JP2010060278A - Refrigerating cycle apparatus - Google Patents

Refrigerating cycle apparatus Download PDF

Info

Publication number
JP2010060278A
JP2010060278A JP2009250392A JP2009250392A JP2010060278A JP 2010060278 A JP2010060278 A JP 2010060278A JP 2009250392 A JP2009250392 A JP 2009250392A JP 2009250392 A JP2009250392 A JP 2009250392A JP 2010060278 A JP2010060278 A JP 2010060278A
Authority
JP
Japan
Prior art keywords
watering
condenser
amount
temperature
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009250392A
Other languages
Japanese (ja)
Other versions
JP4990339B2 (en
Inventor
Jiro Okajima
次郎 岡島
Hitoshi Iijima
等 飯嶋
Takuya Suganami
拓也 菅波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009250392A priority Critical patent/JP4990339B2/en
Publication of JP2010060278A publication Critical patent/JP2010060278A/en
Application granted granted Critical
Publication of JP4990339B2 publication Critical patent/JP4990339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle apparatus, attaining compatibility between amenity and energy saving. <P>SOLUTION: This refrigerating cycle apparatus includes: an indoor temperature detecting means 31; an indoor humidity detecting means 32; an evaporating temperature detecting means 33; a spray means 1 for spraying water to a condenser; a water spray quantity computing means 26 for computing a water spray quantity to the condenser 12; and a water spray control means 27 for controlling the water spray quantity of the water spray means 1 to reach the water spray quantity of the water spray quantity computing means 26. The water spray quantity computing means 26 computes the water spray quantity to the condenser 12 based on the indoor temperature of the indoor temperature detecting means 31, the indoor humidity of the indoor humidity detecting means 32 and the evaporating temperature of the evaporating temperature detecting means 33. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、空気調和機、冷凍機等の冷媒凝縮器に散水して熱交換効率を向上させる冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus that improves heat exchange efficiency by watering a refrigerant condenser such as an air conditioner or a refrigerator.

図19は、従来の冷凍サイクル装置の構成図であり、車両空調用の散水設備を示す(特許文献1参照)。
図において、冷凍サイクル51がコンデンサ52、サブコンデンサ53、膨張弁54、エバポレータ55、コンプレッサ56で構成されている。エバポレータ55の下方には、エバポレータ55に付着した凝縮水を受ける容器57と、この容器57内の凝縮水をコンデンサ52またはサブコンデンサ53もしくは両方に放出するノズル58を備えている。
FIG. 19 is a configuration diagram of a conventional refrigeration cycle apparatus and shows a watering facility for vehicle air conditioning (see Patent Document 1).
In the figure, a refrigeration cycle 51 includes a condenser 52, a sub condenser 53, an expansion valve 54, an evaporator 55, and a compressor 56. Below the evaporator 55, a container 57 for receiving condensed water adhering to the evaporator 55 and a nozzle 58 for discharging the condensed water in the container 57 to the condenser 52 or the sub condenser 53 or both are provided.

さらに、冷凍サイクル51内の圧力を測定する圧力センサ59と、温度を測定する車室内温度センサ60を備え、圧力センサ59の設置場所はサブコンデンサ53の出口に取り付けてある。そこで、圧力センサ59にて検出された圧力信号と、車室内温度センサ60にて検出された温度信号とが、制御装置61に入力される。そして、この制御装置61にて、ポンプ62によりコンデンサ前面の容器63内に供給する凝縮水の供給量を制御するための供給量の信号を送出する。   Further, a pressure sensor 59 for measuring the pressure in the refrigeration cycle 51 and a vehicle interior temperature sensor 60 for measuring the temperature are provided, and the installation location of the pressure sensor 59 is attached to the outlet of the sub capacitor 53. Therefore, the pressure signal detected by the pressure sensor 59 and the temperature signal detected by the vehicle interior temperature sensor 60 are input to the control device 61. The control device 61 sends a supply amount signal for controlling the supply amount of the condensed water supplied into the container 63 in front of the capacitor by the pump 62.

特開平7−40732号公報Japanese Patent Laid-Open No. 7-40732

上記のような従来の冷凍サイクル装置では、圧力信号や温度信号に基づき凝縮水へ凝縮水を放出するため、圧力や温度に変化が生じた場合は、放出動作の応答遅れが生じてしまうという問題点があった。
また、凝縮水のみでは凝縮器の冷却効果はさほど得られず、また、室内環境の快適性を考慮していないため快適性を阻害することがあるという問題点があった。
In the conventional refrigeration cycle apparatus as described above, the condensed water is discharged to the condensed water based on the pressure signal and the temperature signal, so that when the pressure or temperature changes, a response delay of the discharging operation occurs. There was a point.
In addition, there is a problem that the cooling effect of the condenser cannot be obtained with only the condensed water, and the comfort may be hindered because the comfort of the indoor environment is not taken into consideration.

この発明は、上述のような課題を解決するためになされたもので、応答遅れが生じることなく凝縮器へ散水を行い、空調機の消費電力を削減するとともに、水を無駄にすることなく効率的に散水を行い、被空調域の室内温度、室内湿度の制御も行い、快適性と省エネルギーを両立する冷凍サイクル装置を提供することである。   The present invention has been made to solve the above-described problems. Water is sprayed to the condenser without causing a response delay, reducing the power consumption of the air conditioner and reducing the efficiency without wasting water. It is to provide a refrigeration cycle apparatus that performs both watering and control of the indoor temperature and humidity of the air-conditioned area to achieve both comfort and energy saving.

この発明に係る冷凍サイクル装置は、凝縮器へ散水する散水手段と、外気温度を検出する外気温度検出手段と、外気温度に基づいて凝縮器への散水量を演算する散水量演算手段と、この散水量演算手段による散水量になるように、散水手段による散水量を制御する散水制御手段とを備え、外気温度検出手段により検出された外気温度に基づいて、外気温度の未来値を予測し、この外気温度の予測値に基づいて散水量演算手段により散水量を演算するものである。   The refrigeration cycle apparatus according to the present invention includes a sprinkling means for sprinkling water to the condenser, an outside air temperature detecting means for detecting the outside air temperature, a water sprinkling amount calculating means for calculating a water sprinkling amount to the condenser based on the outside air temperature, A watering control means for controlling the watering amount by the watering means so as to be the watering amount by the watering amount calculating means, and predicting the future value of the outside air temperature based on the outside air temperature detected by the outside air temperature detecting means, The water spray amount is calculated by the water spray amount calculating means based on the predicted value of the outside air temperature.

また、凝縮器へ散水する散水手段と、外気温度を検出する外気温度検出手段と、外気湿度を検出する外気湿度検出手段と、外気温度および外気湿度に基づいて凝縮器への散水量を演算する散水量演算手段と、この散水量演算手段による散水量になるように、散水手段による散水量を制御する散水制御手段とを備え、外気温度検出手段および外気湿度検出手段により検出された外気温度および外気湿度に基づいて、外気温度および外気湿度の未来値を予測し、この外気温度および外気湿度の予測値に基づいて散水量演算手段により散水量を演算するものである。   Further, watering means for watering the condenser, outside air temperature detecting means for detecting the outside air temperature, outside air humidity detecting means for detecting the outside air humidity, and calculating the amount of water sprayed to the condenser based on the outside air temperature and the outside air humidity. A sprinkling amount calculating means and a sprinkling control means for controlling the sprinkling amount by the sprinkling means so as to obtain a sprinkling amount by the sprinkling amount calculating means, and the outside air temperature detected by the outside air temperature detecting means and the outside air humidity detecting means and A future value of the outside air temperature and the outside air humidity is predicted based on the outside air humidity, and a water spray amount is calculated by the water spray amount calculating means based on the predicted value of the outside air temperature and the outside air humidity.

また、圧縮機の運転容量を制御する運転容量制御手段を備え、運転容量制御手段により検出された運転容量に基づいて、運転容量の未来値を予測し、この運転容量の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するものである。   In addition, an operating capacity control means for controlling the operating capacity of the compressor is provided, and a future value of the operating capacity is predicted based on the operating capacity detected by the operating capacity control means, and the predicted value of the operating capacity and the outside air temperature or Based on the predicted value of the outside air humidity, the sprinkling amount is calculated by the sprinkling amount calculating means.

さらに、冷凍サイクル装置の消費電力を検出する消費電力検出手段を備え、消費電力検出手段により検出された消費電力に基づいて、消費電力の未来値を予測し、この消費電力の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するものである。   Furthermore, the power consumption detection means for detecting the power consumption of the refrigeration cycle apparatus is provided, the future value of the power consumption is predicted based on the power consumption detected by the power consumption detection means, and the predicted value of the power consumption and the outside air temperature Alternatively, the water spray amount is calculated by the water spray amount calculation means based on the predicted value of the outside air humidity.

また、冷凍サイクル装置の凝縮温度を検出する凝縮温度検出手段を備え、凝縮温度検出手段により検出された凝縮温度に基づいて、凝縮温度の未来値を予測し、この凝縮温度の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するものである。   In addition, a condensation temperature detection means for detecting the condensation temperature of the refrigeration cycle apparatus is provided, and a future value of the condensation temperature is predicted based on the condensation temperature detected by the condensation temperature detection means. Alternatively, the water spray amount is calculated by the water spray amount calculation means based on the predicted value of the outside air humidity.

