JP2010056219A - Method of controlling junction temperature of semiconductor light-emitting element - Google Patents

Method of controlling junction temperature of semiconductor light-emitting element Download PDF

Info

Publication number
JP2010056219A
JP2010056219A JP2008218227A JP2008218227A JP2010056219A JP 2010056219 A JP2010056219 A JP 2010056219A JP 2008218227 A JP2008218227 A JP 2008218227A JP 2008218227 A JP2008218227 A JP 2008218227A JP 2010056219 A JP2010056219 A JP 2010056219A
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
junction temperature
emitting device
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008218227A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsubara
裕之 松原
Osamu Matsumoto
治 松本
Hiroaki Onoe
裕章 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008218227A priority Critical patent/JP2010056219A/en
Publication of JP2010056219A publication Critical patent/JP2010056219A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling the junction temperature of a semiconductor light-emitting element, which makes a semiconductor light-emitting element usable with good emission performance and high reliability by power control which faithfully reflects the junction temperature of the semiconductor light-emitting element. <P>SOLUTION: Out of a plurality of LEDs 1-16 mounted on a substrate 1, the LED 7 is located in a central area of the substrate with the largest temperature rise. A potential difference (forward voltage V<SB>F</SB>) between the anode and cathode thereof is detected and is compared with a forward voltage V<SB>Fmax</SB>when a junction temperature T<SB>j</SB>of the LED element, which has been measured and grasped in advance, is an absolute maximum rated value T<SB>jmax</SB>. Based on the comparison result, the power for driving the LEDs 1-16 is controlled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は半導体発光素子のジャンクション温度の制御方法に関するものであり、詳しくは、熱平衡状態において半導体発光素子のジャンクション温度が絶対最大定格値を超えないように半導体発光素子のジャンクション温度を制御する、半導体発光素子のジャンクション温度の制御方法に関する。   The present invention relates to a method for controlling the junction temperature of a semiconductor light emitting device, and more particularly, a semiconductor for controlling the junction temperature of a semiconductor light emitting device so that the junction temperature of the semiconductor light emitting device does not exceed an absolute maximum rating value in a thermal equilibrium state. The present invention relates to a method for controlling the junction temperature of a light emitting element.

半導体発光素子、例えばLED素子(チップ)は周囲温度や駆動時の自己発熱により温度が上昇し、それにより発光性能が低下したり、劣化が促進されて寿命が短くなるといった素子特性を有している。そこで、LED素子を良好な発光性能で且つ良好な信頼性で使用するためには、LED素子を該LED素子のジャンクション温度の絶対最大定格値Tjmaxを超えない範囲で駆動することが必要となる。 Semiconductor light-emitting elements, such as LED elements (chips), have element characteristics such that the temperature rises due to ambient temperature or self-heating during driving, thereby lowering the light-emitting performance or promoting the deterioration and shortening the life. Yes. Therefore, in order to use the LED element with good light emission performance and good reliability, it is necessary to drive the LED element within a range not exceeding the absolute maximum rated value T jmax of the junction temperature of the LED element. .

そのためには、LED素子の駆動時に直接ジャンクション温度Tを測定しながら該ジャンクション温度Tに基づいて駆動電力を制御する方法が考えられるが、LED素子は一般的に樹脂等の保護部材で覆われており、直接温度センサを取り付けることは難しい。 For this purpose, a method of controlling the drive power based on while measuring the direct junction temperature T j at the time of driving the LED elements to the junction temperature T j is considered, LED elements are generally covered with a protective member such as resin It is difficult to attach a temperature sensor directly.

そこで、LED素子を内蔵したLED装置(以下、LEDと略称する)に近接した位置に温度センサを配置してLEDの周囲温度を検出し、検出した温度に基づいてLEDに印加する電圧を制御する方法が提案されている(例えば、特許文献1参照。)。
特開2007−324493号公報
Therefore, a temperature sensor is arranged near a LED device (hereinafter abbreviated as “LED”) incorporating an LED element to detect the ambient temperature of the LED, and the voltage applied to the LED is controlled based on the detected temperature. A method has been proposed (see, for example, Patent Document 1).
JP 2007-324493 A

ところで、上記提案された電圧制御方法は、温度センサにより検出された温度がLEDの周囲温度であるために実際のLED素子のジャンクション温度とは温度差が大きい。そのため、検出された温度に基づいて制御されるLEDの印加電圧は精度が低いものとなってしまい、LED素子のジャンクション温度が絶対最大定格値を超えるような駆動電力が印加されてLED素子の劣化に繋がる可能性がある。   By the way, the proposed voltage control method has a large temperature difference from the actual junction temperature of the LED element because the temperature detected by the temperature sensor is the ambient temperature of the LED. Therefore, the applied voltage of the LED controlled based on the detected temperature becomes low in accuracy, and the driving power is applied so that the junction temperature of the LED element exceeds the absolute maximum rated value, and the LED element is deteriorated. May lead to

また、LED素子と温度センサでは時間に対する温度上昇の特性が異なる。そのため、特にLED素子のジャンクション温度の温度変化の過渡期においては、温度センサで検出された温度が必ずしもLED素子のジャンクション温度を反映したものとはいえず、上記同様、LED素子のジャンクション温度が絶対最大定格値を超えるような駆動電力が印加されてLED素子の劣化に繋がる可能性がある。   Also, the LED element and the temperature sensor have different temperature rise characteristics with respect to time. Therefore, especially during the transition period of the temperature change of the junction temperature of the LED element, it cannot be said that the temperature detected by the temperature sensor necessarily reflects the junction temperature of the LED element. There is a possibility that driving power exceeding the maximum rated value is applied, leading to deterioration of the LED element.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、半導体発光素子のジャンクション温度を忠実に反映した電力制御により、半導体発光素子を良好な発光性能で且つ良好な信頼性で使用することが可能となる、半導体発光素子のジャンクション温度の制御方法を提供することにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to provide a semiconductor light emitting device with good light emitting performance and good power control by faithfully reflecting the junction temperature of the semiconductor light emitting device. An object of the present invention is to provide a method for controlling the junction temperature of a semiconductor light emitting device that can be used with reliability.

