JP2010058660A - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
JP2010058660A
JP2010058660A JP2008226315A JP2008226315A JP2010058660A JP 2010058660 A JP2010058660 A JP 2010058660A JP 2008226315 A JP2008226315 A JP 2008226315A JP 2008226315 A JP2008226315 A JP 2008226315A JP 2010058660 A JP2010058660 A JP 2010058660A
Authority
JP
Japan
Prior art keywords
evaporator
air
temperature
amount
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008226315A
Other languages
Japanese (ja)
Inventor
Kojiro Nakamura
康次郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008226315A priority Critical patent/JP2010058660A/en
Publication of JP2010058660A publication Critical patent/JP2010058660A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress rapid temperature variation of the temperature of air passing through an evaporator when a feeding amount of air passing through the evaporator is varied, thereafter to transfer it to proportional integration control according to the system state, and to smoothly perform transferring to the stable state that the temperature of air passing through the evaporator is made coincident to the target temperature. <P>SOLUTION: The vehicle air conditioner varies an outside control signal by an operation equation having a proportional member based on variance of the temperature of air after evaporator detected by an air temperature detection sensor after the evaporator and the target temperature and an integration member by time accumulation of remained variance of the temperature of air after the evaporator relative to the target temperature to vary a coolant delivery amount of a compressor. An air amount correction amount is added/reduced relative to the integration member according to increase/reduction of the feeding amount of air passing through the evaporator. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、外部制御信号により冷媒吐出量を可変できる圧縮機を冷凍サイクル内に有し、圧縮機の冷媒吐出量を可変することにより蒸発器を通過した空気温度、ひいては、車室内への吹出空気温度を制御する車両用空気調和装置に関する。   The present invention has a compressor in the refrigeration cycle in which the refrigerant discharge amount can be varied by an external control signal, and the temperature of the air that has passed through the evaporator by varying the refrigerant discharge amount of the compressor, and hence the blowout into the passenger compartment. The present invention relates to a vehicle air conditioner that controls an air temperature.

この種の従来の車両用空気調和装置としては、蒸発器を通過した空気温度とその目標温度を一致させるように圧縮機の冷媒吐出量をフィードバック制御するものが種々提案されている。このフィードバック制御方式としては、蒸発器を通過した空気温度(以下、蒸発器後空気温度という。)とその目標温度の偏差に基づく比例項と、目標温度に対する蒸発器後空気温度の残留偏差の時間積分による積分項とからなる演算式によるPI制御や、又は、比例項と積分項にさらに残留偏差間の時間微分による微分項とからなる演算式によるPID制御が従来より知られている(PID制御に関しては特許文献1参照)。   Various types of conventional vehicle air conditioners of this type have been proposed in which the refrigerant discharge amount of the compressor is feedback-controlled so that the air temperature that has passed through the evaporator matches the target temperature. The feedback control method includes a proportional term based on the deviation between the air temperature that has passed through the evaporator (hereinafter referred to as the air temperature after the evaporator) and the target temperature, and the time of the residual deviation of the air temperature after the evaporator relative to the target temperature. Conventionally known are PI control based on an arithmetic expression composed of an integral term by integration, or PID control based on an arithmetic expression composed of a proportional term and an integral term and a differential term based on time differentiation between residual deviations (PID control). (See Patent Document 1).

PI制御及びPID制御では、それぞれの動作を強める(動作定数を大)と、制御の応答性が良くなるが、制御の安定性が悪化する。逆に、それぞれの動作を弱める(動作定数を小)と、安定性が良くなるが、制御の応答性が悪化する。そのため、PI制御とPID制御では応答性と安定性の調和を取るように各動作定数を決定することになる。しかし、このように制御の応答性と安定性の調和の下に動作定数を決定すると、蒸発器への送風量が変化する場合に発生する蒸発器後空気温度の急激な温度変化を抑制できない。   In PI control and PID control, if each operation is strengthened (the operation constant is large), control responsiveness is improved, but control stability is deteriorated. Conversely, if each operation is weakened (the operation constant is small), stability is improved, but control responsiveness is deteriorated. Therefore, in the PI control and the PID control, each operation constant is determined so as to balance the response and stability. However, when the operation constant is determined in such a manner that the control response and stability are harmonized, a rapid temperature change in the post-evaporator air temperature that occurs when the air flow to the evaporator changes cannot be suppressed.

そこで、蒸発器への送風量変化時には、圧縮機への制御出力に対して所定時間だけ切換補償量を加算するものが提案されている(特許文献2参照)。   In view of this, there has been proposed a method in which a switching compensation amount is added to a control output to the compressor for a predetermined time when the air flow to the evaporator is changed (see Patent Document 2).

これによれば、風量変化時における蒸発器後空気温度の急激な温度変化を抑制できる。
特開平5−85142号公報 特公平7−6503号公報
According to this, the rapid temperature change of the air temperature after the evaporator at the time of the air volume change can be suppressed.
Japanese Patent Laid-Open No. 5-85142 Japanese Patent Publication No. 7-6503

しかしながら、前記従来例では、蒸発器への送風量変化時より所定時間経過すると、圧縮機への制御出力から切換補償量がなくなる。すると、所定時間後において、仮に蒸発器後空気温度が安定していたとしても変動を来たし、再度PI制御やPID制御での修正が必要になる。従って、蒸発器後空気温度をその目標温度に一致させる安定状態への移行がスムーズに行えないという問題がある。   However, in the conventional example, the switching compensation amount disappears from the control output to the compressor after a lapse of a predetermined time from the time when the air flow to the evaporator is changed. Then, even after the predetermined time, even if the post-evaporator air temperature is stable, it fluctuates, and correction by PI control or PID control is required again. Therefore, there is a problem that the transition to the stable state in which the post-evaporator air temperature matches the target temperature cannot be smoothly performed.

そこで、本発明は、蒸発器を通過する送風量が変化した場合に、蒸発器を通過した空気温度の急激な温度変化を抑制でき、しかも、その後はシステム状態に応じた比例積分制御に移行し、蒸発器を通過した空気温度をその目標温度に一致させる安定状態への移行がスムーズに行える車両用空気調和装置を提供することを目的とする。   Therefore, the present invention can suppress a rapid temperature change of the air temperature that has passed through the evaporator when the amount of blown air that has passed through the evaporator changes, and then shifts to proportional-integral control according to the system state. An object of the present invention is to provide a vehicle air conditioner that can smoothly transition to a stable state in which the air temperature that has passed through the evaporator matches the target temperature.