また、冷凍サイクル装置の凝縮圧力を検出する凝縮圧力検出手段を備え、凝縮圧力検出手段により検出された凝縮圧力に基づいて凝縮圧力の未来値を予測し、この凝縮圧力の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するものである。   In addition, a condensing pressure detecting means for detecting the condensing pressure of the refrigeration cycle apparatus is provided, a future value of the condensing pressure is predicted based on the condensing pressure detected by the condensing pressure detecting means, and the predicted value of the condensing pressure and the outside air temperature or Based on the predicted value of the outside air humidity, the sprinkling amount is calculated by the sprinkling amount calculating means.

また、冷却対象の室内空気の乾球温度を検出する室内温度検出手段と、冷却対象の室内空気の湿度を検出する室内湿度検出手段と、蒸発器の蒸発温度を検知する蒸発温度検出手段と、凝縮器へ散水する散水手段と、凝縮器への散水量を演算する散水量演算手段と、この散水量演算手段による散水量になるように、散水手段による散水量を制御する散水制御手段とを備え、散水量演算手段は、室内温度検出手段による室内温度、室内湿度検出手段による室内湿度、蒸発温度検出手段による蒸発温度に基づいて凝縮器への散水量を演算するものである。   Also, an indoor temperature detecting means for detecting the dry bulb temperature of the indoor air to be cooled, an indoor humidity detecting means for detecting the humidity of the indoor air to be cooled, an evaporation temperature detecting means for detecting the evaporation temperature of the evaporator, Watering means for watering the condenser, watering amount calculating means for calculating the watering amount to the condenser, and watering control means for controlling the watering amount by the watering means so as to be the watering amount by the watering amount calculating means. The sprinkling amount calculation means calculates the sprinkling amount to the condenser based on the room temperature by the room temperature detection means, the room humidity by the room humidity detection means, and the evaporation temperature by the evaporation temperature detection means.

また、蒸発器へ送風する送風機の送風量を制御する蒸発器送風量制御手段または/および凝縮器へ送風する送風機の送風量を制御する凝縮器送風量制御手段を備え、散水量演算手段により演算された散水量に応じて、蒸発器送風量制御手段または/および凝縮器送風量制御手段により、蒸発器または/および凝縮器への送風量を制御するものである。   Further, it is provided with an evaporator air flow rate control means for controlling the air flow rate of the blower that blows air to the evaporator and / or a condenser air flow rate control means for controlling the air flow rate of the air blower that is blown to the condenser, and is calculated by the sprinkling amount calculating means. Depending on the amount of water sprayed, the air flow to the evaporator or / and the condenser is controlled by the evaporator air flow control means or / and the condenser air flow control means.

また、凝縮器へ散水する散水手段と、この散水手段による散水量を制御する散水制御手段と、凝縮器の表面下部に設けられ、凝縮器表面上の水分を検出する第1の水分検出手段と、凝縮器の下方に設けられ、凝縮器表面から流れ落ちる水分を検出する第2の水分検出手段とを備え、散水制御手段により、第1の水分検出手段により水分が検出される状態、かつ、第2の水分検出手段により水分が検出されない状態になるように散水手段による散水量を制御するものである。   In addition, watering means for watering the condenser, watering control means for controlling the amount of water sprayed by the watering means, and a first moisture detection means for detecting water on the condenser surface provided at the lower surface of the condenser. A second moisture detecting means provided below the condenser and detecting moisture flowing down from the condenser surface, wherein the water content is detected by the first moisture detecting means by the watering control means, and the first The amount of water sprayed by the watering means is controlled so that the water is not detected by the water detecting means.

この発明は、以上のように構成されているので、以下に示すような効果を奏する。   Since this invention is comprised as mentioned above, there exists an effect as shown below.

凝縮器へ散水する散水手段と、外気温度を検出する外気温度検出手段と、外気温度に基づいて凝縮器への散水量を演算する散水量演算手段と、この散水量演算手段による散水量になるように、散水手段による散水量を制御する散水制御手段とを備え、外気温度検出手段により検出された外気温度に基づいて、外気温度の未来値を予測し、この外気温度の予測値に基づいて散水量演算手段により散水量を演算するので、凝縮温度の低下による消費電力の低減効果に加え、外気温度に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。   Sprinkling means for sprinkling water to the condenser, outside air temperature detecting means for detecting the outside air temperature, water sprinkling amount calculating means for calculating the water sprinkling amount to the condenser based on the outside air temperature, and the water sprinkling amount by the water sprinkling amount calculating means. And a watering control means for controlling the amount of water sprayed by the watering means, predicting a future value of the outside air temperature based on the outside air temperature detected by the outside air temperature detecting means, and based on the predicted value of the outside air temperature. Since the sprinkling amount is calculated by the sprinkling amount calculation means, in addition to the effect of reducing the power consumption due to the decrease in the condensing temperature, water can be used without excess or deficiency with respect to the outside air temperature, and the response delay of the sprinkling operation is compensated. be able to.

また、凝縮器へ散水する散水手段と、外気温度を検出する外気温度検出手段と、外気湿度を検出する外気湿度検出手段と、外気温度および外気湿度に基づいて凝縮器への散水量を演算する散水量演算手段と、この散水量演算手段による散水量になるように、散水手段による散水量を制御する散水制御手段とを備え、外気温度検出手段および外気湿度検出手段により検出された外気温度および外気湿度に基づいて、外気温度および外気湿度の未来値を予測し、この外気温度および外気湿度の予測値に基づいて散水量演算手段により散水量を演算するので、凝縮温度の低下による消費電力の低減効果に加え、外気温度、外気湿度に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。   Further, watering means for watering the condenser, outside air temperature detecting means for detecting the outside air temperature, outside air humidity detecting means for detecting the outside air humidity, and calculating the amount of water sprayed to the condenser based on the outside air temperature and the outside air humidity. A sprinkling amount calculating means and a sprinkling control means for controlling the sprinkling amount by the sprinkling means so as to obtain a sprinkling amount by the sprinkling amount calculating means, and the outside air temperature detected by the outside air temperature detecting means and the outside air humidity detecting means and Based on the outside air humidity, the future value of the outside air temperature and the outside air humidity are predicted, and the water spray amount is calculated by the water spray amount calculating means based on the predicted value of the outside air temperature and the outside air humidity. In addition to the reduction effect, the water can be used without excess or deficiency with respect to the outside air temperature and the outside air humidity, and further, the response delay of the watering operation can be compensated.

さらに、圧縮機の運転容量を制御する運転容量制御手段を備え、運転容量制御手段により検出された運転容量に基づいて、運転容量の未来値を予測し、この運転容量の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するので、散水による消費電力の低減効果に加え、運転周波数に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。   In addition, an operating capacity control means for controlling the operating capacity of the compressor is provided, and a future value of the operating capacity is predicted based on the operating capacity detected by the operating capacity control means, and the predicted value of the operating capacity and the outside air temperature or Based on the predicted value of the outside air humidity, the sprinkling amount is calculated by the sprinkling amount calculation means. In addition to the effect of reducing the power consumption due to the sprinkling, water can be used without excess or deficiency with respect to the operating frequency. The response delay can be compensated.

また、冷凍サイクル装置の消費電力を検出する消費電力検出手段を備え、消費電力検出手段により検出された消費電力に基づいて、消費電力の未来値を予測し、この消費電力の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するので、散水による消費電力の低減効果に加え、消費電力に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。   The power consumption detecting means for detecting the power consumption of the refrigeration cycle apparatus is provided, the future value of the power consumption is predicted based on the power consumption detected by the power consumption detecting means, and the predicted value of the power consumption and the outside temperature Or, based on the predicted value of outside air humidity, the sprinkling amount is calculated by the sprinkling amount calculation means, so that in addition to the effect of reducing the power consumption due to the sprinkling, water can be used without excess or deficiency for the power consumption. The response delay of the operation can be compensated.

また、冷凍サイクル装置の凝縮温度を検出する凝縮温度検出手段を備え、凝縮温度検出手段により検出された凝縮温度に基づいて、凝縮温度の未来値を予測し、この凝縮温度の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するので、散水による消費電力の低減効果に加え、凝縮温度に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。   In addition, a condensation temperature detection means for detecting the condensation temperature of the refrigeration cycle apparatus is provided, and a future value of the condensation temperature is predicted based on the condensation temperature detected by the condensation temperature detection means. Or, based on the predicted value of outside air humidity, the sprinkling amount is calculated by the sprinkling amount calculation means, so in addition to the effect of reducing power consumption by sprinkling, water can be used without excess or deficiency with respect to the condensation temperature. The response delay of the operation can be compensated.

また、冷凍サイクル装置の凝縮圧力を検出する凝縮圧力検出手段を備え、凝縮圧力検出手段により検出された凝縮圧力に基づいて凝縮圧力の未来値を予測し、この凝縮圧力の予測値および外気温度または外気湿度の予測値に基づいて、散水量演算手段により散水量を演算するので、散水による消費電力の低減効果に加え、凝縮圧力に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。   In addition, a condensing pressure detecting means for detecting the condensing pressure of the refrigeration cycle apparatus is provided, a future value of the condensing pressure is predicted based on the condensing pressure detected by the condensing pressure detecting means, and the predicted value of the condensing pressure and the outside air temperature or Based on the predicted value of outside air humidity, the sprinkling amount is calculated by the sprinkling amount calculation means. In addition to the effect of reducing power consumption due to sprinkling, water can be used without excess or deficiency with respect to the condensing pressure. The response delay can be compensated.

