JP2010062660A - Ultrasonic vibration element and method of manufacturing the same, and ultrasonic cleaning device - Google Patents

Ultrasonic vibration element and method of manufacturing the same, and ultrasonic cleaning device Download PDF

Info

Publication number
JP2010062660A
JP2010062660A JP2008223779A JP2008223779A JP2010062660A JP 2010062660 A JP2010062660 A JP 2010062660A JP 2008223779 A JP2008223779 A JP 2008223779A JP 2008223779 A JP2008223779 A JP 2008223779A JP 2010062660 A JP2010062660 A JP 2010062660A
Authority
JP
Japan
Prior art keywords
ultrasonic vibration
ultrasonic
vibration element
frequency
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223779A
Other languages
Japanese (ja)
Other versions
JP5245064B2 (en
Inventor
Maki Okawa
真樹 大川
Kazuya Kikuchi
和弥 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Denki Engineering Co Ltd
Original Assignee
Hitachi Kokusai Denki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Denki Engineering Co Ltd filed Critical Hitachi Kokusai Denki Engineering Co Ltd
Priority to JP2008223779A priority Critical patent/JP5245064B2/en
Publication of JP2010062660A publication Critical patent/JP2010062660A/en
Application granted granted Critical
Publication of JP5245064B2 publication Critical patent/JP5245064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic vibration element having a plurality of different thicknesses for generating ultrasonic vibrations of a plurality of different frequencies. <P>SOLUTION: The ultrasonic vibration element includes a piezoelectric element 81, a positive pole P and a negative pole M formed in the piezoelectric element 81, grooves 83 and 84 formed in the piezoelectric element 81, and another positive pole P2 formed on the bottom of the grooves 83 and 84. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超音波振動を発生する超音波振動素子及びその製造方法、並びに超音波振動素子を備え、特に半導体ウエハ、ガラスマスク、液晶用のガラス基板、ハードディスク等のむらのない均一な精密洗浄が求められる超音波洗浄装置に関するものである。   The present invention includes an ultrasonic vibration element that generates ultrasonic vibration, a method of manufacturing the same, and an ultrasonic vibration element. In particular, uniform and precise cleaning of semiconductor wafers, glass masks, glass substrates for liquid crystals, hard disks, and the like can be performed. The present invention relates to a required ultrasonic cleaning apparatus.

半導体ウエハ、液晶用のガラス基板、ハードディスク等の微細加工品の精密洗浄には、高周波の超音波洗浄装置が用いられている。汚れは1μm未満の粒子等であり、洗浄糟内に満たされた洗浄液中を伝わる超音波振動、あるいは、洗浄液と超音波振動の相乗効果により、汚れを剥離させている。   A high-frequency ultrasonic cleaning apparatus is used for precision cleaning of microfabricated products such as semiconductor wafers, glass substrates for liquid crystals, and hard disks. The dirt is particles of less than 1 μm, and the dirt is peeled off by the ultrasonic vibration transmitted through the cleaning liquid filled in the cleaning basket or by the synergistic effect of the cleaning liquid and the ultrasonic vibration.

図5は一般的な超音波洗浄装置を示す構成説明図である。図5において、11は外槽、12は石英槽、13は超音波振動素子、14は高周波電源、15は純水、16は洗浄液、17はシリコンウエハである。   FIG. 5 is an explanatory diagram showing a configuration of a general ultrasonic cleaning apparatus. In FIG. 5, 11 is an outer tank, 12 is a quartz tank, 13 is an ultrasonic vibration element, 14 is a high-frequency power source, 15 is pure water, 16 is a cleaning liquid, and 17 is a silicon wafer.

図5に示すように、外槽11の内部には石英槽12が収容され、前記外槽11内には純水15が入れられると共に前記石英槽12内には例えば純水等の洗浄液16が入れられる。前記石英槽12内の洗浄液16中には被洗浄物であるシリコンウエハ17が入れられる。前記石英槽12の底部に対応した外槽11の底部には超音波振動素子13が設けられ、前記超音波振動素子13には高周波電源14が接続される。   As shown in FIG. 5, a quartz tank 12 is accommodated in the outer tank 11, pure water 15 is placed in the outer tank 11, and a cleaning liquid 16 such as pure water is contained in the quartz tank 12. Can be put. A silicon wafer 17 as an object to be cleaned is placed in the cleaning liquid 16 in the quartz tank 12. An ultrasonic vibration element 13 is provided at the bottom of the outer tank 11 corresponding to the bottom of the quartz tank 12, and a high frequency power source 14 is connected to the ultrasonic vibration element 13.

すなわち、高周波電源14から高周波電力が超音波振動素子13に供給されると、超音波振動素子13は励振されて超音波振動する。前記超音波振動素子13の超音波振動は石英槽12の底部を透過して洗浄液16に伝達される。洗浄液16中に伝わる超音波振動、あるいは洗浄液と超音波振動の相乗効果により、シリコンウエハ17の汚れを剥離させる。   That is, when high frequency power is supplied from the high frequency power supply 14 to the ultrasonic vibration element 13, the ultrasonic vibration element 13 is excited and vibrates ultrasonically. The ultrasonic vibration of the ultrasonic vibration element 13 is transmitted to the cleaning liquid 16 through the bottom of the quartz tank 12. The contamination of the silicon wafer 17 is peeled off by the ultrasonic vibration transmitted into the cleaning liquid 16 or the synergistic effect of the cleaning liquid and the ultrasonic vibration.

