JP2010058104A - Reversible rotation mechanism of eccentric weight type vibration generator - Google Patents

Reversible rotation mechanism of eccentric weight type vibration generator Download PDF

Info

Publication number
JP2010058104A
JP2010058104A JP2008256828A JP2008256828A JP2010058104A JP 2010058104 A JP2010058104 A JP 2010058104A JP 2008256828 A JP2008256828 A JP 2008256828A JP 2008256828 A JP2008256828 A JP 2008256828A JP 2010058104 A JP2010058104 A JP 2010058104A
Authority
JP
Japan
Prior art keywords
eccentric weight
rotation mechanism
shaft
reversible rotation
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008256828A
Other languages
Japanese (ja)
Inventor
Yukichi Suzuki
勇吉 鈴木
Hiroyasu Yokoyama
博康 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chowa Kogyo Co Ltd
Original Assignee
Chowa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chowa Kogyo Co Ltd filed Critical Chowa Kogyo Co Ltd
Priority to JP2008256828A priority Critical patent/JP2010058104A/en
Publication of JP2010058104A publication Critical patent/JP2010058104A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To relax the stress of a joint and to prevent abnormal vibration by improving a reversible rotation mechanism which controls vibration force by adjusting the phase difference between a stationary eccentric weight and movable eccentric weight in an eccentric weight type vibration generator. <P>SOLUTION: The upper column of the representative figure is a conventional example, and the lower column of the figure is an embodiment. As shown by (B1), two parallel oil routes 21d for supplying pressure oil to a crossing communication hole 21c are bored from the side of a swivel part 21g, and no oil route is formed in the joint 21e. The two parallel oil routes 21d, as expressed by (B3) wherein its f-f cross section is drawn, are arranged symmetrically about the axis of a rotary shaft 21. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、杭打ち等に用いられる偏心重錘式起振機に係り、特に、偏心重錘の位相を制御して起振力を調節するための可逆回動機構に関するものである。  The present invention relates to an eccentric weight exciter used for pile driving or the like, and more particularly to a reversible rotation mechanism for adjusting an excitation force by controlling the phase of an eccentric weight.

図2は、公知の偏心重錘式起振機の1例を示し、模式的に描いた断面図である。
この種の起振機は振動杭打抜機に賞用され、偏心重錘を回転させて振動を発生する機能と、偏心重錘を回転させた侭で起振力を増減調節する機能とを有している。
起振機ケース7を貫通せしめて、内軸8aと外管8bとから成る2重管8が設けられている。
FIG. 2 is a cross-sectional view schematically showing an example of a known eccentric weight exciter.
This type of vibrator is used as a vibration pile punching machine and has a function to generate vibration by rotating an eccentric weight and a function to increase / decrease the excitation force with a rod that rotates the eccentric weight. is doing.
A double pipe 8 comprising an inner shaft 8a and an outer pipe 8b is provided through the vibrator case 7.

前記の内軸8aは回転軸駆動機器(例えば油圧モータ)11によって回転駆動され、かつ、キーKを介して固定偏心重錘9を固着さている。
外管8bは、前記の回動軸駆動機器11によって直接的に回転駆動されず、次に述べるようにして、可逆回動機構12を介して回転駆動されるようになっており、可動偏心重錘10を回着されている。
前記の可逆回動機構12は、ハウジング12aの中に回転軸12bが配設されていて、スイベルジョイント18を介して送給される圧力油により、前記回転軸12bがハウジング12aに対して相対的に正,逆回動する。この作動は相対的であるから、ハウジング12aが回動軸12bに対して正,逆回動すると見ることもできる。回動角は一般に180度未満である。
The inner shaft 8a is rotationally driven by a rotary shaft drive device (for example, a hydraulic motor) 11, and a fixed eccentric weight 9 is fixed thereto via a key K.
The outer tube 8b is not directly rotated by the rotating shaft driving device 11, but is rotated by the reversible rotating mechanism 12 as described below. A weight 10 is worn around.
The reversible rotating mechanism 12 has a rotating shaft 12b disposed in a housing 12a, and the rotating shaft 12b is relative to the housing 12a by pressure oil fed through a swivel joint 18. Rotate forward and backward. Since this operation is relative, it can be seen that the housing 12a rotates forward and backward with respect to the rotation shaft 12b. The rotation angle is generally less than 180 degrees.