上記課題を解決するために、本発明の請求項1に記載された発明は、半導体発光素子の駆動時に該半導体発光素子の駆動電力を制御することにより前記半導体発光素子のジャンクション温度が絶対最大定格値を超えないようにする半導体発光素子のジャンクション温度の制御方法であって、前記半導体発光素子の駆動時の順電圧と、予め測定して把握された前記半導体発光素子のジャンクション温度が絶対最大定格値のときの前記半導体発光素子の順電圧とを比較し、前記半導体発光素子の駆動時の順電圧が前記半導体発光素子のジャンクション温度が絶対最大定格値のときの順電圧となった時点で前記半導体発光素子の駆動電力を制御することにより熱平衡状態において前記ジャンクション温度が絶対最大定格値を超えないようにすることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention is such that the junction temperature of the semiconductor light emitting device is controlled by controlling the driving power of the semiconductor light emitting device during driving of the semiconductor light emitting device. A method for controlling a junction temperature of a semiconductor light emitting device so as not to exceed a value, wherein a forward voltage at the time of driving the semiconductor light emitting device and a junction temperature of the semiconductor light emitting device obtained by measuring in advance are absolute maximum ratings. The forward voltage of the semiconductor light emitting element at the time of driving the forward voltage when the semiconductor light emitting element is driven becomes the forward voltage when the junction temperature of the semiconductor light emitting element is the absolute maximum rated value. By controlling the driving power of the semiconductor light emitting device, the junction temperature should not exceed the absolute maximum rating value in the thermal equilibrium state. It is an feature.

また、本発明の請求項2に記載された発明は、請求項1において、前記駆動電力の制御はパルス電力のデユーティ比を変えることにより行われることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the drive power is controlled by changing a duty ratio of the pulse power.

また、本発明の請求項3に記載された発明は、半導体発光素子の駆動時に該半導体発光素子の駆動電力を制御することにより前記半導体発光素子のジャンクション温度が絶対最大定格値を超えないようにする半導体発光素子のジャンクション温度の制御方法であって、前記半導体発光素子の駆動時の順電圧から、予め測定して把握された前記半導体発光素子のジャンクション温度に対する順電圧に基づいて算出されたジャンクション温度と前記半導体発光素子のジャンクション温度の絶対最大定格値を比較し、前記半導体発光素子の駆動時のジャンクション温度が前記半導体発光素子のジャンクション温度の絶対最大定格値となった時点で前記半導体発光素子の駆動電力を制御することにより熱平衡状態において前記ジャンクション温度が絶対最大定格値を超えないようにすることを特徴とするものである。   According to a third aspect of the present invention, the junction temperature of the semiconductor light emitting device does not exceed the absolute maximum rating value by controlling the driving power of the semiconductor light emitting device during driving of the semiconductor light emitting device. A method for controlling a junction temperature of a semiconductor light emitting device, wherein the junction is calculated based on a forward voltage with respect to the junction temperature of the semiconductor light emitting device, which is obtained by measuring in advance from a forward voltage when driving the semiconductor light emitting device. The absolute maximum rated value of the junction temperature of the semiconductor light emitting device is compared, and when the junction temperature during driving of the semiconductor light emitting device becomes the absolute maximum rated value of the junction temperature of the semiconductor light emitting device, the semiconductor light emitting device By controlling the driving power of the Is characterized in that does not exceed the maximum rated value.

また、本発明の請求項4に記載された発明は、請求項3において、前記駆動電力の制御はパルス電力のデユーティ比を変えることにより行われることを特徴とするものである。   According to a fourth aspect of the present invention, in the third aspect, the drive power is controlled by changing a duty ratio of pulse power.

本発明は、半導体発光素子の順電圧の温度依存性に基づき、半導体発光素子の駆動時の順電圧と半導体発光素子のジャンクション温度が絶対最大定格値のときの順電圧とを比較し、その結果により熱平衡状態において前記ジャンクション温度が絶対最大定格値を超えないようにした。   The present invention, based on the temperature dependence of the forward voltage of the semiconductor light emitting device, compares the forward voltage when driving the semiconductor light emitting device with the forward voltage when the junction temperature of the semiconductor light emitting device is the absolute maximum rating value, and the result Therefore, the junction temperature is kept from exceeding the absolute maximum rating value in the thermal equilibrium state.

また、同様に半導体発光素子の順電圧の温度依存性に基づき、半導体発光素子の駆動時の順電圧から算出されたジャンクション温度と半導体発光素子のジャンクション温度の絶対最大定格値を比較し、その結果により熱平衡状態において前記ジャンクション温度が絶対最大定格値を超えないようにした。   Similarly, based on the temperature dependence of the forward voltage of the semiconductor light emitting device, the absolute maximum rating value of the junction temperature calculated from the forward voltage at the time of driving the semiconductor light emitting device and the junction temperature of the semiconductor light emitting device are compared. Therefore, the junction temperature is kept from exceeding the absolute maximum rating value in the thermal equilibrium state.