上記目的を達成する請求項1の発明は、外部制御信号により冷媒吐出量を可変できる圧縮機と、圧縮機より吐出された高温高圧の冷媒を放熱する放熱器と、放熱器で放熱された冷媒を減圧する減圧手段と、減圧手段で減圧された冷媒と車室内に導く送風との間で熱交換して送風を冷却する蒸発器とを有する冷凍サイクルと、蒸発器を通過させ車室内に導く送風を発生する送風機と、蒸発器を通過した空気温度である蒸発器後空気温度を検知する蒸発器後空気温度検知手段とを備え、蒸発器後空気温度検知手段の検知した蒸発器後空気温度とその目標温度の偏差に基づく比例項と、目標温度に対する蒸発器後空気温度の残留偏差の時間累積による積分項とを少なくとも有する演算式により前記外部制御信号を可変して圧縮機の冷媒吐出量を可変させる車両用空気調和装置であって、蒸発器を通過する送風量の増減に応じて積分項に風量補正量を加減算することを特徴とする。   The invention according to claim 1, which achieves the above object, is a compressor capable of changing a refrigerant discharge amount by an external control signal, a radiator for radiating high-temperature and high-pressure refrigerant discharged from the compressor, and a refrigerant radiated by the radiator. A refrigeration cycle having a decompression means for decompressing the refrigerant, an evaporator for cooling the air by exchanging heat between the refrigerant decompressed by the decompression means and the air sent to the vehicle interior, and passing the evaporator to the vehicle interior A post-evaporator air temperature detected by the post-evaporator air temperature detecting means is provided with a blower that generates blast and a post-evaporator air temperature detecting means that detects the post-evaporator air temperature that is the temperature of the air that has passed through the evaporator. And a proportional term based on the deviation of the target temperature and an integral term based on the time accumulation of the residual deviation of the post-evaporator air temperature with respect to the target temperature. Variable To an air conditioner for a vehicle, characterized by subtracting the air flow rate correction amount to the integral term in accordance with the blowing amount of increase or decrease passing through the evaporator.

請求項2の発明は、請求項1記載の車両用空気調和装置であって、蒸発器を通過する送風量の増減量にしきい値を設定して風量補正量による補正を行うか否かを決定したことを特徴とする。   A second aspect of the present invention is the vehicle air conditioner according to the first aspect, wherein a threshold value is set for an increase / decrease amount of the air flow passing through the evaporator to determine whether or not to perform correction by the air flow correction amount. It is characterized by that.

請求項3の発明は、請求項1又は請求項2記載の車両用空気調和装置であって、積分項に加減算する風量補正量は、蒸発器を通過する送風量の変化量の大きさに応じて可変させたことを特徴とする。   A third aspect of the present invention is the vehicle air conditioner according to the first or second aspect, wherein the air volume correction amount to be added to or subtracted from the integral term is in accordance with the amount of change in the air flow rate passing through the evaporator. It is characterized by being variable.

請求項4の発明は、請求項1〜請求項3のいずれかに記載の車両用空気調和装置であって、積分項に加減算する風量補正量は、蒸発器を通過前の空気温度が大きければ大きいほど大きな量に設定したことを特徴とする。   A fourth aspect of the present invention is the vehicle air conditioner according to any one of the first to third aspects, wherein the air volume correction amount to be added to or subtracted from the integral term is as long as the air temperature before passing through the evaporator is large. The larger the value, the larger the amount.

請求項5の発明は、請求項1〜請求項3のいずれかに記載の車両用空気調和装置であって、蒸発器を通過する送風量が減少方向に変化している場合には、蒸発器後空気温度とその目標温度との偏差にしきい値を設定し、偏差がしきい値より大きい場合には風量補正量の減算を行わず、偏差がしきい値より小さい場合には、風量補正量の減算を行うことを特徴とする。   A fifth aspect of the present invention is the vehicle air conditioner according to any one of the first to third aspects, wherein when the amount of air passing through the evaporator changes in a decreasing direction, the evaporator A threshold value is set for the deviation between the rear air temperature and the target temperature. If the deviation is larger than the threshold value, the air flow correction amount is not subtracted. If the deviation is smaller than the threshold value, the air flow correction amount is set. The subtraction is performed.

請求項1の発明によれば、蒸発器を通過した空気温度とその目標温度の偏差に基づく比例項と残留偏差の時間累積による積分項とを有する演算式による外部制御信号によって圧縮機の冷媒吐出量を可変させるため、蒸発器を通過した空気温度をその目標温度に一致させる制御が可能である。そして、蒸発器を通過する送風量が変化すると、その送風量の増減に応じて演算式の積分項に対し風量補正量を加減算するため、蒸発器を通過した空気温度の急激な温度変化を抑制できる。その後はシステム状態に応じた比例積分制御等に移行、換言すれば風量補正量が積分項として吸収された比例積分制御等に移行し、蒸発器を通過した空気温度をその目標温度に一致させる安定状態への移行がスムーズに行える。以上より、通常安定性を損なわずに、風量変化に対して応答性を早くできる。   According to the first aspect of the present invention, the refrigerant discharge of the compressor is performed by the external control signal based on the arithmetic expression having the proportional term based on the deviation of the air temperature that has passed through the evaporator and the target temperature and the integral term due to the time accumulation of the residual deviation. In order to vary the amount, it is possible to control the temperature of the air that has passed through the evaporator to match its target temperature. When the air flow passing through the evaporator changes, the air flow correction amount is added to or subtracted from the integral term of the arithmetic expression according to the increase or decrease of the air flow, so that a rapid temperature change of the air temperature passing through the evaporator is suppressed. it can. After that, it shifts to proportional integral control according to the system state, in other words, it shifts to proportional integral control etc. in which the air flow correction amount is absorbed as an integral term, and the air temperature that has passed through the evaporator is stabilized to match its target temperature. Transition to the state can be performed smoothly. From the above, it is possible to speed up the responsiveness to changes in the air flow without impairing the normal stability.

請求項2の発明によれば、請求項1の発明の効果に加え、比例積分制御等で対応できない風量変化に対してのみ積分項に風量補正量を加減算することにより制御の安定性の向上を図ることができる。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, the control stability is improved by adding / subtracting the air flow correction amount to / from the integral term only for the air flow change that cannot be handled by proportional integral control or the like. Can be planned.

請求項3の発明によれば、請求項1又は請求項2の発明の効果に加え、風量変化に応じた補正が行えるため、制御の応答性と安定性を両立させることができる。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or claim 2, since correction according to the change in the air volume can be performed, both control responsiveness and stability can be achieved.

請求項4の発明によれば、請求項1〜請求項3の発明の効果に加え、風量変化に温度負荷を加味した補正を行うことができるため、応答性と安定性を両立させることができる。又、冷房負荷が低い場合には、補正をキャンセルするため、余計な作動を防止できる。   According to the invention of claim 4, in addition to the effects of the inventions of claims 1 to 3, it is possible to perform correction in consideration of the temperature load in the air volume change, and thus it is possible to achieve both responsiveness and stability. . In addition, when the cooling load is low, the correction is canceled, so that unnecessary operation can be prevented.

請求項5の発明によれば、請求項1〜請求項3の発明の効果に加え、蒸発器後空気温度が冷えていない場合は、凍結の恐れがないことから補正をキャンセルし、これにより冷え遅れ等を回避できる。   According to the invention of claim 5, in addition to the effects of the inventions of claims 1 to 3, if the air temperature after the evaporator is not cooled, the correction is canceled because there is no risk of freezing. Delays can be avoided.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1〜図3は本発明の第1実施形態を示し、図1は車両用空気調和装置の概略構成図、図2は圧縮機の冷媒吐出量の制御フローチャート、図3は風量変化時の各出力のタイムチャートである。
(First embodiment)
1 to 3 show a first embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a vehicle air conditioner, FIG. 2 is a control flow chart of refrigerant discharge amount of a compressor, and FIG. It is an output time chart.

