JP2010058114A - Method for removing palladium - Google Patents

Method for removing palladium Download PDF

Info

Publication number
JP2010058114A
JP2010058114A JP2009243350A JP2009243350A JP2010058114A JP 2010058114 A JP2010058114 A JP 2010058114A JP 2009243350 A JP2009243350 A JP 2009243350A JP 2009243350 A JP2009243350 A JP 2009243350A JP 2010058114 A JP2010058114 A JP 2010058114A
Authority
JP
Japan
Prior art keywords
palladium
reaction
solution
reaction product
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009243350A
Other languages
Japanese (ja)
Inventor
Satoshi Komatsu
聖史 小松
Kazuya Inoue
和也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009243350A priority Critical patent/JP2010058114A/en
Publication of JP2010058114A publication Critical patent/JP2010058114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently removing palladium from a solution in which a palladium complex having a phosphorus-based ligand is dissolved. <P>SOLUTION: The method for removing palladium comprises a step of treating the solution, in which the palladium complex having the phosphorus-based ligand is dissolved, with zeolite having 0.6-2 nm pore diameter. A method for preparing a reaction product-containing solution containing ≤15 ppb palladium on the basis of a reaction product, and the reaction product-containing solution containing ≤15 ppb palladium on the basis of the reaction product are also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、パラジウムの除去方法に関する。   The present invention relates to a method for removing palladium.

トリフェニルホスフィンに代表されるリン系配位子を有するパラジウム錯体は、例えば鈴木カップリング反応、薗頭カップリング反応、ヘック反応、ブッフバルド反応、カルボニル化反応等種々の有機合成反応の触媒として用いられており(例えば非特許文献1〜3参照)、これら反応は、医薬品、農薬、電子材料等およびこれらの中間体の製造に適した反応であることから、その重要性がますます高まってきている。   Palladium complexes having phosphorus ligands typified by triphenylphosphine are used as catalysts for various organic synthesis reactions such as Suzuki coupling reaction, Sonogashira coupling reaction, Heck reaction, Buchwald reaction, carbonylation reaction, etc. Since these reactions are suitable for the production of pharmaceuticals, agricultural chemicals, electronic materials, etc., and intermediates thereof, the importance of these reactions is increasing. .

前記パラジウム錯体を触媒として、これら反応を行った後、必要に応じて抽出処理等の後処理を行い、目的とする反応生成物が取り出されるが、反応液中には前記パラジウム錯体に由来するパラジウムも溶解しているため、反応生成物にパラジウムが混入してくるという問題やパラジウムが溶解した廃液を処理しなければならないという問題があった。そのため、前記パラジウム錯体が溶解した溶液からパラジウムを除去する方法が種々検討されており、例えば活性炭で処理する方法(例えば非特許文献4参照。)、乳酸水溶液で抽出処理する方法(例えば非特許文献5参照。)等が報告されている。かかる方法は、処理後に残存するパラジウム量が、反応生成物に対して1ppm程度まで除去可能な方法であるものの、反応生成物を医薬品、農薬、電子材料等の用途に用いるためには、不十分であり、さらにパラジウム量を低減することができる除去方法が必要であった。   After carrying out these reactions using the palladium complex as a catalyst, a post-treatment such as extraction treatment is carried out if necessary, and the desired reaction product is taken out. The palladium derived from the palladium complex is contained in the reaction solution. Therefore, there is a problem that palladium is mixed into the reaction product and a waste solution in which palladium is dissolved must be treated. Therefore, various methods for removing palladium from a solution in which the palladium complex is dissolved have been studied. For example, a method of treating with activated carbon (see, for example, Non-Patent Document 4), a method of extracting with a lactic acid aqueous solution (for example, Non-Patent Document). 5)) has been reported. Although this method is a method in which the amount of palladium remaining after the treatment can be removed to about 1 ppm with respect to the reaction product, it is insufficient for using the reaction product for uses such as pharmaceuticals, agricultural chemicals, and electronic materials. Further, a removal method capable of reducing the amount of palladium was necessary.

エイイチ・ネギシ編,「Handbook of Organopalladium Chemistry for Organic Synthesis」,A John Wiley & Sons,2002年Edited by Eichi Negishi, “Handbook of Organopalladium Chemistry for Organic Synthesis”, A John Wiley & Sons, 2002 ジロウ・ツジ著,「Palladium Reagents and Catalysts−innovations in organic synthesis」,A John Wiley & Sons,1995年Jiro Tsuji, "Palladium Reagents and Catalysts-innovations in organic synthesis", A John Wiley & Sons, 1995. 日本化学会編,「実験化学講座(第25巻)有機合成VII」,第4版,丸善株式会社,p.396〜427The Chemical Society of Japan, “Experimental Chemistry Course (Vol. 25) Organic Synthesis VII”, 4th edition, Maruzen Co., Ltd., p. 396-427 Organic Process Researach & Development,2001,5,383Organic Process Research & Development, 2001, 5, 383 J.Org.Chem.,2003,68,2633J. et al. Org. Chem. , 2003, 68, 2633

このような状況のもと、本発明者らは、リン系配位子を有するパラジウム錯体が溶解した溶液からパラジウムを効率的に除去する方法を開発すべく鋭意検討したところ、前記溶液を、細孔径0.6〜2nmのゼオライトで処理することにより、パラジウムを効率的に除去できることを見出し、本発明に至った。   Under such circumstances, the present inventors have intensively studied to develop a method for efficiently removing palladium from a solution in which a palladium complex having a phosphorus ligand is dissolved. It has been found that palladium can be efficiently removed by treatment with zeolite having a pore diameter of 0.6 to 2 nm, and the present invention has been achieved.

すなわち本発明は、リン系配位子を有するパラジウム錯体が溶解した溶液を、細孔径0.6〜2nmのゼオライトで処理することを特徴とするパラジウムの除去方法を提供するものである。   That is, the present invention provides a method for removing palladium, characterized in that a solution in which a palladium complex having a phosphorus ligand is dissolved is treated with zeolite having a pore diameter of 0.6 to 2 nm.

