JP2010062037A - バックライトユニットおよび液晶表示装置 - Google Patents

バックライトユニットおよび液晶表示装置 Download PDF

Info

Publication number
JP2010062037A
JP2010062037A JP2008227428A JP2008227428A JP2010062037A JP 2010062037 A JP2010062037 A JP 2010062037A JP 2008227428 A JP2008227428 A JP 2008227428A JP 2008227428 A JP2008227428 A JP 2008227428A JP 2010062037 A JP2010062037 A JP 2010062037A
Authority
JP
Japan
Prior art keywords
light
angle
backlight unit
light guide
guide plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008227428A
Other languages
English (en)
Inventor
Hiroaki Shigeta
博昭 重田
Yuji Yashiro
有史 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008227428A priority Critical patent/JP2010062037A/ja
Publication of JP2010062037A publication Critical patent/JP2010062037A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】集光レンズアレイのような別部材を用いることなく、カラーフィルタを省略可能なバックライトユニット、および、それを搭載する液晶表示装置を提供する。
【解決手段】導光板の天面11Uにて、J方向に交互に並ぶ3個の格子片群13gr.Gr.B,13G,13Rは、互いに異なる波長域の光に対応しており、各格子片群13gr.Gr.B,13G,13Rは、対応する特定波長域の光で、特定範囲の入射角をもって入射する光だけを、その光の進行してくる側に戻すように回折反射させており、導光板11の底面11Bには、上記の戻るように回折反射する光を、天面11Uに向けて反射させるプリズム15が形成される。
【選択図】図1