その結果、半導体発光素子のジャンクション温度を忠実に反映した電力制御により、半導体発光素子を良好な発光性能で且つ良好な信頼性で使用することが可能となる半導体発光素子のジャンクション温度の制御方法を実現することができた。   As a result, there is provided a method for controlling the junction temperature of a semiconductor light emitting element that enables the semiconductor light emitting element to be used with good light emitting performance and good reliability by power control that faithfully reflects the junction temperature of the semiconductor light emitting element. Could be realized.

以下、この発明の好適な実施形態を図1〜図3を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

本発明は、LEDの駆動時にLED素子のジャンクション温度Tが絶対最大定格値Tjmaxを超えないようにLEDの駆動電力制御を行う方法であり、詳しくは、駆動時のLEDのアノード−カソード間の電位差(順電圧V)に基づいて駆動電力を制御する方法である。 The present invention is a method for controlling the driving power of an LED so that the junction temperature T j of the LED element does not exceed the absolute maximum rated value T jmax when the LED is driven, and more specifically, between the anode and cathode of the LED during driving. The driving power is controlled based on the potential difference (forward voltage V F ).

その方法には二通りの方法があり、第一の方法は、予めLED素子のジャンクション温度Tが絶対最大定格値Tjmaxのときの順電圧VFmaxを把握し、LEDの駆動時の順電圧Vを、予め把握した順電圧VFmaxと比較してVがVFmaxを超えないようにLEDの駆動電力を制御する方法である。 There are two ways in the method, the first method is to determine the forward voltage V Fmax at a junction temperature T j of the pre-LED elements absolute maximum rated value T jmax, the forward voltage at the LED drive the V F, a method of V F as compared to the forward voltage V Fmax was grasped in advance to control the driving power of the LED so as not to exceed the V Fmax.

第二の方法は、予めLED素子のジャンクション温度Tに対する順電圧Vの温度特性を把握し、LEDの駆動時の順電圧Vから、順電圧Vの温度特性に基づいて算出されたジャンクション温度Tをジャンクション温度の絶対最大定格値Tjmaxと比較してTがTjmaxを超えないようにLEDの駆動電力を制御する方法である。 The second method is to determine the temperature characteristic of the forward voltage V F for the junction temperature T j of previously LED element, the forward voltage V F at the LED driving, which is calculated based on the temperature characteristic of the forward voltage V F In this method, the junction temperature T j is compared with the absolute maximum rated value T jmax of the junction temperature, and the drive power of the LED is controlled so that T j does not exceed T jmax .

まず、第一の電力制御方法について説明する。図1は第一及び第二の電力制御方法を実現する回路構成の一例である。複数のLED1〜16が基板1上に実装され、そのうちLED1〜4、LED5〜8、LED9〜12、LED13〜16の夫々が直列に接続されてLEDアレイL1〜L4が形成されている。   First, the first power control method will be described. FIG. 1 is an example of a circuit configuration for realizing the first and second power control methods. Several LED1-16 is mounted on the board | substrate 1, LED1-4, LED5-8, LED9-12, LED13-16 are each connected in series, and LED array L1-L4 is formed.

各LEDアレイL1〜L4のアノード側は互いに接続されてLED駆動回路2の定電流電源部3の出力端子に接続され、各LEDアレイL1〜L4のカソード側は夫々個々にLED駆動回路2の定電流電源部3の出力端子に接続されている。LED1〜16のうち基板1の中央部の最も温度上昇が大きい領域に位置するLED7のアノード及びカソードの夫々に一対の電圧検知用コード4が接続され、電圧検知用コード4の他端部が電圧変換器5の入力端子に接続されている。   The anode sides of the LED arrays L1 to L4 are connected to each other and connected to the output terminal of the constant current power supply unit 3 of the LED drive circuit 2, and the cathode sides of the LED arrays L1 to L4 are individually set to the constants of the LED drive circuit 2. It is connected to the output terminal of the current power supply unit 3. A pair of voltage detection cords 4 is connected to each of the anode and cathode of the LED 7 located in the region where the temperature rise is greatest at the center of the substrate 1 among the LEDs 1 to 16, and the other end of the voltage detection cord 4 is connected to the voltage. The input terminal of the converter 5 is connected.

電圧変換器5の出力端子はCPU6のA/Dポート7に接続され、A/Dポート7から、同様にCPU6内に備えられたA/D変換部8、電圧比較部9、及び信号制御部10に順次繋がっている。   The output terminal of the voltage converter 5 is connected to the A / D port 7 of the CPU 6, and from the A / D port 7, an A / D conversion unit 8, a voltage comparison unit 9, and a signal control unit similarly provided in the CPU 6. 10 are sequentially connected.

CPU6の信号制御部10はLED駆動回路2の定電流制御部11に接続され、定電流制御部11はLED駆動回路2内で定電流電源部3に繋がっている。   The signal control unit 10 of the CPU 6 is connected to the constant current control unit 11 of the LED drive circuit 2, and the constant current control unit 11 is connected to the constant current power supply unit 3 in the LED drive circuit 2.