また、冷却対象の室内空気の乾球温度を検出する室内温度検出手段と、冷却対象の室内空気の湿度を検出する室内湿度検出手段と、蒸発器の蒸発温度を検知する蒸発温度検出手段と、凝縮器へ散水する散水手段と、凝縮器への散水量を演算する散水量演算手段と、この散水量演算手段による散水量になるように、散水手段による散水量を制御する散水制御手段とを備え、散水量演算手段は、室内温度検出手段による室内温度、室内湿度検出手段による室内湿度、蒸発温度検出手段による蒸発温度に基づいて凝縮器への散水量を演算するので、散水による電気入力の低減効果に加え、室内温度と室内湿度の制御が可能となり省エネと快適性向上を両立できる。   Also, an indoor temperature detecting means for detecting the dry bulb temperature of the indoor air to be cooled, an indoor humidity detecting means for detecting the humidity of the indoor air to be cooled, an evaporation temperature detecting means for detecting the evaporation temperature of the evaporator, Watering means for watering the condenser, watering amount calculating means for calculating the watering amount to the condenser, and watering control means for controlling the watering amount by the watering means so as to be the watering amount by the watering amount calculating means. The water sprinkling amount calculating means calculates the water sprinkling amount to the condenser based on the indoor temperature by the indoor temperature detecting means, the indoor humidity by the indoor humidity detecting means, and the evaporation temperature by the evaporating temperature detecting means. In addition to the reduction effect, it is possible to control the room temperature and the room humidity, thus achieving both energy saving and comfort improvement.

また、蒸発器へ送風する送風機の送風量を制御する蒸発器送風量制御手段または/および凝縮器へ送風する送風機の送風量を制御する凝縮器送風量制御手段を備え、散水量演算手段により演算された散水量に応じて、蒸発器送風量制御手段または/および凝縮器送風量制御手段により、蒸発器または/および凝縮器への送風量を制御するので、散水による電気入力の低減効果に加え、室内温度と室内湿度の制御が広い温度、湿度範囲で可能となり省エネと快適性向上を両立できる。   Further, it is provided with an evaporator air flow rate control means for controlling the air flow rate of the blower that blows air to the evaporator and / or a condenser air flow rate control means for controlling the air flow rate of the air blower that is blown to the condenser, and is calculated by the sprinkling amount calculating means. In accordance with the amount of water sprayed, the air flow to the evaporator or / and the condenser is controlled by the evaporator air flow control means or / and the condenser air flow control means. The room temperature and humidity can be controlled over a wide temperature and humidity range, and both energy saving and comfort can be achieved.

また、凝縮器へ散水する散水手段と、この散水手段による散水量を制御する散水制御手段と、凝縮器の表面下部に設けられ、凝縮器表面上の水分を検出する第1の水分検出手段と、凝縮器の下方に設けられ、凝縮器表面から流れ落ちる水分を検出する第2の水分検出手段とを備え、散水制御手段により、第1の水分検出手段により水分が検出される状態、かつ、第2の水分検出手段により水分が検出されない状態になるように散水手段による散水量を制御するので、散水による電気入力の低減効果に加え、常に凝縮器が濡れた状態に散水し、無駄に散水することがないので水の節約になる。   In addition, watering means for watering the condenser, watering control means for controlling the amount of water sprayed by the watering means, and a first moisture detection means for detecting water on the condenser surface provided at the lower surface of the condenser. A second moisture detecting means provided below the condenser and detecting moisture flowing down from the condenser surface, wherein the water content is detected by the first moisture detecting means by the watering control means, and the first Since the amount of water sprayed by the watering means is controlled so that the water is not detected by the water detecting means 2, in addition to the effect of reducing the electric input by watering, the condenser is always watered in a wet state and water is sprinkled wastefully. It will save water because it never happens.

この発明の実施の形態1を示す冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating cycle apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍サイクル装置における外気温度と散水の有無による消費電力の関係を示す図である。It is a figure which shows the relationship of the power consumption by the external temperature in the refrigerating-cycle apparatus which shows Embodiment 1 of this invention, and the presence or absence of watering. この発明の実施の形態1を示す冷凍サイクル装置における外気温度に対して全て有効に使える必要散水量を示す図である。It is a figure which shows the required watering amount which can be effectively used altogether with respect to the outside temperature in the refrigeration cycle apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍サイクル装置における外気温度の未来値の予測演算を示す図である。It is a figure which shows the prediction calculation of the future value of outside temperature in the refrigerating-cycle apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍サイクル装置における外気温度による散水量制御を示すフローチャートである。It is a flowchart which shows the sprinkling amount control by the outside temperature in the refrigerating-cycle apparatus which shows Embodiment 1 of this invention. この発明の実施の形態2を示す冷凍サイクル装置における圧縮機運転周波数と必要散水量の関係を示す図である。It is a figure which shows the relationship between the compressor operating frequency and the required watering amount in the refrigerating-cycle apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す冷凍サイクル装置における消費電力と必要散水量の関係を示す図である。It is a figure which shows the relationship between the power consumption and the required watering amount in the refrigerating-cycle apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す冷凍サイクル装置における凝縮温度と必要散水量の関係を示す図である。It is a figure which shows the relationship between the condensation temperature in the refrigerating-cycle apparatus which shows Embodiment 2 of this invention, and a required watering amount. この発明の実施の形態2を示す冷凍サイクル装置における凝縮圧力と必要散水量の関係を示す図である。It is a figure which shows the relationship between the condensation pressure in the refrigerating-cycle apparatus which shows Embodiment 2 of this invention, and required watering amount. この発明の実施の形態2を示す冷凍サイクル装置における外気湿度、外気温度と必要散水量の関係を示す図である。It is a figure which shows the relationship between the external air humidity in the refrigerating-cycle apparatus which shows Embodiment 2 of this invention, external air temperature, and required water spray amount. この発明の実施の形態2を示す冷凍サイクル装置における外気温度、消費電力、外気湿度による散水量制御を示すフローチャートである。It is a flowchart which shows the amount of sprinkling control by the outside temperature, power consumption, and outside air humidity in the refrigerating-cycle apparatus which shows Embodiment 2 of this invention. この発明の実施の形態3を示す冷凍サイクル装置における圧縮機の運転周波数に対する蒸発器の蒸発温度を示す図である。It is a figure which shows the evaporation temperature of the evaporator with respect to the operating frequency of the compressor in the refrigerating-cycle apparatus which shows Embodiment 3 of this invention. この発明の実施の形態3を示す冷凍サイクル装置における圧縮機の運転周波数に対する顕熱比を示す図である。It is a figure which shows the sensible heat ratio with respect to the operating frequency of the compressor in the refrigerating-cycle apparatus which shows Embodiment 3 of this invention. この発明の実施の形態3を示す冷凍サイクル装置における圧縮機の運転周波数に対する蒸発器の吹出温度を示す図である。It is a figure which shows the blowing temperature of the evaporator with respect to the operating frequency of the compressor in the refrigerating-cycle apparatus which shows Embodiment 3 of this invention. この発明の実施の形態3を示す冷凍サイクル装置の空気線図における室内空気状態と目標室内空気状態と目標蒸発温度の関係を示す図である。It is a figure which shows the relationship between the indoor air state in the refrigeration cycle apparatus which shows Embodiment 3 of this invention, a target indoor air state, and target evaporation temperature. この発明の実施の形態3を示す冷凍サイクル装置における室内温度、室内湿度の散水量制御のブロック線図である。It is a block diagram of the amount of sprinkling control of room temperature and room humidity in the refrigerating cycle device showing Embodiment 3 of this invention. この発明の実施の形態4を示す冷凍サイクル装置における制御フローチャートである。It is a control flowchart in the refrigerating-cycle apparatus which shows Embodiment 4 of this invention. この発明の実施の形態5を示す冷凍サイクル装置の散水ユニットと凝縮器の構成図である。It is a block diagram of the watering unit and condenser of the refrigerating-cycle apparatus which shows Embodiment 5 of this invention. 従来の冷凍サイクル装置の構成図である。It is a block diagram of the conventional refrigeration cycle apparatus.

実施の形態1.
図1はこの発明の実施の形態1を示す冷凍サイクル装置の構成図、図2はこの冷凍サイクル装置において、外気温度と散水の有無による消費電力の関係を示す図、図3はこの冷凍サイクル装置において、外気温度に対して全て有効に使える必要散水量を示す図、図4はこの冷凍サイクル装置において、外気温度Toの未来値の予測演算を示すグラフ図、図5はこの冷凍サイクル装置において、外気温度による散水量制御を示すフローチャートである。
Embodiment 1 FIG.
1 is a configuration diagram of a refrigeration cycle apparatus showing Embodiment 1 of the present invention, FIG. 2 is a diagram showing the relationship between the outside air temperature and the power consumption depending on the presence or absence of water spray, and FIG. 3 is this refrigeration cycle apparatus. FIG. 4 is a graph showing a predicted calculation of the future value of the outside air temperature To in this refrigeration cycle apparatus, and FIG. 5 is a graph showing this refrigeration cycle apparatus. It is a flowchart which shows the amount of sprinkling control by outside temperature.