Description

本発明は、液晶表示パネル等に対して光を供給するバックライトユニット、およびそのバックライトユニットを搭載する液晶表示装置に関する。
従来、カラー表示可能な液晶表示装置は、複数色のカラーパッチを含むカラーフィルタを液晶表示パネルに搭載させることが多い。このようになっていると、白色光がカラーフィルタを通過することで、その白色光の一部の光のみ(例えば、赤色光、緑色光、青色光の各々)が液晶表示パネルの所望位置に到達し、カラー表示が可能になる。ただし、このようなカラー表示の場合、カラーフィルタを透過する光の色成分は1色である。そのため、他色成分の光は無駄になってしまう。
このような光の無駄(損失)を防ぐべく、特許文献1の液晶表示装置は、図10に示すように、液晶表示パネル159と、その液晶表示パネル159に対して光を供給するバックライトユニット149の導光板111との間に、回折格子(体積ホログラム)171と集光レンズアレイ172とを介在させる(なお、図中のR、G、Bは赤色、緑色、青色を意味する)。詳説すると、導光板111の光出射面(天面)111Uに回折格子171が位置し、その回折格子171を覆うように、集光レンズアレイ172が位置する。
このような液晶表示装置169では、回折格子171は、自身に到達する白色光を、赤色光、緑色光、青色光に分けて、各々異なる方向に回折透過させる。そして、このように分かれて進行する光は、集光レンズアレイ172によって集光され、液晶表示パネル159の所望の位置に到達する。そのため、この液晶表示装置169では、カラーフィルタを含まなくとも、カラー表示が可能になる。
特開平10−253955号公報
しかしながら、回折格子171によって分離された各光が、集光レンズアレイ172で集光されて液晶表示パネル159に到達する場合、以下のような理由から種々問題が起きる。
通常、液晶表示パネル159と導光板111との間は比較的短いので、集光レンズアレイ172から液晶表示パネル159までに存在することになる焦点距離も短くなければならない。そのためには、集光レンズアレイ172が、ハイパワー(高い屈折力)を有するか、厚みを増さざるを得ない。すると、ハイパワーを発揮可能な樹脂で集光レンズアレイ172が形成されると、コスト増加が生じ、厚みを増した集光レンズアレイ172を使用すると、バックライトユニット149、ひいては液晶表示装置169の厚みが増加する。
また、集光レンズアレイ172で、回折格子171によって分離された各光を、液晶表示パネル159の所望位置に集光させることは、極めて難しく、集光度合いが十分でなければ、液晶表示パネル159に表示される画像の品質低下も生じる。
本発明は、上記の問題点を解決するためになされたものである。そして、その目的は、集光レンズアレイのような別部材を用いることなく、カラーフィルタを省略可能なバックライトユニット、および、それを搭載する液晶表示装置を提供する。
バックライトユニットは、光源と、光源からの光を受ける受光面、受光面に対向配置する反対面、並びに、受光面および反対面を挟み合う2つの対向面を有する導光板と、を含む。そして、受光面から反対面に至るまでの方向に対して交差する方向を交差方向とすると、そのバックライトユニットでは、導光板の対向面のうちの一方面である天面には、互いに異なる周期で配置される格子片の群を、少なくとも3個含む回折格子が形成され、3個の格子片群は、交差方向に沿って交互に並ぶとともに、互いに異なる波長域の光に対応する。
さらに、各格子片群は、対応する特定波長域の光で、特定範囲の入射角をもって入射する光だけを、その光の進行してくる側に戻すように回折反射させており、導光板の対向面のうちの他方面である底面には、上記の戻るように回折反射する光を、天面に向けて反射させる屈折光学素子が形成される。
このようになっていると、3個の格子片群は、各々、天面にて全反射しない光の一部であり、自身に対応する特定波長域の光で、特定範囲の入射角をもって自身に到達する光を、特定方向に(光の進行してくる側に戻すように)回折反射させる。すると、回折反射する特定波長域毎の光は、比較的高い指向性を有しながら進行することになる。
ただし、3個の格子片群が、導光板の受光面から反対面に至る方向に交差する交差方向に沿って、交互に位置するため、回折反射する光は交差方向にて色分かれする。そして、その色分かれした光が、屈折光学素子により天面に対して、例えば垂直になるように反射されると、その天面に到達する光は、そのまま天面に対して垂直に出射する。
すると、天面から出射する光は、指向性の高い色分かれした光が出射することになる。すなわち、カラーフィルタおよび集光レンズアレイ等のような別部材を要さずとも、バックライトユニットは、白色光を色分けして進行させられる。その結果、別部材分の厚みだけ、バックライトユニットは薄くなり、さらにはコストダウンも図れる。
なお、以上の3個の格子片群では、光の3原色に合わせて、1つは青色光の波長域に対応する青色光対応格子片群、1つは緑色光の波長域に対応する緑色光対応格子片群、1つは赤色光の波長域に対応する赤色光対応格子片群であると望ましい。
また、青色光対応格子片群、緑色光対応格子片群、および赤色光対応格子片群が、以下の関係式(M1)を満たすと望ましい。
d=λ/(2・nd・sinθ) … 関係式(M1)
ただし、
nd:回折格子を形成する材料が有するd線に対する屈折率
d :各格子片群にて、光を回折させる格子片の配置周期
λ :光の波長
θ :回折格子に入射する光の入射角と、その入射する光による回折反射角とが 一致する場合での角度
である。
なお、格子片の全長が50nm以上1000nm以下であると望ましい。
その上、以下の関係式(C1)および(C2)が満たされると望ましい。
γ=θ±Δ … 関係式(C1)
γ+2・δA+2・δB=180° … 関係式(C2)
ただし、
Δ(°) : θでの回折反射光の回折効率に対して、0.5倍以上の回折効率を有
する回折反射光を生じさせる角度で、0°<Δ<10°の範囲内の角度
γ(°) : θとΔとの和であり、θでの回折反射光の回折効率に対して、0.5
倍以上の回折効率を有する回折反射光の反射角
δA(°): 屈折光学素子が底面に対して***する三角プリズムであり、その三角
プリズムにおける3つの角のうち、底面に接する2つの角で、光源から
離れているほうの角が有する角度
δB(°): 屈折光学素子が底面に対して***する三角プリズムであり、その三角
プリズムにおける3つの角のうち、底面に接する2つの角で、光源から
近いほうの角が有する角度
である。
なお、天面に対して垂直な出射光量をできるだけ多く確保すべく、バックライトユニットは、以下の条件(C3)を満たすと望ましい。
δA<5° … 条件(C3)
ところで、導光板は、単一の屈折率を有する単一材料で形成されているものであってもよい。また、導光板は、屈折率の異なる2層の導光層で形成されており、底面側の第1導光層は、天面側の第2導光層よりも大きな屈折率を有していてもよい。
ただし、2層型の導光板では、第1導光層と第2導光層との境界で全反射が生じることもあり、それを利用して、導光板の天面から出射する光の受光面からの距離が延長しやすくなる。そして、このような延長が生じると、光源近辺の導光板の天面から過度の光量が出射しないことになり、バックライトユニットからの光に光量ムラが生じない。
なお、このような光量ムラを抑制するためには、第1導光層と第2導光層との境界で全反射が必要になり、そのためには、受光面と天面との交差角が90°であり導光板に対して光を供給する光源は、以下の関係式(F1)のε1を満たすようになっているとよい。
ε1<90°−CA … 関係式(F1)
ただし、
ε1:導光板の受光面から進行する光が、その受光面に対して有する出射角
CA:第1導光層と第2導光層との境界面での臨界角
である。
なお、以上のようなバックライトユニットと、バックライトユニットからの光を透過させるカラーフィルタを有する液晶表示パネルと、を含む液晶表示装置も本発明といえる。
さらに、そのような液晶表示装置にあって、導光板の天面に重なる液晶表示パネルのカラーフィルタでは、互いに異なる波長域の光を透過させる3種類のカラーパッチが含まれており、カラーパッチが、透過させる光の波長域と同じ波長域に対応する格子片群に重なると望ましい。このようになっていると、カラーパッチは、不要な光を吸収しなくてもよくなり、バックライトユニットからの光が有効利用されるためである。
本発明のバックライトユニットによれば、導光板の天面から出射する光が、天面の回折格子による回折反射光が底面の屈折光学素子による誘導で、比較的高い指向性を有しつつ色分かれする。そのため、このバックライトユニットは、白色光を色分けするようなカラーフィルタ、および集光性を高める集光レンズアレイのような別部材を要さない。その結果、別部材分の厚みおよびコストが削減される。
[実施の形態1]
実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面上での黒丸は紙面に対し垂直方向を意味する。さらに、光路を示す線は、便宜上重ならないように図示する。
図2は液晶表示装置69の分解斜視図である。この図に示すように、液晶表示装置69は、液晶表示パネル59とバックライトユニット49とを含む。
液晶表示パネル59は、TFT(Thin Film Transistor)等のスイッチング素子を含むアクティブマトリックス基板51と、このアクティブマトリックス基板51に対向する対向基板52とをシール材(不図示)で貼り合わせる。そして、両基板51・52の隙間に液晶(不図示)が注入される(なお、アクティブマトリックス基板51および対向基板52を挟むように、偏光フィルム53・53が取り付けられる)。
この液晶表示パネル59は非発光型の表示パネルなので、バックライトユニット49からの光(バックライト光)を受光することで表示機能を発揮する。そのため、バックライトユニット49からの光が液晶表示パネル59の全面を均一に照射できれば、液晶表示パネル59の表示品位が向上する。
バックライトユニット49は、LEDモジュール(光源モジュール)MJ、導光板11、および反射シート42を含む。
LEDモジュールMJは光を発するモジュールであり、実装基板21と、実装基板21の実装面に形成された電極に実装されることで電流の供給を受け、光を発するLED(Light Emitting Diode)22と、を含む。