図1に示すように、車両用空気調和装置Aは、冷凍サイクル1を有する。この冷凍サイクル1は、冷媒を圧縮する圧縮機2と、この圧縮機2から吐出された高温高圧冷媒を放熱する放熱器3と、この放熱器3を通過した冷媒を減圧する減圧手段4と、この減圧手段4で減圧された冷媒を蒸発させて車室内に導く空気を冷却する蒸発器5と、この蒸発器5の下流に接続され、冷媒を気液分離してガス冷媒のみを圧縮機2に送出するアキュームレータ6とを備え、これらが各配管7a〜7eで接続されている。   As shown in FIG. 1, the vehicle air conditioner A has a refrigeration cycle 1. The refrigeration cycle 1 includes a compressor 2 that compresses refrigerant, a radiator 3 that radiates high-temperature and high-pressure refrigerant discharged from the compressor 2, a decompression unit 4 that decompresses refrigerant that has passed through the radiator 3, An evaporator 5 that evaporates the refrigerant depressurized by the depressurizing means 4 and cools the air guided to the vehicle interior, and is connected to the downstream of the evaporator 5, separates the refrigerant into a gas and liquid, and converts only the gas refrigerant into the compressor 2. And an accumulator 6 that is sent to the pipes 7a to 7e.

圧縮機2は、車両エンジン8から駆動力を受け、エクスターナルコントロールバルブ(ECV)9によって冷媒吐出量を可変できるよう構成されている。エクスターナルコントロールバルブ9は制御部20からの外部制御信号によって圧縮機2の冷媒吐出量を可変する。   The compressor 2 is configured to receive a driving force from the vehicle engine 8 and to vary the refrigerant discharge amount by an external control valve (ECV) 9. The external control valve 9 varies the refrigerant discharge amount of the compressor 2 by an external control signal from the control unit 20.

蒸発器5は、車室内に導く送風の送風路10内に配置されている。この送風路10の蒸発器5より上流には、送風機11が配置されている。この送風機11の風量は、制御部20からの制御電圧(4V〜12V)によって可変される。又、送風路10の最上流には、外気導入口(図示せず)と内気導入口(図示せず)が開口され、送風路10の最下流には車室内への吹き出し口(図示せず)が開口されている。送風機11の吸引力によって外気や内気が送風路10に吸引され、吸引された送風は蒸発器5等を通過した後に吹出口を経て車室内に吹き出される。   The evaporator 5 is disposed in a blower air passage 10 that leads into the passenger compartment. A blower 11 is arranged upstream of the evaporator 5 in the blower passage 10. The air volume of the blower 11 is varied by a control voltage (4V to 12V) from the control unit 20. In addition, an outside air inlet (not shown) and an inside air inlet (not shown) are opened in the uppermost stream of the air passage 10, and a blowout outlet (not shown) to the vehicle interior is provided in the most downstream of the air passage 10. ) Is opened. Outside air and inside air are sucked into the air passage 10 by the suction force of the blower 11, and the sucked air passes through the evaporator 5 and the like and then blows out into the vehicle interior through the outlet.

又、送風路10の蒸発器5の直ぐ下流には、蒸発器後空気温度検知手段である蒸発器後空気温度検知センサS1が配置されている。蒸発器後空気温度検知センサS1は、蒸発器5を通過した空気温度(以下、蒸発器後空気温度Tintという。)を検知する。この検知出力は、制御部20に出力される。   Further, a post-evaporator air temperature detection sensor S1, which is a post-evaporator air temperature detection means, is disposed immediately downstream of the evaporator 5 in the air passage 10. The post-evaporator air temperature detection sensor S1 detects the air temperature that has passed through the evaporator 5 (hereinafter referred to as post-evaporator air temperature Tint). This detection output is output to the control unit 20.

制御部20は、ECV調整機能部20aと風量調整機能部20bと必要能力判断機能部20cとを有する。ECV調整機能部20aは、必要能力判断機能部20cからの指令によってエクスターナルコントロールバルブ9を制御する。具体的には、ECV調整機能部20aは、エクスターナルコントロールバルブ9を出力デュティ比によって制御する。エクスターナルコントロールバルブ9は、出力デュティ比に比例させて圧縮機2の冷媒吐出量を制御する。つまり、出力デュティ比が大きければ大きいほど冷媒吐出量を多くし、出力デュティ比が小さければ小さいほど冷媒吐出量を少なくするよう圧縮機2を制御する。   The control unit 20 includes an ECV adjustment function unit 20a, an air volume adjustment function unit 20b, and a necessary capacity determination function unit 20c. The ECV adjustment function unit 20a controls the external control valve 9 according to a command from the necessary capacity determination function unit 20c. Specifically, the ECV adjustment function unit 20a controls the external control valve 9 according to the output duty ratio. The external control valve 9 controls the refrigerant discharge amount of the compressor 2 in proportion to the output duty ratio. That is, the compressor 2 is controlled to increase the refrigerant discharge amount as the output duty ratio increases, and to decrease the refrigerant discharge amount as the output duty ratio decreases.

風量調整機能部20bは、必要能力判断機能部20cからの指令によって送風機11を制御する。具体的には、送風機11に出力する電圧(4V〜12V)によって制御する。必要能力判断機能部20cには、蒸発器後空気温度検知センサS1の他に外気温度検知センサS2、車室内温度検知センサS3、日射センサS4等のセンサ出力が入力されると共に、蒸発器5を通過した空気温度の目標温度Ttarget、送風機11の風量設定等の各種データが入力されている。目標温度と風量設定は、それぞれユーザの操作によって行われる場合と、環境変化によって自動的に行われる場合がある。そして、必要能力判断機能部20cは、図2のフローチャートに基づき圧縮機2の冷媒吐出量をECV調整機能部20aを介して制御する。   The air volume adjustment function unit 20b controls the blower 11 according to a command from the necessary capacity determination function unit 20c. Specifically, it is controlled by the voltage (4V to 12V) output to the blower 11. In addition to the post-evaporator air temperature detection sensor S1, sensor outputs from the outside air temperature detection sensor S2, the vehicle interior temperature detection sensor S3, the solar radiation sensor S4, and the like are input to the necessary capacity determination function unit 20c. Various data such as a target temperature Ttarget of the passed air temperature and an air volume setting of the blower 11 are input. The target temperature and the air volume may be set by a user operation or automatically by an environmental change. The necessary capacity determination function unit 20c controls the refrigerant discharge amount of the compressor 2 via the ECV adjustment function unit 20a based on the flowchart of FIG.