図において、冷凍サイクル装置は、被空調域である室内4内に室内機3が設置され、冷媒配管で室外の室外機2と接続される。室内機3と室外機2より冷凍サイクルが構成され、冷媒を圧縮する圧縮機11と、凝縮器12、膨張弁を示す絞り機構13、蒸発器14、四方弁15が冷媒管により連結される。凝縮器12には凝縮温度検出手段36、凝縮圧力検出手段37が設置される。また、室内4内に室内温度検出手段31と、室内湿度検出手段32が設置されている。   In the figure, in the refrigeration cycle apparatus, an indoor unit 3 is installed in a room 4 which is an air-conditioned area, and is connected to an outdoor unit 2 outside by a refrigerant pipe. The indoor unit 3 and the outdoor unit 2 constitute a refrigeration cycle, and a compressor 11 that compresses refrigerant, a condenser 12, a throttle mechanism 13 that indicates an expansion valve, an evaporator 14, and a four-way valve 15 are connected by a refrigerant pipe. The condenser 12 is provided with a condensation temperature detection means 36 and a condensation pressure detection means 37. An indoor temperature detecting means 31 and an indoor humidity detecting means 32 are installed in the room 4.

この実施の形態1では、冷房を対象として説明するので、四方弁15により室内機3内に蒸発器14、室外機2内に凝縮器12が設定される。凝縮器12、蒸発器14にはそれぞれ凝縮器送風機16、蒸発器送風機17が近接して設置される。蒸発器14には、冷媒の蒸発温度を検出する蒸発温度検出手段33が設置され、冷凍サイクル装置の運転制御を行う制御器18の入力側には室内温度検出手段31、室内湿度検出手段32、蒸発温度検出手段33が接続され、出力側には圧縮機11、蒸発器送風機17、凝縮器送風機16が接続される。電源には室外機2の消費電力を検出する消費電力検出手段38が接続される。   Since the first embodiment will be described for cooling, the four-way valve 15 sets the evaporator 14 in the indoor unit 3 and the condenser 12 in the outdoor unit 2. A condenser blower 16 and an evaporator blower 17 are installed close to the condenser 12 and the evaporator 14, respectively. The evaporator 14 is provided with an evaporation temperature detection means 33 for detecting the evaporation temperature of the refrigerant. On the input side of the controller 18 for controlling the operation of the refrigeration cycle apparatus, an indoor temperature detection means 31, an indoor humidity detection means 32, The evaporation temperature detecting means 33 is connected, and the compressor 11, the evaporator blower 17, and the condenser blower 16 are connected to the output side. A power consumption detecting means 38 for detecting the power consumption of the outdoor unit 2 is connected to the power source.

また、室外機2の凝縮器12に付随して散水ユニット1が設置される。散水ユニット1は、散水手段を示すスプレーノズル21、流量調整弁22、ストレーナ23が給水口24を有する水道配管により接続されるとともに、散水制御器25、外気温度検出手段34、外気湿度検出手段35から構成される。散水制御器25の入力側には外気温度検出手段34、外気湿度検出手段35、消費電力検出手段38、制御器18が接続され、出力側には流量調整弁22が接続される。また、散水制御器25は散水量演算手段26と散水制御手段27を有する。   In addition, the watering unit 1 is installed along with the condenser 12 of the outdoor unit 2. In the watering unit 1, a spray nozzle 21 indicating a watering means, a flow rate adjusting valve 22, and a strainer 23 are connected by a water pipe having a water supply port 24, and a watering controller 25, an outside air temperature detecting means 34, and an outside air humidity detecting means 35. Consists of An outside air temperature detecting means 34, an outside air humidity detecting means 35, a power consumption detecting means 38, and a controller 18 are connected to the input side of the watering controller 25, and a flow rate adjusting valve 22 is connected to the output side. Further, the watering controller 25 has a watering amount calculating means 26 and a watering control means 27.

次に、動作について説明する。
まず、図2は散水の有無による外気温度と消費電力の関係を示し、散水有は、一定散水量を行った場合である。そこで、散水有無による消費電力の入力差を見てみると、外気温度の低下とともに入力差が小さくなっており、外気温度が低い場合には、散水量の一部が有効に使われていないことがわかる。そこで、図3に外気温度Toに対して全て有効に使える必要散水量Gを示す。外気温度Toの低下とともに必要散水量は小さくなり、たとえば次式(1)のように表される。
G=0.1711・To+3.9736 ・・・ (1)
散水量演算手段26では、外気温度Toから式(1)の演算が成され、必要散水量Gを決定する。
Next, the operation will be described.
First, FIG. 2 shows the relationship between the outside air temperature and the power consumption depending on the presence or absence of watering, and the presence of watering is a case where a certain amount of watering is performed. Therefore, looking at the difference in power consumption due to the presence or absence of water spray, the input difference decreases as the outside air temperature decreases. When the outside air temperature is low, part of the water spray is not used effectively. I understand. Therefore, FIG. 3 shows the necessary water spray amount G that can be used effectively with respect to the outside air temperature To. As the outside air temperature To decreases, the required water spray amount decreases, and is expressed, for example, by the following equation (1).
G = 0.1711 ・ To + 3.9736 (1)
In the sprinkling amount calculation means 26, the calculation of the expression (1) is performed from the outside air temperature To, and the necessary sprinkling amount G is determined.

そこで、このまま、外気温度に応じて必要散水量Gを散水ユニットから凝縮器12へ散水してもよいが、外気温度が上昇傾向または下降傾向にあるとき、現在の外気温度に基づいて散水量を調整すると散水量の増減に時間遅れが生ずる場合があり、この時間遅れのため高圧カットにより空調機が停止してしまうこともある。そこで、外気温度Toの未来値を予測して、その予測値により必要散水量Gを決定し、時間遅れを補償する。   Therefore, the necessary water spray amount G may be sprinkled from the water spray unit to the condenser 12 according to the outside air temperature. However, when the outside air temperature tends to increase or decrease, the water spray amount is reduced based on the current outside air temperature. If adjusted, there may be a time delay in the increase / decrease in the amount of sprinkling, and the air conditioner may stop due to the high pressure cut due to this time delay. Therefore, the future value of the outside air temperature To is predicted, the necessary water spray amount G is determined based on the predicted value, and the time delay is compensated.

予測値算出の一例を図4に示す。図中の記号yが外気温度Toとする。現在時刻がt0、一定時間間隔τで現在から過去へt0、t-1、t-2時刻のときの外気温度検出値をそれぞれy0、y-1、y-2とすると、現在からτ時間後の時刻t1での外気温度予測値y1は次式(2)のように表せる。
y1=(y0−y-1)2/(y-1−y-2)+y0 ・・・ (2)
An example of predicted value calculation is shown in FIG. The symbol y in the figure is the outside air temperature To. If the current temperature is t0 and the detected outside air temperature is y0, y-1, y-2 at the time t0, t-1, t-2 from the present to the past at a fixed time interval τ, then τ hours later The predicted outside air temperature value y1 at time t1 can be expressed as the following equation (2).
y1 = (y0−y−1) 2 / (y−1−y−2) + y0 (2)

そこで、演算式(2)により上記外気温度の時間遅れの補償を行った場合の散水量制御を図5を用いて説明する。
まず、ステップS10では、外気温度Toを検出する。この値は時々刻々3点まで、すなわちt0、t-1、t-2時刻のときの各外気温度検出値y0、y-1、y-2が散水制御器25に記憶される。ステップS11では、検知し記憶されている3点の外気温度Toから式(2)により外気温度の予測値Toyが演算される。ステップS12では、外気温度予測値Toyと散水を行う基準温度として予め設定された設定外気温度To*を比較して、ToがTo*以上であるかどうか判断する。ここで、例えば設定外気温度To*=30℃と設定しておく。
Therefore, the water spray amount control when the time delay of the outside air temperature is compensated by the calculation formula (2) will be described with reference to FIG.
First, in step S10, the outside air temperature To is detected. This value is stored in the watering controller 25 up to three points from time to time, that is, the detected outside air temperatures y0, y-1, y-2 at time t0, t-1, t-2. In step S11, the predicted value Toy of the outside air temperature is calculated from the three detected outside air temperatures To by the equation (2). In step S12, a predicted outside air temperature value Toy is compared with a set outside air temperature To * preset as a reference temperature for watering, and it is determined whether To is equal to or higher than To *. Here, for example, the set outside air temperature To * = 30 ° C. is set.

そこで、外気温度の予測値Toyが設定外気温度To*以上であれば、ステップS13へ進み、上記式(1)を用いて外気温度の予測値Toyから散水量Gを演算する。ステップS14では、例えば数十秒間隔等のある一定制御タイミングを経過したかどうかを判断し、経過した場合には、ステップ10へ戻り、上記動作を繰り返す。   Therefore, if the predicted value Toy of the outside air temperature is equal to or higher than the set outside temperature To *, the process proceeds to step S13, and the water spray amount G is calculated from the predicted value Toy of the outside air temperature using the above formula (1). In step S14, for example, it is determined whether or not a certain control timing such as an interval of several tens of seconds has elapsed. If it has elapsed, the process returns to step 10 to repeat the above operation.

この散水量制御は、図1においては、外気温度検出手段34にて外気温度を検出して散水制御器25に記憶し、散水量演算手段26により、記憶された外気温度検出値から外気温度予測値を演算して、予測値から必要な散水量Gを演算する。この必要散水量Gになるように散水制御手段27が流量調整弁22の開度を調節し、以上の動作をある一定制御タイミングで繰り返し行う。   In FIG. 1, the sprinkling amount control is performed by detecting the outside air temperature by the outside air temperature detecting unit 34 and storing it in the watering controller 25, and the outside water temperature prediction from the stored outside air temperature detection value by the watering amount calculating unit 26. The value is calculated, and the required watering amount G is calculated from the predicted value. The water sprinkling control means 27 adjusts the opening degree of the flow rate adjusting valve 22 so that the required water sprinkling amount G is reached, and the above operation is repeated at a certain constant control timing.