本発明によれば、リン系配位子を有するパラジウム錯体が溶解した溶液から、効率的にパラジウムを除去することができ、パラジウム含有量がより低レベルの溶液を得ることができる。しかも、医薬品、農薬、電子材料等の製造に好適な薗頭カップリング反応等の前記パラジウム錯体を触媒とする有機合成反応で得られる反応生成物を含む溶液からも、前記反応生成物のロスを抑えて、溶解しているパラジウムを効率的に除去できるため、工業的な観点からも有利な方法となり得る。   According to the present invention, palladium can be efficiently removed from a solution in which a palladium complex having a phosphorus-based ligand is dissolved, and a solution having a lower palladium content can be obtained. Moreover, the loss of the reaction product can be reduced from a solution containing a reaction product obtained by an organic synthesis reaction using the palladium complex as a catalyst, such as a Sonogashira coupling reaction suitable for the manufacture of pharmaceuticals, agricultural chemicals, electronic materials, and the like. Since the dissolved palladium can be efficiently removed while being suppressed, it can be an advantageous method from an industrial viewpoint.

リン系配位子を有するパラジウム錯体が溶解した溶液としては、前記パラジウム錯体が溶解した有機溶媒溶液であれば特に制限されない。例えばリン系配位子を有するパラジウム錯体を触媒とする有機合成反応を行い、得られた反応生成物と前記パラジウム錯体を含む反応液を用いてもよいし、前記反応液について、例えば抽出処理、濾過処理等の後処理を行った後の反応生成物と前記パラジウム錯体を含む溶液を用いてもよい。また、前記溶液中には、銅塩等の他の金属成分、塩基等の成分が含まれていてもよい。リン系配位子を有するパラジウム錯体を触媒とする有機合成反応も特に制限されず、Handbook of Organopalladium Chemistry for Organic Synthesis、Palladium Reagents and Catalysts−innovations in organic synthesis、第4版実験化学講座第25巻有機合成VII,p.396〜427等に記載の公知のパラジウム錯体を用いる有機合成反応が挙げられる。   The solution in which the palladium complex having a phosphorus ligand is dissolved is not particularly limited as long as it is an organic solvent solution in which the palladium complex is dissolved. For example, an organic synthesis reaction using a palladium complex having a phosphorus ligand as a catalyst may be performed, and a reaction solution containing the obtained reaction product and the palladium complex may be used. You may use the reaction product after performing post-processing, such as a filtration process, and the solution containing the said palladium complex. The solution may contain other metal components such as a copper salt and components such as a base. The organic synthesis reaction catalyzed by a palladium complex having a phosphorus-based ligand is not particularly limited. Synthesis VII, p. Organic synthesis reactions using known palladium complexes described in 396 to 427 and the like can be mentioned.

かかる有機合成反応としては、例えば水添反応、脱水素反応、ハロゲン化アリールの脱ハロゲン化反応、不飽和化合物の不飽和結合の転位反応、重合反応、炭素−炭素結合生成反応、炭素−窒素結合生成反応等が挙げられ、なかでも医薬品、農薬、電子材料等およびこれらの中間体の合成反応として用いられることが多い炭素−炭素結合生成反応や炭素−窒素結合生成反応の場合に、本発明の方法は好適である。炭素−炭素結合生成反応や炭素−窒素結合生成反応としては、例えばハロゲン化アリールとアリールホウ酸とを反応させる鈴木カップリング反応、ハロゲン化アリールとアルキンとを反応させる薗頭カップリング反応、ハロゲン化アリールもしくはハロゲン化ビニルとオレフィンとを反応させるヘック反応、ハロゲン化アリールとアミンとを反応させるブッフバルド反応、ハロゲン化アリールと一酸化炭素とアルコールとを反応させるカルボニル化反応、ハロゲン化アリールとケトンとを反応させるα−アリールケトン合成反応、ハロゲン化アリールと有機亜鉛試薬とのカップリング反応等が挙げられる。   Examples of the organic synthesis reaction include hydrogenation reaction, dehydrogenation reaction, aryl halide dehalogenation reaction, unsaturated compound rearrangement reaction of unsaturated compound, polymerization reaction, carbon-carbon bond formation reaction, carbon-nitrogen bond. In the case of a carbon-carbon bond formation reaction or a carbon-nitrogen bond formation reaction, which is often used as a synthesis reaction of pharmaceuticals, agricultural chemicals, electronic materials, and the like and intermediates thereof, The method is preferred. Examples of the carbon-carbon bond formation reaction and the carbon-nitrogen bond formation reaction include a Suzuki coupling reaction in which an aryl halide and arylboric acid are reacted, a Sonogashira coupling reaction in which an aryl halide and alkyne are reacted, and an aryl halide. Alternatively, Heck reaction in which vinyl halide and olefin are reacted, Buchwald reaction in which aryl halide is reacted with amine, carbonylation reaction in which aryl halide is reacted with carbon monoxide and alcohol, and aryl halide and ketone are reacted. And α-aryl ketone synthesis reaction, coupling reaction of aryl halide and organozinc reagent.

リン系配位子としては、パラジウムに配位可能なリン原子を有する配位子であれば特に制限されず、例えばトリメチルホスフィン、トリエチルホスフィン、トリ(n−ブチル)ホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリ(o−トリル)ホスフィン等の単座ホスフィン系配位子、例えばトリフェニルホスファイト等の単座ホスファイト系配位子、例えばビス(ジフェニルホスフィノ)メタン、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、2,3−ビス(ジフェニルホスフィノ)ビシクロ[2.2.1]へプト−5−エン、4,5−ビス(ジフェニルホスフィノメチル)−2,2−ジメチル−1,3−ジオキソラン、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフタレン、1,1’−ビス(ジフェニルホスフィノ)フェロセン等の二座ホスフィン系配位子等が挙げられ、単座または二座ホスフィン系配位子が好ましく、単座ホスフィン系配位子がより好ましい。   The phosphorus ligand is not particularly limited as long as it has a phosphorus atom that can coordinate to palladium. For example, trimethylphosphine, triethylphosphine, tri (n-butyl) phosphine, tricyclohexylphosphine, triphenyl. Monodentate phosphine ligands such as phosphine and tri (o-tolyl) phosphine, monodentate phosphite ligands such as triphenyl phosphite, such as bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphine) Fino) ethane, 1,3-bis (diphenylphosphino) propane, 2,3-bis (diphenylphosphino) bicyclo [2.2.1] hept-5-ene, 4,5-bis (diphenylphosphino) Methyl) -2,2-dimethyl-1,3-dioxolane, 2,2′-bis (diphenylphosphite) ) -1,1′-binaphthalene, 1,1′-bis (diphenylphosphino) ferrocene and other bidentate phosphine-based ligands, and the like, monodentate or bidentate phosphine-based ligands are preferable, and monodentate phosphine-based ligands A ligand is more preferred.