ここで、必要能力判断機能部20cは、蒸発器5を通過した空気温度(以下、蒸発器後空気温度Tintという)とその目標温度Ttargetの偏差に基づいて圧縮機2の冷媒吐出量を、基本的に比例積分演算方式によってフィードバック制御(PI制御)する。詳細には、蒸発器後空気温度Tintとその目標温度Ttargetの偏差e(t)に基づく比例項(Kp×e(t))と、目標温度Ttargetに対する蒸発器後空気温度Tintの残留偏差の時間累積による積分項(E(t)=Ki×e(t)+E(t−Δt))とからなる演算式を基本とし、積分項E(t)に風量変化補正項F(t)を加減算する。ここで、e(t)、E(t)、F(t)は時間t時の各項の数値を示し、Δtは演算単位時間を示す。また、Kpは比例項の動作定数、Kiは積分項の動作定数を示す。風量変化補正項F(t)の内容については、下記の制御動作で詳しく説明する。   Here, the necessary capacity determination function unit 20c calculates the refrigerant discharge amount of the compressor 2 based on the deviation between the air temperature that has passed through the evaporator 5 (hereinafter referred to as the post-evaporator air temperature Tint) and the target temperature Ttarget. In general, feedback control (PI control) is performed by a proportional-integral calculation method. Specifically, the proportional term (Kp × e (t)) based on the deviation e (t) between the post-evaporator air temperature Tint and the target temperature Ttarget, and the time of the residual deviation of the post-evaporator air temperature Tint with respect to the target temperature Ttarget Based on an arithmetic expression consisting of an integral term (E (t) = Ki × e (t) + E (t−Δt)) based on accumulation, an air volume change correction term F (t) is added to or subtracted from the integral term E (t). . Here, e (t), E (t), and F (t) indicate numerical values of each term at time t, and Δt indicates a calculation unit time. Kp represents an operation constant of the proportional term, and Ki represents an operation constant of the integral term. The contents of the airflow change correction term F (t) will be described in detail in the following control operation.

次に、圧縮機2の冷媒吐出量の制御動作を説明する。図2において、下記に示すルーチンは、演算単位時間100msごとに実施される。以下、説明する。   Next, the control operation of the refrigerant discharge amount of the compressor 2 will be described. In FIG. 2, the routine shown below is executed every calculation unit time of 100 ms. This will be described below.

先ず、圧縮機2が稼動中か否かをチェックする(ステップS0)。圧縮機2が稼働中であれば、蒸発器後空気温度検知センサS1の現在の蒸発器後空気温度Tintを入力し、この蒸発器後空気温度Tintと目標温度Ttargetとの偏差e(t)を算出する(ステップS1)。   First, it is checked whether or not the compressor 2 is operating (step S0). If the compressor 2 is in operation, the current post-evaporator air temperature Tint of the post-evaporator air temperature detection sensor S1 is input, and the deviation e (t) between the post-evaporator air temperature Tint and the target temperature Ttarget is calculated. Calculate (step S1).

次に、送風機11の風量変化があるか否かをチェックする(ステップS2)。風量変化があり、それが風量増加であれば(ステップS4)、風量変化補正項をF(t)=8%とする(ステップS41)。風量減少であれば(ステップS4)、風量変化補正項をF(t)=−8%とする(ステップS42)。ここで、風量変化有りと判断した場合には、変化有りとされた風量値を風量基準値として以後の風量変化をチェックする。これにより、1度の風量変化に対しては1度のみ風量変化補正項による補正がなされる。   Next, it is checked whether there is a change in the air volume of the blower 11 (step S2). If there is a change in the air volume and it is an increase in the air volume (step S4), the air volume change correction term is set to F (t) = 8% (step S41). If the air volume is decreased (step S4), the air volume change correction term is set to F (t) = − 8% (step S42). Here, when it is determined that there is a change in the air flow, the subsequent change in the air flow is checked using the air flow value determined to be changed as the air flow reference value. As a result, the airflow change correction term is corrected only once for a single airflow change.

又、風量変化がなければ、風量変化補正項をF(t)=0%とする(ステップS43)。尚、風量変化補正項の値は、この第1実施形態ではエクスターナルコントロールバルブ9への出力デュティを±8%変化させる値としているが、風量変化時において蒸発器後空気温度Tintの急激な温度変化を極力抑制できる程度の値に適宜決定される。   If there is no change in the air flow, the air flow change correction term is set to F (t) = 0% (step S43). In this first embodiment, the value of the airflow change correction term is a value that changes the output duty to the external control valve 9 by ± 8%. However, when the airflow changes, the abrupt temperature change of the post-evaporator air temperature Tint occurs. Is appropriately determined to a value that can suppress as much as possible.

次に、これら風量変化補正項F(t)の値に基づき、積分項E(t)=Ki×e(t)+E(t−Δt)+F(t)の演算を行う(ステップS50)。   Next, the integral term E (t) = Ki × e (t) + E (t−Δt) + F (t) is calculated based on the value of the airflow change correction term F (t) (step S50).

つまり、送風機11の風量が変化があった場合には、風量変化補正項F(t)を加減算して積分項E(t)を算出する。   That is, when the air volume of the blower 11 has changed, the integral term E (t) is calculated by adding or subtracting the air volume change correction term F (t).

次に、積分項E(t)の演算値に基づき、出力=Kp×e(t)+E(t)の演算を行う(ステップS60)。このようにして算出した出力に基づきECV調整機能部20aがエクスターナルコントロールバルブ9に外部制御信号を出力し、圧縮機2の冷媒吐出量が可変される。   Next, an output = Kp × e (t) + E (t) is calculated based on the calculated value of the integral term E (t) (step S60). Based on the output calculated in this way, the ECV adjustment function unit 20a outputs an external control signal to the external control valve 9, and the refrigerant discharge amount of the compressor 2 is varied.

つまり、図3に示すように、送風機11の送風量が減少すると、蒸発器5が送風を過冷却とする傾向になるが、圧縮機2の冷媒吐出量が減少し、ひいては蒸発器5の冷媒流量が減少するため、過冷却となることがない。又、送風機11の送風量が増加すると、蒸発器5が送風を冷却不足とする傾向になるが、圧縮機2の冷媒吐出量が増加し、ひいては蒸発器5の冷媒流量が増加するため、冷却不足となることがない。このように送風機11の送風量に変化があった場合に、蒸発器5を通過した空気温度の急激な温度変化を抑制できる。そして、その後システム状態に応じた比例積分制御に移行、換言すれば送風補正量が積分項として吸収された比例積分制御に移行し、蒸発器5を通過した空気温度をその目標温度に一致させる安定状態への移行がスムーズに行える。   That is, as shown in FIG. 3, when the air flow rate of the blower 11 decreases, the evaporator 5 tends to overcool the air flow, but the refrigerant discharge amount of the compressor 2 decreases, and consequently the refrigerant of the evaporator 5. Since the flow rate is reduced, there is no overcooling. Further, when the air flow rate of the blower 11 is increased, the evaporator 5 tends to be undercooled, but the refrigerant discharge amount of the compressor 2 is increased and the refrigerant flow rate of the evaporator 5 is increased. There is no shortage. Thus, when there is a change in the amount of air blown from the blower 11, it is possible to suppress a rapid temperature change in the air temperature that has passed through the evaporator 5. Then, the process proceeds to proportional integral control according to the system state, in other words, the process proceeds to proportional integral control in which the airflow correction amount is absorbed as an integral term, and the air temperature that has passed through the evaporator 5 is matched with the target temperature. Transition to the state can be performed smoothly.

一方、圧縮機2が稼働中でなければ(ステップS0)、積分項E(t)=0とし(ステップS51)、出力=0とされる(ステップS61)。   On the other hand, if the compressor 2 is not in operation (step S0), the integral term E (t) = 0 is set (step S51), and the output = 0 is set (step S61).