また、LEDモジュールMJは、光量確保のために、発光素子であるLED(点状光源)22を複数含むと望ましく、さらに、LED22を列状に並列させると望ましい。ただし、図面では便宜上、一部のLED22のみが示されているにすぎない(なお、以降では、LED22の並ぶ方向をJ方向とも称する)。
導光板11は、側面11Sと、この側面11Sを挟持するように対向して位置する天面11U(対向面の一方面)および底面11B(対向面の他方面)とを有する板状部材である。そして、側面11Sの一面(受光面11Sa)は、LED22の発光端に面することで、LED22からの光を受光する。受光された光は、導光板11の内部で多重反射され、面状光として天面(出射面)11Uから外部に向けて出射する。
なお、以降では、受光面11Saに対して対向する側面11Sを反対面11Sbとし、受光面11Saから反対面11Sbに至る方向をK方向と称する{特に、このK方向は、J方向(交差方向)に対して交差する(例えば、直交する)}。また、さらなる導光板11の詳細については、後述する。
反射シート42は、導光板11によって覆われるように位置する。そして、導光板11の底面11Bに面する反射シート42の一面が反射面になる。そのため、この反射面が、LED22からの光および導光板11内部を伝播する光を、漏洩させることなく導光板11に(詳説すると、導光板11の底面11Bを通じて)戻すように反射させる。
なお、以上のようなバックライトユニット49では、反射シート42および導光板11は、この順で積み重なる(なお、この積み重なる方向をL方向と称する。また、J方向、K方向、L方向は、互いに直交する関係であると望ましい)。そして、LED22からの光は導光板11によって面状光(バックライト光)になって出射し、その面状光は液晶表示パネル59に到達し、その面状光によって、液晶表示パネル59は画像を表示させる。
ここで、バックライトユニット49の導光板11について、図1A〜図1C、図2、および図3A・図3Bを用いて詳説する。図1A、図1B、および図1Cは、図2に示されるバックライトユニット49のA−A’線矢視断面図、B−B’線矢視断面図、およびC−C’線矢視断面図である(なお、図3Aにも、3本の断面線を図示する)。また、これら図1A〜図1Cにおける白色矢印は白色光、破線矢印は−1次回折反射光、一点鎖線矢印は全反射光を意味する(なお、矢印に付される符号W・B・G・Rは、白色光・青色光・緑色光・赤色光を意味する)。
また、図3Aは図2に示されるバックライトユニット49の導光板11の天面11UとLED22とを示す平面図であり、図3Bは図2に示されるバックライトユニット49の導光板11の底面11BとLED22とを示す平面図である。
導光板11は、例えばポリカーボネート(屈折率nd:1.59)で形成されており、天面11Uに、図1A〜図1Cに示すように、格子片13を密集させた回折格子DGを含む。この回折格子DGは、既知のRCWA法(厳密結合波理論)と以下の関係式(M0)とに基づいて設計され、比較的高い光強度の回折反射光(−1次回折反射光)を生じさせる。
n2・sinθ2=n1・sinθ1+m・λ/d …(M0)
ただし、
n1 :天面11Uに対する入射側の媒質が有する屈折率
θ1(°) :天面11Uに入射する光がその天面11Uに対して有する角度(入射角)
n2 :天面11Uに対する出射側の媒質が有する屈折率
θ2(°) :天面11Uで反射する光がその天面11Uに対して有する角度(反射角)
d(nm):回折格子DGの周期間隔
X :回折次数
λ(nm):光の波長
である(なお、θ1,θ2は、K方向およびL方向で規定されるKL面内方向で計測される角度として考えると、理解が容易になる)。
なお、天面11Uに対する入射側と出射側とが、導光板11である場合には、関係式(M0)は以下の関係式(M0’)のように表現できる。
n1・sinθ2=n1・sinθ1+m・λ/d …(M0’)
回折格子DGを詳説すると、以下の通りである。設計された回折格子DGは、直方体状(ブロック状)の格子片13を複数含み、それら格子片13は導光板11の天面11Uに位置する。そして、この格子片13は、種々の周期d(ピッチ、配置周期)で配置される。
一例を挙げると、図1Aに示すように170nmの周期dBで密集する格子片13、図1Bに示すように200nmの周期dGで密集する格子片13、図1Cに示すように230nmの周期dRで密集する格子片13が挙げられる。すなわち、導光板11の天面11Uでは、3種類の周期d(dB,dG,dR)で格子片13は配置される。
そして、周期d(dB,dG,dR)毎で配置される格子片13は、密集するので格子片群13gr(13gr.B,13gr.G,13gr.R)といえ、さらに、異なる周期で配置される格子片群13gr.B,13gr.G,13gr.Rの集まりで、1つのパッチPHが形成される(図2および図3A参照、なお、四角状のパッチサイズは10μm×10μm程度)。なお、この格子片群13gr.B,13gr.G,13gr.Rは、J方向に沿って交互に並んでおり、各格子片13の全長(格子片13の根元から先端までの距離)は、300nmである。
そして、このような回折格子DGのパッチPHの集まる天面11Uに対して、青色光(波長470nm程度)、緑色光(波長550nm程度)、赤色光(波長620nm程度)の光が、60°程度の入射角(θ1)で入射すると、それらの光は回折格子DGにて回折反射して回折反射光となり、入射角と同じ60°程度の反射角(θ2)を有する。ただし、その回折反射光は、回折格子DGに向かって進行してくる側に戻るように進行する。すなわち、回折格子DGは、自身に到達する光の一部(特定範囲の入射角をもって入射する光)を、その光の進行してくる側に戻すように回折反射させる。
このような回折反射の結果を示したものが、図4A〜図6Cである。これらの図では、極座標の中心が、天面11Uに位置する回折格子DGへの光の入射点を意味し、角度は、その入射点から反射する光が有する天面11Uに対する反射角を意味する。なお、角度は、便宜上、LED22から離れるように進行(前方進行)する光の反射角を“+”で示し、LED22に近づくように進行(後方進行)する光の反射角を“−”で示す。また、●ドットは全反射する光を意味し、▲ドットは−1次回折反射光を意味する。
そして、図4A〜図6Cにおいて、図4A〜図4Cは、青色光(波長470nm)が、回折格子DGに到達した場合に生じる光の挙動を示し、図5A〜図5Cは、緑色光(波長550nm)が、回折格子DGに到達した場合に生じる光の挙動を示し、図6A〜図6Cは、赤色光(波長620nm)が、回折格子DGに到達した場合に生じる光の挙動を示す。
また、図4A・図5A・図6Aは、周期(配置周期dB:170nm)で配置された格子片群13gr.Bに到達した場合に生じる光の挙動を示し、図4B・図5B・図6Bは、周期(配置周期dG:200nm)で配置された格子片群13gr.Gに到達した場合に生じる光の挙動を示し、図4C・図5C・図6Cは、周期(配置周期dR:230nm)で配置された格子片群13gr.Rに到達した場合に生じる光の挙動を示す。
図4A〜図4C、特に図4Aを参照してみると、青色光が配置周期dB:170nmで配置された格子片群13gr.Bに60°程度の入射角(θ1≒60°)をもって到達した場合、全反射する光と−1次回折反射光とが生じる。そして、−1次回折反射光は、−60°程度の反射角(θ2≒60°)を有する。一方、図4Bおよび図4Cを参照してみると、青色光は、170nm以外の周期で配置された格子片群13gr.G,13gr.Rに到達した場合、ほとんど全反射する。
次に、図5A〜図5C、特に図5Bを参照してみると、緑色光が配置周期dG:200nmで配置された格子片群13gr.Gに60°程度の入射角もって到達した場合、全反射する光と−1次回折反射光とが生じる。そして、−1次回折反射光は、−60°程度の反射角を有する。一方、図5Aおよび図5Cを参照してみると、緑色光は、200nm以外の周期で配置された格子片群13gr.B,13gr.Rに到達した場合、ほとんど全反射する。
続いて、図6A〜図6C、特に図6Cを参照してみると、赤色光が配置周期dR:230nmで配置された格子片群13gr.Rに60°程度の入射角もって到達した場合、全反射する光と−1次回折反射光とが生じる。そして、−1次回折反射光は、−60°程度の反射角を有する。一方、図6Aおよび図6Bを参照してみると、青色光は、230nm以外の周期で配置された格子片群13gr.B,13gr.Gに到達した場合、ほとんど全反射する。
これまでの図4A〜図6Cまでの結果を参照すると、下記の条件(A1)〜(A5)を満たすと、以下のようになる。すなわち、図1A〜図1Cに示すように、LED22から進行してくる白色光が回折格子DG(詳説すると、回折格子DGを含む天面11U)に60°程度で入射した場合(θ1≒60°)、白色光に含まれる青色光、緑色光、赤色光が、波長域に応じた格子片群13gr.B,13gr.G,13gr.Rに入射すると、−1次回折反射光として、格子片群13gr.B,13gr.G,13gr.Rに向かって進行してくる側に戻るように進行する{反射角θ2(≒60°)で進行する}。そして、これらの光は、格子片群13gr.B,13gr.G,13gr.Rに対応するために、色分かれし、さらに比較的高い指向性も有する。
nd=1.59 … 条件(A1)
dB=170nm … 条件(A2)
dG=200nm … 条件(A3)
dR=230nm … 条件(A4)
H =300nm … 条件(A5)
ただし、
nd:回折格子DGを形成する材料が有するd線に対する屈折率
dB:青色光を回折させる格子片群13gr.Bの格子片13の配置周期
dG:緑色光を回折させる格子片群13gr.Gの格子片13の配置周期
dR:赤色光を回折させる格子片群13gr.Rの格子片13の配置周期
H :格子片13の根元から先端までの距離(格子片13の全長)
である。
なお、回折格子DGを含む天面11U(要は回折格子DG)に入射する光の入射角60°程度の詳細な数値実施例を幾つか挙げると、60°、55°、65°が挙げられる。また、これらの入射角で入射した光が−1次回折反射光として反射する場合、それらの反射角は、入射角60°の場合には−60°の反射角、入射角55°の場合には−65.56°の反射角、入射角65°の場合には−55.41°の反射角、になる。