以上のように、この実施の形態1では、散水による消費電力の低減効果に加え、外気温度に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。
なお、上記式(2)は外気温度の予測に用いたものを示したが、空調負荷の増減によって生じる運転周波数、消費電力、凝縮温度、凝縮圧力の予測にも用いることができる。また、式(2)ではなく単純な直線近似による予測でも代用は可能である。
As described above, in the first embodiment, in addition to the effect of reducing the power consumption due to watering, water can be used without excess or deficiency with respect to the outside air temperature, and the response delay of the watering operation can be compensated. .
In addition, although the said Formula (2) showed what was used for prediction of outside temperature, it can be used also for the prediction of the operating frequency, power consumption, condensation temperature, and condensation pressure which arise by increase / decrease in an air-conditioning load. Further, instead of the formula (2), a simple linear approximation can be used as a substitute.

実施の形態2.
実施の形態1では室内負荷を検出する方法として外気温度を検出して必要な散水量を演算し散水したものを示したが、外気温度以外の検出値でも必要な散水量を演算し散水することができる。本実施の形態2では、外気温度以外の検出値による散水について詳述する。なお、冷凍サイクル装置の構成図は、図1と同様である。
Embodiment 2. FIG.
In the first embodiment, as a method for detecting the indoor load, the outside air temperature is detected and the necessary watering amount is calculated and sprinkled. However, the necessary watering amount is calculated and sprinkled even with a detection value other than the outside air temperature. Can do. In this Embodiment 2, the watering by detection values other than external temperature is explained in full detail. The configuration diagram of the refrigeration cycle apparatus is the same as FIG.

図6はこの発明の実施の形態2を示す冷凍サイクル装置の圧縮機の運転容量である運転周波数と必要散水量の関係を示す図である。図において、周波数fzの上昇とともに必要散水量は大きくなり、たとえば次式(3)のように表される。
G=0.0613・fz + 6.2149 ・・・ (3)
ここで、周波数が増えていくと冷凍サイクル側では、消費電力、凝縮温度、凝縮圧力が同時に上昇していくのが容易に想像できる。
FIG. 6 is a diagram showing the relationship between the operating frequency, which is the operating capacity of the compressor of the refrigeration cycle apparatus showing Embodiment 2 of the present invention, and the required water spray amount. In the figure, as the frequency fz increases, the required watering amount increases, and is represented by the following equation (3), for example.
G = 0.0613 ・ fz + 6.2149 (3)
Here, it can be easily imagined that on the refrigeration cycle side, the power consumption, the condensing temperature, and the condensing pressure rise simultaneously as the frequency increases.

図7はこの発明の実施の形態2を示す冷凍サイクル装置の消費電力Pと必要散水量の関係を示す図である。図において、消費電力Pの上昇とともに必要散水量は大きくなり、たとえば次式(4)のように表される。
G=0.0084・P + 5.7879 ・・・ (4)
FIG. 7 is a diagram showing the relationship between the power consumption P and the required watering amount of the refrigeration cycle apparatus showing Embodiment 2 of the present invention. In the figure, as the power consumption P increases, the required watering amount increases, and is represented, for example, by the following equation (4).
G = 0.0084 ・ P + 5.7879 (4)

図8はこの発明の実施の形態2を示す冷凍サイクル装置の凝縮温度Tcと必要散水量の関係を示す図である。図において、凝縮温度Tcの上昇とともに必要散水量は大きくなり、たとえば次式(5)のように表される。
G=1.2223・Tc + 24.24 ・・・ (5)
FIG. 8 is a diagram showing the relationship between the condensation temperature Tc and the required watering amount of the refrigeration cycle apparatus showing Embodiment 2 of the present invention. In the figure, as the condensation temperature Tc increases, the required water spray amount increases, and is expressed, for example, by the following equation (5).
G = 1.2223 ・ Tc + 24.24 (5)

図9はこの発明の実施の形態2を示す冷凍サイクル装置の凝縮圧力Pcと必要散水量の関係を示す図である。図において、凝縮圧力Pcの上昇とともに必要散水量は大きくなり、たとえば次式(6)のように表される。
G=3.9832・Pc + 36.303 ・・・ (6)
よって、運転周波数、消費電力、凝縮温度、凝縮圧力のいずれを検知しても必要な散水量を演算することができる。
FIG. 9 is a diagram showing the relationship between the condensation pressure Pc and the required water spray amount of the refrigeration cycle apparatus showing Embodiment 2 of the present invention. In the figure, as the condensing pressure Pc increases, the required water spray amount increases, and is expressed, for example, by the following equation (6).
G = 3.9832 ・ Pc + 36.303 (6)
Therefore, the necessary watering amount can be calculated by detecting any of the operating frequency, power consumption, condensing temperature, and condensing pressure.

また、必要散水量に影響を及ぼすもう一つの要因として、外気湿度がある。図10はこの発明の実施の形態2を示す冷凍サイクル装置の外気湿度Ro外気温度Toと必要散水量の関係を示す図である。図において、外気湿度Roが低い状態では散水した水が蒸散しやすく蒸発潜熱が有効に使えるので散水量が多くなり、一方、湿度が高い状態では散水した水が蒸散しにくくなり、必要以上の散水は無駄となる。そこで、外気湿度Ro、外気温度Toと必要散水量の関係はたとえば次式(7)のように表される。
G=(−0.2598・To + 0.0605)・Ro +(0.265・To + 3.8953) ・・・ (7)
Another factor affecting the required water spray rate is outside air humidity. FIG. 10 is a diagram showing the relationship between the outside air humidity Ro outside air temperature To and the required water spray amount of the refrigeration cycle apparatus showing Embodiment 2 of the present invention. In the figure, when the outside air humidity Ro is low, the sprinkled water is easy to evaporate and the latent heat of evaporation can be used effectively, so the amount of water sprayed increases. Is wasted. Therefore, the relationship between the outside air humidity Ro, the outside air temperature To, and the required water spray amount is expressed, for example, by the following equation (7).
G = (-0.2598 · To + 0.0605) · Ro + (0.265 · To + 3.8953) (7)

図11はこの発明の実施の形態2を示す冷凍サイクル装置の外気温度、消費電力、外気湿度による散水量制御を示すフローチャートであり、上記条件を加味した制御フローを示すが、周波数、消費電力、凝縮温度、凝縮圧力のいずれを検出しても必要散水量を演算できるので、ここでは消費電力を例に説明する。   FIG. 11: is a flowchart which shows the amount of sprinkling control by the outside temperature of a refrigeration cycle apparatus which shows Embodiment 2 of this invention, power consumption, and outside air humidity, and shows the control flow which considered the said conditions, but frequency, power consumption, Since the required water spray amount can be calculated by detecting either the condensation temperature or the condensation pressure, the power consumption will be described as an example here.

まず、ステップS20では、外気温度検出手段34にて外気温度Toを検出する。ステップS21では外気湿度検出手段35にて外気湿度Roを検出する。ステップS22では消費電力検出手段38により消費電力Pを検知する。これらの値は時々刻々3点まで、すなわちt0、t-1、t-2時刻のときの外気温度/外気湿度/消費電力の各検出値y0、y-1、y-2が散水制御器25に記憶される。   First, in step S20, the outside air temperature detecting means 34 detects the outside air temperature To. In step S21, the outside air humidity detecting means 35 detects the outside air humidity Ro. In step S22, the power consumption P is detected by the power consumption detection means 38. These values are up to 3 points from time to time, that is, the detected values y0, y-1, and y-2 of the outside air temperature, outside air humidity, and power consumption at time t0, t-1, and t-2 are the watering controller 25. Is remembered.

ステップS23では、図5のステップS12と同様に、たとえば外気温度の設定外気温度と比較し散水するか判断する。そこで、散水する場合にはステップS24へ進み、散水量演算手段26により、ステップS22で検出し記憶されている3点の消費電力Pから式(2)により消費電力Pの予測値Pyが演算され、ステップS25では、予測値Pyから式(4)により必要散水量G'を求める。   In step S23, similarly to step S12 of FIG. 5, for example, it is determined whether or not to spray water compared to the set outside air temperature. Therefore, in the case of watering, the process proceeds to step S24, and the sprinkling amount calculating means 26 calculates the predicted value Py of the power consumption P from the three points of power consumption P detected and stored in step S22 by the equation (2). In step S25, the required watering amount G ′ is obtained from the predicted value Py by equation (4).