このような回路構成において、LED駆動回路2の定電流電源部3が作動すると、各LEDアレイL1〜L4に所定の定電流IL1〜IL4が直流電流として通電される。このとき、LED7のアノード及びカソードの夫々の電位が一対の電圧検知用コード4を介して電圧変換器5に取り込まれ、LED7のアノード−カソード間の電位差(順電圧V)に変換されてアナログ信号VFAとして出力される。 In such a circuit configuration, when the constant current power supply unit 3 of the LED drive circuit 2 operates, predetermined constant currents I L1 to I L4 are energized as direct currents to the LED arrays L1 to L4 . At this time, the respective potentials of the anode and cathode of the LED 7 are taken into the voltage converter 5 through the pair of voltage detection cords 4 and converted into a potential difference (forward voltage V F ) between the anode and the cathode of the LED 7 to be analog. It is output as a signal V FA.

電圧変換器5から出力された、LED7の順電圧VFAはCPU6のA/Dポート7に入力され、該A/Dポート7を介してA/D変換部8に送られる。A/D変換部8ではアナログの順電圧VFAがデジタル化されて順電圧値VFDに変換され、電圧比較部9に送られる。 Output from the voltage converter 5, the forward voltage V FA of LED7 is input to CPU6 the A / D port 7, it is sent to the A / D converter 8 via the A / D port 7. In the A / D conversion unit 8, the analog forward voltage V FA is digitized and converted into a forward voltage value V FD and sent to the voltage comparison unit 9.

電圧比較部9には、予めLED素子のジャンクション温度Tが絶対最大定格値Tjmaxのときの順電圧VFmaxDが記憶されており、VFmaxDの値とVFDの値を比較して、VFmaxDの値に対してVFDの値が小さい(VFmaxD>VFD)か、又は大きい(VFmaxD<VFD)か、又は等しい(VFmaxD=VFD)か、を判定する。 The voltage comparison unit 9 stores in advance a forward voltage V FmaxD when the junction temperature T j of the LED element is the absolute maximum rated value T jmax , and compares the value of V FmaxD with the value of V FD to It is determined whether the value of V FD is small (V FmaxD > V FD ), large (V FmaxD <V FD ), or equal (V FmaxD = V FD ) with respect to the value of FmaxD .

このとき、図2のタイムチャートの(a)(ジャンクション温度T−時間特性)に示すように、LED駆動回路2の定電源電流部3が作動開始してからVFmaxD>VFDの間(0−t1)は、(b)(LED駆動電流−時間特性)に示すように、各LEDアレイL1〜L4には所定の定電流IL1〜IL4が直流電流として通電される。 At this time, as shown in (a) of the time chart of FIG. 2 (junction temperature T j -time characteristic), after the constant power supply current section 3 of the LED drive circuit 2 starts to operate, V FmaxD > V FD ( In (0-t1), as shown in (b) (LED drive current-time characteristics), each of the LED arrays L1 to L4 is energized with a predetermined constant current I L1 to I L4 as a direct current.

そして、VFmaxD=VFD又はVFmaxD<VFDとなった時点(t)でCPU6の信号制御部10からLED駆動回路2の定電流制御部11にパルス信号が送信され、定電流制御部11及び定電流電源部3を介して(b)(LED駆動電流−時間特性)に示すように、各LEDアレイL1〜L4には所定の定電流IL1〜IL4がパルス電流として通電される。 Then, when V FmaxD = V FD or V FmaxD <V FD (t 1 ), a pulse signal is transmitted from the signal control unit 10 of the CPU 6 to the constant current control unit 11 of the LED drive circuit 2, and the constant current control unit 11 and the constant current power supply unit 3, as shown in (b) (LED drive current-time characteristics), each of the LED arrays L1 to L4 is supplied with predetermined constant currents I L1 to I L4 as a pulse current. .

すると、直流電流を通電し続けた場合の、(a)の破線で表した温度上昇領域に対して直流電流に替えてパルス電流を通電することにより実線で表した温度Tに抑制される。以降、LED1〜16及び基板1の熱容量に基づく熱平衡状態に至るまでの時間以上の時間間隔tでLED7の順電圧Vを検出(サンプリング)し、その都度パルス電流のデューティ比を下げることによりLED駆動電力を低減してLED1〜16の発熱量を抑制する。 Then, when the DC current is continuously supplied, the temperature rise region indicated by the broken line in (a) is suppressed to the temperature T 1 indicated by the solid line by supplying the pulse current instead of the DC current. Later, and LED1~16 and detect the forward voltage V F of LED7 time over the time interval t c up to the thermal equilibrium state based on the heat capacity of the substrate 1 (sampling), by lowering the duty ratio of the respective pulse current The LED drive power is reduced to suppress the amount of heat generated by the LEDs 1-16.

そして、LED7の検出時の順電圧値VFDが、予めCPU6に記憶された順電圧VFmaxDと等しくなったとき、そのときのパルス電流のテューティ比を維持することにより、LED1〜16をLED素子のジャンクション温度Tの絶対最大定格値Tjmax近傍又はそれ以下で駆動することが可能となる。 When the forward voltage value V FD at the time of detection of the LED 7 becomes equal to the forward voltage V FmaxD previously stored in the CPU 6, the LED elements 1 to 16 are made to be LED elements by maintaining the duty ratio of the pulse current at that time. It is possible to drive near or below the absolute maximum rated value T jmax of the junction temperature T j .

このとき、LED1〜16による輝度は、(c)(輝度−時間特性)に示すように、電源投入時(LED駆動回路2の定電流電源部3の作動開始時)の過渡期には高いが、LEDの駆動電力が安定化するにつれて安定した状態を維持する。   At this time, as shown in (c) (luminance-time characteristics), the luminance of the LEDs 1 to 16 is high during the transition period when the power is turned on (when the operation of the constant current power supply unit 3 of the LED drive circuit 2 is started). A stable state is maintained as the driving power of the LED is stabilized.