また、以上のような現象を総括すると、−1次回折反射光は、回折格子DGへの入射方向(入射角)と真逆方向(反射角)に反射される場合に、回折効率が高くなり、指向性も高まる。そこで、関係式(M0’)において、θ1=−θ2=θ(θ:後述参照)、m=−1とすることができ、以下の関係式(M1)も導き出される。
d=λ/(2・nd・sinθ) … 関係式(M1)
ただし、
nd:回折格子DGを形成する材料が有するd線に対する屈折率
d :各格子片群13gr.B,13gr.G,13gr.Rにて、光を回折させる
格子片13の配置周期(nm)
λ :光の波長(nm)
θ :回折格子DGに入射する光の入射角と、その入射する光による回折反射角 とが一致する場合での角度(°)
である。
また、各格子片群13gr.B,13gr.G,13gr.Rにて、光を回折させる格子片13の配置周期(nm)は、可視光の波長域の半分程度の長さである。また、格子片13の全長(H)はRCWA法(厳密結合波理論)により求められる回折効率との相関により決定される(なお、格子片13の全長は、50nm以上1000nm以下であることが多い)。
ところで、格子片群13gr.B,13gr.G,13gr.Rは、交互に(同種の格子片群13grが隣り合うことなく)J方向に並ぶとともに、同種で連なってK方向に沿っても並ぶ。すると、同種で連なった格子片群13grに覆われる導光板11内部では、格子片群13gr.B,13gr.G,13gr.Rに対応する波長域の光のみが、それら格子片群13gr.B,13gr.G,13gr.Rに向かって進行してくる側に戻るように進行する(以後、この反射を後方反射と称する)。
すなわち、白色光に含まれる青色光は、図1Aに示すように、格子片群13gr.Bに60°程度で入射した場合、−1次回折反射光として、後方反射する(なお、白色光に含まれる緑色光、赤色光は格子片群13gr.Bにて全反射される)。また、白色光に含まれる緑色光は、図1Bに示すように、格子片群13gr.Gに60°程度で入射した場合、−1次回折反射光として、後方反射する(なお、白色光に含まれる青色光、赤色光は格子片群13gr.Gにて全反射される)。また、白色光に含まれる赤色光は、図1Cに示すように、格子片群13gr.Rに60°程度で入射した場合、−1次回折反射光として、後方反射する(なお、白色光に含まれる青色光、緑色光は格子片群13gr.Rにて全反射される)。
つまり、導光板11にて、多重反射しながら受光面11Saから反対面11Sbに向かう過程で回折格子DGに到達する光で、回折格子DGで−1次回折反射する光は、逆向きに(反対面11Sbから受光面11Saに;後方に)向かい、天面11Uには向かわない。そこで、このような−1次回折反射光(回折格子DGにて後方回折反射する光)を天面11Uに導くべく、導光板11の底面11Bには、プリズム15(屈折光学素子)が形成される。
このプリズム15は、三角プリズムであり、図1A〜図1Cおよび図3Bに示すように、導光板11の底面11Bから***するとともに、2つのプリズム側面15(前方プリズム側面15Sf・後方プリズム側面15Sr)を底面11Bに対して傾斜させる。
これらの2つのプリズム側面15Sのうち、導光板11の反対面11Sbに近いほう(LED22から離れるほう)の前方プリズム側面15Sfは、回折格子DGからの−1次回折反射光を受光できる位置に形成される。さらに、この前方プリズム側面15Sfは、受光する−1次回折反射光を、導光板11の受光面11Saに近いほう(LED22に近いほう)の後方プリズム側面15Srに向けて反射できる傾斜に形成される。
後方プリズム側面15Srは、前方プリズム側面15Sfからの−1次回折反射光を受光できる位置に形成される。さらに、この後方プリズム側面15Srは、受光する−1次回折反射光を天面11Uに向けて反射できる傾斜に形成される。
特に、望ましくは、後方プリズム側面15Srは、天面11Uに対して垂直になるように−1次回折反射光を反射できる傾斜に形成されるとよい。そのためには、以下の関係式(C1)および(C2)を満たすように、プリズム15が形成されるとよい。
γ=θ±Δ … 関係式(C1)
γ+2・δA+2・δB=180° … 関係式(C2)
ただし、
θ(°) : 回折格子DGに入射する光の入射角と、その入射する光による回折
反射角とが一致する場合での角度
Δ(°) : θでの回折反射光の回折効率に対して、0.5倍以上の回折効率を有
する回折反射光を生じさせる角度で、0°<Δ<10°の範囲内の角度
γ(°) : θとΔとの和であり、θでの回折反射光の回折効率に対して、0.5
倍以上の回折効率を有する回折反射光の反射角
δA(°): プリズム15が底面11Bから***する三角プリズムであり、その三
角プリズムにおける3つの角のうち、底面11Bに接する2つの角で、
LED22から離れているほうの角が底面11Bに対して有する角度
δB(°): プリズム15が底面11Bから***する三角プリズムであり、その三
角プリズムにおける3つの角のうち、底面11Bに接する2つの角で、
LED22から近いほうの角が底面11Bに対して有する角度
である。
この関係式(C1)および(C2)について、図7の拡大断面図を用いて説明する。なお、図面での破線矢印は、図1同様に、−1次回折反射光を示す。
まず、プリズム15に向かってくる−1次回折反射光が、天面11Uに対して“γ”という反射角を有する。すると、プリズム15に至るまでの−1次回折反射光を一辺、底面11B(および天面11U)に対する法線Nを一辺、底面11Bおよびプリズム15に進出する底面11Bの第1延長面E1を一辺、とする第1仮想三角形では、“γ”の角と90°の角とが含まれる。そのため、残りの角の角度は、“90°−γ”になる。また、この残りの角は、第1延長面E1と−1次回折反射光との成す角に向かい合う。そのため、この第1延長面E1と−1次回折反射光との成す角の角度も、“90°−γ”になる。
すると、前方プリズム側面15Sfを一辺、前方プリズム側面15Sfに向かってくる−1次回折反射光を一辺、第1延長面E1を一辺、とする第2仮想三角において、前方プリズム側面15Sfと−1次回折反射光との成す角度は、 “90°−γ”となる第1延長面E1と−1次回折反射光との成す角の角度から“δA”を差し引いた値になる(すなわち“90°−γ−δA”となる)。
その上、前方プリズム側面15Sfに入射する−1次回折反射光が全反射すると、その全反射する−1次回折反射光を一辺、前方プリズム側面15Sfを一辺、後方プリズム側面15Sbを一辺、とする第3仮想三角において、全反射する−1次回折反射光と前方プリズム側面15Sfとの成す角度も、“90°−γ−δA”となる。
また、この第3仮想三角において、前方プリズム側面15Sfと後方プリズム側面15Sbとの成す角度は、三角プリズムの形状から、“180°−(δA+δB)”となる。すると、この第3仮想三角での残りの角の角度、すなわち、全反射する−1次回折反射光と後方プリズム側面15Sbとの成す角度は、“γ+2・δA+δB−90°”となる。
そして、前方プリズム側面15Sfから進行してくる−1次回折反射光が後方プリズム側面15Sbにて全反射すると、その2回目の全反射をした−1次回折反射光と、後方プリズム側面15Sbとの成す角度も、“γ+2・δA+δB−90°”となる。また、後方プリズム側面15Sbを延長させた第2延長面E2と底面11Bとの成す角度のうち、後方プリズム15における“δB”の角度と向かい合う角度は、“δB”となる。
すると、第2延長面E2と底面11Bとの成す角の角度と、2回目の全反射をした−1次回折反射光と後方プリズム側面15Sbとの成す角度と、の合計値(“γ+2・δA+2・δB−90°”)が、2回目の全反射をした−1次回折反射光の底面11B(ひいては天面11U)に対する出射角となる。そのため、この合計値である“γ+2・δA+2・δB−90°”という角度が90°になれば、回折格子DGからの−1次回折反射光が天面11Uに対して垂直に出射することになる。
すなわち、“γ+2・δA+2・δB−90°=90°”から導き出される“関係式(C2);γ+2・δA+2・δB=180°”を満たすように、プリズム15が設計されると、回折格子DGからの−1次回折反射光が天面11Uに対して垂直に出射することになる。
そして、このようになっていれば、回折格子DGからの色分かれしつつ比較的高い指向性を有する青色光、緑色光、および赤色光の−1次回折反射光は、プリズム15に到達し、そのプリズム15により、天面11Uに対して垂直になるように導かれ、さらに天面11Uから出射する。その結果、天面11Uから、青色光、緑色光、赤色光が分離しつつ所望位置に向けて出射する。すると、このような分離した光を受ける液晶表示パネル59は、カラーフィルタを有さなくて白色光を分色させることになり、カラー画像を表示できる。
また、カラーフィルタが省略される場合、液晶表示装置69は、カラーフィルタ分のコストダウンを図れる。さらには、液晶表示装置69にて、カラーフィルタの厚みも考慮しなくてもよくなる。すなわち、液晶表示装置69が薄型になりやすい。
その上、色分かれした青色光、緑色光、および赤色光は、−1次回折反射により比較的高い指向性を有するため、例えば集光レンズアレイのような別部材を要せずに、所望方向に進む。そのため、バックライトユニット49は、集光レンズアレイ分の厚み分だけの薄型化、および集光レンズアレイ分のコストダウンも図れる。
ただし、液晶表示装置69では、液晶表示パネル59が、図8A〜図8Cに示すように、カラーフィルタ55を含んでいてもよい(なお、図8A〜図8Cの図示の仕方は、図1A〜図1Cと同様である)。詳説すると、カラーフィルタ55では、互いに異なる波長域の光を透過させる3種類のカラーパッチ55B、55G、55R(青色光を透過させるカラーパッチ55B、緑色光を透過させるカラーパッチ55G、赤色光を透過させるカラーパッチ55R)が含まれており、カラーパッチ55B、55G、55Rが、透過させる光の波長域と同じ波長域に対応する格子片群13gr.B,13gr.G,13gr.Rに重なっていてもよい。
このようになっていれば、格子片群13gr.Bから出射する青色光はカラーパッチ55Bに到達し、格子片群13gr.Gから出射する緑色光はカラーパッチ55Gに到達し、格子片群13gr.Rから出射す赤色光はカラーパッチ55Rに到達する。したがって、カラーパッチ55B、55G、55Rは、自身に到達する光を透過させる場合に、その光のエネルギーを吸収しない。