以上説明したように、車両用空気調和装置Aは、蒸発器後空気温度検知センサS1の検知した蒸発器後空気温度Tintとその目標温度Ttargetの偏差e(t)に基づく比例項と、目標温度Ttargetに対する蒸発器後空気温度Tintの残留偏差の時間累積による積分項とを有する演算式により外部制御信号を可変して圧縮機2の冷媒吐出量を可変させるものにあって、蒸発器5を通過する送風量の増減に応じて積分項に風量補正量を加減算するよう構成した。従って、圧縮機2の冷媒吐出量を基本的に比例積分演算によるフィードバック制御によって制御するため、蒸発器5を通過した空気温度をその目標温度に一致させる制御が可能である。そして、蒸発器5を通過する送風量が変化すると、その送風量の増減に応じて演算式の積分項に対し風量補正量を加減算するため、蒸発器5を通過した空気温度の急激な温度変化を抑制できる。その後はシステム状態に応じた比例積分制御に移行、換言すれば風量補正量が積分項として吸収された比例積分制御に移行し、蒸発器5を通過した空気温度をその目標温度に一致させる安定状態への移行がスムーズに行える。以上より、通常安定性を損なわずに、風量変化に対して応答性を早くできる。   As described above, the vehicle air conditioner A includes the proportional term based on the deviation e (t) between the post-evaporator air temperature Tint detected by the post-evaporator air temperature detection sensor S1 and the target temperature Ttarget, and the target temperature. The refrigerant discharge amount of the compressor 2 is varied by changing the external control signal by an arithmetic expression having an integral term by the time accumulation of the residual deviation of the post-vaporizer air temperature Tint with respect to Ttarget, and passes through the evaporator 5. The air flow correction amount is added to or subtracted from the integral term according to the increase or decrease of the air flow to be performed. Therefore, since the refrigerant discharge amount of the compressor 2 is basically controlled by feedback control based on proportional-integral calculation, it is possible to control the air temperature that has passed through the evaporator 5 to match the target temperature. When the amount of air flowing through the evaporator 5 changes, the air amount correction amount is added to or subtracted from the integral term of the arithmetic expression in accordance with the increase or decrease of the amount of air flow. Can be suppressed. After that, the process shifts to proportional-integral control according to the system state, in other words, shifts to proportional-integral control in which the airflow correction amount is absorbed as an integral term, and the stable state in which the air temperature passing through the evaporator 5 matches the target temperature. The transition to can be done smoothly. From the above, it is possible to speed up the responsiveness to changes in the air flow without impairing the normal stability.

(第2実施形態)
図4及び図5は本発明の第2実施形態を示し、図4は圧縮機の冷媒吐出量の制御フローチャート、図5は風量変化時の各出力のタイムチャートである。
(Second Embodiment)
4 and 5 show a second embodiment of the present invention, FIG. 4 is a control flow chart of the refrigerant discharge amount of the compressor, and FIG. 5 is a time chart of each output when the air volume changes.

この第2実施形態は、前記第1実施形態と比較するに、圧縮機の冷媒吐出量を制御するフローチャートの一部が異なるのみであり、他の構成が同じであるためフローチャートの異なる構成のみを説明する。尚、車両用空気調和装置Aの概略構成図は第1実施形態と同じであるため、図1を利用する。   Compared with the first embodiment, the second embodiment is different from the first embodiment only in a part of the flowchart for controlling the refrigerant discharge amount of the compressor. explain. In addition, since the schematic block diagram of the vehicle air conditioner A is the same as 1st Embodiment, FIG. 1 is utilized.

図4に示すように、この第2実施形態では、送風機11の風量変化にしきい値を設けている(ステップS3)。そして、風量の変化が3V/4秒以上であれば風量変化とし、それ未満であれば風量変化なしと判定するステップ(ステップS3)が挿入されている。図5に示すように、風量の変化が4秒間に3V以上でなければ、圧縮機2の冷媒吐出量を変化させない。   As shown in FIG. 4, in this 2nd Embodiment, the threshold value is provided in the air volume change of the air blower 11 (step S3). Then, if the change in the air volume is 3 V / 4 seconds or more, the flow rate is changed, and if it is less than that, a step (step S3) for determining that there is no air volume change is inserted. As shown in FIG. 5, the refrigerant discharge amount of the compressor 2 is not changed unless the change in the air volume is 3 V or more in 4 seconds.

この第2実施形態では、蒸発器5を通過する送風量の増減量にしきい値を設定して風量補正量による補正を行うか否かを決定したので、比例積分制御で対応できない風量変化に対してのみ風量補正量を加減算することにより制御の安定性の向上を図ることができる。   In the second embodiment, since a threshold value is set for the increase / decrease amount of the air flow passing through the evaporator 5 and it is determined whether or not to perform the correction by the air flow correction amount, the air flow change that cannot be handled by the proportional integral control is determined. The stability of the control can be improved by adding or subtracting the airflow correction amount.

尚、しきい値は、この第2実施形態では3V/4秒としているが、風量変化があった場合に通常の比例積分制御で対応可能な風量補正値であるか否かで適宜決定される。更に詳細には、アンダーシュートによる凍結防止をクラッチを切ることなく行うことができ、又、オーバーシュートによる窓曇り防止や臭い発生防止が可能であるか否かで決定することが好ましい。   Although the threshold value is 3 V / 4 seconds in the second embodiment, the threshold value is appropriately determined depending on whether or not the air volume correction value can be dealt with by normal proportional integral control when the air volume changes. . More specifically, it is preferable to determine whether or not freezing prevention due to undershoot can be performed without disengaging the clutch, and whether window fogging or odor generation due to overshoot can be prevented.

(第3実施形態)
図6及び図7は本発明の第3実施形態を示し、図6は圧縮機の冷媒吐出量の制御フローチャート、図7は風量変化時の各出力のタイムチャートである。
(Third embodiment)
6 and 7 show a third embodiment of the present invention, FIG. 6 is a control flow chart of the refrigerant discharge amount of the compressor, and FIG. 7 is a time chart of each output when the air volume changes.

この第3実施形態は、前記第2実施形態と比較するに、圧縮機の冷媒吐出量を制御するフローチャートの一部が異なるのみであり、他の構成が同じであるためフローチャートの異なる構成のみを説明する。尚、車両用空気調和装置Aの概略構成図は第1実施形態と同じであるため、図1を利用する。   Compared with the second embodiment, the third embodiment is different from the second embodiment only in a part of the flowchart for controlling the refrigerant discharge amount of the compressor. explain. In addition, since the schematic block diagram of the vehicle air conditioner A is the same as 1st Embodiment, FIG. 1 is utilized.