なお、LED素子のジャンクション温度Tが絶対最大定格値Tjmaxのときの順電圧VFmaxの求め方は、基板1上に実装された全てのLEDのうち最も最も温度上昇が大きい領域に位置するLED(上記実施形態においてはLED7)の、周囲温度を含めたジャンクション温度Tが電源投入時から絶対最大定格値Tjmaxになるまでの時間を予め把握しておき、製品毎に電源投入時からその時間が経過したときの順電圧Vを読み取ってCPUに記憶させる。 The method for obtaining the forward voltage V Fmax when the junction temperature T j of the LED element is the absolute maximum rated value T jmax is located in the region where the temperature rise is the highest among all the LEDs mounted on the substrate 1. The time until the junction temperature T j including the ambient temperature of the LED (LED 7 in the above embodiment) reaches the absolute maximum rated value T jmax from the time when the power is turned on is grasped in advance, and from the time when the power is turned on for each product. is stored in the CPU reads the forward voltage V F when that time has elapsed.

次に、第二の電力制御方法について説明する。第二の電力制御方法を実現する回路構成についても、上記説明の図1に示した回路構成で対応できる。そのため、回路構成については説明を省略する   Next, the second power control method will be described. The circuit configuration for realizing the second power control method can also be handled by the circuit configuration shown in FIG. 1 described above. Therefore, the description of the circuit configuration is omitted.

LED素子は、図3のように、順電流Iをパラメータとすると、例えば、順電流Iが30mA、20mA、10mA、5mA、2mAのときの順電圧Vは、LED素子のジャンクション温度Tに対してa〜eで示す温度特性を有している。 LED device, as in FIG. 3, when the forward current I F as a parameter, for example, the forward current I F is 30 mA, 20 mA, 10 mA, 5 mA, the forward voltage V F when the 2 mA, the junction temperature T of the LED elements j has temperature characteristics indicated by a to e.

そこで、予め、図3に示す、ジャンクション温度T−順電圧V特性に基づいて、LED素子のジャンクション温度Tが常温(25℃)のときの順電圧VFOのデジタル変換値VFOD、図3の順電圧Vの温度特性から読み取れる温度係数TCV(mV/℃)のデジタル変換値TCVD(mV/℃)、及びLED素子のジャンクション温度Tの絶対最大定格値Tjmax値のデジタル変換値TjmaxDをCPU6に記憶させる。 Therefore, based on the junction temperature T j -forward voltage V F characteristics shown in FIG. 3, the digital conversion value V FOD of the forward voltage V FO when the junction temperature T j of the LED element is normal temperature (25 ° C.), The digital conversion value T CVD (mV / ° C.) of the temperature coefficient T CV (mV / ° C.) that can be read from the temperature characteristics of the forward voltage V F in FIG. 3 and the absolute maximum rated value T jmax value of the junction temperature T j of the LED element The digital conversion value T jmaxD is stored in the CPU 6.

そこで、LED駆動回路が作動すると、該LED駆動回路を構成する定電流電源により各LEDアレイL1〜L4に所定の定電流IL1〜IL4が直流電流として流れる。このとき、LED7のアノード−カソード間の電圧(順電圧V)が、アノード及びカソードの夫々にコードを介して接続された電圧変換器の出力端子から出力され、CPUのA/Dポートにアナログ信号として入力される。 Therefore, when the LED driving circuit is activated, predetermined constant currents I L1 to I L4 flow as DC currents in the LED arrays L1 to L4 by the constant current power source constituting the LED driving circuit. At this time, the voltage (forward voltage V F ) between the anode and cathode of the LED 7 is output from the output terminal of the voltage converter connected to each of the anode and cathode via a cord, and is analog to the A / D port of the CPU. Input as a signal.

A/Dポートには、アナログの順電圧VFA値をデジタル値に変換するA/D変換部が設けられており、A/D変換部でデジタル値に変換された順電圧VFDは、同様にCPUに設けられた電圧比較部に送られる。 The A / D port is provided with an A / D conversion unit that converts an analog forward voltage V FA value into a digital value, and the forward voltage V FD converted into a digital value by the A / D conversion unit is the same. To the voltage comparison unit provided in the CPU.

電圧比較部には、上述したように予め、LED素子のジャンクション温度Tが常温(25℃)のときの順電圧VFOのデジタル変換値VFOD、図3の順電圧Vの温度特性から読み取れる温度係数TCV(mV/℃)のデジタル変換値TCVD(mV/℃)、及びLED素子のジャンクション温度Tの絶対最大定格値Tjmax値のデジタル変換値TjmaxDが記憶されており、A/D変換部でデジタル値に変換された順電圧VFDから上記VFOD及びTCVDに基づいてそのときのLED素子のジャンクション温度TjDを算出し、TjmaxDの値とTjDの値を比較して、TjmaxDの値に対してTjDの値が小さい(TjmaxD>TjD)か、又は大きい(TjmaxD<TjD)か、又は等しい(TjmaxD=TjD)か、を判定する。 The voltage comparison unit, advance as described above, the digital conversion value V FOD forward voltage V FO when the junction temperature T j of the LED elements room temperature (25 ° C.), the temperature characteristic of the forward voltage V F of FIG. 3 The digital conversion value T CVD (mV / ° C.) of the temperature coefficient T CV (mV / ° C.) that can be read, and the digital conversion value T jmaxD of the absolute maximum rated value T jmax value of the junction temperature T j of the LED element are stored, from the a / D converter in converted to a digital value the forward voltage V FD based on the V FOD and T CVD calculates the junction temperature T jD the LED element at that time, the values of the T JmaxD and T jD in comparison, the value of T jD is small relative to the value of T jmaxD (T jmaxD> T jD ) or greater (T jmaxD <T jD) or equal It is determined whether (T jmaxD = T jD ).