そのため、このような液晶表示装置69では、バックライトユニット49からの光の利用効率が向上する(要は、この液晶表示装置69は、バックライトユニット49からの光に対して損失を与えない)。また、光の利用効率の向上にともなって、バックライトユニット49は、過剰に高エネルギーの光を出射させなくてもよく、消費電力を抑制する(ひいては、液晶表示装置69の消費電力の抑制につながる)。
なお、プリズム15の数値実施例の1つを挙げると、以下のようになる。
δA=4°
δB=58.5°
F =10μm
ただし、
F:導光板11の底面11Bに接するプリズム15の幅(プリズム15のK方向
の長さ;図1A〜図1C参照)
である。
以上の数値実施例が望ましい理由は、以下の通りである。すなわち、δAが5°以上の角度であると、回折格子DGからプリズム15に向かって戻るように進行してくる−1次回折反射光のうちの一部、特に反射角(θ2)が比較的小さい光が前方プリズム側面15Sfにて反射した後、後方プリズム反射面15Sbに向かいにくくなる。詳説すると、比較的小さい反射角(θ2)を有しながら前方プリズム面15Sfに到達する光が反射しても、後方プリズム面15Sbに向かうことなく、底面11Bに向かって進行する。
このような光の光量が増加してしまうと、後方プリズム側面15Sbに到達する光量が減ることになるので、天面11Uから立ち上がるようにして出射する光量が減少することになる。そのため、以下の条件(C3)が満たされると望ましい。
δA<5° … 条件(C3)
なお、プリズム15を透過してしまった−1次回折反射光が存在したとしても、その光は、反射シート42によって、導光板11の底面11Bに戻される。
[実施の形態2]
実施の形態2について説明する。なお、実施の形態1で用いた部材と同様の機能を有する部材については同一の符号を付記し、その説明を省略する。
実施の形態1のバックライトユニット49の回折格子DGでは、互いに異なる周期で配置される3つの格子片群13gr.B,13gr.G,13gr.Rが含まれ、それら3個の格子片群13gr.B,13gr.G,13gr.Rは、J方向に沿って交互に並ぶとともに、互いに異なる波長域の光に対応する。
さらに、各格子片群13gr.B,13gr.G,13gr.Rは、対応する特定波長域の光で、特定範囲の入射角をもって入射する光だけを、その光の進行してくる側に戻すように回折反射させる(すなわち、回折格子DGは白色光を回折反射により色分かれさせて進行させる)。そして、導光板11の底面に形成されるプリズム15が、上記の戻るように回折反射する光を、天面11Uに向けて反射させる。
このような光の挙動を生じさせる回折格子DGは、単一材料で構成されることで、単一の屈折率を有する導光板11の天面11Uに形成されていた。しかし、これに限定されるものではない。例えば、図9A〜図9Cに示すように、異なる屈折率を有する2層型の導光板11であってもかまわない(なお、図9A〜図9Cの図示の仕方は、図1A〜図1Cと同様である)。
この2層型の導光板11では、一層目の導光板(第1導光層)11L1は、例えばポリカーボネート(屈折率nd:1.59)で形成され、二層目の導光板(第2導光層)11L2は、例えばアクリル樹脂(屈折率nd:1.49)で形成される(なお、LED22の光は、最初に第1導光層11L1に入射するようになっており、その第1導光層11L1の屈折率は第2導光層11L2の屈折率よりも大きい)。
そして、第2導光層11L2は、実施の形態1同様に、3種類の周期d(dB、dG、dR)で密集する格子片13で形成される格子片群13gr.B,13gr.G,13gr.Rを含む。また、格子片群13gr.B,13gr.G,13gr.Rは、実施の形態1同様に、交互にJ方向に並ぶとともに、同種で連なってK方向に沿っても並ぶ。
そして、このような2層型の導光板11の場合、第1導光層11L1を進行する光が、第2導光層11L2にも進行し、さらに回折格子DGに60°程度で入射した場合、その光は−1次回折反射光として、後方反射する(なお、この後方反射の光の挙動は、上記したポリカーボネート製の回折格子DGの場合での数値実施例とほぼ同様となる)。
ただし、この導光板11の場合、2種類の光学部材(すなわち、第1導光層11L1・第2導光層11L2)による境界面S11が生じる。そこで、この境界面S11を利用して、導光板11内部の光は、以下のように進行し得る。すなわち、回折格子DGに到達することになる光が、その回折格子DGに至るまでの過程で、境界面S11で少なくとも一度全反射する。
この全反射のために、第1導光層11L1を進行する光は、受光面11Saに対して、およそ20°程度の出射角度ε1を有するとよい(なお、この出射角度ε1は、例えば、45°程度の出射角ε2を有するLED22が受光面11Saに対向して配置されると、スネルの法則から実現する)。このようになっていると、第1導光層11L1を進行する光が、第2導光層11L2に到達する場合(要は、境界面S11に到達する場合)、その光は臨界角を超えて境界面S11に入射しやすくなり、全反射するためである。
さらに、導光板11の底面11B(詳説すると、第1導光層11L1の底面11B)に形成されるプリズム15は、全反射した光を回折格子DGに導くように設計される。詳説すると、プリズム15は境界面S11から進行してくる全反射光を受光できる位置に形成され、そのプリズム15の前方プリズム側面15Sfが、受ける光を反射させ、その光を境界面S11に対し臨界角以内の角度で入射させられる傾斜に形成される。
その上、境界面S11に入射する光は、後方反射するために、回折格子DGに対して60°程度の角度でしなくてはならない。そのため、前方プリズム側面15Sfから進行する光の境界面S11への入射角度は、55°程度(例えば、54。2°)を要する。この入射角度であれば、スネルの法則から、回折格子DGに60°程度で光が入射するためである。したがって、前方プリズム側面15Sfは、自身で反射させる光を、入射角度55°程度で境界面S11に導ける傾斜を有する。
そして、以上のように設計された前方プリズム側面15Sfによって反射する光は、境界面S11を透過すことで屈折し、入射角度60°程度で回折格子DGを含む天面11Uに入射する。すると、回折格子DGに含まれる格子片群13gr.B,13gr.G,13gr.Rは、図9A〜図9Cに示すように、光(白色光)のうちで対応する波長域の光(破線矢印参照)を後方反射させ、他波長域の光(一点鎖線矢印参照)を全反射させる。
後方反射する光は、格子片群13gr.B,13gr.G,13gr.Rを含む天面11Uに対して60°程度の反射角を有しながら進行し、境界面S11に対して60°程度の入射角で入射する。さらに、その光は、境界面S11に対して55°程度の出射角γを有しながら、その境界面S11を透過する(なお、この55°程度の角度は、図7でのγに対応する)。
このような境界面S11を透過して第2導光層11L2に進行する光は、プリズム15の前方プリズム側面15Sfに到達する。ただし、この光の前方プリズム側面15Sfへの入射角と、前方プリズム側面15Sfから回折格子DGへと向かう光の前方プリズム側面15Sに対する反射角とを比較すると、両者の角度は若干異なることが多い。そして、この角度の差異により、境界面S11を透過して前方プリズム側面15Sfに入射する光は、反射することで、後方プリズム側面15Srに入射する。
つまり、この前方プリズム側面15Sfは、境界面S11で全反射してくる光を受光でき、かつ、反射させて臨界角以内の角度で境界面S11に入射させられる傾斜に形成される。さらに、この前方プリズム側面15Sfは、境界面S11を透過してくる光(−1次回折反射光)を受光できる位置に形成され、かつ、その光を後方プリズム側面15Srに向けて反射できる傾斜に形成される。
そして、後方プリズム側面15Srは、前方プリズム側面15Sfからの−1次回折反射光を受光できる位置に形成され、さらに、受光する−1次回折反射光を天面11Uに向けて反射できる傾斜に形成される。
そして、実施の形態1同様、後方プリズム側面15Srは、天面11Uに対して垂直になるように−1次回折反射光を反射できる傾斜に形成されるとよい。そのためには、上記した関係式(C1)および(C2)、さらには(C3)を満たすように、プリズム15が形成されるとよい。
なお、関係式(C1)にて、θが60°と想定すると、γの想定範囲は、50°<γ<70°となる。すると、境界面S11に対して55°程度の出射角γを有しながら進行する−1次回折反射光は、関係式(C1)および(C2)を満たすプリズム15によって、実施の形態1同様、天面11Uから垂直に出射する。
以上を踏まえると、実施の形態2でのバックライトユニット49であっても、実施の形態1同様に、回折格子DGからの青色光、緑色光、および赤色光の−1次回折反射光はプリズム15に到達し、そのプリズム15により、天面11Uに対して垂直になるように導かれ、さらに天面11Uから出射する。その結果、天面11Uから、青色光、緑色光、赤色光が分離しつつ出射する。すると、このような分離した光を受ける液晶表示パネル59は、カラーフィルタを有さなくて色分かれした光を利用でき、カラー画像を表示できる。
そのため、実施の形態1でのバックライトユニット49に奏ずる作用効果、すなわちカラーフィルタ・集光レンズアレイの省略による薄型化・コストダウン、および、バックライトユニット49をカラーフィルタ55で覆う場合における光の利用効率の向上・消費電力の抑制等は、実施の形態2のバックライトユニット49にも奏ずる。
また、実施の形態2のバックライトユニット49では、LED22の光が、導光板11の受光面11Saから回折格子DGに到達するまでに、境界面S11で全反射しやすい。そして、このように全反射した光が、プリズム15、回折格子DGを経て、−1次回折反射光となり、さらに、プリズム15に戻った後に天面11Uから出射する場合、その天面11Uでの光の出射点から受光面11Saまでの距離P2は、実施の形態1における導光板11の天面11Uでの光の出射点から受光面11Saまでの距離P1に比べて長くなる(図9A〜図9Cおよび図1A〜図1C参照)。
通常は、導光板11にて、受光面11Saに近い天面11U付近と反対面11Sbに近い天面11U付近との出射光量を比べると、LED22に近い受光面11Sa側の天面11U付近が、反対面11Sb側の天面11U付近に比べて多い。そして、この出射光量の差は、バックライトユニット49からの光(バックライト光)の光量ムラとなり、液晶表示装置69の画質劣化の一因になる。