前記可逆回動機構12の回転軸は回転駆動機器11によって高速回転(例えば毎分1200回転)せしめられている。従って、可逆回動機構12は軸心Xの周りに高速回転している。なお、本発明において軸心とは回転軸の中心線をいう。
前記可逆回動機構は、油圧揺動モータと類似の原理で作動する。
図3に、従来例の油圧揺動モータの断面図を示す。この図は、油圧機器の教科書に掲載されている説明図と同様で、公知のものである。
The rotation shaft of the reversible rotation mechanism 12 is rotated at a high speed (for example, 1200 rotations per minute) by the rotation drive device 11. Accordingly, the reversible rotation mechanism 12 rotates about the axis X at a high speed. In the present invention, the axis means the center line of the rotating shaft.
The reversible rotation mechanism operates on a principle similar to that of a hydraulic swing motor.
FIG. 3 shows a cross-sectional view of a conventional hydraulic rocking motor. This figure is similar to the explanatory drawing published in the textbook of hydraulic equipment and is a known one.

(図3参照)油圧揺動モータの構造は、円筒状のハウジング1の中に出力軸2が回動可能に支承されていて、該出力軸には1対のベーン4a,4bが軸心に対称に設けられていて、該ベーンの先端はハウジング1の内周面に接している。
一方、ハウジング1の内周面には1対のブロック3a,3bが固設されていて、その先端が出力軸2に接している。
(Refer to FIG. 3) The structure of the hydraulic swing motor is such that an output shaft 2 is rotatably supported in a cylindrical housing 1, and a pair of vanes 4a and 4b are axially centered on the output shaft. They are provided symmetrically, and the tips of the vanes are in contact with the inner peripheral surface of the housing 1.
On the other hand, a pair of blocks 3 a and 3 b are fixed on the inner peripheral surface of the housing 1, and the tips thereof are in contact with the output shaft 2.

流出入孔1aからハウジング1の中へ矢印aのように圧力油を注入すると、符号5aを付して示した室の圧力が上昇して加圧室となる。連通孔2aによって加圧室5aと連通されている符号5bの室も圧力が上昇して加圧室となる。
これら加圧室5a,5bの圧力油によってベーン4a,4bが押動されて、出力軸2が図の左回り(反時計方向)に回動しようとする。
When pressure oil is injected into the housing 1 from the inflow / outflow hole 1a as indicated by an arrow a, the pressure in the chamber indicated by the reference numeral 5a rises to become a pressurizing chamber. The chamber 5b connected to the pressurizing chamber 5a through the communication hole 2a also increases in pressure and becomes a pressurizing chamber.
The vanes 4a and 4b are pushed by the pressure oil in the pressurizing chambers 5a and 5b, and the output shaft 2 tends to rotate counterclockwise (counterclockwise) in the drawing.

このとき、流出入孔1bからの油の流出(矢印b)を自由ならしめると、符号6aを付して示した室、及び、連通孔2bを介してこれに連通された室6bの圧力が解放されて、前記出力軸2の左回り回動を妨げない。このようにして出力軸2が図の左回り方向に回動せしめられる。
前記と反対に、反矢印b方向に圧力油を注入して、反矢印a方向に油を流出させると、回動軸2は前記と反対に、図の右回り方向に回動する。
At this time, if the oil outflow (arrow b) from the outflow / inflow hole 1b is made free, the pressure in the chamber indicated by reference numeral 6a and the chamber 6b communicated to the chamber 6b through the communication hole 2b is reduced. It is released and does not prevent the output shaft 2 from turning counterclockwise. In this way, the output shaft 2 is rotated counterclockwise in the figure.
Contrary to the above, when the pressure oil is injected in the counter arrow b direction and the oil flows out in the counter arrow a direction, the rotating shaft 2 rotates in the clockwise direction in the figure, contrary to the above.

図2に示した起振機の可逆回動機器11を「図3に示した油圧揺動モータに類似した機構」で構成した状態を模式的に描いた斜視図を図4に示す。
ただし、図3に示した従来例の油圧揺動モータによって、図2に示した起振機の可逆回動機構12を構成できるものではなく、従来例の油圧揺動モータの作動原理を応用しつつ改良を加えた機器を構成しなければならない。
次に、起振機の可逆回動機構11に求められる機能と、従来例の油圧揺動モータとの相違について説明する。
FIG. 4 is a perspective view schematically showing a state in which the reversible rotating device 11 of the exciter shown in FIG. 2 is configured by “a mechanism similar to the hydraulic swing motor shown in FIG. 3”.
However, the conventional hydraulic swing motor shown in FIG. 3 cannot constitute the reversible rotation mechanism 12 of the exciter shown in FIG. 2, and the operating principle of the conventional hydraulic swing motor is applied. However, it is necessary to configure equipment with improvements.
Next, the difference between the function required for the reversible rotation mechanism 11 of the exciter and the conventional hydraulic swing motor will be described.