一般的には超音波振動素子13は1つの共振周波数を持ち、振動効率が最大となるよう、高周波電源14からはその共振周波数を供給する。   In general, the ultrasonic vibration element 13 has one resonance frequency, and the resonance frequency is supplied from the high frequency power supply 14 so that the vibration efficiency is maximized.

図6は従来の石英槽底面の超音波透過を説明する説明図である。図6において、121は石英槽底面である。図6に示すように、石英槽底面121の板厚をt、石英槽底面121の音速v、超音波周波数fとすると、石英槽底面121の超音波透過条件は次式で与えられる。   FIG. 6 is an explanatory diagram for explaining ultrasonic transmission through the bottom surface of a conventional quartz tank. In FIG. 6, 121 is a quartz tank bottom face. As shown in FIG. 6, assuming that the thickness of the quartz tank bottom surface 121 is t, the sound velocity v of the quartz tank bottom surface 121, and the ultrasonic frequency f, the ultrasonic transmission condition of the quartz tank bottom surface 121 is given by the following equation.

t=v/(2・f)・n
但し、nは自然数である。
t = v / (2 · f) · n
However, n is a natural number.

図7は従来の石英槽底面の超音波透過特性を示す特性図である。図7では超音波振動の周波数を1MHzとしている。図7に示すように、透過ポイントが2箇所現れていることが分かる。このように、超音波振動の周波数とそれが透過する板厚には密接な関係が存在する。   FIG. 7 is a characteristic diagram showing the ultrasonic transmission characteristics of the bottom surface of a conventional quartz tank. In FIG. 7, the frequency of ultrasonic vibration is 1 MHz. As shown in FIG. 7, it can be seen that two transmission points appear. Thus, there is a close relationship between the frequency of ultrasonic vibration and the thickness of the plate through which it passes.

図8(a),(b)は従来の超音波振動素子の共振特性を示す特性図である。すなわち、通常の超音波振動素子には基本周波数とその周波数に対して2n+1(nは自然数)にて表される高次の共振周波数が存在する。例として、図8(a)に公称1000kHzの超音波振動素子の共振点実測値と理論的な共振点を示し、図8(b)に公称2000kHzの超音波振動素子の共振点実測値と理論的な共振点を示す。横軸が周波数で縦軸がアドミッタンスであり、下限の位置が共振周波数を示す。図8(a)の共振周波数は第1次979kHz、第2次2899kHz、第3次4800kHzであることが分かる。なお、この超音波振動素子の設計値は975kHzであり、設計上の共振周波数は第1次975kHz、第2次2925kHz、第3次4875kHzであり、高次も含めてほぼ設計値通りである。図8(b)の公称2000kHzも同様のことが言える。
特開平5−291227号公報 特許第2789178号公報
8A and 8B are characteristic diagrams showing resonance characteristics of a conventional ultrasonic vibration element. That is, a normal ultrasonic vibration element has a fundamental frequency and a high-order resonance frequency represented by 2n + 1 (n is a natural number) with respect to the fundamental frequency. As an example, FIG. 8 (a) shows the actual resonance point and theoretical resonance point of a nominal 1000 kHz ultrasonic vibration element, and FIG. 8 (b) shows the actual resonance point actual value and theory of a nominal 2000 kHz ultrasonic vibration element. Resonance point is shown. The horizontal axis represents frequency, the vertical axis represents admittance, and the lower limit position represents the resonance frequency. It can be seen that the resonance frequencies in FIG. 8A are the first order 979 kHz, the second order 2899 kHz, and the third order 4800 kHz. The design value of this ultrasonic vibration element is 975 kHz, and the designed resonance frequencies are the first order 975 kHz, the second order 2925 kHz, and the third order 4875 kHz, which are almost the same as the design values including the higher order. The same can be said for the nominal 2000 kHz in FIG.
JP-A-5-291227 Japanese Patent No. 2789178

年々、半導体洗浄は高性能、多様化しており、汚れの粒子形状は大小様々、固着状態・粒子材質も様々であり、その上洗浄対象の精密度が格段に上がっているため、洗浄むら、被洗浄物へのダメージが顕著となっている。   Semiconductor cleaning is becoming more sophisticated and diverse year after year, the particle shape of dirt varies in size, the state of adherence and the particle material, and the precision of the object to be cleaned has increased dramatically. The damage to the cleaning item is remarkable.

しかし、現在ユーザが超音波洗浄に対して制御出来るのは、出力制御だけである。超音波洗浄において、出力の他に重要な要素としては周波数があり、同じ出力でも周波数の高低で洗浄出来る粒子径の大小や、微細品に対するダメージの発生に差異が出る。   However, it is only output control that the user can control for ultrasonic cleaning at present. In ultrasonic cleaning, there is a frequency as an important factor in addition to the output, and there is a difference in the size of the particle size that can be cleaned at the same output even at high and low frequencies, and the occurrence of damage to fine products.

近年の洗浄の多様化に伴って、半導体ウエハの枚葉洗浄化等、洗浄装置には必ずしも石英槽があるわけではなく、従来の石英槽板厚に合わせた単一周波数が必要というわけではない。   Along with the diversification of cleaning in recent years, a cleaning apparatus such as single wafer cleaning of a semiconductor wafer does not necessarily have a quartz tank, and a single frequency according to the thickness of a conventional quartz tank is not necessarily required. .

すなわち、超音波洗浄の利便性を向上すべく、従来の出力制御に加えて周波数制御機能を備えることが好ましいと考えられる。   That is, in order to improve the convenience of ultrasonic cleaning, it is preferable to provide a frequency control function in addition to the conventional output control.