ステップS26では、散水量演算手段26により、ステップS21で検出し記憶されている3点の外気温度To/外気湿度Roから式(2)により外気温度To/外気湿度Roの予測値Toy/Royが演算され、この予測値Toy/Royから式(7)により散水量の修正値△Gを求める。その後、ステップS27では、散水量G'と修正散水量△Gより必要散水量Gを求め、必要散水量Gになるように散水制御手段27が流量調整弁22の開度を調節する。ステップS28では、例えば数十秒間隔等のある一定制御タイミングを経過したかどうかを判断し、経過した場合には、ステップS20へ戻り、上記動作を繰り返す。   In step S26, the predicted value Toy / Roy of the outside air temperature To / the outside air humidity Ro is calculated by the formula (2) from the three outside air temperatures To / the outside air humidity Ro detected and stored in the step S21. It is calculated, and the corrected value ΔG of the sprinkling amount is obtained from the predicted value Toy / Roy by the equation (7). Thereafter, in step S27, the required watering amount G is obtained from the watering amount G ′ and the corrected watering amount ΔG, and the watering control means 27 adjusts the opening degree of the flow rate adjusting valve 22 so that the required watering amount G is obtained. In step S28, it is determined whether or not a certain control timing such as an interval of several tens of seconds has elapsed. If it has elapsed, the process returns to step S20 to repeat the above operation.

なお、上記説明は、消費電力を検出したものを示したが、周波数、凝縮温度、凝縮圧力を検出しても同様に行われることはいうまでもない。
以上のように、この実施の形態2では、散水による消費電力の低減効果に加え、運転周波数、凝縮温度、凝縮圧力、消費電力、外気温度、外気湿度に対して水を過不足無く使用することができ、さらに散水動作の応答遅れを補償することができる。
In addition, although the said description showed what detected power consumption, it cannot be overemphasized that it is performed similarly even if it detects a frequency, a condensing temperature, and a condensing pressure.
As described above, in the second embodiment, in addition to the effect of reducing power consumption by watering, water should be used without excess or deficiency with respect to operating frequency, condensation temperature, condensation pressure, power consumption, outside air temperature, outside air humidity. In addition, the response delay of the watering operation can be compensated.

実施の形態3.
図12はこの発明の実施の形態3を示す冷凍サイクル装置における圧縮機の運転周波数に対する蒸発器の蒸発温度を示す図、図13はこの冷凍サイクル装置における圧縮機の運転周波数に対する顕熱比(以下、SHFという)を示す図、図14はこの冷凍サイクル装置の圧縮機の運転周波数に対する蒸発器の吹出温度を示す図である。なお、冷凍サイクル装置の構成図は、図1と同様である。
Embodiment 3 FIG.
FIG. 12 is a diagram showing the evaporation temperature of the evaporator with respect to the operating frequency of the compressor in the refrigeration cycle apparatus showing Embodiment 3 of the present invention, and FIG. 13 is a sensible heat ratio (hereinafter referred to as the operating frequency of the compressor in the refrigeration cycle apparatus). FIG. 14 is a diagram showing the outlet temperature of the evaporator with respect to the operating frequency of the compressor of this refrigeration cycle apparatus. The configuration diagram of the refrigeration cycle apparatus is the same as FIG.

次に、被空調域の快適性について考察する。
まず、被空調域の快適性を向上させるには、室内の温度制御に加えて、室内の湿度制御を行う必要がある。冷房の場合には除湿が重要となる。除湿する方法としては、室内に蒸発器と再熱器を並べて配置するのが理想的であるが、構造が複雑になる上、コスト高になり、実用的ではない。そこで、別の方法として、蒸発器14による除湿を考えると、除湿するには蒸発温度を低くし、冷凍サイクルのSHFを小さくする必要がある。
Next, the comfort of the air-conditioned area will be considered.
First, in order to improve the comfort of the air-conditioned area, it is necessary to perform indoor humidity control in addition to indoor temperature control. In the case of cooling, dehumidification is important. As a dehumidifying method, it is ideal to arrange the evaporator and the reheater side by side in the room, but the structure becomes complicated and the cost increases, which is not practical. Therefore, as another method, considering dehumidification by the evaporator 14, in order to dehumidify, it is necessary to lower the evaporation temperature and to reduce the SHF of the refrigeration cycle.

蒸発温度を低くするには、圧縮機11の運転周波数を上げる、蒸発器送風機17の送風量を小さくする、凝縮器送風機16の送風量を大きくする、などの方法がある。しかしながら、圧縮機11の運転周波数を上げると電気入力が大きくなってしまい、蒸発器送風機17の送風量を小さくすると吹出温度が低くなり被空調域の快適性が阻害される(図14)、凝縮器送風機16の送風量を大きくすると蒸発温度低下に差ほど効果がない、などのそれぞれ問題点がある。   In order to lower the evaporation temperature, there are methods such as increasing the operating frequency of the compressor 11, decreasing the air flow rate of the evaporator blower 17, and increasing the air flow rate of the condenser blower 16. However, when the operating frequency of the compressor 11 is increased, the electric input increases, and when the amount of air blown from the evaporator blower 17 is reduced, the blowing temperature is lowered and the comfort of the air-conditioned area is hindered (FIG. 14). Each increase in the amount of air blown from the fan blower 16 has problems such as not being as effective in reducing the evaporation temperature.

そこで、凝縮器12への散水を行った場合には、図12に示すように蒸発器14の蒸発温度が下がり、結果として図13に示すようにSHFが小さくなり、蒸発器14の吹出温度も凝縮器送風機16の風量もそのままであり、下がることがないという利点がある。
以上のことから、凝縮器12への散水量を制御することにより、上記問題点が生じることなく、被空調域の湿度を制御することが可能となる。
Therefore, when water is sprayed to the condenser 12, the evaporation temperature of the evaporator 14 is lowered as shown in FIG. 12, and as a result, the SHF is reduced as shown in FIG. The air volume of the condenser blower 16 remains the same, and there is an advantage that it does not drop.
From the above, it is possible to control the humidity of the air-conditioned area by controlling the amount of water sprayed to the condenser 12 without causing the above problems.

次に、凝縮器への散水量制御による被空調域の湿度制御について説明する。
図15はこの発明の実施の形態3を示す冷凍サイクル装置の空気線図における室内空気状態(室内温度Tr、室内湿度Rr)と目標室内空気状態(目標室内温度Tr*、目標室内湿度Rr*)と目標蒸発温度Te*の関係を示す図である。図において、室内空気状態は蒸発器14の入口空気状態に相当し、室内空気状態と目標室内空気状態を結ぶ直線が飽和線と交差する点が目標蒸発温度Te*となる。すなわち、この勾配の状態が冷凍サイクル装置のSHFと被空調室の空調負荷SHFが等しい状態に相当する。よって、ここで求めた目標蒸発温度Te*に蒸発温度Teを収束させれば、室内空気状態を目標室内空気状態にすることができ、以下に図を用いて説明する。
Next, humidity control of the air-conditioned area by controlling the amount of water sprayed to the condenser will be described.
FIG. 15 shows the room air condition (room temperature Tr, room humidity Rr) and the target room air condition (target room temperature Tr *, target room humidity Rr *) in the air diagram of the refrigeration cycle apparatus showing Embodiment 3 of the present invention. It is a figure which shows the relationship between target evaporation temperature Te *. In the figure, the indoor air state corresponds to the inlet air state of the evaporator 14, and the point where the straight line connecting the indoor air state and the target indoor air state intersects the saturation line is the target evaporation temperature Te *. That is, this gradient state corresponds to a state where the SHF of the refrigeration cycle apparatus and the air conditioning load SHF of the air-conditioned room are equal. Therefore, if the evaporation temperature Te is converged to the target evaporation temperature Te * obtained here, the indoor air state can be changed to the target indoor air state, which will be described below with reference to the drawings.

図16はこの発明の実施の形態3を示す冷凍サイクル装置における室内温度、室内湿度の散水量制御ブロック線図である。図において、ステップS40では、室内温度検出手段31による室内温度Trと目標室内温度Tr*の室内温度差△Trを演算し、ステップS41では、室内温度差△Trにより圧縮機11の運転周波数fzを設定する。ここまでは周知の技術である。   FIG. 16 is a block diagram for controlling the amount of sprinkling of room temperature and room humidity in the refrigeration cycle apparatus according to Embodiment 3 of the present invention. In step S40, a room temperature difference ΔTr between the room temperature Tr and the target room temperature Tr * by the room temperature detecting means 31 is calculated. In step S41, the operating frequency fz of the compressor 11 is calculated based on the room temperature difference ΔTr. Set. So far, this is a well-known technique.

ステップS42では、室内温度検出手段31による室内温度Tr、室内湿度検出手段32による室内湿度Rrと目標室内温度Tr*、目標室内湿度Rr*から図15の空気線図の関係から目標蒸発温度Te*を演算する。ステップS43では、目標蒸発温度Te*と現在の蒸発温度との温度差△Teを求める。ステップS44では、蒸発温度差△Teから散水量G(G = 0.4・△Te + 0.7)を演算し、必要散水量Gになるように散水制御手段27が流量調整弁22の開度を調節し、凝縮器12へ散水する。これにより、室内空気状態を目標室内温度Tr*、目標室内湿度Rr*とする。   In step S42, the target evaporation temperature Te * is calculated from the relationship between the room temperature Tr by the room temperature detection means 31, the room humidity Rr by the room humidity detection means 32, the target room temperature Tr *, and the target room humidity Rr * and the air diagram of FIG. Is calculated. In step S43, a temperature difference ΔTe between the target evaporation temperature Te * and the current evaporation temperature is obtained. In step S44, the watering amount G (G = 0.4 · ΔTe + 0.7) is calculated from the evaporation temperature difference ΔTe, and the watering control means 27 adjusts the opening of the flow rate adjusting valve 22 so that the required watering amount G is obtained. The water is sprinkled into the condenser 12. As a result, the indoor air state is set to the target indoor temperature Tr * and the target indoor humidity Rr *.