図3に示した従来例の油圧揺動モータは、元来、ハウジング1をベース部材に固定して出力軸2を比較的低速(例えばrpm換算100程度)で往復回動させる。このため、ハウジング1に台座1cが一体的に連設されている。
しかし、図4に示した可逆回動機構11のハウジング14は、外管8bを介して可動偏心重錘10に直結されている(本発明において回転部材が直結されているとは、双方の回転部材が同一回転速度で同方向に回転するように拘束されていることをいう)。
The hydraulic swing motor of the conventional example shown in FIG. 3 originally fixes the housing 1 to the base member and reciprocates the output shaft 2 at a relatively low speed (for example, about 100 in terms of rpm). For this reason, the base 1c is integrally connected to the housing 1.
However, the housing 14 of the reversible rotation mechanism 11 shown in FIG. 4 is directly connected to the movable eccentric weight 10 via the outer tube 8b (in the present invention, the rotating member is directly connected means that both rotations The member is constrained to rotate in the same direction at the same rotational speed).

前掲の図2を参照して説明したように、内軸8aは回転軸駆動機器によって回転駆動される。該内軸8aに固着されている回転軸16は高速(例えば1200rpm)で回転し、油圧力を介してハウジング14を同じ方向に高速回転させる(このような使い方をするので、図4に符号16で示した部材は出力軸と呼ぶに相応しくない)。
図2を参照して先に説明した油圧揺動モータの作動原理と類似の作動によって、図4のハウジング14と回転軸16とが相対的に正,逆回動すると、固定偏心重錘9と可動偏心重錘10との位相差が増減する。
双方の偏心重錘の位相差が変わると、両方の偏心重錘の総合偏心モーメントが変化して起振力が変化する。
特開2002−177887号公報 特開平10−183619号公報
As described above with reference to FIG. 2, the inner shaft 8a is rotationally driven by the rotating shaft driving device. The rotating shaft 16 fixed to the inner shaft 8a rotates at a high speed (for example, 1200 rpm), and rotates the housing 14 at a high speed in the same direction via the oil pressure. The members indicated by are not suitable to be called output shafts).
When the housing 14 and the rotating shaft 16 of FIG. 4 are rotated relatively forward and backward by an operation similar to the operation principle of the hydraulic rocking motor described above with reference to FIG. 2, the fixed eccentric weight 9 and The phase difference with the movable eccentric weight 10 increases or decreases.
When the phase difference between both eccentric weights changes, the total eccentric moment of both eccentric weights changes, and the excitation force changes.
Japanese Patent Laid-Open No. 2002-177877 JP-A-10-183619

図3に示した油圧揺動モータのハウジング1は静止部材であり、図4に示した可逆回動機構11のハウジング14は高速回転部材であるから、両者の稼働条件は非常に異なっている。
しかるに、従来の可逆回動機構は既製品の油圧揺動モータを加工修正したり、在来の油圧揺動モータに設計的改良を加えて製作したりしていたので、回転に関する動バランスや、応力分布について、以下に述べるような問題が有った。
Since the housing 1 of the hydraulic swing motor shown in FIG. 3 is a stationary member and the housing 14 of the reversible rotation mechanism 11 shown in FIG. 4 is a high-speed rotating member, the operating conditions of both are very different.
However, the conventional reversible rotation mechanism has been modified by modifying the existing hydraulic oscillation motor, or by making a design improvement to the conventional hydraulic oscillation motor, The stress distribution has the following problems.

図1は、可逆回動機構の回転軸を示し、(A1),(A2),及び(A3)は従来例、(B1),(B2),及び(B3)は本発明の1実施形態である。
図1(A1)に実線で描かれているのは公知の回転軸の正面図、(A2)はそのc−c断面図、(A3)は同じくd−d断面図である。
回転軸21に、その軸心X−Xに関して対称となるよう、2枚のベーン21aが設けられている。
前記ベーン21aの両側に、図外のベアリングで支持するためのジャーナル部21bが形成されている。図において左側のジャーナル部21bの左側に、図外の回転駆動機器と連結するための連結部が形成されている。
FIG. 1 shows a rotation axis of a reversible rotation mechanism, (A1), (A2), and (A3) are conventional examples, and (B1), (B2), and (B3) are one embodiment of the present invention. is there.
1A1 is a front view of a known rotating shaft, FIG. 1A1 is a sectional view taken along line cc, and FIG. 1A3 is a sectional view taken along line dd.
Two vanes 21a are provided on the rotary shaft 21 so as to be symmetric with respect to the axis XX.
Journal portions 21b are formed on both sides of the vane 21a to be supported by bearings (not shown). In the drawing, on the left side of the journal portion 21b on the left side, a connecting portion for connecting to a rotary drive device (not shown) is formed.