このとき、図2のタイムチャートの(a)(ジャンクション温度T−時間特性)に示すように、LED駆動回路2の定電源電流部3が作動開始してからTjmaxD>TjDの間(0−t1)は、(b)(LED駆動電流−時間特性)に示すように、各LEDアレイL1〜L4には所定の定電流IL1〜IL4が直流電流として通電される。 At this time, as shown in (a) of the time chart of FIG. 2 (junction temperature T j -time characteristic), during the period of T jmaxD > T jD after the constant power source current section 3 of the LED drive circuit 2 starts operating ( In (0-t1), as shown in (b) (LED drive current-time characteristics), each of the LED arrays L1 to L4 is energized with a predetermined constant current I L1 to I L4 as a direct current.

そして、TjmaxD=TjD又はTjmaxD<TjDとなった時点(t)でCPU6の信号制御部10からLED駆動回路2の定電流制御部11にパルス信号が送信され、定電流制御部11及び定電流電源部3を介して(b)(LED駆動電流−時間特性)に示すように、各LEDアレイL1〜L4には所定の定電流IL1〜IL4がパルス電流として通電される。 When T jmaxD = T jD or T jmaxD <T jD (t 1 ), a pulse signal is transmitted from the signal control unit 10 of the CPU 6 to the constant current control unit 11 of the LED drive circuit 2, and the constant current control unit 11 and the constant current power supply unit 3, as shown in (b) (LED drive current-time characteristics), each of the LED arrays L1 to L4 is supplied with predetermined constant currents I L1 to I L4 as a pulse current. .

すると、直流電流を通電し続けた場合の、(a)の破線で表した温度上昇領域に対して直流電流に替えてパルス電流を通電することにより実線で表した温度Tに抑制される。以降、LED1〜16及び基板1の熱容量に基づく温度飽和時間以上の時間間隔tでLED7の順電圧Vを検出(サンプリング)し、その都度パルス電流のデューティ比を下げることによりLED駆動電力を低減してLED1〜16の発熱量を抑制する。 Then, when the DC current is continuously supplied, the temperature rise region indicated by the broken line in (a) is suppressed to the temperature T 1 indicated by the solid line by supplying the pulse current instead of the DC current. Thereafter, the forward voltage V F of the LED 7 is detected (sampled) at a time interval t c that is equal to or higher than the temperature saturation time based on the heat capacities of the LEDs 1 to 16 and the substrate 1, and the LED driving power is reduced by lowering the duty ratio of the pulse current each time. It reduces and suppresses the emitted-heat amount of LED1-16.

そして、LED7の検出時の順電圧値Vから算出ジャンクション温度TjDが、予めCPU6に記憶されたジャンクション温度Tの絶対最大定格値TjmaxDと等しくなったとき、そのときのパルス電流のテューティ比を維持することにより、LED1〜16をLED素子のジャンクション温度Tの絶対最大定格値Tjmax近傍又はそれ以下で駆動することが可能となる。 Then, when the detection time of the forward voltage V F from the calculated junction temperature T jD of LED7 is, becomes equal to the absolute maximum rated value T JmaxD pre CPU6 to stored the junction temperature T j, Teyuti pulse current at that time By maintaining the ratio, the LEDs 1 to 16 can be driven in the vicinity of or below the absolute maximum rated value T jmax of the junction temperature T j of the LED element.

このとき、LED1〜16による輝度は、(c)(輝度−時間特性)に示すように、電源投入時(LED駆動回路2の定電流電源部3の作動開始時)の過渡期には高いが、LEDの駆動電力が安定化するにつれて安定した状態を維持する。   At this time, as shown in (c) (luminance-time characteristics), the luminance of the LEDs 1 to 16 is high during the transition period when the power is turned on (when the operation of the constant current power supply unit 3 of the LED drive circuit 2 is started). A stable state is maintained as the driving power of the LED is stabilized.

なお、LED個々の電流―電圧特性のばらつきは、出荷時の常温(25℃)における順電圧VFDをCPUに記憶させ、この25℃のときの順電圧Vを基準とする温度特性から読み取った温度係数TCV(mV/℃)を基にしてLEDのジャンクション温度TjDを算出する。 The variation in the current-voltage characteristics of each LED is read from the temperature characteristics based on the forward voltage V F stored at the normal temperature (25 ° C.) when the CPU stores the forward voltage V FD at the room temperature. The junction temperature T jD of the LED is calculated based on the temperature coefficient T CV (mV / ° C.).