しかしながら、実施の形態2のバックライトユニット49では、図9A〜図9Cに示すように、導光板11にて、受光面11Saから比較的離れた天面11U付近から色分かれした光が出射するので、受光面11Saに近い天面11U付近から、過度に多量の色分かれした光が出射しない。そのため、バックライトユニット49からの光に、光量ムラが生じにくい。
なお、第1導光層11L1から境界面S11に入射する光を全反射させるために、第1導光層11L1を進行する光は、受光面11Saに対して、およそ20°程度の出射角度ε1を有するとよいが、この出射角度ε1は、以下の関係式(F1)を満たすとよい。要は、LED22は、受光面11Saから境界面S11に進行する光を、臨界角CAを超える角度で入射させればよい。一例を挙げると、例えば、45°程度の出射角ε2を有するLED22が受光面11Saに対向して配置されると、スネルの法則から、そのLED22は、関係式(F1)のε1を満たす光を供給できる。
ε1<90°−CA … 関係式(F1)
ただし、
導光板11にて、受光面11Saと天面11Uとの交差角が90°であり、
ε1:導光板11の受光面11Saから進行する光が、その受光面11Saに対
して有する出射角
CA:第1導光層11L1と第2導光層11L2との境界面での臨界角
である。
[その他の実施の形態]
ところで、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
例えば、実施の形態1では、導光板11の材料の一例として、上記の条件(A1)〜(A5)を満たすポリカーボネートが挙げられていた。また、実施の形態2で回折格子DGを含むアクリル樹脂製の第2導光層11L2は、条件(A2)〜(A5)とnd=1.49という条件(A1’)とを満たしており、これらの条件が満たされことで、後方反射が生じていた{なお、条件(A1’)・(A2)〜(A5)が満たされていると、関係式(M1)も満たされる}。
しかし、後方反射を生じさせる条件は、他にも存在する。例えば、導光板11は、シリコン樹脂で形成されていてもよい。特に、以下の条件(B1)〜(B5)が満たされる導光板11であっても、図4A〜図6Cで示されるように、光が挙動する{なお、条件(B1)〜(B5)が満たされていると、関係式(M1)も満たされる}。
nd=1.3 … 条件(B1)
dB=210nm … 条件(B2)
dG=245nm … 条件(B3)
dR=270nm … 条件(B3)
H =300nm … 条件(B5)
すなわち、このようなシリコン樹脂製の導光板11であっても、3個の格子片群13gr.B,13gr.G,13gr.Rは、各々、自身に対応する特定波長域の光で、特定範囲の入射角(60°程度)をもって自身に到達する光を、特定方向である60°程度の反射角にして(光の進行してくる側に戻すように)回折反射させる。
なお、このようなシリコン樹脂製の導光板11であっても、回折格子DGに入射する光の入射角60°程度の詳細な数値実施例は、ポリカーボネート製の導光板11と同様である。すなわち、回折格子DGに入射する光の入射角が60°の場合には−1次回折反射光の反射角は−60°、入射角が55°の場合には反射角は−65.56°、入射角が65°の場合には反射角は−55.41°になる。
また、このようなシリコン製の導光板11でも、関係式(C1)および(C2)が満たされると、回折格子DGからの−1次回折反射光が天面11Uに対して垂直に出射することになる。そのため、格子片群13gr.Bからの青色光、格子片群13gr.Gからの緑色光、および格子片群13gr.Rからの赤色光の−1次回折反射光が、プリズム15に到達し、さらに、そのプリズム15により、天面11Uに対して垂直になるように導かれて出射する。
要は、色分かれした回折反射光が、プリズム15により天面11U対して垂直になるように反射させられると、導光板11から出射する光は、その導光板11に対して垂直という指向性をもつことになる。その結果、このようなシリコン製の導光板11を搭載するバックライトユニット49であっても、カラーフィルタを省略できる(要は、実施の形態1同様の作用効果が奏ずる)。
総括すると、導光板11において、天面11Uには、自身の面に到達する光の一部を、その光の進行してくる側に戻すように回折反射させる回折格子DGが形成され、底面11Bには、その戻るように回折反射する光を、天面11Uに向けて反射させるプリズム15が形成されていれば、種々の条件は問わない(ただし、後方反射する光同士の混色を避けるために、格子片群13gr.B,13gr.G,13gr.RはJ方向に沿って交互に並ばなくてはならない)。
したがって、導光板11、回折格子DG、およびプリズム15を形成する材料の屈折率は、特に限定されることはなく、格子片13の形状も、直方体以外の円柱状、錐体状等もあり得る。また、格子片13の配置周期も可視光の波長域の半分程度の長さに限らず、その他の配置周期もあり得る。もちろん、格子片13の全長も、300nmを一例として挙げたが、これに限定されるものではない。
なお、以上のシリコン樹脂製のプリズム15の数値実施例を挙げると、以下のようになる。
δA=3°
δB=59.5°
F =10μm
また、上記した条件(C3)ではなく、以下の条件(C4)が満たされると望ましい。この条件(C4)が満たされると、条件(C3)が満たされた場合と同様の作用効果が奏ずる。
δA<4° … 条件(C4)
また、ポリカーボネート製およびシリコン樹脂製のプリズム15の数値実施例から、以下の条件式(C5)も導ける。すなわち、この条件式(C5)が満たされると、プリズム15が、回折格子DGから進行してくる−1次回折反射光を天面11Uに対して垂直に出射させられる。
δA+δB=62.5° … 条件式(C5)
なお、以上では、光源としては、LED22が挙げられたが、これに限定されるものではない。例えば、蛍光管のような線上光源、有機EL(Electro-Luminescence)または無機ELのような自発光材料で形成される光源であってもかまわない。
また、以上では、回折格子DGに含まれる格子片群13grの個数は、3個であったが、これを超える個数の格子片群13grが含まれていてもかまわない。混色による白色光の生成に要する特定波長域が4個以上であれば、それに応じて4個以上の格子片群13grが回折格子DGに含まれてもかまわない。
また、以上では、−1次回折反射光を天面11Uに導く光学素子として、プリズム15が一例として挙げられたが、これに限定されるものではない。例えば、ミラーであってもかまわない。
では、(A)は図2に示されるバックライトユニットのA−A’線矢視断面図であり、(B)は図2に示されるバックライトユニットのB−B’線矢視断面図であり、(C)は図2に示されるバックライトユニットのC−C’線矢視断面図である。 は、液晶表示装置の分解斜視図である。 では、(A)は導光板の天面を示す平面図であり、(B)は導光板の底面を示す平面図である。 では、(A)は全長300nmの格子片を170nmの配置周期で密集させた格子片群に、波長470nmの光が入射した場合の反射光の挙動を示す極座標図であり、(B)は全長300nmの格子片を200nmの配置周期で密集させた格子片群に、波長470nmの光が入射した場合の反射光の挙動を示す極座標図であり、(C)は全長300nmの格子片を230nmの配置周期で密集させた格子片群に、波長470nmの光が入射した場合の反射光の挙動を示す極座標図である。 では、(A)は全長300nmの格子片を170nmの配置周期で密集させた格子片群に、波長550nmの光が入射した場合の反射光の挙動を示す極座標図であり、(B)は全長300nmの格子片を200nmの配置周期で密集させた格子片群に、波長550nmの光が入射した場合の反射光の挙動を示す極座標図であり、(C)は全長300nmの格子片を230nmの配置周期で密集させた格子片群に、波長550nmの光が入射した場合の反射光の挙動を示す極座標図である。 では、(A)は全長300nmの格子片を170nmの配置周期で密集させた格子片群に、波長620nmの光が入射した場合の反射光の挙動を示す極座標図であり、(B)は全長300nmの格子片を200nmの配置周期で密集させた格子片群に、波長620nmの光が入射した場合の反射光の挙動を示す極座標図であり、(C)は全長300nmの格子片を230nmの配置周期で密集させた格子片群に、波長620nmの光が入射した場合の反射光の挙動を示す極座標図である。 は、図1A〜図1Cに示される導光板の拡大断面図である。 では、(A)は液晶表示パネルで図1Aに示されるバックライトユニットを覆う液晶表示装置であり、(B)は液晶表示パネルで図1Bに示されるバックライトユニットを覆う液晶表示装置であり、(C)は液晶表示パネルで図1Cに示されるバックライトユニットを覆う液晶表示装置である。 では、(A)は、図1Aに示される導光板とは異なる2層型導光板を搭載するバックライトユニットであり、図1Bに示される導光板とは異なる2層型導光板を搭載するバックライトユニットであり、図1Cに示される導光板とは異なる2層型導光板を搭載するバックライトユニットである。 は、従来の液晶表示装置の断面図である。
符号の説明
11 導光板
11L1 第1導光層(導光板)
11L2 第2導光層(導光板)
S11 境界面
11U 導光板の天面(対向面、対向面のうちの一方面)
11B 導光板の底面(対向面、対向面のうちの他方面)
11S 導光板の側面
11Sa 導光板の受光面
11Sb 受光面に対向配置する導光板の側面である反対面
13 格子片
13gr 格子片群
13gr.B 青色光に対応する格子片群(青色光対応格子片群)
13gr.G 緑色光に対応する格子片群(緑色光対応格子片群)
13gr.R 赤色光に対応する格子片群(赤色光対応格子片群)
PH 回折格子パッチ
DG 回折格子
15 プリズム(屈折光学素子)
15S プリズムの側面
15Sf 前方プリズム側面(光源から離れているほうのプリズム側面)
15Sr 後方プリズム側面(光源から近いほうのプリズム側面)
21 実装基板
22 LED(光源)
42 反射シート
49 バックライトユニット
55 カラーフィルタ
55B 青色のカラーパッチ
55G 緑色のカラーパッチ
55R 赤色のカラーパッチ
59 液晶表示パネル
69 液晶表示装置
J LEDの並列方向(交差方向)
K 導光板の受光面から反対面に至るまでの方向
L 反射シートおよび導光板11の積み重なる方向