図3に示した油圧揺動モータの出力軸2には、2個のベーン4a,4bの根本部を相互に結ぶ連通孔2a,2bが立体交差状に設けられて交差連通孔を形成している。図1に示した回転軸21aには、これと同様の作用をするための交差連通孔21cが設けられている。
前記交差連通孔21cに圧力油を供給するため、図1(A1)の公知例には隠れ線で描かれた平行油路21dが穿たれている。
この平行油路21dは、図1(A3)に示されているように交差連通孔21cと交わって連通している。
仮想線で描いて符号21g′を付して示したような、スイベル軸受を構成するためのスイベル軸を連設した公知例も有るが、交差連通孔21cと連通させるための平行油路21dは残存している(これを無くすると、交差連通孔21cに圧力油を供給することが困難になるからである)。
The output shaft 2 of the hydraulic rocking motor shown in FIG. 3 is provided with communication holes 2a and 2b that connect the roots of the two vanes 4a and 4b to each other in a three-dimensional cross to form a cross communication hole. Yes. The rotating shaft 21a shown in FIG. 1 is provided with a cross communication hole 21c for performing the same function.
In order to supply pressure oil to the cross communication hole 21c, the known example of FIG. 1 (A1) has a parallel oil passage 21d drawn in a hidden line.
The parallel oil passage 21d communicates with the cross communication hole 21c as shown in FIG. 1 (A3).
Although there is a known example in which a swivel shaft for constituting a swivel bearing is connected as shown by an imaginary line and denoted by reference numeral 21g ', a parallel oil passage 21d for communicating with the cross communication hole 21c is provided. It remains (because it is difficult to supply pressure oil to the cross communication hole 21c if it is eliminated).

図1の上段(A1〜A3)に示した公知例の回転軸においては、連結部21eの中に平行油路21dが穿たれているので、次に述べるイ,ロ、両項の不具合が有った。
イ.断面c−cを描いた図1(A2)に表わされているように、連結部21eの有効断面積が小さくなる。
この部分は繰り返してねじり応力を受けるので疲労破損し易い。現実には、応力の集中を生じるキー溝21fの隅から疲労が発生し、進行して破断に至っている。
ロ.平行油路21dが、軸心X−Xに関して対称でないから、高速回転したとき動バランスが崩れて異常振動を発生する。
軸心に関して対称でない理由は次のとおりである。
(a)キー溝21fとの関係で、穿孔位置の取り合わせ上、偏らせざるを得なかった。
(b)それよりも何よりも、従来技術における油圧揺動モータは、連続高速回転を想定していなかった。
動バランスは、これを偏心重錘式起振機の可逆回動機構に応用しようとした故に発生した問題である。
In the known rotary shaft shown in the upper part (A1 to A3) of FIG. 1, since the parallel oil passage 21d is formed in the connecting portion 21e, the following problems (i), (b), and (b) are present. It was.
I. As shown in FIG. 1 (A2) depicting the section cc, the effective sectional area of the connecting portion 21e is reduced.
Since this portion is repeatedly subjected to torsional stress, it is easily damaged by fatigue. In reality, fatigue occurs from the corners of the keyway 21f that cause stress concentration, and progresses to breakage.
B. Since the parallel oil passage 21d is not symmetric with respect to the axis XX, when it rotates at high speed, the dynamic balance is lost and abnormal vibration occurs.
The reason why the axis is not symmetrical is as follows.
(A) Due to the relationship with the key groove 21f, it has been inevitably biased in assembling the drilling positions.
(B) Above all, the hydraulic rocking motor in the prior art did not assume continuous high-speed rotation.
Dynamic balance is a problem that arises because this is applied to the reversible rotation mechanism of an eccentric weight exciter.

本発明は、以上に述べた事情に鑑みて為されたものであって、その目的とする処は、
a.回転軸における応力分布の最大値を減少させ、
b.軸心に関する偏心モーメントが微小な、偏心重錘式起振機の可逆回動機構を提供するにある。
The present invention has been made in view of the circumstances described above, and its intended treatment is as follows.
a. Decrease the maximum value of stress distribution on the rotation axis,
b. An object of the present invention is to provide a reversible rotation mechanism for an eccentric weight exciter with a small eccentric moment about the shaft center.

前記の目的を達成するために創作した本発明の基本的な原理について、その1実施形態に対応する図1(B1)、(B2)、(B3)を参照して略述すると次のとおりである。
i.ベーン21aの両側に設けた2個のジャーナル部21bの内、連結部21eと反対側のジャーナル部21bに隣接せしめて、スイベル軸受用のスイベル軸となるスイベル部21gを設け、このスイベル部21gの軸端から、「スイベル部のリング溝r」及び交差連通孔21cに交らせて(連通せしめて)平行油路21dを穿つ。
ii.前記の平行油路21dを、軸心X−Xに関して対称に配置する。
The basic principle of the present invention created to achieve the above-described object is briefly described with reference to FIGS. 1 (B1), (B2), and (B3) corresponding to the first embodiment as follows. is there.
i. Of the two journal portions 21b provided on both sides of the vane 21a, a swivel portion 21g serving as a swivel shaft for a swivel bearing is provided adjacent to the journal portion 21b opposite to the connecting portion 21e. From the shaft end, a parallel oil passage 21d is made so as to cross (connect with) the “ring groove r of the swivel portion” and the cross communication hole 21c.
ii. The parallel oil passages 21d are arranged symmetrically with respect to the axis XX.