リン系配位子を有するパラジウム錯体としては、前記溶液中でリン系配位子がパラジウムに配位した錯体であればよく、リン系配位子以外の配位子が配位していてもよい。かかるパラジウム錯体としては、例えばテトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh34)、ジクロロビス(トリフェニルホスフィン)パラジウム(PdCl2(PPh32)、ジクロロビス(トリエチルホスフィン)パラジウム(PdCl2(PEt32)、ジクロロ[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム・ジクロロメタン錯体(PdCl2(dppf)・CH2Cl2)等の予めリン系配位子がパラジウムに配位した錯体であってもよいし、例えば塩化パラジウム(PdCl2)、臭化パラジウム(PdBr2)、酢酸パラジウム(Pd(OAc)2)、リチウムテトラクロロパラデート(Li2PdCl4)、ビス(η3−アリル)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス(アセチルアセトナート)パラジウム(Pd(acac)2)、ジクロロビス(アセトニトリル)パラジウム((CH3CN)2PdCl2)、ジクロロビス(ベンゾニトリル)パラジウム((PhCN)2PdCl2)等のリン系配位子を有さないパラジウム化合物と前記リン系配位子とを反応系中で接触せしめて形成させたパラジウム錯体等であってもよい。 The palladium complex having a phosphorus ligand may be a complex in which the phosphorus ligand is coordinated to palladium in the solution, and a ligand other than the phosphorus ligand may be coordinated. Good. Examples of the palladium complex include tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ), dichlorobis (triphenylphosphine) palladium (PdCl 2 (PPh 3 ) 2 ), and dichlorobis (triethylphosphine) palladium (PdCl 2 (PdCl 2 ( PEt 3 ) 2 ), phosphorus ligands such as dichloro [1,1′-bis (diphenylphosphino) ferrocene] palladium / dichloromethane complex (PdCl 2 (dppf) · CH 2 Cl 2 ) are previously coordinated to palladium For example, palladium chloride (PdCl 2 ), palladium bromide (PdBr 2 ), palladium acetate (Pd (OAc) 2 ), lithium tetrachloroparadate (Li 2 PdCl 4 ), bis (η 3 - allyl) palladium, tris (dibenzylidene acetonates ) Dipalladium (Pd 2 (dba) 3), bis (acetylacetonato) palladium (Pd (acac) 2), dichlorobis (acetonitrile) palladium ((CH 3 CN) 2 PdCl 2), dichlorobis (benzonitrile) palladium ( It may be a palladium complex formed by contacting a palladium compound having no phosphorus ligand such as (PhCN) 2 PdCl 2 ) and the phosphorus ligand in the reaction system.

有機溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素系溶媒、例えばトルエン、キシレン等の芳香族炭化水素系溶媒、例えばジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、例えば酢酸エチル等のエステル系溶媒、例えばアセトン、メチルエチルケトン等のケトン系溶媒、例えばジクロロメタン、クロロベンゼン等のハロゲン化炭化水素系溶媒等の単独または混合溶媒が挙げられ、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒およびこれらの混合溶媒が好ましい。脂肪族炭化水素系溶媒と芳香族炭化水素系溶媒の混合溶媒を用いる場合には、脂肪族炭化水素系溶媒を、芳香族炭化水素系溶媒よりも多く使用する方が好ましい。かかる有機溶媒の使用量は特に制限されないが、パラジウム錯体を触媒とする有機合成反応を行って得られる反応生成物を含む溶液の場合には、反応生成物に対して、通常0.5〜100重量倍、好ましくは2〜50重量倍、より好ましくは3〜30重量倍の有機溶媒が用いられる。   Examples of the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, decane, and cyclohexane, aromatic hydrocarbon solvents such as toluene and xylene, such as diethyl ether, diisopropyl ether, tetrahydrofuran, and dioxane. Ether solvents, such as ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, halogenated hydrocarbon solvents such as dichloromethane and chlorobenzene, and the like. System solvents, aromatic hydrocarbon solvents and mixed solvents thereof are preferred. When a mixed solvent of an aliphatic hydrocarbon solvent and an aromatic hydrocarbon solvent is used, it is preferable to use a larger amount of the aliphatic hydrocarbon solvent than the aromatic hydrocarbon solvent. The amount of the organic solvent to be used is not particularly limited, but in the case of a solution containing a reaction product obtained by performing an organic synthesis reaction using a palladium complex as a catalyst, usually 0.5 to 100 with respect to the reaction product. The organic solvent is used in an amount by weight, preferably 2 to 50 times by weight, more preferably 3 to 30 times by weight.

前記溶液中のパラジウム量としては、通常100ppb〜1%、好ましくは100ppb〜1000ppmである。   The amount of palladium in the solution is usually 100 ppb to 1%, preferably 100 ppb to 1000 ppm.