つまり、図6に示すように、風量変化補正項F(t)の演算式が異なる(ステップS44,S45)。風量変化量が増加の場合には、風量変化補正項F(t)=8+(│変化量│−3)/2%とし、風量変化量が減少の場合には、風量変化補正項F(t)=−8−(│変化量│−3)/2%とする。ここで、変化量は、送風機11の出力電圧の変化値である。図7に示すように、風量変化の大きさに応じてエクスターナルコントロールバルブ9への出力デュティが変化する。その結果、風量変化に応じて圧縮機2の冷媒吐出量が変化する。   That is, as shown in FIG. 6, the calculation formula of the airflow change correction term F (t) is different (steps S44 and S45). When the airflow change amount is increased, the airflow change correction term F (t) = 8 + (| change amount | −3) / 2%, and when the airflow change amount is decreased, the airflow change correction term F (t ) = − 8− (| change amount | −3) / 2%. Here, the change amount is a change value of the output voltage of the blower 11. As shown in FIG. 7, the output duty to the external control valve 9 changes according to the magnitude of the change in the air volume. As a result, the refrigerant discharge amount of the compressor 2 changes according to the change in the air volume.

この第3実施形態では、積分項に加減算する補正量は、蒸発器5を通過する送風量の変化量の大きさに応じて可変させたので、風量変化に応じた補正が行えるため、制御の応答性と安定性を両立させることができる。   In the third embodiment, the amount of correction to be added to or subtracted from the integral term is varied according to the amount of change in the amount of air passing through the evaporator 5, so that correction according to the change in air volume can be performed. Both responsiveness and stability can be achieved.

尚、風量変化に応じた風量補正値は、この第3実施形態では(│変化量│−3)/2%としているが、制御の応答性と安定性の下、適宜決定される。   The air flow correction value corresponding to the air flow change is (| change amount | −3) / 2% in the third embodiment, but is determined as appropriate under the control responsiveness and stability.

(第4実施形態)
図8は本発明の第4実施形態にかかる、圧縮機の冷媒吐出量の制御フローチャートである。
(Fourth embodiment)
FIG. 8 is a control flowchart of the refrigerant discharge amount of the compressor according to the fourth embodiment of the present invention.

この第4実施形態は、前記第3実施形態と比較するに、圧縮機の冷媒吐出量を制御するフローチャートの一部が異なるのみであり、他の構成が同じであるためフローチャートの異なる構成のみを説明する。尚、車両用空気調和装置Aの概略構成図は第1実施形態と同じであるため、図1を利用する。   Compared with the third embodiment, the fourth embodiment is different from the third embodiment only in part of the flowchart for controlling the refrigerant discharge amount of the compressor. explain. In addition, since the schematic block diagram of the vehicle air conditioner A is the same as 1st Embodiment, FIG. 1 is utilized.

つまり、図8に示すように、風量変化補正項F(t)の演算後に、蒸発器5を通過前の空気温度(以下、蒸発器前空気温度Tsucという)が15℃を超えた値か否かをチェックする(ステップS90)。そして、蒸発器前空気温度Tsucが15℃を超えていれば、風量変化補正項F(t)=F(t)*{1+(Tsuc−25)/25}を演算する(ステップS91)。つまり、蒸発器前空気温度Tsucが25度を超える場合には、積分項に大きな風量補正量の補正を、25度未満の場合には、積分項に小さな風量補正量の補正を行う。   That is, as shown in FIG. 8, whether or not the air temperature before passing through the evaporator 5 (hereinafter referred to as pre-evaporator air temperature Tsuc) exceeds 15 ° C. after the calculation of the airflow change correction term F (t). Is checked (step S90). If the pre-evaporator air temperature Tsuc exceeds 15 ° C., the air volume change correction term F (t) = F (t) * {1+ (Tsuc−25) / 25} is calculated (step S91). That is, when the pre-evaporator air temperature Tsuc exceeds 25 degrees, a large air amount correction amount is corrected for the integral term, and when it is less than 25 degrees, a small air amount correction amount is corrected for the integral term.

蒸発器前空気温度Tsucが15℃以下であれば、風量変化補正項F(t)=0とする(ステップS92)。ここで、蒸発器前空気温度Tsucは、内気導入時には車室内温度検知センサS3の検知温度を、外気導入時には外気温度検知センサS2の検知温度を下に推測して決定する。尚、送風路10の蒸発器5の直ぐ上流に蒸発器前温度検知センサを設けても良いことは、もちろんである。   If the pre-evaporator air temperature Tsuc is equal to or lower than 15 ° C., the air volume change correction term F (t) = 0 is set (step S92). Here, the pre-evaporator air temperature Tsuc is determined by estimating the detection temperature of the vehicle interior temperature detection sensor S3 when the inside air is introduced, and the detection temperature of the outside air temperature detection sensor S2 when the outside air is introduced. Of course, a pre-evaporator temperature detection sensor may be provided immediately upstream of the evaporator 5 in the air passage 10.

この第4実施形態では、積分項に加減算する風量補正量は、蒸発器前空気温度の値が大きい場合には補正量を大きく、小さい場合には補正量を小さく設定したので、風量変化に温度負荷を加味した補正を行うことができるため、応答性と安定性を両立させることができる。又、冷房負荷が低い場合には、補正をキャンセルするため、余計な作動を防止できる。尚、この第4実施形態では、蒸発器前空気温度Tsucを25℃を境として大小を分けたが、蒸発器前空気温度が大きければ大きいほど大きな量にリニアに設定しても良い。   In this fourth embodiment, the air volume correction amount to be added to or subtracted from the integral term is set to be large when the value of the pre-evaporator air temperature is large, and small when it is small. Since the correction can be performed in consideration of the load, both responsiveness and stability can be achieved. In addition, when the cooling load is low, the correction is canceled, so that unnecessary operation can be prevented. In the fourth embodiment, the pre-evaporator air temperature Tsuc is divided into large and small with 25 ° C. as a boundary. However, the larger the pre-evaporator air temperature, the larger the amount may be set linearly.

尚、この第4実施形態では、蒸発器前空気温度Tsucの判断基準を15℃とし、これを超えた場合の風量変化補正項をF(t)=F(t)×{1+(Tsuc−25)/25}の演算で求めているが、制御の応答性と安定性の下、適宜決定される。   In the fourth embodiment, the criterion for determining the pre-evaporator air temperature Tsuc is 15 ° C., and the air volume change correction term when the pre-evaporator air temperature Tsuc is exceeded is F (t) = F (t) × {1+ (Tsuc−25). ) / 25}, but is determined as appropriate under the control responsiveness and stability.

(第5実施形態)
図9及び図10は本発明の第5実施形態を示し、図9は圧縮機の冷媒吐出量の制御フローチャート、図10は風量変化時の各出力のタイムチャートである。
(Fifth embodiment)
FIGS. 9 and 10 show a fifth embodiment of the present invention, FIG. 9 is a control flow chart of the refrigerant discharge amount of the compressor, and FIG. 10 is a time chart of each output when the air volume changes.

この第5実施形態は、前記第2実施形態と比較するに、圧縮機の冷媒吐出量を制御するフローチャートの一部が異なるのみであり、他の構成が同じであるためフローチャートの異なる構成のみを説明する。尚、車両用空気調和装置Aの概略構成図は第1実施形態と同じであるため、図1を利用する。   Compared with the second embodiment, the fifth embodiment is different from the second embodiment only in a part of the flowchart for controlling the refrigerant discharge amount of the compressor, and the other parts are the same. explain. In addition, since the schematic block diagram of the vehicle air conditioner A is the same as 1st Embodiment, FIG. 1 is utilized.