前述の原理に基づく具体的構成を、その1実施形態に対応する図1(B)、同(B2)、及び同(B3)について見ると次のごとくである(ただし、本発明の要件を図面どおりに限定するものではない)。
請求項1に係る偏心重錘式起振機の可逆回動機構は、(図4参照)固定偏心重錘9又は可動偏心重錘10の何れか片方に連結された円筒状のハウジング14の中に、
固定偏心重錘又は可動偏心重錘の何れか他方に連結された回転軸が、同心に収納されている可逆回動機構において、
(図1(B1),(B2)参照)回転軸21の中央部付近に2枚のベーン21aが、軸心Xに関して対称に設けられるとともに、
片方のベーンの根本部と他方のベーンの根本部とを結ぶ2本の交差連通孔21eが形成され、
前記ベーンの軸心方向両側に、それぞれジャーナル部21bが形成されていて、これら2箇所のジャーナル部の内の片方から最寄の軸端までの間に、2重管の内軸に直結される連結部21eが形成されるとともに、他方のジャーナル部と最寄の軸端までの間に、複数のリング溝を有するスイベル部21gが形成されており、
前記2本の交差連通孔のそれぞれと、前記複数のリング溝の内の2本それぞれとを連通する2本の平行油路21dが設けられていて、該平行油路が前記の連結部21eに達していないことを特徴とする。
A specific configuration based on the above-described principle is as follows with reference to FIGS. 1 (B), (B2), and (B3) corresponding to one embodiment (however, the requirements of the present invention are illustrated in the drawings Not limited to the same).
The reversible rotation mechanism of the eccentric weight exciter according to claim 1 is (see FIG. 4) in a cylindrical housing 14 connected to one of the fixed eccentric weight 9 and the movable eccentric weight 10. In addition,
In the reversible rotation mechanism in which the rotation shaft connected to either the fixed eccentric weight or the movable eccentric weight is concentrically housed,
(Refer to FIG. 1 (B1), (B2)) In the vicinity of the central portion of the rotating shaft 21, two vanes 21a are provided symmetrically with respect to the axis X,
Two cross communication holes 21e connecting the root part of one vane and the root part of the other vane are formed,
Journal portions 21b are formed on both sides of the vane in the axial direction, and are directly connected to the inner shaft of the double pipe between one of these two journal portions and the nearest shaft end. A connecting portion 21e is formed, and a swivel portion 21g having a plurality of ring grooves is formed between the other journal portion and the nearest shaft end,
Two parallel oil passages 21d communicating each of the two cross communication holes and two of the plurality of ring grooves are provided, and the parallel oil passages are connected to the connecting portion 21e. It is characterized by not reaching.

請求項2に係る発明は前記請求項1の構成要件に加えて、前記2本の平行油路21dのそれぞれが、回転軸21の軸心Xと平行な直線状の孔であることを特徴とする。
請求項3に係る発明は、さらに、前記2本の平行油路21dが、前記回転軸21の軸心Xに関して対称に配設されていることを特徴とする。
The invention according to claim 2 is characterized in that, in addition to the constituent elements of claim 1, each of the two parallel oil passages 21d is a linear hole parallel to the axis X of the rotating shaft 21. To do.
The invention according to claim 3 is further characterized in that the two parallel oil passages 21 d are arranged symmetrically with respect to the axis X of the rotating shaft 21.

請求項1の発明によると、交差連通孔に対して圧力油を供給するための油孔(平行油路)が連結部に達していないので、該連結部の有効断面積が油孔によって減少せしめられることが無く、応力が緩和される。
請求項2の発明を適用すると、平行油路が最短経路で圧力油を供給し、かつ、該油路の穿孔作業が容易である。
請求項3の発明を適用すると、油路の穿孔によって偏心モーメントが発生しない。従って、高速回転させても異常振動を生じる虞れが無い。
According to the invention of claim 1, since the oil hole (parallel oil passage) for supplying pressure oil to the cross communication hole does not reach the connecting portion, the effective sectional area of the connecting portion is reduced by the oil hole. The stress is relieved.
When the invention of claim 2 is applied, the parallel oil passage supplies pressure oil through the shortest route, and the drilling operation of the oil passage is easy.
When the invention of claim 3 is applied, no eccentric moment is generated by perforation of the oil passage. Therefore, there is no possibility that abnormal vibrations will occur even if it is rotated at a high speed.