層状粘土化合物としては、例えばマグネシウム、アルミニウム、鉄、ケイ素等の酸化物からなる積層構造を有する化合物であればよく、例えばカオリナイト、モンモリロナイト、ハロイサイト等が挙げられ、モンモリロナイトが好ましい。モンモリロナイトとしては、例えば活性白土、酸性白土等が挙げられ、活性白土が好ましい。かかる層状粘土化合物の形状は特に制限されず、例えば粉末状、粒状等が挙げられ、好ましくは粉末状のものが用いられる。かかる層状粘土化合物としては、通常市販されているものが用いられる。   As a layered clay compound, what is necessary is just a compound which has a laminated structure which consists of oxides, such as magnesium, aluminum, iron, silicon, for example, For example, a kaolinite, a montmorillonite, a halloysite etc. are mentioned, A montmorillonite is preferable. Examples of montmorillonite include activated clay and acidic clay, and activated clay is preferred. The shape of the layered clay compound is not particularly limited, and examples thereof include a powder form and a granular form, and preferably a powder form is used. As the layered clay compound, a commercially available one is usually used.

細孔径0.6〜2nmのゼオライトとしては、天然ゼオライトであってもよいし、合成ゼオライトであってもよい。かかるゼオライトとしては、例えばY型ゼオライト、リンデX、AlPO4−37、フォージャサイト等のFAU構造を有するゼオライト、例えばグメリナイト等のGME構造を有するゼオライト、例えばリンデL等のLTL構造を有するゼオライト、例えばマザイト、ZSM−4ゼオライト等のMAZ構造を有するゼオライト、例えばモルデナイト、ゼオロン等のMOR構造を有するゼオライト、例えばオフレタイト、リンデT等のOFF構造を有するゼオライト等が挙げられ、FAU構造を有するゼオライトが好ましい。かかるゼオライトは、市販されているものを用いてもよいし、合成ゼオライトであれば、公知の方法に従い製造したものを用いてもよい。 The zeolite having a pore diameter of 0.6 to 2 nm may be a natural zeolite or a synthetic zeolite. Examples of such zeolite include zeolites having a FAU structure such as Y-type zeolite, Linde X, AlPO 4 -37, and faujasite, zeolites having a GME structure such as gmelinite, zeolites having an LTL structure such as Linde L, For example, zeolite having MAZ structure such as mazaite and ZSM-4 zeolite, zeolite having MOR structure such as mordenite and zeoron, zeolite having OFF structure such as offretite and Linde T, and the like, and zeolite having FAU structure preferable. Such a zeolite may be a commercially available product, or may be a synthetic zeolite produced according to a known method.

かかる層状粘土化合物または細孔径0.6〜2nmのゼオライトの使用量としては、特に制限されない。前記溶液中に反応生成物を含む場合の使用量は、反応生成物に対して、通常0.1〜100重量倍、好ましくは0.5〜30重量倍である。   The amount of the layered clay compound or zeolite having a pore diameter of 0.6 to 2 nm is not particularly limited. When the reaction product is contained in the solution, the amount used is usually 0.1 to 100 times by weight, preferably 0.5 to 30 times by weight with respect to the reaction product.

層状粘土化合物または細孔径0.6〜2nmのゼオライトで、前記溶液を処理する方法としては、例えば層状粘土化合物または細孔径0.6〜2nmのゼオライトと前記溶液を混合し、所定時間接触させた後、層状粘土化合物または細孔径0.6〜2nmのゼオライトを、例えば濾過、遠心分離等の通常の分離手段により分離する方法、層状粘土化合物または細孔径0.6〜2nmのゼオライトが充填された塔内に、前記溶液を通液する方法等が挙げられる。処理温度は、通常−50〜200℃、好ましくは−10〜100℃である。濾過により、処理後の層状粘土化合物または細孔径0.6〜2nmのゼオライトを分離する場合、例えばセライト等の濾過助剤を用いてもよい。処理時間は特に制限されないが、通常0.1〜48時間、好ましくは0.3〜10時間である。   As a method of treating the solution with a layered clay compound or zeolite having a pore size of 0.6 to 2 nm, for example, the layered clay compound or zeolite having a pore size of 0.6 to 2 nm is mixed with the solution and contacted for a predetermined time. Thereafter, the layered clay compound or the zeolite having a pore diameter of 0.6 to 2 nm is separated by a normal separation means such as filtration or centrifugation, and the layered clay compound or the zeolite having a pore diameter of 0.6 to 2 nm is packed. The method etc. which let the said solution flow in a tower | column are mentioned. The treatment temperature is usually −50 to 200 ° C., preferably −10 to 100 ° C. When separating the layered clay compound after treatment or zeolite having a pore diameter of 0.6 to 2 nm by filtration, for example, a filter aid such as celite may be used. The treatment time is not particularly limited, but is usually 0.1 to 48 hours, preferably 0.3 to 10 hours.

反応生成物を含む溶液についてかかる処理を行うことにより、反応生成物に対するパラジウム量が15ppb以下である反応生成物含有溶液が得られ、前記溶液を、必要に応じて濃縮処理した後、例えば晶析処理することにより、パラジウム含量がより低減された反応生成物を得ることができる。   By performing such a treatment on the solution containing the reaction product, a reaction product-containing solution having a palladium amount with respect to the reaction product of 15 ppb or less is obtained. After concentration of the solution as necessary, for example, crystallization By treating, a reaction product with a reduced palladium content can be obtained.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、溶液中のパラジウム(以下、Pdと略記する。)量は、採取した試料を濃縮処理した後、湿式加圧酸分解し、蒸発乾固し、次いで王水に溶解させ、ICP発光分析(Pd量が1ppm以上の場合)またはICP−MS分析(パラジウム量が1ppm未満の場合)し、算出した。また、溶液中の反応生成物の含量は、高速液体クロマトグラフィにより分析し、算出した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. The amount of palladium (hereinafter abbreviated as Pd) in the solution was determined by concentrating the collected sample, followed by wet pressure acid decomposition, evaporation to dryness, and then dissolving in aqua regia. When the Pd amount was 1 ppm or more) or ICP-MS analysis (when the palladium amount was less than 1 ppm), the calculation was performed. The content of the reaction product in the solution was analyzed and calculated by high performance liquid chromatography.