尚、超音波洗浄装置の発振周波数制御に関しては、例えば特許文献2の様に石英槽底面の超音波透過率の向上を目的として、基本周波数に対して数%程度周波数変調させる技術があるが、洗浄力の直接的制御を目的とした周波数制御ではない。   As for the oscillation frequency control of the ultrasonic cleaning apparatus, for example, as in Patent Document 2, for the purpose of improving the ultrasonic transmittance of the bottom surface of the quartz tank, there is a technique of frequency modulation about several percent with respect to the fundamental frequency. It is not frequency control aimed at direct control of cleaning power.

本発明は上記の事情に鑑みてなされたもので、複数の異なる周波数の超音波振動を発生する複数の異なる厚みを有する超音波振動素子及びその製造方法を提供すると共に、前記超音波振動素子を備え、超音波振動の出力、周波数といった超音波洗浄力の重要な要素を制御することにより、洗浄力の直接的な周波数制御を行い、洗浄効果を最大限に制御して洗浄対象の多様化に対応できる超音波洗浄装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an ultrasonic vibration element having a plurality of different thicknesses for generating ultrasonic vibrations of a plurality of different frequencies and a method for manufacturing the same, and the ultrasonic vibration element. By controlling important elements of ultrasonic cleaning power such as ultrasonic vibration output and frequency, direct frequency control of cleaning power is performed to maximize the cleaning effect and diversify the cleaning target. It is an object of the present invention to provide an ultrasonic cleaning apparatus that can be used.

上記目的を達成するために本発明の超音波振動素子は、圧電素子と、前記圧電素子に形成した陽極及び陰極と、前記圧電素子に形成した溝と、前記溝の底面に形成した別の陽極とを備えたことを特徴とするものである。   In order to achieve the above object, an ultrasonic vibration element of the present invention includes a piezoelectric element, an anode and a cathode formed on the piezoelectric element, a groove formed on the piezoelectric element, and another anode formed on the bottom surface of the groove. It is characterized by comprising.

また本発明の超音波洗浄装置は、前記超音波振動素子が給電のための配線本数を減らすべく、振動素子上に立体配線構造を具備することを特徴とするものである。   The ultrasonic cleaning apparatus of the present invention is characterized in that the ultrasonic vibration element has a three-dimensional wiring structure on the vibration element so as to reduce the number of wires for power feeding.

また本発明の超音波振動素子の製造方法は、圧電素子の上面及び下面に第1の陽極及び陰極を形成するステップと、前記圧電素子に第1の陽極から溝を形成するステップと、前記溝の底面に第2の陽極を形成するステップと、前記溝の一部に絶縁物を挿入するステップと、前記絶縁物上に前記第1の陽極を接続する電極を形成するステップとを有することを特徴とする。   The method of manufacturing an ultrasonic vibration element according to the present invention includes the steps of forming a first anode and a cathode on the upper surface and the lower surface of the piezoelectric element, forming a groove from the first anode in the piezoelectric element, and the groove Forming a second anode on the bottom surface, inserting an insulator into a part of the groove, and forming an electrode connecting the first anode on the insulator. Features.

本発明の超音波洗浄装置は、複数の異なる周波数の超音波振動を発生する複数の異なる厚みを有する超音波振動素子を備え、超音波振動の出力、周波数といった超音波洗浄力の重要な要素を制御することにより、洗浄力の直接的な周波数制御を行い、洗浄効果を最大限に制御して洗浄対象の多様化に対応でき、比較的安価で高性能、高効率にできる。   The ultrasonic cleaning apparatus of the present invention includes ultrasonic vibration elements having a plurality of different thicknesses that generate a plurality of ultrasonic vibrations having different frequencies, and provides important elements of ultrasonic cleaning power such as output and frequency of ultrasonic vibrations. By controlling, direct frequency control of the cleaning power can be performed, and the cleaning effect can be controlled to the maximum to cope with the diversification of objects to be cleaned.

以下図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1(a)は本発明の実施形態に係る超音波洗浄装置を示す概略的斜視図であり、図1(b)〜(f)は本発明の実施形態に係る超音波振動子(図1(a)のA部)の異なる例を示す概略的斜視図である。   FIG. 1A is a schematic perspective view showing an ultrasonic cleaning apparatus according to an embodiment of the present invention, and FIGS. 1B to 1F are ultrasonic transducers according to the embodiment of the present invention (FIG. 1). It is a schematic perspective view which shows the different example of A part of (a).

図1(a)において、21は外槽、22は超音波振動素子、24は純水である。図1(a)に示すように、有底矩形筒状の外槽21の内部には被洗浄物を洗浄する洗浄液が収容された洗浄槽が設けられる。前記外槽21の底部には500kHz以上の複数の異なる周波数の超音波振動を発生する複数の異なる厚みを有する超音波振動素子22が設けられる。前記超音波振動素子22には高周波電源が接続される。   In FIG. 1A, 21 is an outer tub, 22 is an ultrasonic vibration element, and 24 is pure water. As shown in FIG. 1A, a cleaning tank containing a cleaning liquid for cleaning an object to be cleaned is provided in the bottomed rectangular cylindrical outer tank 21. The bottom of the outer tub 21 is provided with a plurality of ultrasonic vibration elements 22 having a plurality of different thicknesses that generate ultrasonic vibrations having a plurality of different frequencies of 500 kHz or more. A high frequency power source is connected to the ultrasonic vibration element 22.