以上詳細に説明したように、本発明の、半導体発光素子のジャンクション温度の制御方法は、半導体発光素子のジャンクション温度を直接検出することなく、基板上に実装された全ての半導体発光素子のうち最も最も温度上昇が大きい領域に位置する半導体発光素子のジャンクション温度T−順電圧V特性を正確に把握し、該ジャンクション温度T−順電圧Vに基づいて算出された、ジャンクション温度Tが絶対最大定格値Tjmaxのときの順電圧VFmaxとLEDの駆動時の順電圧Vを比較してVがVFmaxを超えないように半導体発光素子の駆動電力を制御するようにした。 As described above in detail, the method of controlling the junction temperature of the semiconductor light emitting device according to the present invention is the most preferable of all the semiconductor light emitting devices mounted on the substrate without directly detecting the junction temperature of the semiconductor light emitting device. most junction temperature of the semiconductor light-emitting element temperature rise is located in the larger area T j - accurately grasp the forward voltage V F characteristic, the junction temperature T j - calculated on the basis of the forward voltage V F, the junction temperature T j The driving voltage of the semiconductor light emitting device is controlled so that V F does not exceed V Fmax by comparing the forward voltage V Fmax when the absolute maximum rated value T jmax is equal to the forward voltage V F when driving the LED. .

また、同様に、基板上に実装された全ての半導体発光素子のうち最も最も温度上昇が大きい領域に位置する半導体発光素子のジャンクション温度T−順電圧V特性を正確に把握し、半導体発光素子の駆動時の順電圧Vから、該ジャンクション温度T−順電圧Vに基づいて算出されたジャンクション温度Tをジャンクション温度の絶対最大定格値Tjmaxと比較してTがTjmaxを超えないように半導体発光素子の駆動電力を制御するようにした。 Similarly, the junction temperature T j of the semiconductor light emitting element positioned in the most highest temperature rise is large area of all of the semiconductor light emitting element mounted on the substrate - accurately grasp the forward voltage V F characteristic, the semiconductor light emitting the forward voltage V F at the time of driving the device, the junction temperature T j - forward voltage V absolute maximum rating T jmax compared to the T j junction temperature junction temperature T j calculated based on F is T jmax The driving power of the semiconductor light emitting element was controlled so as not to exceed the above.

その結果、半導体発光素子のジャンクション温度を直接測定しなくても間接的にジャンクション温度が正確に検出され、LED素子のジャンクション温度を忠実に反映した電力制御により、半導体発光素子を良好な発光性能で且つ良好な信頼性で使用することが可能となった。   As a result, the junction temperature of the semiconductor light emitting device can be accurately detected indirectly without directly measuring the junction temperature of the semiconductor light emitting device, and the semiconductor light emitting device can be made to have good light emitting performance through power control that faithfully reflects the junction temperature of the LED device. In addition, it can be used with good reliability.

本発明を実現する回路構成図である。It is a circuit block diagram which implement | achieves this invention. 本発明に係るタイムチャートである。3 is a time chart according to the present invention. LEDの順電圧の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the forward voltage of LED.

符号の説明Explanation of symbols

1 基板
2 LED駆動回路
3 定電流電源部
4 電圧検知用コード
5 電圧変換器
6 CPU
7 A/Dポート
8 A/D変換部
9 電圧比較部
10 信号制御部
11 定電流制御部
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 LED drive circuit 3 Constant current power supply part 4 Code for voltage detection 5 Voltage converter 6 CPU
7 A / D port 8 A / D converter 9 Voltage comparator 10 Signal controller 11 Constant current controller

Claims (4)

半導体発光素子の駆動時に該半導体発光素子の駆動電力を制御することにより前記半導体発光素子のジャンクション温度が絶対最大定格値を超えないようにする半導体発光素子のジャンクション温度の制御方法であって、前記半導体発光素子の駆動時の順電圧と、予め測定して把握された前記半導体発光素子のジャンクション温度が絶対最大定格値のときの前記半導体発光素子の順電圧とを比較し、前記半導体発光素子の駆動時の順電圧が前記半導体発光素子のジャンクション温度が絶対最大定格値のときの順電圧となった時点で前記半導体発光素子の駆動電力を制御することにより熱平衡状態において前記ジャンクション温度が絶対最大定格値を超えないようにすることを特徴とする半導体発光素子のジャンクション温度の制御方法。   A method for controlling a junction temperature of a semiconductor light emitting device, wherein a junction temperature of the semiconductor light emitting device is controlled not to exceed an absolute maximum rating value by controlling a driving power of the semiconductor light emitting device during driving of the semiconductor light emitting device, Comparing the forward voltage when driving the semiconductor light emitting device with the forward voltage of the semiconductor light emitting device when the junction temperature of the semiconductor light emitting device measured and grasped in advance is an absolute maximum rating value, When the forward voltage during driving becomes the forward voltage when the junction temperature of the semiconductor light emitting device is the absolute maximum rated value, the junction temperature is set to the absolute maximum rating in a thermal equilibrium state by controlling the driving power of the semiconductor light emitting device. A method for controlling the junction temperature of a semiconductor light emitting device, wherein the value is not exceeded. 前記駆動電力の制御はパルス電力のデユーティ比を変えることにより行われることを特徴とする請求項1に記載の半導体発光素子のジャンクション温度の制御方法。   2. The method of controlling the junction temperature of a semiconductor light emitting device according to claim 1, wherein the driving power is controlled by changing a duty ratio of pulse power. 半導体発光素子の駆動時に該半導体発光素子の駆動電力を制御することにより前記半導体発光素子のジャンクション温度が絶対最大定格値を超えないようにする半導体発光素子のジャンクション温度の制御方法であって、前記半導体発光素子の駆動時の順電圧から、予め測定して把握された前記半導体発光素子のジャンクション温度に対する順電圧に基づいて算出されたジャンクション温度と前記半導体発光素子のジャンクション温度の絶対最大定格値を比較し、前記半導体発光素子の駆動時のジャンクション温度が前記半導体発光素子のジャンクション温度の絶対最大定格値となった時点で前記半導体発光素子の駆動電力を制御することにより熱平衡状態において前記ジャンクション温度が絶対最大定格値を超えないようにすることを特徴とする半導体発光素子のジャンクション温度の制御方法。   A method for controlling a junction temperature of a semiconductor light emitting device, wherein a junction temperature of the semiconductor light emitting device is controlled not to exceed an absolute maximum rating value by controlling a driving power of the semiconductor light emitting device during driving of the semiconductor light emitting device, An absolute maximum rating value of the junction temperature calculated based on the forward voltage with respect to the junction temperature of the semiconductor light emitting element, which is obtained by measuring in advance from the forward voltage at the time of driving the semiconductor light emitting element, and the junction temperature of the semiconductor light emitting element. In comparison, when the junction temperature during driving of the semiconductor light emitting device reaches the absolute maximum rated value of the junction temperature of the semiconductor light emitting device, the junction temperature is controlled in the thermal equilibrium state by controlling the driving power of the semiconductor light emitting device. Characteristic not to exceed the absolute maximum rating value The method of the junction temperature of the semiconductor light emitting element. 前記駆動電力の制御はパルス電力のデユーティ比を変えることにより行われることを特徴とする請求項3に記載の半導体発光素子のジャンクション温度の制御方法。   4. The method of controlling a junction temperature of a semiconductor light emitting device according to claim 3, wherein the driving power is controlled by changing a duty ratio of pulse power.
JP2008218227A 2008-08-27 2008-08-27 Method of controlling junction temperature of semiconductor light-emitting element Pending JP2010056219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218227A JP2010056219A (en) 2008-08-27 2008-08-27 Method of controlling junction temperature of semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218227A JP2010056219A (en) 2008-08-27 2008-08-27 Method of controlling junction temperature of semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JP2010056219A true JP2010056219A (en) 2010-03-11