Claims (11)

  1. 光源と、
    上記光源からの光を受ける受光面、上記受光面に対向配置する反対面、並びに、上記
    受光面および上記反対面を挟み合う2つの対向面を有する導光板と、
    を含むバックライトユニットにあって、
    上記受光面から上記反対面に至るまでの方向に対して交差する方向を交差方向とす
    ると、
    上記対向面のうちの一方面である天面には、互いに異なる周期で配置される格子片
    の群を、少なくとも3個含む回折格子が形成され、
    上記の3個の格子片群は、上記交差方向に沿って交互に並ぶとともに、互いに異な
    る波長域の光に対応しており、
    各格子片群は、対応する特定波長域の光で、特定範囲の入射角をもって入射する光
    だけを、その光の進行してくる側に戻すように回折反射させており、
    上記対向面のうちの他方面である底面には、上記の戻るように回折反射する光を、
    上記天面に向けて反射させる屈折光学素子が形成されるバックライトユニット。
  2. 上記の3個の格子片群では、1つは青色光の波長域に対応する青色光対応格子片群、1つは緑色光の波長域に対応する緑色光対応格子片群、1つは赤色光の波長域に対応する赤色光対応格子片群である請求項1に記載のバックライトユニット。
  3. 上記の青色光対応格子片群、緑色光対応格子片群、および赤色光対応格子片群が、以下の関係式(M1)を満たす請求項2に記載のバックライトユニット。
    d=λ/(2・nd・sinθ) … 関係式(M1)
    ただし、
    nd:回折格子を形成する材料が有するd線に対する屈折率
    d :各格子片群にて、光を回折させる格子片の配置周期
    λ :光の波長
    θ :回折格子に入射する光の入射角と、その入射する光による回折反射角とが 一致する場合での角度
    である。
  4. 上記格子片の全長が50nm以上1000nm以下である請求項2または3に記載のバックライトユニット。
  5. 以下の関係式(C1)および(C2)を満たす請求項3または4に記載のバックライトユニット。
    γ=θ±Δ … 関係式(C1)
    γ+2・δA+2・δB=180° … 関係式(C2)
    ただし、
    Δ(°) : 上記θでの回折反射光の回折効率に対して、0.5倍以上の回折効率
    を有する回折反射光を生じさせる角度で、0°<Δ<10°の範囲内 の角度
    γ(°) : 上記θと上記Δとの和であり、上記θでの回折反射光の回折効率に対
    して、0.5倍以上の回折効率を有する回折反射光の反射角
    δA(°): 屈折光学素子が底面に対して***する三角プリズムであり、その三角
    プリズムにおける3つの角のうち、底面に接する2つの角で、光源から
    離れているほうの角が有する角度
    δB(°): 屈折光学素子が底面に対して***する三角プリズムであり、その三角
    プリズムにおける3つの角のうち、底面に接する2つの角で、光源から
    近いほうの角が有する角度
    である。
  6. 以下の条件(C3)を満たす請求項5に記載のバックライトユニット。
    δA<5° … 条件(C3)
  7. 上記導光板は、単一の屈折率を有する単一材料で形成されている請求項1〜6のいずれか1項に記載のバックライトユニット。
  8. 上記導光板は、屈折率の異なる2層の導光層で形成されており、
    上記底面側の第1導光層は、上記天面側の第2導光層よりも大きな屈折率を有する請求項1〜6のいずれか1項に記載のバックライトユニット。
  9. 上記導光板にて、上記受光面と上記天面との交差角が90°であり、
    以下の関係式(F1)のε1を満たす光を供給する光源を含む請求項8に記載のバックライトユニット。
    ε1<90°−CA … 関係式(F1)
    ただし、
    ε1:導光板の受光面から進行する光が、その受光面に対して有する出射角
    CA:第1導光層と第2導光層との境界面での臨界角
    である。
  10. 請求項1〜9のいずれか1項に記載のバックライトユニットと、
    上記バックライトユニットからの光を透過させるカラーフィルタを有する液晶表示パ
    ネルと、
    を含む液晶表示装置。
  11. 上記導光板の上記天面に重なる上記液晶表示パネルの上記カラーフィルタでは、
    互いに異なる波長域の光を透過させる3種類のカラーパッチが含まれており、
    上記カラーパッチが、透過させる光の波長域と同じ波長域に対応する上記格子
    片群に重なる請求項10に記載の液晶表示装置。
JP2008227428A 2008-09-04 2008-09-04 バックライトユニットおよび液晶表示装置 Withdrawn JP2010062037A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227428A JP2010062037A (ja) 2008-09-04 2008-09-04 バックライトユニットおよび液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227428A JP2010062037A (ja) 2008-09-04 2008-09-04 バックライトユニットおよび液晶表示装置