すなわち、高周波電源から複数の異なる周波数の高周波電力が超音波振動素子22に供給され、前記超音波振動素子22から複数の異なる周波数の超音波振動が発生する。前記超音波振動素子22が発生する超音波振動は、前記外槽21内の洗浄槽の洗浄液に伝達される。外槽21内の洗浄槽では洗浄液中に伝わる超音波振動、あるいは洗浄液と超音波振動の相乗効果により、例えばシリコンウエハ等の被洗浄物の汚れを剥離させる。   That is, high frequency power of a plurality of different frequencies is supplied from the high frequency power source to the ultrasonic vibration element 22, and ultrasonic vibrations of a plurality of different frequencies are generated from the ultrasonic vibration element 22. The ultrasonic vibration generated by the ultrasonic vibration element 22 is transmitted to the cleaning liquid in the cleaning tank in the outer tank 21. In the cleaning tank in the outer tank 21, dirt of an object to be cleaned such as a silicon wafer is peeled off by the ultrasonic vibration transmitted in the cleaning liquid or the synergistic effect of the cleaning liquid and the ultrasonic vibration.

図1(b)は超音波振動素子22として、スリット加工により厚さの異なる細長い凸部31,32を形成し、超音波振動素子22の小領域にそれぞれ違った厚みを持たせる。凸部31は厚さL1で周波数f1の超音波振動を発生し、凸部32は厚さL2(L2<L1)で周波数f2(f2>f1)の超音波振動を発生する。すなわち、超音波振動素子22は周波数f1,f2の複数の共振周波数を持つことになる。   In FIG. 1 (b), as the ultrasonic vibration element 22, elongated protrusions 31 and 32 having different thicknesses are formed by slit processing, and the small areas of the ultrasonic vibration element 22 have different thicknesses. The convex portion 31 generates ultrasonic vibration of the frequency f1 at the thickness L1, and the convex portion 32 generates ultrasonic vibration of the frequency f2 (f2> f1) at the thickness L2 (L2 <L1). That is, the ultrasonic vibration element 22 has a plurality of resonance frequencies of frequencies f1 and f2.

図1(c)は超音波振動素子22として、加工により厚さの異なる角柱凸部41,42を形成し、超音波振動素子22の小領域にそれぞれ違った厚みを持たせる。凸部41は厚さL1で周波数f1の超音波振動を発生し、凸部42は厚さL2(L2<L1)で周波数f2(f2>f1)の超音波振動を発生する。   In FIG. 1C, as the ultrasonic vibration element 22, prismatic convex portions 41 and 42 having different thicknesses are formed by processing, and the small areas of the ultrasonic vibration element 22 have different thicknesses. The convex portion 41 generates ultrasonic vibration of the frequency f1 at the thickness L1, and the convex portion 42 generates ultrasonic vibration of the frequency f2 (f2> f1) at the thickness L2 (L2 <L1).

図1(d)は超音波振動素子22として、高さの異なる小さな角柱51と52を複数寄せ集めて一体に形成し、超音波振動素子22の小領域にそれぞれ違った厚みを持たせる。角柱51は厚さL1で周波数f1の超音波振動を発生し、角柱52は厚さL2(L2<L1)で周波数f2(f2>f1)の超音波振動を発生する。   In FIG. 1D, as the ultrasonic vibration element 22, a plurality of small prisms 51 and 52 having different heights are gathered together and integrally formed, and the small areas of the ultrasonic vibration element 22 have different thicknesses. The rectangular column 51 generates ultrasonic vibration of the frequency f1 at the thickness L1, and the rectangular column 52 generates ultrasonic vibration of the frequency f2 (f2> f1) at the thickness L2 (L2 <L1).

図1(e)は超音波振動素子22として、高さの異なる小さな円柱61と62を複数寄せ集めて一体に形成し、超音波振動素子22の小領域にそれぞれ違った厚みを持たせる。円柱61は厚さL1で周波数f1の超音波振動を発生し、円柱62は厚さL2(L2<L1)で周波数f2(f2>f1)の超音波振動を発生する。   In FIG. 1E, the ultrasonic vibration element 22 is formed by integrating a plurality of small cylinders 61 and 62 having different heights so that the small areas of the ultrasonic vibration element 22 have different thicknesses. The cylinder 61 generates ultrasonic vibration of the frequency f1 at the thickness L1, and the cylinder 62 generates ultrasonic vibration of the frequency f2 (f2> f1) at the thickness L2 (L2 <L1).

図1(f)は超音波振動素子22として、小さな円形穴71を複数形成し、超音波振動素子22の小領域にそれぞれ違った厚みを持たせる。円形穴がない部分71で形成される厚さL1の部分で周波数f1の超音波振動を発生し、円形穴72の底部で形成される厚さL2(L2<L1)の部分で周波数f2(f2>f1)の超音波振動を発生する。   In FIG. 1 (f), a plurality of small circular holes 71 are formed as the ultrasonic vibration element 22, and different thicknesses are given to the small areas of the ultrasonic vibration element 22. An ultrasonic vibration having a frequency f1 is generated in a portion having a thickness L1 formed by the portion 71 having no circular hole, and a frequency f2 (f2) is generated in a portion having a thickness L2 (L2 <L1) formed in the bottom portion of the circular hole 72. The ultrasonic vibration of> f1) is generated.