参考例1
100mLメスフラスコに、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh34)108.7mgおよびトリフェニルホスフィン98.7mgを秤量し、トルエンを加えて、100mLとした。この溶液10mLを採取し、トルエン/ヘキサン混合溶液(トルエン/ヘキサン重量比=17/83)を加え、全体重量を1000gとし、Pd含量1ppmの溶液を調製した。
Reference example 1
In a 100 mL volumetric flask, 108.7 mg of tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) and 98.7 mg of triphenylphosphine were weighed, and toluene was added to make 100 mL. 10 mL of this solution was sampled and a toluene / hexane mixed solution (toluene / hexane weight ratio = 17/83) was added to prepare a solution having a total weight of 1000 g and a Pd content of 1 ppm.

実施例1
温度計、冷却管および攪拌装置を備えた四つ口フラスコに、前記参考例1で調製したPd含量1ppmの溶液50gおよび活性白土(和光純薬製)7.5gを加え、内温20℃で2時間攪拌、保持した。その後、同温度で活性白土を濾別した。濾別した活性白土をトルエン/ヘキサン混合溶液(トルエン/ヘキサン重量比=17/83)7.5gで2回洗浄処理し、洗浄液を先に得た濾液と合一した。合一後の溶液を濃縮処理し、濃縮液10gを得た。濃縮液中のPd含量は5ppb未満であり、Pd除去率は99.9%以上であった。
Example 1
To a four-necked flask equipped with a thermometer, a condenser, and a stirrer, 50 g of a solution with a Pd content of 1 ppm prepared in Reference Example 1 and 7.5 g of activated clay (made by Wako Pure Chemical Industries) were added, and the internal temperature was 20 ° C. Stir and hold for 2 hours. Thereafter, the activated clay was filtered off at the same temperature. The activated clay separated by filtration was washed twice with 7.5 g of a toluene / hexane mixed solution (toluene / hexane weight ratio = 17/83), and the washing solution was combined with the previously obtained filtrate. The combined solution was concentrated to obtain 10 g of a concentrated solution. The Pd content in the concentrate was less than 5 ppb, and the Pd removal rate was 99.9% or more.

実施例2〜5
実施例1において、活性白土の使用量および処理温度を下記表1に示した条件とした以外は実施例1と同様に実施した。結果を表1に示した。
Examples 2-5
In Example 1, it implemented like Example 1 except having used the usage-amount of activated clay and the process temperature on the conditions shown in following Table 1. FIG. The results are shown in Table 1.

Figure 2010058114
Figure 2010058114

実施例6
実施例1において、活性白土に代えてY型ゼオライト(細孔径0.74nm)を用いた以外は実施例1と同様に実施したところ、濃縮液中のPd含量は5ppb未満、Pd除去率は99.9%以上であった。
Example 6
In Example 1, it carried out similarly to Example 1 except having used Y type zeolite (pore diameter 0.74nm) instead of the activated clay. As a result, the Pd content in the concentrated liquid was less than 5 ppb, and the Pd removal rate was 99. .9% or more.

比較例1
実施例1において、活性白土に代えてZSM−5ゼオライト(細孔径0.5nm)を用いた以外は実施例1と同様に実施したところ、濃縮液中のPd含量は140ppb、Pd除去率は97.2%であった。
Comparative Example 1
In Example 1, it carried out similarly to Example 1 except having used ZSM-5 zeolite (pore diameter 0.5nm) instead of activated clay. As a result, the Pd content in the concentrate was 140ppb, and the Pd removal rate was 97. 2%.

比較例2
実施例1において、活性白土に代えてケイソウ土(和光純薬製ハイフロスーパーセル)を用いた以外は実施例1と同様に実施したところ、濃縮液中のPd含量は230ppb、Pd除去率は95.4%であった。
Comparative Example 2
In Example 1, it carried out similarly to Example 1 except having used diatomaceous earth (Hyflo Supercell manufactured by Wako Pure Chemical Industries) in place of the activated clay. As a result, the Pd content in the concentrate was 230 ppb, and the Pd removal rate was 95. 4%.

参考例2
温度計および攪拌装置を備えた1Lフラスコの内部を窒素置換した後、1,3−ジブロモアダマンタン43gおよび無水臭化アルミニウム10gを仕込み、内温0℃まで冷却した。これに、予め5℃に冷却しておいた1,3−ジブロモベンゼン190gを仕込み、内温0〜10℃で7時間攪拌、反応させた。反応中に発生する臭化水素ガスはアルカリ水溶液中に導き、除害しながら反応を行った。反応終了後、4重量%塩酸130gをゆっくり滴下し、反応液のオレンジ色が消失するまで攪拌を継続した。攪拌を停止し、静置後、分液処理し、得られた有機層を水で3回洗浄処理した。洗浄処理後の有機層にトルエン190gを加え、昇温し、還流条件下で水を除去した。その後冷却し、析出した結晶を濾取した。濾取した結晶をトルエン、メタノールおよび水で洗浄した後、減圧条件下で乾燥させ、1,3−ビス(3,5−ジブロモフェニル)アダマンタン44gを得た。
Reference example 2
After the inside of a 1 L flask equipped with a thermometer and a stirrer was purged with nitrogen, 43 g of 1,3-dibromoadamantane and 10 g of anhydrous aluminum bromide were charged and cooled to an internal temperature of 0 ° C. This was charged with 190 g of 1,3-dibromobenzene that had been cooled to 5 ° C. in advance, and the mixture was stirred and reacted at an internal temperature of 0 to 10 ° C. for 7 hours. The hydrogen bromide gas generated during the reaction was introduced into an alkaline aqueous solution and reacted while detoxifying. After completion of the reaction, 130 g of 4 wt% hydrochloric acid was slowly added dropwise, and stirring was continued until the orange color of the reaction solution disappeared. Stirring was stopped and the mixture was allowed to stand, followed by liquid separation treatment, and the resulting organic layer was washed with water three times. 190 g of toluene was added to the organic layer after the washing treatment, the temperature was raised, and water was removed under reflux conditions. Thereafter, the mixture was cooled, and the precipitated crystals were collected by filtration. The crystals collected by filtration were washed with toluene, methanol and water and then dried under reduced pressure to obtain 44 g of 1,3-bis (3,5-dibromophenyl) adamantane.