図1は、本発明の1実施形態に係る回転軸を、従来例の回転軸と対比できるように描いてあり、概要的には上段が従来例、下段が実施形態である。
上段の(A1)、(A2)、及び(A3)に描かれている従来例については既に説明したとおりである。
(B1)は本実施形態に係る回転軸21の正面外観図であり、従来例における(A1)に対応する。
(B2)はe−e断面図であって、従来例における(A2)に対応し、
(B3)はf−f断面図であって、従来例における(A3)に対応している。
FIG. 1 depicts a rotating shaft according to an embodiment of the present invention so that it can be compared with a rotating shaft of a conventional example. In general, the upper stage is a conventional example, and the lower stage is an embodiment.
The conventional examples depicted in the upper (A1), (A2), and (A3) are as described above.
(B1) is a front external view of the rotating shaft 21 according to the present embodiment, and corresponds to (A1) in the conventional example.
(B2) is an ee sectional view, corresponding to (A2) in the conventional example,
(B3) is a sectional view taken along line ff and corresponds to (A3) in the conventional example.

(B1)に表されているように、本実施形態の回転軸21は、その軸心X−X方向について中央部付近にベーン21aが、軸心に関して対称に設けられており、
その両側に、それぞれジャーナル部21bが形成されている。
図において左側のジャーナル部21bと軸端との間に連結部21eが形成されている。ただし、本例の回転軸には2箇所の軸端が有るので、単に「軸端との間」では分かり難いが、ここでは左側の軸端との間に連結部21eが形成されている。
本発明を実施する際、2個のジャーナル部の何れかについて、そのジャーナル部に近い方の軸端(これを最寄りの軸端と呼ぶ)との間に連結部21eを形成する。
前記最寄の軸端について、そのジャーナル部から見て、ベーンと反対側の軸端と考えても良い。
As shown in (B1), the rotating shaft 21 of the present embodiment is provided with vanes 21a symmetrically with respect to the axial center in the vicinity of the center in the axial direction XX.
Journal portions 21b are formed on both sides thereof.
In the figure, a connecting portion 21e is formed between the journal portion 21b on the left side and the shaft end. However, since the rotating shaft of this example has two shaft ends, it is difficult to understand simply by “between the shaft ends”, but here, a connecting portion 21e is formed between the left shaft end.
When carrying out the present invention, a connecting portion 21e is formed between one of the two journal portions and a shaft end closer to the journal portion (referred to as the nearest shaft end).
The nearest shaft end may be considered as the shaft end opposite to the vane when viewed from the journal portion.

連結部21eに隣接していない方のジャーナル部21b(図において右側のジャーナル部21b)と、最寄の軸端(図において右端)との間に、スイベルジョイントのスイベル軸となるスイベル部21gが形成されており、
このスイベル部には複数個のリング溝rが形成されている。
スイベル部21gの軸端から交差連通孔21cまで、軸心Xと平行に、かつ前記複数のリング溝rの何れかに連通せしめて、2本の真直な平行油路21dが穿たれている(軸端は盲栓で閉塞されている)。
A swivel portion 21g that becomes a swivel shaft of the swivel joint is located between the journal portion 21b (the right journal portion 21b in the drawing) that is not adjacent to the connecting portion 21e and the nearest shaft end (the right end in the drawing). Formed,
A plurality of ring grooves r are formed in the swivel portion.
From the shaft end of the swivel portion 21g to the cross communication hole 21c, two straight parallel oil passages 21d are formed in parallel with the axis X and in communication with any of the plurality of ring grooves r ( The shaft end is closed with a blind plug).

(B3)に表されているように、2本の平行油路21dは軸心に関して対称に配置されている。
このため、平行油路21dは穿っても、回転軸21の重心が軸心上から偏心しない。
上述の構成により、連結部21eとスイベル部21gとが、それぞれ回転軸21の両端に位置するようになる。
その結果、「スイベル部21gの軸端から交差連通孔21cに至る平行油路21d」は連結部21eに達しない。
(B2)に表されているように、連結部21eの断面に油路が存在せず、従来例の(A2)に比して有効断面積が大きく、応力分布の最大値が低い。
As shown in (B3), the two parallel oil passages 21d are arranged symmetrically with respect to the axis.
For this reason, even if the parallel oil passage 21d is bored, the center of gravity of the rotating shaft 21 is not decentered from the axial center.
With the above-described configuration, the connecting portion 21e and the swivel portion 21g are positioned at both ends of the rotating shaft 21, respectively.
As a result, “the parallel oil passage 21d extending from the shaft end of the swivel portion 21g to the cross communication hole 21c” does not reach the connecting portion 21e.
As shown in (B2), there is no oil passage in the cross section of the connecting portion 21e, the effective cross-sectional area is larger than that in the conventional example (A2), and the maximum value of the stress distribution is low.