すなわち、超音波振動素子22に様々な周波数を発振させるためには、超音波振動素子22はそれに応じた複数の共振周波数を持つ必要がある。超音波振動素子22の基本共振周波数は、超音波振動素子22の厚さに応じて決定される。したがって、超音波振動素子22の小領域毎にそれぞれ違った厚みを持たせることによって、複数の異なる共振周波数を持つことが出来る。共振周波数と超音波振動素子22の厚みは反比例の関係なので、超音波振動素子22の厚みを半分にすれば周波数は2倍になる。   That is, in order to cause the ultrasonic vibration element 22 to oscillate various frequencies, the ultrasonic vibration element 22 needs to have a plurality of resonance frequencies corresponding thereto. The basic resonance frequency of the ultrasonic vibration element 22 is determined according to the thickness of the ultrasonic vibration element 22. Therefore, a plurality of different resonance frequencies can be obtained by providing different thicknesses for each small region of the ultrasonic vibration element 22. Since the resonance frequency and the thickness of the ultrasonic vibration element 22 are inversely proportional to each other, if the thickness of the ultrasonic vibration element 22 is halved, the frequency is doubled.

尚、超音波振動素子22の厚さは2種類に限らず所望される周波数に応じて3種以上の厚みにしても良く、この場合には、3種以上の周波数の超音波振動を発生することができる。   The thickness of the ultrasonic vibration element 22 is not limited to two types, and may be three or more types according to a desired frequency. In this case, ultrasonic vibrations having three or more types of frequencies are generated. be able to.

本発明の実施形態は、比較的安価で高性能、高効率の超音波洗浄装置を提供することが可能となる。超音波洗浄装置の発振周波数制御に関しては、洗浄力の直接的制御を目的とした周波数制御であり、基本周波数の25%以上変化させ、洗浄効果を最大限に制御出来る。   Embodiments of the present invention can provide a relatively inexpensive, high-performance, and highly efficient ultrasonic cleaning apparatus. Regarding the oscillation frequency control of the ultrasonic cleaning apparatus, it is a frequency control for the purpose of direct control of the cleaning power, and the cleaning effect can be controlled to the maximum by changing it by 25% or more of the fundamental frequency.

図3は本発明の実施形態に係る超音波洗浄装置の洗浄効果を示す特性図である。すなわち、超音波洗浄では、超音波が水中に発振され、その時に発生するキャビテーションの衝撃波のエネルギーにより被洗浄物に付着する汚れを剥離させると同時に洗浄ダメージの原因となる。このキャビテーションの発生は、周波数が高くなるに従って弱くなると共に、超音波出力が低くなるに従って弱くなる傾向があり、図3に示すように周波数、出力を洗浄対象に最適な値に保つことにより、ダメージ無く良好な洗浄が行える。   FIG. 3 is a characteristic diagram showing the cleaning effect of the ultrasonic cleaning apparatus according to the embodiment of the present invention. That is, in ultrasonic cleaning, ultrasonic waves are oscillated in water, and the dirt adhering to the object to be cleaned is peeled off by the energy of cavitation shock waves generated at that time, and at the same time, causes cleaning damage. The occurrence of cavitation tends to become weaker as the frequency becomes higher and weaker as the ultrasonic output becomes lower. As shown in FIG. 3, the frequency and output are maintained at the optimum values for the object to be cleaned. And good cleaning.

図2(a)は本発明の実施形態に係る超音波洗浄装置を示す概略的斜視図であり、図2(b),(c)は本発明の実施形態に係る超音波振動子の配線を示す構成説明図である。図2(a)〜(c)中、図1(a),(b)と同一部分は同一符号を付してその説明を省略する。尚、図2(a)は図1(a)と同じであり、図2(b)は図1(b)に対応している。   FIG. 2A is a schematic perspective view showing an ultrasonic cleaning apparatus according to the embodiment of the present invention, and FIGS. 2B and 2C show wiring of the ultrasonic vibrator according to the embodiment of the present invention. FIG. 2 (a) to 2 (c), the same parts as those in FIGS. 1 (a) and 1 (b) are denoted by the same reference numerals and the description thereof is omitted. 2A is the same as FIG. 1A, and FIG. 2B corresponds to FIG. 1B.

図2(b)に示すように、超音波振動素子22の上面を陰極(コモン電極)Mとし、凸部31の頂点を第1の陽極P1(周波数f1の超音波振動を発生)としてまとめて共通に配線すると共に、凸部32の頂点を第2の陽極P2(周波数f2の超音波振動を発生)としてまとめて共通に配線する。   As shown in FIG. 2B, the upper surface of the ultrasonic vibration element 22 is a cathode (common electrode) M, and the apex of the convex portion 31 is a first anode P1 (which generates ultrasonic vibration of frequency f1). In addition to wiring in common, the vertexes of the protrusions 32 are collectively wired as the second anode P2 (which generates ultrasonic vibration of frequency f2).

この場合、超音波振動素子22の上面の陰極M、凸部31の頂点をまとめて共通に配線した第1の陽極P1、及び凸部32の頂点をまとめて共通に配線した第2の陽極P2として導電性のメッキを施してもよい。   In this case, the cathode M on the upper surface of the ultrasonic vibration element 22, the first anode P1 in which the vertices of the convex portions 31 are wired in common, and the second anode P2 in which the vertices of the convex portions 32 are collectively wired in common. Conductive plating may be applied.

図2(c)に示すように、まとめて共通に配線した第1の陽極P1と第2の陽極P2を並列配線して高周波電源25に接続し、1周波数系統の給電ラインとする。   As shown in FIG. 2C, the first anode P1 and the second anode P2, which are commonly wired together, are wired in parallel and connected to the high frequency power supply 25 to form a power supply line for one frequency system.