温度計、還流冷却管および攪拌装置を備えた500mLフラスコの内部を窒素置換した後、トルエン268g、トリエチルアミン26g、ジクロロビス(トリフェニルホスフィン)パラジウム(PdCl2(PPh32)0.29g、トリフェニルホスフィン0.58gおよびヨウ化銅(I)0.23gを仕込んだ。これに、前記1,3−ビス(3,5−ジブロモフェニル)アダマンタン31gを加え、内温80℃に昇温した。同温度で、トリメチルシリルアセチレン22gを6時間かけて滴下した後、同温度で2時間保持し、薗頭カップリング反応を行った。反応終了後、室温まで冷却し、不溶分を濾別した。濾別した不溶分をトルエン31gで2回洗浄した後、洗浄液を先に得た濾液と合一した。合一後の溶液を4重量%塩酸中に加え、攪拌し、静置後、分液処理した。得られた有機層を水155gで2回洗浄した後、減圧条件下で濃縮処理し、濃縮液66gを得た。濃縮液中には、薗頭カップリング反応の反応生成物である1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンが50重量%含まれていた。 The inside of a 500 mL flask equipped with a thermometer, a reflux condenser and a stirrer was purged with nitrogen, and then 268 g of toluene, 26 g of triethylamine, 0.29 g of dichlorobis (triphenylphosphine) palladium (PdCl 2 (PPh 3 ) 2 ), triphenyl 0.58 g of phosphine and 0.23 g of copper (I) iodide were charged. To this, 31 g of 1,3-bis (3,5-dibromophenyl) adamantane was added, and the temperature was raised to an internal temperature of 80 ° C. At the same temperature, 22 g of trimethylsilylacetylene was dropped over 6 hours, and then held at the same temperature for 2 hours to carry out Sonogashira coupling reaction. After completion of the reaction, the reaction mixture was cooled to room temperature, and insoluble matters were filtered off. The insoluble matter separated by filtration was washed twice with 31 g of toluene, and the washing solution was combined with the previously obtained filtrate. The combined solution was added to 4% by weight hydrochloric acid, stirred, allowed to stand, and then subjected to liquid separation treatment. The obtained organic layer was washed twice with 155 g of water and then concentrated under reduced pressure to obtain 66 g of a concentrated solution. The concentrate contained 50% by weight of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane, which is a reaction product of the Sonogashira coupling reaction.

得られた濃縮液にヘキサン165gを加え、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの含有量が、14重量%の溶液を調製した。この溶液に、シリカゲル(関東化学製、球状中性、粒径100〜210μm)62gを仕込み、内温25℃で2時間攪拌保持した後、同じシリカゲル31gをプレコートした濾過器で濾過処理した。濾過器上に濾取されたシリカゲルをトルエン/ヘキサン混合溶液(トルエン/ヘキサン重量比=17/83)31gで2回洗浄し、洗浄液は先に得た濾液と合一し、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタン含有溶液250gを得た。該溶液中の1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの含有量は10重量%、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンに対するPd量は280ppbであった。また、該溶液中のトルエン/ヘキサン重量比は17/73であった。   165 g of hexane was added to the resulting concentrated solution to prepare a solution having a content of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane of 14% by weight. This solution was charged with 62 g of silica gel (manufactured by Kanto Chemical Co., Ltd., spherical neutral, particle size 100 to 210 μm), stirred and held at an internal temperature of 25 ° C. for 2 hours, and then filtered with a filter pre-coated with 31 g of the same silica gel. The silica gel collected by filtration on the filter was washed twice with 31 g of a toluene / hexane mixed solution (toluene / hexane weight ratio = 17/83). The washing solution was combined with the previously obtained filtrate, and 1,3-bis 250 g of a solution containing [3,5-bis (trimethylsilylethynyl) phenyl] adamantane was obtained. The content of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane in the solution was 10% by weight, Pd relative to 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane The amount was 280 ppb. The toluene / hexane weight ratio in the solution was 17/73.

実施例7
温度計および攪拌装置を備えたフラスコに、前記参考例2で得られた1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタン含有溶液100重量部および活性白土(和光純薬製)28重量部を仕込み、室温で2時間攪拌、保持した。その後、同温度で活性白土を濾別した。濾別した活性白土をヘキサン28重量部で2回洗浄処理し、洗浄液を先に得た濾液と合一した。合一後の溶液を濃縮処理し、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの含量が50重量%である濃縮液20重量部を得た。濃縮液中の1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンに対するPd量は10ppb以下であり、Pd除去率は98.2%以上であった。また、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの回収率は100%であった。
Example 7
In a flask equipped with a thermometer and a stirrer, 100 parts by weight of the 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane-containing solution obtained in Reference Example 2 and activated clay (made by Wako Pure Chemical Industries, Ltd.) ) 28 parts by weight were charged and stirred and held at room temperature for 2 hours. Thereafter, the activated clay was filtered off at the same temperature. The activated clay separated by filtration was washed twice with 28 parts by weight of hexane, and the washing solution was combined with the previously obtained filtrate. The combined solution was concentrated to obtain 20 parts by weight of a concentrated solution having a content of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane of 50% by weight. The amount of Pd with respect to 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane in the concentrate was 10 ppb or less, and the Pd removal rate was 98.2% or more. The recovery rate of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane was 100%.

比較例3
実施例7において、活性白土に代えて活性炭を用いた以外は実施例7と同様に実施したところ、濃縮液中の1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンに対するPd量は22ppbであり、Pd除去率は92.1%であった。
また、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの回収率は73%であった。
Comparative Example 3
In Example 7, it carried out similarly to Example 7 except having used activated carbon instead of activated clay, Pd with respect to 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane in the concentrated liquid The amount was 22 ppb, and the Pd removal rate was 92.1%.
Further, the recovery rate of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane was 73%.