Publications (1)

Publication Number Publication Date
JP2010062037A true JP2010062037A (ja) 2010-03-18

Family

ID=42188608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227428A Withdrawn JP2010062037A (ja) 2008-09-04 2008-09-04 バックライトユニットおよび液晶表示装置

Country Status (1)

Country Link
JP (1) JP2010062037A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048702A1 (en) * 2014-09-26 2016-03-31 Pixtronix, Inc. Laser-pumped phosphor backlight and methods
KR20170128769A (ko) * 2015-03-16 2017-11-23 레이아 인코포레이티드 각도 선택 반사층을 채용한 단일 방향 격자-기반 백라이팅

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048702A1 (en) * 2014-09-26 2016-03-31 Pixtronix, Inc. Laser-pumped phosphor backlight and methods
KR20170128769A (ko) * 2015-03-16 2017-11-23 레이아 인코포레이티드 각도 선택 반사층을 채용한 단일 방향 격자-기반 백라이팅
KR102329107B1 (ko) * 2015-03-16 2021-11-18 레이아 인코포레이티드 각도 선택 반사층을 채용한 단일 방향 격자-기반 백라이팅

Similar Documents

Publication Publication Date Title
JP4655771B2 (ja) 光学装置及び虚像表示装置
US7988340B2 (en) Prism sheet and backlight module
US20110051041A1 (en) Backlight unit and liquid crystal display device
US11150398B2 (en) Edge-lit type backlight module and display device
JP2010040415A (ja) バックライトユニットおよび液晶表示装置
US20060110123A1 (en) Light generating device having polarized light emitting waveguide plate
WO2020253567A1 (zh) 透明显示基板及透明显示装置
JPWO2010061699A1 (ja) 薄型バックライトシステムおよびこれを用いた液晶表示装置
CN102011957B (zh) 背光***和显示装置
US10921639B2 (en) Optical element and reflection-type liquid crystal display system using the same
WO2010010694A1 (ja) 液晶表示装置
WO2013008577A1 (ja) 照明装置及び表示装置
WO2016206148A1 (zh) 导光板、背光模组及显示装置
JP2008116943A (ja) 偏光分離フィルム及びこれを利用したディスプレイ素子用の照明装置
JP2011154078A (ja) 液晶表示装置
CN102401281A (zh) 背光组件
JP2010062037A (ja) バックライトユニットおよび液晶表示装置
US20170045670A1 (en) Light guide plate assembly and display apparatus
WO2020062560A1 (zh) 偏光结构及显示装置
CN109709723A (zh) 导光板、背光模组和显示面板
US20080100778A1 (en) Liquid crystal display having optical concentrating layer
US11262492B2 (en) Backlight module and display device
JP2004185020A (ja) 液晶表示装置用平行光源及びそれを用いた液晶表示装置
JP4395197B1 (ja) 液晶表示装置
US7978410B2 (en) Optical sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206