すなわち、高周波電源25から周波数f1の高周波電力と周波数f2の高周波電力を交互に出力して第1の陽極P1と第2の陽極P2に供給すると、周波数f1の高周波電力で超音波振動素子22の凸部31に対応する部分で周波数f1の超音波振動を発生し、周波数f2の高周波電力で超音波振動素子22の凸部32に対応する部分で周波数f2の超音波振動を発生する。   That is, when the high-frequency power of frequency f1 and the high-frequency power of frequency f2 are alternately output from the high-frequency power supply 25 and supplied to the first anode P1 and the second anode P2, the ultrasonic vibration element 22 has a high frequency power of the frequency f1. Ultrasonic vibration of frequency f1 is generated in a portion corresponding to the convex portion 31, and ultrasonic vibration of frequency f2 is generated in a portion corresponding to the convex portion 32 of the ultrasonic vibration element 22 with high frequency power of frequency f2.

尚、複数の共振周波数を持つ超音波振動素子を駆動するためにはそれぞれの共振周波数ごとに別系統の配線を行うのが普通である。この場合、異なる周波数の超音波振動の同時照射が出来る等のメリットがある。しかしその場合、配線が膨大となり、製品価格の高騰、配線の引き回しの困難性、誤配線等のデメリットも生じる。このことを改善するため、例えば図1に記載される様な振動素子に立体配線構造を具備し配線の引き回しを減らすことも出来る。この製造方法の一例を次に述べる。   Incidentally, in order to drive an ultrasonic vibration element having a plurality of resonance frequencies, it is usual to perform separate wiring for each resonance frequency. In this case, there are merits such as simultaneous irradiation of ultrasonic vibrations of different frequencies. However, in that case, the wiring becomes enormous, resulting in a demerit such as a rise in product price, difficulty in routing the wiring, and incorrect wiring. In order to improve this, for example, a vibrating element as shown in FIG. 1 can be provided with a three-dimensional wiring structure to reduce wiring routing. An example of this manufacturing method will be described next.

通常の1つの共振周波数を持つ振動素子は図9(a)に示す様な電極構造を持っている。すなわち、平板状の例えばセラミック等の圧電素子81の上面には導電膜よりなる陽極Pが上面の一部を残して設けられ、前記圧電素子81の下面には導電膜よりなる陰極Mが上面の一部まで連続して設けられる。前記陽極Pと陰極Mの間には空隙82が設けられる。次に、図9(b)に示すように、前記圧電素子81の上面には長手方向に複数条の溝83が機械加工で設けられると共に前記空隙82には溝84が機械加工で設けられる。この場合、前記陽極Pの部分に周波数f1の素子が形成され、陽極P間の溝83の部分に周波数f2の素子が形成される。次に、図9(c)に示すように、前記溝83の陰極Mの間には例えば樹脂、セラミック等の絶縁物85が挿入される。次に、図9(d)に示すように、前記溝83及び溝84の底部には導電膜よりなる電極86が製作される。次に、図9(e)に示すように、前記溝83の陽極P間の一部には例えば樹脂、セラミック等の絶縁物87が挿入される。次に、図9(f)に示すように、前記絶縁物85の陰極Mと対応した表面には電極88が陰極Mと連続して形成され、前記絶縁物87の陽極Pと対応した表面には電極89が陽極Pと連続して形成される。前記陽極P及び電極89が陽極P1を形成し、前記電極86が陽極P2を形成し、前記陰極M及び電極88が陰極Mを形成する。これにより、陰極M、第1の陽極P1、第2の陽極P2の3本の配線で済むことになる。   A normal vibration element having one resonance frequency has an electrode structure as shown in FIG. That is, an anode P made of a conductive film is provided on the upper surface of a plate-like piezoelectric element 81 such as ceramic, leaving a part of the upper surface, and a cathode M made of a conductive film is formed on the lower surface of the piezoelectric element 81. A part is provided continuously. A gap 82 is provided between the anode P and the cathode M. Next, as shown in FIG. 9B, a plurality of grooves 83 are provided in the longitudinal direction on the upper surface of the piezoelectric element 81 by machining, and grooves 84 are provided in the gap 82 by machining. In this case, an element having the frequency f1 is formed in the portion of the anode P, and an element having the frequency f2 is formed in the portion of the groove 83 between the anodes P. Next, as shown in FIG. 9C, an insulator 85 such as resin or ceramic is inserted between the cathodes M of the grooves 83. Next, as shown in FIG. 9D, an electrode 86 made of a conductive film is manufactured at the bottom of the groove 83 and the groove 84. Next, as shown in FIG. 9E, an insulator 87 such as resin or ceramic is inserted into a part between the anodes P of the groove 83. Next, as shown in FIG. 9 (f), an electrode 88 is continuously formed on the surface of the insulator 85 corresponding to the cathode M, and the surface of the insulator 87 corresponding to the anode P. The electrode 89 is formed continuously with the anode P. The anode P and the electrode 89 form the anode P1, the electrode 86 forms the anode P2, and the cathode M and the electrode 88 form the cathode M. As a result, the three wires of the cathode M, the first anode P1, and the second anode P2 are sufficient.

また、別の方法としては、超音波振動素子は共振原理を用いるため、共振しない周波数の高周波電力を印加しても超音波振動素子は振動しない。すなわち、すべての周波数系統の配線をまとめて並列配線とし、高周波電源装置よりそれぞれの共振周波数に相当する高周波電力を切り替えて順次出力することにより、最小限の配線で最大限の所望の周波数の超音波振動を得ることが出来る。   As another method, since the ultrasonic vibration element uses a resonance principle, the ultrasonic vibration element does not vibrate even when high frequency power having a frequency that does not resonate is applied. In other words, all the frequency system wirings are combined into parallel wiring, and the high frequency power corresponding to each resonance frequency is switched and sequentially output from the high frequency power supply device, so that the maximum desired frequency can be exceeded with minimum wiring. Sound wave vibration can be obtained.