上段は従来例の回転軸を、下段は本発明の1実施形態における回転軸を、それぞれ描いてある。  The upper row shows the conventional rotary shaft, and the lower row shows the rotary shaft in one embodiment of the present invention. 公知の偏心重錘式起振機を模式的に描いた断面図である。  It is sectional drawing which drew typically the well-known eccentric weight type vibrator. 従来例の油圧揺動モータを描いた模式的な断面図である。  It is typical sectional drawing on which the hydraulic oscillation motor of the prior art example was drawn. 偏心重錘式起振機における起振力制御機構を説明するための模式的な要部斜視図である。  It is a typical principal part perspective view for demonstrating the excitation force control mechanism in an eccentric weight type vibrator.

符号の説明Explanation of symbols

8…2重管
8a…2重管の内軸
8b…2重管の外管
9…固定偏心重錘
10…可動偏心重錘
11…回転軸駆動機器
21…回転軸
21a…ベーン
21b…ジャーナル部
21c…交差連通孔
21d…平行油路
21e…連結部
21f…キー溝
21g…スイベル部
8 ... Double tube 8a ... Double tube inner shaft 8b ... Double tube outer tube 9 ... Fixed eccentric weight 10 ... Movable eccentric weight 11 ... Rotating shaft drive device 21 ... Rotating shaft 21a ... Vane 21b ... Journal part 21c ... Cross communication hole 21d ... Parallel oil passage 21e ... Connection part 21f ... Key groove 21g ... Swivel part

Claims (3)

固定偏心重錘又は可動偏心重錘の何れか片方に連結された円筒状のハウジングの中に、
固定偏心重錘又は可動偏心重錘の何れか他方に連結された回転軸が、同心に収納されている可逆回動機構において、
前記回転軸の中央部付近に2枚のベーンが、軸心に関して対称に設けられるとともに、
片方のベーンの根本部と他方のベーンの根本部とを結ぶ2本の交差連通孔が形成され、
前記ベーンの軸心方向両側に、それぞれジャーナル部が形成されていて、これら2箇所のジャーナル部の内の片方から最寄の軸端までの間に、2重管の内軸に直結される連結部が形成されるとともに、他方のジャーナル部と最寄の軸端までの間に、複数のリング溝を有するスイベル部が形成されており、
前記2本の交差連通孔のそれぞれと、前記複数のリング溝の内の2本それぞれとを連通する2本の平行油路が設けられていて、該平行油路が前記の連結部に達していないことを特徴とする、偏心重錘式起振機の可逆回動機構。
In a cylindrical housing connected to one of a fixed eccentric weight and a movable eccentric weight,
In the reversible rotation mechanism in which the rotation shaft connected to either the fixed eccentric weight or the movable eccentric weight is concentrically housed,
Two vanes are provided symmetrically with respect to the axial center near the center of the rotating shaft,
Two cross-communication holes connecting the root part of one vane and the root part of the other vane are formed,
Journal portions are formed on both sides of the vane in the axial direction, respectively, and are connected directly to the inner shaft of the double pipe between one of the two journal portions and the nearest shaft end. A swivel portion having a plurality of ring grooves is formed between the other journal portion and the nearest shaft end.
Two parallel oil passages are provided to communicate each of the two cross communication holes and two of the plurality of ring grooves, and the parallel oil passages reach the connecting portion. A reversible rotation mechanism for an eccentric weight exciter, characterized in that there is not.
前記2本の平行油路のそれぞれが、前記回転軸の軸心と平行な直線状の孔であることを特徴とする、請求項1に記載した偏心重錘式起振機の可逆回動機構。  2. The reversible rotation mechanism for an eccentric weight exciter according to claim 1, wherein each of the two parallel oil passages is a linear hole parallel to the axis of the rotating shaft. . 前記2本の平行油路が、前記回転軸の軸心に関して対称に配設されていることを特徴とする、請求項2に記載した偏心重錘式起振機の可逆回動機構。  3. The reversible rotation mechanism for an eccentric weight exciter according to claim 2, wherein the two parallel oil passages are arranged symmetrically with respect to the axis of the rotating shaft.
JP2008256828A 2008-09-03 2008-09-03 Reversible rotation mechanism of eccentric weight type vibration generator Pending JP2010058104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256828A JP2010058104A (en) 2008-09-03 2008-09-03 Reversible rotation mechanism of eccentric weight type vibration generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256828A JP2010058104A (en) 2008-09-03 2008-09-03 Reversible rotation mechanism of eccentric weight type vibration generator