以上のように、この実施の形態3では、散水による電気入力の低減効果に加え、室内温度と室内湿度の制御が可能となり、省エネと快適性向上を両立できる。   As described above, in the third embodiment, in addition to the effect of reducing the electric input by watering, the room temperature and the room humidity can be controlled, and both energy saving and comfort improvement can be achieved.

実施の形態4.
実施の形態3では、凝縮器12への散水により室内温度、室内湿度制御が可能となるが、被空調域の空調負荷SHFが、さらに小さい場合には散水のみでは室内湿度制御が困難になる場合がある。そこで、実施の形態3の手法に加えて、凝縮器送風機16の送風量と蒸発器送風機17の送風量の制御を行い、湿度制御の範囲を広くすることについて、以下に図を用いて説明する。
Embodiment 4 FIG.
In the third embodiment, the indoor temperature and the indoor humidity can be controlled by watering the condenser 12. However, when the air conditioning load SHF in the air-conditioned area is smaller, it is difficult to control the indoor humidity only by watering. There is. Therefore, in addition to the method of the third embodiment, the control of the blast volume of the condenser blower 16 and the blast volume of the evaporator blower 17 to widen the range of humidity control will be described below with reference to the drawings. .

図17はこの発明の実施の形態4を示す冷凍サイクル装置における室内温度、室内湿度の散水量制御、蒸発器、凝縮器送風量制御の制御フローチャートである。なお、冷凍サイクル装置の構成図は、図1と同様である。なお、蒸発器送風量制御手段、凝縮器送風量制御手段は、制御器18を示す。   FIG. 17 is a control flowchart of the indoor temperature and indoor humidity sprinkling control, the evaporator and condenser air flow control in the refrigeration cycle apparatus showing Embodiment 4 of the present invention. The configuration diagram of the refrigeration cycle apparatus is the same as FIG. Note that the evaporator airflow control means and the condenser airflow control means indicate the controller 18.

次に、動作について説明する。
図において、ステップS50からS57の動作は、上記実施の形態3の図16のブロック線図の動作と同一であるため、説明を省略する。ステップS58では、ステップS57で求めた散水量Gが散水量最大値Gmax(可能最大値)を超えたかどうかを判断し、超えた場合には、散水量GをGmaxと設定し、ステップS59で凝縮器送風機16の送風量Vcをアップする。ステップS60では、凝縮器送風機16の送風量Vcが凝縮器送風機16の送風量最大値Vcmaxを超えたかどうかを判断し、超えた場合には、凝縮器送風機16の送風量VcはVcmaxに設定し、ステップS61に進み蒸発器送風機17の送風量Veをダウンする。これら一連の動作により蒸発温度を下げることが可能となる。
Next, the operation will be described.
In the figure, the operation from step S50 to S57 is the same as the operation of the block diagram of FIG. In step S58, it is determined whether or not the sprinkling amount G obtained in step S57 exceeds the maximum sprinkling amount Gmax (maximum possible value). If so, the sprinkling amount G is set to Gmax, and condensing is performed in step S59. The air flow rate Vc of the fan blower 16 is increased. In step S60, it is determined whether or not the air flow rate Vc of the condenser blower 16 exceeds the maximum air flow rate value Vcmax of the condenser blower 16, and if so, the air flow rate Vc of the condenser blower 16 is set to Vcmax. Then, the process proceeds to step S61, and the air flow rate Ve of the evaporator blower 17 is decreased. With this series of operations, the evaporation temperature can be lowered.

また、ステップS58で散水量Gが散水量最大値Gmax(可能最大値)を超えない場合には、ステップS63で凝縮器送風機16の送風量Vcをダウンし、ステップS64で蒸発器送風機17の送風量Veをアップする。
さらに、ステップS60で凝縮器送風機16の送風量Vcが凝縮器送風機16の送風量最大値Vcmaxを超えない場合には、ステップS64で蒸発器送風機17の送風量Veはアップする。
その後、ステップS62では、例えば数十秒間隔等のある一定制御タイミングを経過したかどうかを判断し、経過した場合には、ステップS51へ戻り、上記動作を繰り返す。
If the water spray amount G does not exceed the maximum water spray amount Gmax (maximum possible value) in step S58, the air flow rate Vc of the condenser blower 16 is reduced in step S63, and the evaporator blower 17 is sent in step S64. Increase air volume Ve.
Furthermore, when the air flow rate Vc of the condenser blower 16 does not exceed the maximum air flow rate value Vcmax of the condenser blower 16 in step S60, the air flow rate Ve of the evaporator blower 17 is increased in step S64.
Thereafter, in step S62, it is determined whether or not a certain control timing such as an interval of several tens of seconds has elapsed. If it has elapsed, the process returns to step S51 to repeat the above operation.

以上のように、この実施の形態4では、散水による電気入力の低減効果に加え、室内温度と室内湿度の制御が広い温度、湿度範囲で可能となり、省エネと快適性向上を両立できる。   As described above, in the fourth embodiment, in addition to the effect of reducing the electric input by watering, the room temperature and the room humidity can be controlled in a wide temperature and humidity range, and both energy saving and comfort improvement can be achieved.

実施の形態5.
図18はこの発明の実施の形態5を示す冷凍サイクル装置の一部構成図であり、散水ユニットおよび凝縮器のみの構成を示す。なお、散水ユニットおよび凝縮器以外の構成は、図示していないが、図1と同一である。
図において、図1と同一または相当部分には同一符号を付け、説明を省略する。40は凝縮器12の下端部表面に取り付けられ、凝縮器12表面の水分の有無を検出する第1の水分センサ、41は凝縮器12近傍の下方に取り付けられ、凝縮器12から流れ落ちた水分の有無を検出する第2の水分センサである。なお、第1の水分センサ、第2の水分センサは、それぞれ第1の水分検出手段、第2の水分検出手段を示す。
Embodiment 5 FIG.
FIG. 18 is a partial configuration diagram of a refrigeration cycle apparatus showing Embodiment 5 of the present invention, and shows a configuration of only a watering unit and a condenser. In addition, although structures other than a watering unit and a condenser are not shown in figure, they are the same as FIG.
In the figure, the same or corresponding parts as in FIG. Reference numeral 40 denotes a first moisture sensor that is attached to the lower end surface of the condenser 12 and detects the presence or absence of moisture on the condenser 12 surface, and 41 is attached below the vicinity of the condenser 12 to remove moisture that has flowed down from the condenser 12. It is the 2nd moisture sensor which detects presence or absence. The first moisture sensor and the second moisture sensor indicate a first moisture detection unit and a second moisture detection unit, respectively.

次に動作について説明する。
本実施形態では、凝縮器12への散水動作について説明する。
最も効率的に散水するには、凝縮器12が満遍なく濡れた状態で、かつ、凝縮器12の下方へ水が流れ落ちないように散水量を設定することが必要である。そこで、第1の水分センサ40により凝縮器12下端表面の水分有りを検出し、かつ、第2の水分センサ41により凝縮器12から離れた下方に水分を検出しないように、スプレーノズル21により散水を行う。
Next, the operation will be described.
In this embodiment, the watering operation to the condenser 12 will be described.
In order to spray water most efficiently, it is necessary to set the watering amount so that the condenser 12 is evenly wet and the water does not flow down to the lower side of the condenser 12. Therefore, the spray nozzle 21 sprays water so that the first moisture sensor 40 detects the presence of moisture on the lower end surface of the condenser 12 and the second moisture sensor 41 does not detect moisture below the condenser 12. I do.

すなわち、第1の水分センサ40と第2の水分センサ41ともに水を検出せず、乾いた状態の場合には、散水制御部25により流量調整弁22の開度を大にして散水量をアップさせる。また、第1の水分センサ40と第2の水分センサ41ともに濡れた状態では、流量調整弁22の開度を小にして散水量をダウンさせる。さらに、第1の水分センサ40が濡れた状態、かつ、第2の水分センサ41が乾いた状態の場合には、効率的に散水されているため、流量調整弁22の開度は変更せず、現状の散水量を保持する。
なお、この実施形態では、散水動作のみを説明したが、散水以外の動作については上記各実施形態のように行ってもよいことはいうまでもない。
That is, when the first moisture sensor 40 and the second moisture sensor 41 do not detect water and are in a dry state, the watering control unit 25 increases the opening of the flow rate adjustment valve 22 to increase the watering amount. Let Further, when both the first moisture sensor 40 and the second moisture sensor 41 are wet, the opening of the flow rate adjustment valve 22 is reduced to reduce the water spray amount. Furthermore, when the first moisture sensor 40 is wet and the second moisture sensor 41 is dry, water is efficiently sprinkled, so the opening degree of the flow rate adjustment valve 22 is not changed. , Keep the current watering amount.
In addition, although this embodiment demonstrated only watering operation | movement, it cannot be overemphasized that operation | movement other than watering may be performed like said each embodiment.

以上のように、この実施例においては、散水による電気入力の低減効果に加え、常に凝縮器が濡れ、かつ、凝縮器の下方に水が流れ落ちないように散水するので、無駄に散水することがなく、水の節約を行うことができる。   As described above, in this embodiment, in addition to the effect of reducing electric input by watering, the condenser is always wet and water is sprayed so that water does not flow below the condenser. Without saving water.