図4は本発明の実施形態に係る超音波振動素子の共振特性を示す特性図である。図4では、図1(b)に示すような1000kHzと2000kHzになるような2つの厚みを持つ超音波振動素子を製作し、その共振特性として、前記超音波振動素子の共振点実測値と理論的な共振点を示す。横軸が周波数で縦軸がアドミッタンスであり、下限の位置が共振周波数を示す。設計上では975kHz、1950kHz、2925kHz、4875kHz…のように共振周波数が出るはずであり、図4のように実測値921kHz、1891kHz、2899kHz、4800kHzとほぼ設計値通りとなり、この超音波振動素子は921kHzと1891kHzにて発振出来る超音波振動素子であることが確かめられた。   FIG. 4 is a characteristic diagram showing resonance characteristics of the ultrasonic vibration element according to the embodiment of the present invention. In FIG. 4, an ultrasonic vibration element having two thicknesses of 1000 kHz and 2000 kHz as shown in FIG. 1B is manufactured, and the resonance characteristics of the ultrasonic vibration element and the theoretical values are obtained as resonance characteristics. Resonance point is shown. The horizontal axis represents frequency, the vertical axis represents admittance, and the lower limit position represents the resonance frequency. In the design, resonance frequencies should appear as 975 kHz, 1950 kHz, 2925 kHz, 4875 kHz, etc., and as shown in FIG. It was confirmed that the ultrasonic vibration element can oscillate at 1891 kHz.

このことより、1000kHzと2000kHzというかなり離れた周波数に限らず、例えば100kHz単位で変化させた超音波振動素子を製作し、細かく周波数を制御出来る高性能な超音波洗浄装置も実現することができる。   Accordingly, it is possible to manufacture an ultrasonic vibration element that is not limited to frequencies far apart such as 1000 kHz and 2000 kHz, but to change the frequency in units of 100 kHz, for example, and to realize a high-performance ultrasonic cleaning apparatus that can finely control the frequency.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

(a)は本発明の実施形態に係る超音波洗浄装置を示す概略的斜視図であり、(b)〜(f)は本発明の実施形態に係る超音波振動素子(図1(a)のA部)の異なる例を示す概略的斜視図である。(A) is a schematic perspective view which shows the ultrasonic cleaning apparatus which concerns on embodiment of this invention, (b)-(f) is an ultrasonic transducer | vibrator (FIG. 1 (a)) of embodiment of this invention. It is a schematic perspective view which shows the example from which A part) differs. (a)は本発明の実施形態に係る超音波洗浄装置を示す概略的斜視図であり、(b),(c)は本発明の実施形態に係る超音波振動素子の配線を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) is a schematic perspective view which shows the ultrasonic cleaning apparatus concerning embodiment of this invention, (b), (c) is structure explanatory drawing which shows the wiring of the ultrasonic vibration element concerning embodiment of this invention. It is. 本発明の実施形態に係る超音波洗浄装置の洗浄効果を示す特性図である。It is a characteristic view which shows the cleaning effect of the ultrasonic cleaning apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る超音波振動素子の共振特性を示す特性図である。It is a characteristic view which shows the resonance characteristic of the ultrasonic vibration element which concerns on embodiment of this invention. 一般的な超音波洗浄装置を示す構成説明図である。It is composition explanatory drawing which shows a general ultrasonic cleaning apparatus. 従来の石英槽底面の超音波透過を説明する説明図である。It is explanatory drawing explaining the ultrasonic transmission of the conventional quartz tank bottom face. 従来の石英槽底面の超音波透過特性を示す特性図である。It is a characteristic view which shows the ultrasonic transmission characteristic of the conventional quartz tank bottom face. (a),(b)は従来の超音波振動素子の共振特性を示す特性図である。(A), (b) is a characteristic view which shows the resonance characteristic of the conventional ultrasonic vibration element. (a)〜(f)は本発明の実施形態に係る超音波振動素子の製造方法を示す工程図である。(A)-(f) is process drawing which shows the manufacturing method of the ultrasonic vibration element which concerns on embodiment of this invention.

符号の説明Explanation of symbols

21…外槽、22…超音波振動素子、24…純水、25…高周波電源、31,32…凸部、41,42…角柱凸部、51,52…角柱、61,62…円柱、71,72…円形穴。   DESCRIPTION OF SYMBOLS 21 ... Outer tank, 22 ... Ultrasonic vibration element, 24 ... Pure water, 25 ... High frequency power supply, 31, 32 ... Convex part, 41, 42 ... Convex part 51, 52 ... Conical pillar, 61, 62 ... Cylinder, 71 72 ... Circular holes.

Claims (3)