Family

ID=42071837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218227A Pending JP2010056219A (en) 2008-08-27 2008-08-27 Method of controlling junction temperature of semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JP2010056219A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222548A (en) * 2010-04-02 2011-11-04 Sony Corp Semiconductor light-emitting device
JP2012238721A (en) * 2011-05-11 2012-12-06 Canon Inc Amount of light controller and control method, and display device
WO2015170405A1 (en) * 2014-05-09 2015-11-12 日立マクセル株式会社 Projection-type image display device
WO2019111769A1 (en) * 2017-12-08 2019-06-13 フェニックス電機株式会社 Lamp lighting method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222548A (en) * 2010-04-02 2011-11-04 Sony Corp Semiconductor light-emitting device
JP2012238721A (en) * 2011-05-11 2012-12-06 Canon Inc Amount of light controller and control method, and display device
WO2015170405A1 (en) * 2014-05-09 2015-11-12 日立マクセル株式会社 Projection-type image display device
CN106233200A (en) * 2014-05-09 2016-12-14 日立麦克赛尔株式会社 Projection-type image display device
US10264227B2 (en) 2014-05-09 2019-04-16 Maxell, Ltd. Projection-type image display device
WO2019111769A1 (en) * 2017-12-08 2019-06-13 フェニックス電機株式会社 Lamp lighting method
CN111466011A (en) * 2017-12-08 2020-07-28 凤凰电机公司 Method for lighting lamp
JPWO2019111769A1 (en) * 2017-12-08 2020-11-26 フェニックス電機株式会社 How to turn on the lamp
TWI794352B (en) * 2017-12-08 2023-03-01 日商鳳凰電機股份有限公司 Lighting method for lamp
JP7278596B2 (en) 2017-12-08 2023-05-22 フェニックス電機株式会社 How to light the lamp
TWI815773B (en) * 2017-12-08 2023-09-11 日商鳳凰電機股份有限公司 Lighting method for lamp

Similar Documents

Publication Publication Date Title
JP3984214B2 (en) Light emission control device
US7504783B2 (en) Circuit for driving and monitoring an LED
JP2007109747A (en) Led lighting controller
CN101313631B (en) OLED driver and illuminator equipped with such driver
CA2637757A1 (en) Method and apparatus for controlling thermal stress in lighting devices
TW201110811A (en) Adaptive switch mode LED driver
US8299718B2 (en) Constant temperature LED driver circuit
US9185775B2 (en) Lighting device and lighting fixture
US9113509B2 (en) Lighting device and lighting fixture
JP5973618B2 (en) Light emitting diode lighting device having multiple drive stages and line / load regulation control
JP2010056219A (en) Method of controlling junction temperature of semiconductor light-emitting element
JP2009038218A (en) Light emitting diode drive circuit
JP2008172513A (en) Photo coupler circuit
JP5959548B2 (en) Light emitting diode display device and control method thereof
JP4715198B2 (en) Laser drive device
JP2008091442A (en) Peltier module deterioration determination system, and peltier module drive system
US20160202129A1 (en) Apparatus and method for measuring temperature of led
JP6150390B2 (en) LED deterioration measuring device and LED lighting device
TW201238394A (en) Backlight module, over temperature protecting circuit and over temperature protecting method thereof
JP5696399B2 (en) Semiconductor light source device and semiconductor light source control method
JP2006310617A (en) Led driving control method and led driving control apparatus
JP6074195B2 (en) LED luminous flux control device, road lighting device
US9723669B2 (en) LED lighting system and controller, a method of controlling a plurality of LEDs, and a computer program therefor
JP2009054433A (en) Light source device
US11289993B2 (en) Switching element control circuit and power module