Publications (1)

Publication Number Publication Date
JP2010058104A true JP2010058104A (en) 2010-03-18

Family

ID=42185514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256828A Pending JP2010058104A (en) 2008-09-03 2008-09-03 Reversible rotation mechanism of eccentric weight type vibration generator

Country Status (1)

Country Link
JP (1) JP2010058104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039907A (en) * 2012-08-22 2014-03-06 Chowa Kogyo Kk Vibromotive force amplitude control device and control method, and construction method for pile
JP2021518257A (en) * 2018-03-20 2021-08-02 ロード コーポレーション Broadband rotational force generators, systems, and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257707A (en) * 1988-08-18 1990-02-27 Plus Eng:Kk Rotary actuator
JPH07291597A (en) * 1994-04-26 1995-11-07 Aichi Corp:Kk Swivel joint and high lift work device using the same
JPH08226394A (en) * 1994-11-26 1996-09-03 Fichtel & Sachs Ag Turning motor
JPH09165745A (en) * 1995-12-18 1997-06-24 Chowa Kogyo Kk Excitation force control method of deviated heavy bob and excitation force control device thereof
JPH10235290A (en) * 1997-02-24 1998-09-08 Chowa Kogyo Kk Vibration method and vibrator
JP2002066458A (en) * 2000-08-30 2002-03-05 Chowa Kogyo Kk Apparatus and method for controlling phase of machine having plurality of rotary systems
JP2007237222A (en) * 2006-03-08 2007-09-20 Komatsu Ltd Workpiece conveying device
JP2009291773A (en) * 2008-06-04 2009-12-17 Chowa Kogyo Kk Phase difference control unit of vibration generator and control method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257707A (en) * 1988-08-18 1990-02-27 Plus Eng:Kk Rotary actuator
JPH07291597A (en) * 1994-04-26 1995-11-07 Aichi Corp:Kk Swivel joint and high lift work device using the same
JPH08226394A (en) * 1994-11-26 1996-09-03 Fichtel & Sachs Ag Turning motor
JPH09165745A (en) * 1995-12-18 1997-06-24 Chowa Kogyo Kk Excitation force control method of deviated heavy bob and excitation force control device thereof
JPH10235290A (en) * 1997-02-24 1998-09-08 Chowa Kogyo Kk Vibration method and vibrator
JP2002066458A (en) * 2000-08-30 2002-03-05 Chowa Kogyo Kk Apparatus and method for controlling phase of machine having plurality of rotary systems
JP2007237222A (en) * 2006-03-08 2007-09-20 Komatsu Ltd Workpiece conveying device
JP2009291773A (en) * 2008-06-04 2009-12-17 Chowa Kogyo Kk Phase difference control unit of vibration generator and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039907A (en) * 2012-08-22 2014-03-06 Chowa Kogyo Kk Vibromotive force amplitude control device and control method, and construction method for pile
JP2021518257A (en) * 2018-03-20 2021-08-02 ロード コーポレーション Broadband rotational force generators, systems, and methods
JP7114727B2 (en) 2018-03-20 2022-08-08 ロード コーポレーション Broadband rotary force generator, system, and method

Similar Documents

Publication Publication Date Title
JP5369115B2 (en) Directional drilling system
JP4319149B2 (en) Bearing support with double stiffener
CA2492354C (en) Flow control valve
CN1965143B (en) Rotary vector gear for use in rotary steerable tools
CA2729161C (en) Downhole power generator and method
JP2007160501A (en) Vibratory apparatus for rotary-vibratory drill
US10550689B2 (en) Method and apparatus for generating a low frequency pulse in a wellbore
JP2010058104A (en) Reversible rotation mechanism of eccentric weight type vibration generator
JP6363667B2 (en) Exciter and pile construction method
JP5643795B2 (en) Excitation force amplitude control device and pile construction method
JP2011149556A (en) Gas bearing
JP5112975B2 (en) Spindle device
JP6375216B2 (en) Vertical multistage pump
JP2008154357A (en) Eccentric swing drive apparatus
JP2005344527A (en) Steam turbine rotor and method for manufacturing the same
JP5573012B2 (en) Oldham Joint
JP3902773B2 (en) Rolling mill roll stand
WO2017135082A1 (en) Geared compressor
JP2000203438A (en) Power steering device
JP6087307B2 (en) Continuously variable transmission
JP4929968B2 (en) Hydrostatic gas bearing mechanism, shaft rotating device and spindle motor using the same
JP2018502247A (en) Steam turbine with improved axial force characteristics
JP2009068547A (en) Spindle device
JP2009068545A (en) Spindle device
JP2009068541A (en) Spindle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716