比較例4
実施例7において、活性白土に代えてケイソウ土を用いた以外は実施例7と同様に実施したところ、濃縮液中の1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンに対するPd量は154ppbであり、Pd除去率は44.9%であった。また、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの回収率は98%であった。
Comparative Example 4
In Example 7, it carried out similarly to Example 7 except having used diatomaceous earth instead of the activated clay, and with respect to 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane in the concentrated liquid. The amount of Pd was 154 ppb, and the Pd removal rate was 44.9%. Further, the recovery rate of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane was 98%.

参考例3
参考例2において、シリカゲル31gをプレコートした濾過器に代えてプレコートしていない濾過器を用いた以外は参考例2と同様に実施して、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタン含有溶液260gを得た。該溶液中の1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの含有量は12重量%、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンに対するPd量は2000ppbであった。また、該溶液中のトルエン/ヘキサン重量比は15/73であった。
Reference example 3
In Reference Example 2, 1,3-bis [3,5-bis (trimethylsilylethynyl) was carried out in the same manner as Reference Example 2 except that a filter not precoated was used instead of the filter precoated with 31 g of silica gel. ) Phenyl] adamantane-containing solution 260 g was obtained. The content of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane in the solution was 12% by weight, and Pd relative to 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane The amount was 2000 ppb. The toluene / hexane weight ratio in the solution was 15/73.

実施例8
実施例7において、前記参考例2で得られた1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタン含有溶液に代えて、前記参考例3で得られた1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタン含有溶液を用いた以外は実施例7と同様に実施したところ、濃縮液中の1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンに対するPd量は10ppb以下であり、Pd除去率は99.5%以上であった。また、1,3−ビス[3,5−ビス(トリメチルシリルエチニル)フェニル]アダマンタンの回収率は95%であった。
Example 8
In Example 7, instead of the 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane-containing solution obtained in Reference Example 2, the 1,3-bis obtained in Reference Example 3 was used. The reaction was carried out in the same manner as in Example 7 except that a solution containing [3,5-bis (trimethylsilylethynyl) phenyl] adamantane was used, and 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl in the concentrated liquid was used. The amount of Pd with respect to adamantane was 10 ppb or less, and the Pd removal rate was 99.5% or more. Further, the recovery rate of 1,3-bis [3,5-bis (trimethylsilylethynyl) phenyl] adamantane was 95%.

Claims (13)

リン系配位子を有するパラジウム錯体が溶解した溶液を、細孔径0.6〜2nmのゼオライトで処理することを特徴とするパラジウムの除去方法。 A method for removing palladium, comprising treating a solution in which a palladium complex having a phosphorus ligand is dissolved with zeolite having a pore diameter of 0.6 to 2 nm. 前記溶液が、リン系配位子を有するパラジウム錯体を触媒として用いた有機合成反応の反応生成物がさらに溶解した溶液である請求項1記載のパラジウムの除去方法。 The method for removing palladium according to claim 1, wherein the solution is a solution in which a reaction product of an organic synthesis reaction using a palladium complex having a phosphorus-based ligand as a catalyst is further dissolved. リン系配位子が、ホスフィン系配位子である請求項1または2記載のパラジウムの除去方法。 The method for removing palladium according to claim 1 or 2, wherein the phosphorus ligand is a phosphine ligand. 有機合成反応が、炭素−炭素結合生成反応または炭素−窒素結合生成反応である請求項2又は3記載のパラジウムの除去方法。 The method for removing palladium according to claim 2 or 3, wherein the organic synthesis reaction is a carbon-carbon bond formation reaction or a carbon-nitrogen bond formation reaction. 細孔径0.6〜2nmのゼオライトがY型ゼオライトである請求項1〜4のいずれか記載のパラジウムの除去方法。 The method for removing palladium according to any one of claims 1 to 4, wherein the zeolite having a pore diameter of 0.6 to 2 nm is a Y-type zeolite. リン系配位子を有するパラジウム錯体を触媒として用いた有機合成反応の反応生成物および前記パラジウム錯体が溶解した溶液を、細孔径0.6〜2nmのゼオライトで処理することを特徴とする反応生成物に対するパラジウム量が15ppb以下である反応生成物含有溶液の製造方法。 A reaction product characterized by treating a reaction product of an organic synthesis reaction using a palladium complex having a phosphorus ligand as a catalyst and a solution in which the palladium complex is dissolved with a zeolite having a pore diameter of 0.6 to 2 nm. The manufacturing method of the reaction product containing solution whose palladium quantity with respect to a thing is 15 ppb or less. リン系配位子が、ホスフィン系配位子である請求項6記載の反応生成物含有溶液の製造方法。 The method for producing a reaction product-containing solution according to claim 6, wherein the phosphorus-based ligand is a phosphine-based ligand. 有機合成反応が、炭素−炭素結合生成反応または炭素−窒素結合生成反応である請求項6又は7記載の反応生成物含有溶液の製造方法。 The method for producing a reaction product-containing solution according to claim 6 or 7, wherein the organic synthesis reaction is a carbon-carbon bond formation reaction or a carbon-nitrogen bond formation reaction. 細孔径0.6〜2nmのゼオライトがY型ゼオライトである請求項6〜8のいずれか記載の反応生成物含有溶液の製造方法。 The method for producing a reaction product-containing solution according to any one of claims 6 to 8, wherein the zeolite having a pore diameter of 0.6 to 2 nm is a Y-type zeolite. リン系配位子を有するパラジウム錯体を触媒として用いた有機合成反応の反応生成物および前記パラジウム錯体が溶解した溶液を、細孔径0.6〜2nmのゼオライトで処理してなる反応生成物に対するパラジウム量が15ppb以下である反応生成物含有溶液。 Palladium for reaction products obtained by treating a reaction product of an organic synthesis reaction using a palladium complex having a phosphorus-based ligand as a catalyst and a solution in which the palladium complex is dissolved with zeolite having a pore diameter of 0.6 to 2 nm A reaction product-containing solution having an amount of 15 ppb or less. リン系配位子が、ホスフィン系配位子である請求項10記載の反応生成物含有溶液。 The reaction product-containing solution according to claim 10, wherein the phosphorus-based ligand is a phosphine-based ligand. 有機合成反応が、炭素−炭素結合生成反応または炭素−窒素結合生成反応である請求項10又は11記載の反応生成物含有溶液。 The reaction product-containing solution according to claim 10 or 11, wherein the organic synthesis reaction is a carbon-carbon bond formation reaction or a carbon-nitrogen bond formation reaction. 細孔径0.6〜2nmのゼオライトがY型ゼオライトである請求項10〜12のいずれか記載の反応生成物含有溶液。 The reaction product-containing solution according to any one of claims 10 to 12, wherein the zeolite having a pore diameter of 0.6 to 2 nm is a Y-type zeolite.
JP2009243350A 2009-10-22 2009-10-22 Method for removing palladium Pending JP2010058114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243350A JP2010058114A (en) 2009-10-22 2009-10-22 Method for removing palladium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243350A JP2010058114A (en) 2009-10-22 2009-10-22 Method for removing palladium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004142066A Division JP4466187B2 (en) 2004-05-12 2004-05-12 How to remove palladium