つまり、図9に示すように、送風機11の風量が減少している場合に(ステップS4)、蒸発器後空気温度Tintとその目標温度Ttargetとの偏差e(t)が7℃未満の値であるか否かをチェックする(ステップS400)。そして、偏差e(t)が7℃未満の場合に限り、風量変化補正項をF(t)=−8%とする(ステップS42)。偏差e(t)が7℃以上の場合は、風量変化補正項をF(t)=0%とする(ステップS43)。つまり、図10に示すように、蒸発器5を通過する送風量が減少方向に変化している場合には、蒸発器後空気温度Tintとその目標温度との偏差e(t)にしきい値(7℃)を設定し、しきい値以上の場合には風量補正量の減算を行わず、しきい値未満の場合にのみ風量補正量の減算を行う。   That is, as shown in FIG. 9, when the air volume of the blower 11 is decreasing (step S4), the deviation e (t) between the evaporator post-air temperature Tint and its target temperature Ttarget is less than 7 ° C. It is checked whether or not there is (step S400). Only when the deviation e (t) is less than 7 ° C., the airflow change correction term is set to F (t) = − 8% (step S42). When the deviation e (t) is 7 ° C. or higher, the airflow change correction term is set to F (t) = 0% (step S43). That is, as shown in FIG. 10, when the amount of air passing through the evaporator 5 is changing in the decreasing direction, the difference e (t) between the post-evaporator air temperature Tint and its target temperature has a threshold value ( (7 ° C.) is set, and if it is equal to or greater than the threshold value, the air volume correction amount is not subtracted, and if it is less than the threshold value, the air volume correction amount is subtracted.

この第5実施形態によれば、蒸発器後空気温度Tintが冷えていない場合は、凍結の恐れがないことから補正を行わない。これにより冷え遅れ等を回避できる。   According to the fifth embodiment, when the post-evaporator air temperature Tint is not cooled, no correction is performed because there is no fear of freezing. Thereby, a cooling delay etc. can be avoided.

尚、風量変化に応じた補正を行うか否かの偏差e(t)の基準値は、この第5実施形態では7℃としているが、制御の応答性と安定性の下、適宜決定される。   Note that the reference value of the deviation e (t) for determining whether or not to perform correction in accordance with the change in the air volume is 7 ° C. in the fifth embodiment, but is appropriately determined under control responsiveness and stability. .

尚、前記第5実施形態では、しきい値を基準としてしきい値以上の場合と、しきい値未満の場合に分けて異なる処理を行うようにしているが、設定するしきい値によってはしきい値を超える値の場合と、しきい値以下の値の場合に分けて異なる処理を行うようにしても良い。   In the fifth embodiment, different processing is performed separately for the case where the threshold is the threshold or more and the case where the threshold is less than the threshold, but depending on the threshold to be set. Different processing may be performed separately for a value exceeding the threshold value and for a value equal to or less than the threshold value.

(その他)
本発明に適用できる圧縮機は、外部制御信号により冷媒吐出量を可変できるものであれば良く、例えば、斜板の角度を可変することで冷媒吐出量を可変できる斜板式圧縮機、電動モータによって冷媒を圧縮する電動圧縮機である。電動圧縮機の場合には、電動モータの回転数を外部制御信号によって制御し、これにより冷媒吐出量を可変する。
(Other)
The compressor applicable to the present invention is not limited as long as the refrigerant discharge amount can be varied by an external control signal. For example, a swash plate compressor or an electric motor that can vary the refrigerant discharge amount by changing the angle of the swash plate. It is an electric compressor that compresses the refrigerant. In the case of an electric compressor, the number of revolutions of the electric motor is controlled by an external control signal, thereby changing the refrigerant discharge amount.

尚、前記各実施形態では、圧縮機の冷媒吐出量をフィードバック制御する制御方式として、比例積分演算によるPI制御を採用しているが、比例積分微分演算によるPID制御でも良い。つまり、本発明は、蒸発器後空気温度Tintとその目標温度Ttargetの偏差に基づく比例項と、目標温度Ttargetに対する蒸発器後空気温度Tintの残留偏差の時間累積による積分項とを少なくとも有する演算式による制御であれば適用できる。   In each of the above embodiments, PI control based on proportional-integral calculation is employed as a control method for feedback control of the refrigerant discharge amount of the compressor, but PID control based on proportional-integral-derivative calculation may be used. In other words, the present invention provides an arithmetic expression having at least a proportional term based on a deviation between the post-evaporator air temperature Tint and its target temperature Ttarget, and an integral term by time accumulation of the residual deviation of the post-evaporator air temperature Tint with respect to the target temperature Ttarget. It can be applied if it is controlled by.

本発明の第1実施形態を示し、車両用空気調和装置の概略構成図である。1 is a schematic configuration diagram of a vehicle air conditioner according to a first embodiment of the present invention. 本発明の第1実施形態を示し、圧縮機の冷媒吐出量の制御フローチャートである。It is a control flowchart of the refrigerant | coolant discharge amount of a compressor which shows 1st Embodiment of this invention. 本発明の第1実施形態を示し、風量変化時の各出力のタイムチャートである。It is a time chart of each output which shows 1st Embodiment of this invention and an airflow change. 本発明の第2実施形態を示し、圧縮機の冷媒吐出量の制御フローチャートである。It is a control flowchart of the refrigerant | coolant discharge amount of a compressor which shows 2nd Embodiment of this invention. 本発明の第2実施形態を示し、風量変化時の各出力のタイムチャートである。It is a time chart of each output at the time of air volume change, showing a second embodiment of the present invention. 本発明の第3実施形態を示し、圧縮機の冷媒吐出量の制御フローチャートである。It is a control flowchart of the refrigerant | coolant discharge amount of a compressor which shows 3rd Embodiment of this invention. 本発明の第3実施形態を示し、風量変化時の各出力のタイムチャートである。It is a time chart of each output which shows 3rd Embodiment of this invention and the air volume change. 本発明の第4実施形態を示し、圧縮機の冷媒吐出量の制御フローチャートである。It is a control flowchart of the refrigerant | coolant discharge amount of a compressor which shows 4th Embodiment of this invention. 本発明の第5実施形態を示し、圧縮機の冷媒吐出量の制御フローチャートである。It is a control flowchart of the refrigerant | coolant discharge amount of a compressor which shows 5th Embodiment of this invention. 本発明の第5実施形態を示し、風量変化時の各出力のタイムチャートである。It is a time chart of each output at the time of an air volume change, showing a 5th embodiment of the present invention.