対向する2面を有する圧電素子と、
前記圧電素子の一方の面に形成される第1の電極と、
前記圧電素子の他方の面に形成される、前記第1の電極とは極性の異なる第2の電極と、
前記圧電素子の一方の面に形成される溝と、
前記溝に形成される、前記第1の電極と極性が同一の第3の電極と、
を備えることを特徴とする超音波振動素子。
A piezoelectric element having two opposing surfaces;
A first electrode formed on one surface of the piezoelectric element;
A second electrode having a polarity different from that of the first electrode, formed on the other surface of the piezoelectric element;
A groove formed on one surface of the piezoelectric element;
A third electrode having the same polarity as the first electrode, formed in the groove;
An ultrasonic vibration element comprising:
請求項1に記載の超音波振動素子と、
前記超音波振動素子から超音波が伝達される洗浄槽と、
を備えることを特徴とする超音波洗浄装置。
The ultrasonic vibration element according to claim 1;
A cleaning tank to which ultrasonic waves are transmitted from the ultrasonic vibration element;
An ultrasonic cleaning apparatus comprising:
圧電素子の上面及び下面に第1の陽極及び陰極を形成するステップと、
前記圧電素子に第1の陽極から溝を形成するステップと、
前記溝の底面に第2の陽極を形成するステップと、
前記溝の一部に絶縁物を挿入するステップと、
前記絶縁物上に前記第1の陽極を接続する電極を形成するステップと
を有することを特徴とする超音波振動素子の製造方法。
Forming a first anode and a cathode on the upper and lower surfaces of the piezoelectric element;
Forming a groove in the piezoelectric element from a first anode;
Forming a second anode on the bottom of the groove;
Inserting an insulator into a portion of the groove;
Forming an electrode for connecting the first anode on the insulator.
JP2008223779A 2008-09-01 2008-09-01 ULTRASONIC VIBRATION ELEMENT, ITS MANUFACTURING METHOD, AND ULTRASONIC CLEANING DEVICE Active JP5245064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223779A JP5245064B2 (en) 2008-09-01 2008-09-01 ULTRASONIC VIBRATION ELEMENT, ITS MANUFACTURING METHOD, AND ULTRASONIC CLEANING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223779A JP5245064B2 (en) 2008-09-01 2008-09-01 ULTRASONIC VIBRATION ELEMENT, ITS MANUFACTURING METHOD, AND ULTRASONIC CLEANING DEVICE

Publications (2)

Publication Number Publication Date
JP2010062660A true JP2010062660A (en) 2010-03-18
JP5245064B2 JP5245064B2 (en) 2013-07-24

Family

ID=42189029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223779A Active JP5245064B2 (en) 2008-09-01 2008-09-01 ULTRASONIC VIBRATION ELEMENT, ITS MANUFACTURING METHOD, AND ULTRASONIC CLEANING DEVICE

Country Status (1)

Country Link
JP (1) JP5245064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023022A (en) * 2012-07-20 2014-02-03 Hitachi Power Solutions Co Ltd Array type ultrasonic probe and ultrasonic inspection device using the same
WO2018078926A1 (en) * 2016-10-31 2018-05-03 長瀬フィルター株式会社 Cleaning device and cleaning method
US11219930B2 (en) 2018-05-28 2022-01-11 Nagase Filter Co, Ltd. Filter cleaning method and filter cleaning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150981A (en) * 1990-10-15 1992-05-25 Kokusai Denki Erutetsuku:Kk Ultrasonic washing apparatus
JP2007229586A (en) * 2006-02-28 2007-09-13 Honda Electronic Co Ltd Ultrasonic vibrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150981A (en) * 1990-10-15 1992-05-25 Kokusai Denki Erutetsuku:Kk Ultrasonic washing apparatus
JP2007229586A (en) * 2006-02-28 2007-09-13 Honda Electronic Co Ltd Ultrasonic vibrator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023022A (en) * 2012-07-20 2014-02-03 Hitachi Power Solutions Co Ltd Array type ultrasonic probe and ultrasonic inspection device using the same
WO2018078926A1 (en) * 2016-10-31 2018-05-03 長瀬フィルター株式会社 Cleaning device and cleaning method
JPWO2018078926A1 (en) * 2016-10-31 2018-10-25 長瀬フィルター株式会社 Cleaning device and cleaning method
TWI678240B (en) * 2016-10-31 2019-12-01 日商長瀨過濾器股份有限公司 Washing device and washing method
US11219930B2 (en) 2018-05-28 2022-01-11 Nagase Filter Co, Ltd. Filter cleaning method and filter cleaning apparatus

Also Published As

Publication number Publication date
JP5245064B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US7247977B2 (en) Ultrasonic processing method and apparatus with multiple frequency transducers
JP5055423B2 (en) Ultrasonic transducer
KR101431643B1 (en) Megasonic multifrequency apparatus with matched transducers and mounting plate
JP5245064B2 (en) ULTRASONIC VIBRATION ELEMENT, ITS MANUFACTURING METHOD, AND ULTRASONIC CLEANING DEVICE
JP6802290B2 (en) Ultrasonic oscillator and ultrasonic cleaning device using ultrasonic oscillator
JP2006326486A (en) Ultrasonic cleaning device
JPH0234923A (en) Ultrasonic cleaner
JP2007311379A (en) Ultrasonic cleaning apparatus
KR20170057658A (en) High efficiency ultrasonic vibrator
JP3839154B2 (en) Ultrasonic vibration generator and ultrasonic cleaning device
JP2008126190A (en) Ultrasonic atomizer
JP2018202269A (en) Ultrasonic transducer and method for driving the same
JP2007029937A (en) Ultrasonic cleaner
JP5517227B2 (en) Ultrasonic precision cleaning equipment
JP2007050377A (en) Ultrasonic washer and frequency matching method
CN106160695A (en) Piezoelectric vibration component, the method manufacturing piezoelectric vibration component and piezoelectric vibrator
JP2009082900A (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JPH03232575A (en) Composite vibration driving method of ultrasonic vibrator
Gallego-Juarez Transducer needs for macrosonics
JP2020137104A (en) Flat ultrasonic transducer and supporting method thereof
JPH04371273A (en) Ultrasonic wave generating element
JPH03234498A (en) Composite vibrating ultrasonic cutter
JPH0760190A (en) Horn for vibrator and ultrasonic vibrator
JP2010110151A (en) Ultrasonic motor and ultrasonic motor device
JPH03258381A (en) Ultrasonic cleaning machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5245064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250