for grinding optical device
JP2003071706A (en) * 2001-08-30 2003-03-12 Kyocera Corp Lapping apparatus
JP2005205528A (en) * 2004-01-22 2005-08-04 Koyo Mach Ind Co Ltd Double ended surface grinding attachment
JP2009190125A (en) * 2008-02-14 2009-08-27 Shin Etsu Handotai Co Ltd Double-side grinding machine and double-side grinding method for workpiece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569312A (en) * 1991-05-16 1993-03-23 Ibiden Co Ltd Method and jig for grinding optical device
JP2003071706A (en) * 2001-08-30 2003-03-12 Kyocera Corp Lapping apparatus
JP2005205528A (en) * 2004-01-22 2005-08-04 Koyo Mach Ind Co Ltd Double ended surface grinding attachment
JP2009190125A (en) * 2008-02-14 2009-08-27 Shin Etsu Handotai Co Ltd Double-side grinding machine and double-side grinding method for workpiece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131745A (en) * 2008-10-31 2010-06-17 Sumco Techxiv株式会社 Double-head grinder for wafer, and double-head grinding method
JP2013524484A (en) * 2010-03-26 2013-06-17 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Hydrostatic pad pressure adjustment in simultaneous double-sided wafer grinder
JP2014104515A (en) * 2012-11-23 2014-06-09 Koyo Mach Ind Co Ltd Thermal deformation prevention device of static pressure pad in double-side grinding apparatus and double-side grinding apparatus
JP2015058482A (en) * 2013-09-17 2015-03-30 光洋機械工業株式会社 Static pressure pad for duplex surface grinder and duplex surface grinding method of workpiece

Similar Documents

Publication Publication Date Title
JP4985451B2 (en) Double-head grinding apparatus for workpiece and double-head grinding method for workpiece
JP5334568B2 (en) Roll polishing method
JP5233888B2 (en) Method for manufacturing carrier for double-side polishing apparatus, carrier for double-side polishing apparatus and double-side polishing method for wafer
JP5463570B2 (en) Double-head grinding apparatus for wafer and double-head grinding method
JP2010064214A (en) Double head surface grinder and double-sided grinding method of workpiece
KR20110022563A (en) Double-head grinding apparatus and wafer manufacturing method
JP6033652B2 (en) Static pressure pad thermal deformation prevention device and double-sided grinding device in double-sided grinding device
JP3993856B2 (en) Double-head surface grinding machine
JPH0811048A (en) Grooved roller for wire saw
TWI622461B (en) Carrier ring, grinding device, and grinding method
JP2009197943A (en) Gas bearing spindle
JP2011161611A (en) Method for mounting carrier
JP2009068649A (en) Spindle device
JP6033614B2 (en) Thin-walled disk-shaped workpiece carrier device, manufacturing method thereof, and double-side grinding device
JP2009045690A (en) Rotating surface plate for double face lapping machine
JPS61121802A (en) Antifriction bearing for machine tool spindle
JP2006237098A (en) Double-sided polishing apparatus and method of double-sided polishing
JP5254661B2 (en) Rotating surface plate for double-sided lapping machine
JP5211958B2 (en) Processing fluid supply device
JP2011051027A (en) Connecting flange
JP2002254297A (en) Lapping surface plate with spiral groove
JP2013137082A (en) Bearing and grinding device
JP5381555B2 (en) Plate workpiece polishing apparatus and plate workpiece polishing method
JP2006167823A (en) Spindle device
JP2009279730A (en) Workpiece holding tool and workpiece machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A131 Notification of reasons for refusal

Effective date: 20121030

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130206

RD04 Notification of resignation of power of attorney

Effective date: 20130213

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A02 Decision of refusal

Effective date: 20130319

Free format text: JAPANESE INTERMEDIATE CODE: A02