符号の説明Explanation of symbols

A 車両用空気調和装置
1 冷凍サイクル
2 圧縮機
3 放熱器
4 減圧手段
5 蒸発器
11 送風機
S1 蒸発器後空気温度検知センサ(蒸発器後空気温度検知手段)
A Vehicle air conditioner 1 Refrigeration cycle 2 Compressor 3 Radiator 4 Pressure reducing means 5 Evaporator 11 Blower S1 Evaporator air temperature detection sensor (Evaporator air temperature detection means)

Claims (5)

外部制御信号により冷媒吐出量を可変できる圧縮機(2)と、前記圧縮機(2)より吐出された高温高圧の冷媒を放熱する放熱器(3)と、前記放熱器(3)で放熱された冷媒を減圧する減圧手段(4)と、前記減圧手段(4)で減圧された冷媒と車室内に導く送風との間で熱交換して送風を冷却する蒸発器(5)とを有する冷凍サイクル(1)と、
前記蒸発器(5)を通過させ車室内に導く送風を発生する送風機(11)と、
前記蒸発器(5)を通過した空気温度である蒸発器後空気温度を検知する蒸発器後空気温度検知手段(S1)とを備え、
前記蒸発器後空気温度検知手段(S1)の検知した蒸発器後空気温度とその目標温度の偏差に基づく比例項と、目標温度に対する蒸発器後空気温度の残留偏差の時間累積による積分項とを少なくとも有する演算式により前記外部制御信号を可変して前記圧縮機(2)の冷媒吐出量を可変させる車両用空気調和装置(A)であって、
前記蒸発器(5)を通過する送風量の増減に応じて前記積分項に風量補正量を加減算することを特徴とする車両用空気調和装置(A)。
Heat is dissipated by the compressor (2) whose amount of refrigerant discharge can be varied by an external control signal, a radiator (3) that radiates high-temperature and high-pressure refrigerant discharged from the compressor (2), and the radiator (3). A refrigeration system comprising a decompression means (4) for decompressing the refrigerant, and an evaporator (5) for exchanging heat between the refrigerant decompressed by the decompression means (4) and the air sent into the passenger compartment to cool the air. Cycle (1);
A blower (11) that generates air flow that passes through the evaporator (5) and is guided into the vehicle interior;
A post-evaporator air temperature detection means (S1) for detecting the post-evaporator air temperature that is the temperature of the air that has passed through the evaporator (5),
A proportional term based on the deviation between the post-evaporator air temperature and the target temperature detected by the post-evaporator air temperature detecting means (S1), and an integral term based on time accumulation of the residual deviation of the post-evaporator air temperature with respect to the target temperature. A vehicle air conditioner (A) that varies the external control signal according to at least an arithmetic expression to vary the refrigerant discharge amount of the compressor (2),
A vehicle air conditioner (A), wherein an air flow correction amount is added to or subtracted from the integral term in accordance with an increase or decrease in an air flow amount passing through the evaporator (5).
請求項1記載の車両用空気調和装置(A)であって、
前記蒸発器(5)を通過する送風量の増減量にしきい値を設定して前記風量補正量による補正を行うか否かを決定したことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to claim 1,
A vehicle air conditioner (A) characterized in that a threshold value is set for an increase / decrease amount of air flow passing through the evaporator (5) to determine whether or not to perform correction based on the air flow correction amount.
請求項1又は請求項2記載の車両用空気調和装置(A)であって、
前記積分項に加減算する前記風量補正量は、前記蒸発器(5)を通過する送風量の変化量の大きさに応じて可変させたことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to claim 1 or 2,
The vehicle air conditioner (A) characterized in that the air volume correction amount to be added to or subtracted from the integral term is varied according to the amount of change in the air flow rate passing through the evaporator (5).
請求項1〜請求項3のいずれかに記載の車両用空気調和装置(A)であって、
前記積分項に加減算する前記風量補正量は、前記蒸発器(5)を通過前の空気温度が大きければ大きいほど大きな量に設定したことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to any one of claims 1 to 3,
The vehicle air conditioner (A) is characterized in that the air flow correction amount to be added to or subtracted from the integral term is set to a larger amount as the air temperature before passing through the evaporator (5) increases.
請求項1〜請求項3のいずれかに記載の車両用空気調和装置(A)であって、
前記蒸発器(5)を通過する送風量が減少方向に変化している場合には、蒸発器後空気温度とその目標温度との偏差にしきい値を設定し、前記偏差がしきい値より大きい場合には前記風量補正量の減算を行わず、前記偏差がしきい値より小さい場合には、前記風量補正量の減算を行うことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to any one of claims 1 to 3,
When the amount of air passing through the evaporator (5) changes in a decreasing direction, a threshold value is set for the deviation between the post-evaporator air temperature and its target temperature, and the deviation is larger than the threshold value. In this case, the air conditioning apparatus (A) is characterized in that the air volume correction amount is not subtracted and the air volume correction amount is subtracted when the deviation is smaller than a threshold value.
JP2008226315A 2008-09-03 2008-09-03 Vehicular air conditioner Pending JP2010058660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226315A JP2010058660A (en) 2008-09-03 2008-09-03 Vehicular air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226315A JP2010058660A (en) 2008-09-03 2008-09-03 Vehicular air conditioner

Publications (1)

Publication Number Publication Date
JP2010058660A true JP2010058660A (en) 2010-03-18

Family

ID=42185972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226315A Pending JP2010058660A (en) 2008-09-03 2008-09-03 Vehicular air conditioner

Country Status (1)

Country Link
JP (1) JP2010058660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061467A (en) * 2010-12-03 2012-06-13 한라공조주식회사 Air conditioning system of vehicle and method for controlling temperature of evaperator using two parameters filtered through different process
US8923716B2 (en) 2010-08-18 2014-12-30 Ricoh Company, Limited Transfer device, image forming apparatus, and transfer method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923716B2 (en) 2010-08-18 2014-12-30 Ricoh Company, Limited Transfer device, image forming apparatus, and transfer method
KR20120061467A (en) * 2010-12-03 2012-06-13 한라공조주식회사 Air conditioning system of vehicle and method for controlling temperature of evaperator using two parameters filtered through different process
KR101710331B1 (en) 2010-12-03 2017-02-27 한온시스템 주식회사 Air conditioning system of vehicle and method for controlling temperature of evaperator using two parameters filtered through different process

Similar Documents

Publication Publication Date Title
US6523361B2 (en) Air conditioning systems
JP2007183089A (en) Expansion module for dual-evaporator air conditioning system
US20210268868A1 (en) Method for operating a refrigeration system for a vehicle, having a refrigerant circuit having a heat pump function
JP4758705B2 (en) Air conditioner for vehicles
US10843530B2 (en) Vehicle air conditioning device
JP2005009794A (en) Freezing cycle control device
JP2010266132A (en) Inverter cooling device, inverter cooling method, and refrigerating machine
JP4534496B2 (en) Control device for vehicle cooling fan
US20170129311A1 (en) Air conditioning system and method of controlling the same
JP2005193749A (en) Controller
JP2007106260A (en) Air conditioner for vehicle
JP6020264B2 (en) Refrigeration cycle equipment
JP5640810B2 (en) Air conditioning control device for vehicles
JP2010058660A (en) Vehicular air conditioner
EP1489369A1 (en) Unit for calculating refrigerant suction pressure of compressor in refrigeration cycle
US20070130975A1 (en) Air conditioning system for vehicles
KR101946951B1 (en) System and method for controlling an air conditioning system for a motor vehicle
JP2009137527A (en) Compressor torque estimation device
JP5118441B2 (en) Air conditioner for vehicles
JP2007253901A (en) Vehicular air conditioner
JP2010058662A (en) Vehicular air conditioner
JP2004115012A (en) Air conditioner provided with controller
JP2007145223A (en) Air conditioner for vehicle
JP2002022288A (en) Controller for refrigeration cycle
JP2002022242A (en) Refrigerating cycle control device