1 散水ユニット、2 室外機、3 室内機、4 室内、11 圧縮機、12 凝縮器、13 絞り機構、14 蒸発器、15 四方弁、16 凝縮器送風機、17 蒸発器送風機、18 制御器、21 スプレーノズル、22 流量調整弁、23 ストレーナ、24 給水口、25 散水制御器、26 散水量演算手段、27 散水制御手段、31 室内温度検出手段、32 室内湿度検出手段、33 蒸発温度検出手段、34 外気温度検出手段、35 外気湿度検出手段、36 凝縮温度検出手段、37 凝縮圧力検出手段、38 消費電力検出手段、40 第1の水分センサ、41 第2の水分センサ。   DESCRIPTION OF SYMBOLS 1 Sprinkling unit, 2 outdoor unit, 3 indoor unit, 4 indoors, 11 compressor, 12 condenser, 13 throttle mechanism, 14 evaporator, 15 four-way valve, 16 condenser blower, 17 evaporator blower, 18 controller, 21 Spray nozzle, 22 Flow rate adjusting valve, 23 Strainer, 24 Water supply port, 25 Sprinkling controller, 26 Sprinkling amount calculation means, 27 Sprinkling control means, 31 Indoor temperature detection means, 32 Indoor humidity detection means, 33 Evaporation temperature detection means, 34 Outside air temperature detecting means, 35 Outside air humidity detecting means, 36 Condensing temperature detecting means, 37 Condensing pressure detecting means, 38 Power consumption detecting means, 40 First moisture sensor, 41 Second moisture sensor.

Claims (3)

圧縮機、凝縮器、蒸発器、膨張手段を有する冷媒回路を形成した冷凍サイクル装置において、
冷却対象の室内空気の乾球温度を検出する室内温度検出手段と、
冷却対象の室内空気の湿度を検出する室内湿度検出手段と、
前記蒸発器の蒸発温度を検知する蒸発温度検出手段と、
前記凝縮器へ散水する散水手段と、
前記凝縮器への散水量を演算する散水量演算手段と、
この散水量演算手段による散水量になるように、前記散水手段による散水量を制御する散水制御手段とを備え、
前記散水量演算手段は、前記室内温度検出手段による室内温度、前記室内湿度検出手段による室内湿度、前記蒸発温度検出手段による蒸発温度に基づいて前記凝縮器への散水量を演算することを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus in which a refrigerant circuit having a compressor, a condenser, an evaporator, and an expansion means is formed,
Indoor temperature detection means for detecting the dry bulb temperature of the indoor air to be cooled;
Indoor humidity detection means for detecting the humidity of the indoor air to be cooled;
Evaporating temperature detecting means for detecting the evaporating temperature of the evaporator;
Watering means for watering the condenser;
Watering amount calculating means for calculating the amount of watering to the condenser;
Watering control means for controlling the watering amount by the watering means so as to be the watering amount by the watering amount calculation means,
The sprinkling amount calculating means calculates the sprinkling amount to the condenser based on the indoor temperature by the indoor temperature detecting means, the indoor humidity by the indoor humidity detecting means, and the evaporation temperature by the evaporating temperature detecting means. Refrigeration cycle equipment.
前記蒸発器へ送風する送風機の送風量を制御する蒸発器送風量制御手段または/および前記凝縮器へ送風する送風機の送風量を制御する凝縮器送風量制御手段を備え、前記散水量演算手段により演算された散水量に応じて、蒸発器送風量制御手段または/および凝縮器送風量制御手段により、蒸発器または/および凝縮器への送風量を制御することを特徴とする請求項1項記載の冷凍サイクル装置。   An evaporator air flow control means for controlling the air flow of the blower that blows air to the evaporator and / or a condenser air flow control means that controls the air flow of the air blower sent to the condenser; 2. The air flow to the evaporator or / and the condenser is controlled by the evaporator air flow control means or / and the condenser air flow control means according to the calculated watering amount. Refrigeration cycle equipment. 圧縮機、凝縮器、蒸発器、膨張手段を有する冷媒回路を形成した冷凍サイクル装置において、
前記凝縮器へ散水する散水手段と、
この散水手段による散水量を制御する散水制御手段と、
前記凝縮器の表面下部に設けられ、凝縮器表面上の水分を検出する第1の水分検出手段と、
前記凝縮器の下方に設けられ、凝縮器表面から流れ落ちる水分を検出する第2の水分検出手段とを備え、
前記散水制御手段により、第1の水分検出手段により水分が検出される状態、かつ、第2の水分検出手段により水分が検出されない状態になるように前記散水手段による散水量を制御する特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus in which a refrigerant circuit having a compressor, a condenser, an evaporator, and an expansion means is formed,
Watering means for watering the condenser;
Watering control means for controlling the amount of watering by the watering means;
A first moisture detecting means provided at the lower surface of the condenser for detecting moisture on the condenser surface;
A second moisture detecting means provided below the condenser and detecting moisture flowing down from the condenser surface;
The watering control means controls the amount of water sprayed by the watering means so that the water content is detected by the first water content detecting means and the water content is not detected by the second water content detecting means. Refrigeration cycle equipment.
JP2009250392A 2009-10-30 2009-10-30 Refrigeration cycle equipment Expired - Lifetime JP4990339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250392A JP4990339B2 (en) 2009-10-30 2009-10-30 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250392A JP4990339B2 (en) 2009-10-30 2009-10-30 Refrigeration cycle equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000239852A Division JP4476456B2 (en) 2000-08-08 2000-08-08 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010060278A true JP2010060278A (en) 2010-03-18
JP4990339B2 JP4990339B2 (en) 2012-08-01

Family

ID=42187254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250392A Expired - Lifetime JP4990339B2 (en) 2009-10-30 2009-10-30 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4990339B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721154A (en) * 2012-06-28 2012-10-10 惠州市德赛西威汽车电子有限公司 Energy-saving control device and control method for variable displacement compressor of air conditioner
JP2013104598A (en) * 2011-11-11 2013-05-30 Daikin Industries Ltd Air conditioning system
CN103486701A (en) * 2013-09-03 2014-01-01 惠州市德赛西威汽车电子有限公司 Temperature control method for vehicle-mounted air conditioner
JP2015215126A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Sprinkling device
WO2023199426A1 (en) * 2022-04-13 2023-10-19 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104385875A (en) * 2014-11-11 2015-03-04 无锡悟莘科技有限公司 Intelligent auxiliary control system of automobile air conditioner
CN104385876B (en) * 2014-11-12 2016-09-14 无锡科思电子科技有限公司 A kind of on-board air conditioner supplementary controlled system based on path planning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223364A (en) * 1992-02-06 1993-08-31 Yazaki Corp Air cooling heat radiation apparatus of freezing cycle
JP2000088401A (en) * 1998-07-06 2000-03-31 Daikin Ind Ltd Auxiliary cooling device for condenser of air conditioner, refrigeration device and chilling unit
JP2000088319A (en) * 1998-09-17 2000-03-31 Mitsubishi Electric Corp Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223364A (en) * 1992-02-06 1993-08-31 Yazaki Corp Air cooling heat radiation apparatus of freezing cycle
JP2000088401A (en) * 1998-07-06 2000-03-31 Daikin Ind Ltd Auxiliary cooling device for condenser of air conditioner, refrigeration device and chilling unit
JP2000088319A (en) * 1998-09-17 2000-03-31 Mitsubishi Electric Corp Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104598A (en) * 2011-11-11 2013-05-30 Daikin Industries Ltd Air conditioning system
CN102721154A (en) * 2012-06-28 2012-10-10 惠州市德赛西威汽车电子有限公司 Energy-saving control device and control method for variable displacement compressor of air conditioner
CN103486701A (en) * 2013-09-03 2014-01-01 惠州市德赛西威汽车电子有限公司 Temperature control method for vehicle-mounted air conditioner
CN103486701B (en) * 2013-09-03 2016-03-02 惠州市德赛西威汽车电子股份有限公司 A kind of on-board air conditioner temperature-controlled process
JP2015215126A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Sprinkling device
WO2023199426A1 (en) * 2022-04-13 2023-10-19 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP4990339B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4476456B2 (en) Refrigeration cycle equipment
JP4990339B2 (en) Refrigeration cycle equipment
EP2320151B1 (en) Air-conditioning device
WO2013099913A1 (en) Air-conditioning system that adjusts temperature and humidity
WO2018173120A1 (en) Dehumidifier
WO2008004625A1 (en) Power control device
JP5984964B2 (en) Air conditioning system
CN107076448A (en) Air conditioner
KR20170016727A (en) Method for controlling of air conditioner
JP5391785B2 (en) Air conditioning system
JP2011075179A (en) Air conditioning system
CN111928435A (en) Air conditioner
CN107062534B (en) Anti-condensation control system, air conditioner and condensation prevention control method
WO2019073514A1 (en) Refrigeration cycle device
JP4445246B2 (en) Air conditioner
JP2019105397A (en) Air conditioning equipment and air conditioning system
KR101689724B1 (en) Air conditioner and control method thereof
JP4328892B2 (en) Temperature and humidity control device and environmental test device
JP3993015B2 (en) Air conditioner
KR20060124960A (en) Cool mode control method of air conditioner
JP2004324973A (en) Air conditioner and operating method of air conditioner
JP2007309585A (en) Refrigerating device
JPH0814389B2 (en) Clean room with direct expansion heat exchanger
JP3684860B2 (en) Air conditioner
KR20170138703A (en) Air conditioner system and its control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4990339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term