Publications (1)

Publication Number Publication Date
JP2010058114A true JP2010058114A (en) 2010-03-18

Family

ID=42185521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243350A Pending JP2010058114A (en) 2009-10-22 2009-10-22 Method for removing palladium

Country Status (1)

Country Link
JP (1) JP2010058114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500848A (en) * 2011-12-22 2015-01-08 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing bicyclic or tricyclic (meth) acrylate
JPWO2017217078A1 (en) * 2016-06-13 2019-04-18 シャープ株式会社 Photoelectric dust sensor and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197505A (en) * 1987-02-10 1988-08-16 Kansai Coke & Chem Co Ltd Desorption liquid of group viii noble metallic complex adsorbed to adsorbent and desorbing method
JPH11147002A (en) * 1997-11-17 1999-06-02 Daicel Chem Ind Ltd Method for recovering complex compound of metal of group viii in element periodic table

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197505A (en) * 1987-02-10 1988-08-16 Kansai Coke & Chem Co Ltd Desorption liquid of group viii noble metallic complex adsorbed to adsorbent and desorbing method
JPH11147002A (en) * 1997-11-17 1999-06-02 Daicel Chem Ind Ltd Method for recovering complex compound of metal of group viii in element periodic table

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012036462; ゼオライトとその利用 , 19671201, 第144頁〜第149頁 *
JPN6012036464; D. Turlan et. al.: 'Separation of Pd complexes from a homogeneous solution using zeolite membranes' Chemcomm Communication No.24, 20011221, Page.2608-2609 *
JPN6012036466; Z. Karpinski et. al.: 'Hydroformylation of propene over palladium trimethylphosphinecarbonyl clusters encaged in zeolite Y' Journal of Molecular Catalysis Vol.77 No.2, 19921115, Page.181-192 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500848A (en) * 2011-12-22 2015-01-08 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing bicyclic or tricyclic (meth) acrylate
JPWO2017217078A1 (en) * 2016-06-13 2019-04-18 シャープ株式会社 Photoelectric dust sensor and air conditioner

Similar Documents

Publication Publication Date Title
Walsh et al. Use of achiral and meso ligands to convey asymmetry in enantioselective catalysis
Corbet et al. Selected patented cross-coupling reaction technologies
McCarthy et al. Axially chiral bidentate ligands in asymmetric catalysis
Laurenti et al. a new tetratertiary phosphine ligand and its use in Pd-catalyzed allylic substitution
Nishikata et al. Enantioselective 1, 4-addition of Ar3Bi,[ArBF3] K, and ArSiF3 to enones catalyzed by a dicationic palladium (II)− Chiraphos or− Dipamp complex
Duan et al. Chiral Phosphine− Olefin Ligands in the Rhodium-Catalyzed Asymmetric 1, 4-Addition Reactions
Xu et al. Abnormal N-heterocyclic carbene promoted Suzuki− Miyaura coupling reaction: A comparative study
El-Zaria et al. m-Carborane-based chiral NBN pincer-metal complexes: synthesis, structure, and application in asymmetric catalysis
Chang et al. Cobalt-catalyzed reductive coupling of activated alkenes with alkynes
Gladiali et al. BINEPINES: chiral binaphthalene-core monophosphepine ligands for multipurpose asymmetric catalysis
Tu et al. Trans Effect of Different Coordinated Atoms of Planar Chiral Ferrocene Ligands with the Same Backbone in Palladium− Catalyzed Allylic Substitutions
Toledo et al. Palladium-catalyzed aerobic homocoupling of alkynes: full mechanistic characterization of a more complex oxidase-type behavior
Ishida et al. Synthesis of 2-aryloxy-1, 3-dienes from phenols and propargyl carbonates
Lim et al. Self-assembled supramolecular clusters based on phosphines and coinage metals: tetrahedra, helicates, and mesocates
CN102516300A (en) Phosphine ligands, enantiomers or racemates thereof, and preparation methods of above
CN103261133B (en) Hydrogenation of esters or carbonyl groups with tetradentate amino/imino-hioether based ruthenium complexes
Westmeier et al. First tandem asymmetric conjugate addition of alkenyl nucleophiles and silyl trapping of the intermediate enolates
Niu et al. Copper-catalyzed yne-allylic substitutions using stabilized nucleophiles
Van der Vlugt et al. Rhodium complexes of sterically demanding diphosphonites: Coordination chemistry and catalysis
Ogasawara et al. Kinetic resolution of planar-chiral ferrocenylphosphine derivatives by molybdenum-catalyzed asymmetric ring-closing metathesis and their application in asymmetric catalysis
Zhang et al. Mechanistic Study of the Nickel-Catalyzed α, β-Coupling of Saturated Ketones
Katona et al. Catalytic approach toward chiral P, N-chelate complexes utilizing the asymmetric hydrophosphination protocol
JP4466187B2 (en) How to remove palladium
JP3593317B2 (en) Microencapsulated metal catalyst
JP2010058114A (en) Method for removing palladium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204