JP2010051941A - Plasma device - Google Patents

Plasma device Download PDF

Info

Publication number
JP2010051941A
JP2010051941A JP2008246802A JP2008246802A JP2010051941A JP 2010051941 A JP2010051941 A JP 2010051941A JP 2008246802 A JP2008246802 A JP 2008246802A JP 2008246802 A JP2008246802 A JP 2008246802A JP 2010051941 A JP2010051941 A JP 2010051941A
Authority
JP
Japan
Prior art keywords
plasma
gas
inner tube
dielectric
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008246802A
Other languages
Japanese (ja)
Inventor
Katsuya Tokumura
勝也 徳村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008246802A priority Critical patent/JP2010051941A/en
Publication of JP2010051941A publication Critical patent/JP2010051941A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma device for decomposing, reforming, and synthesizing an object gas to be treated which is excited by electric discharge plasma. <P>SOLUTION: An object gas to be treated and a carrier gas are passed in the inner side of an inner tube of a double tubular dielectric 1, a conductive liquid 2 circulated between the inner tube and an outer tube is used as an outer electrode. Non-conductive first blade parts 3a which positively spiral in the inside of the inner tube and non-conductive second blade part 4a which negatively spiral are alternately installed. A conductive continuous coil laid in the outer circumference of the blade parts in the longitudinal direction is used as an inner electrode 5. The object gas to be treated and the carrier gas are repeatedly divided and joined while receiving shearing force by the blade parts and thus stirred and mixed and at the same time electric discharge plasma is induced by applying high frequency or high voltage between both electrodes from a plasma electric power source 7 and decomposition, reforming, and synthesis treatment is carried out for the object gas passing in the inside of the inner tube by plasma reaction and oxidation reaction of the gas by the stirring and mixing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、放電プラズマにより励起された対象処理ガスを分解・合成・改質を可能とし、更にオゾン生成装置として使用可能としたプラズマ素子に関する。  The present invention relates to a plasma element that can decompose, synthesize, and modify a target processing gas excited by discharge plasma and can be used as an ozone generator.

従来、プラズマを利用した処理装置としては、減圧状態或いは大気圧状態で処理する方法がある。
特開平5−121386号公報 特開2003−124610号公報 特開2005−240584号公報 特開2006−190164号公報
Conventionally, as a processing apparatus using plasma, there is a method of processing in a reduced pressure state or an atmospheric pressure state.
JP-A-5-121386 JP 2003-124610 A JP 2005-240584 A JP 2006-190164 A

これらの手法の内、特許文献1及び特許文献2は真空排気後に圧力制御されたチャンバー内に処理対象ガスを導入しワークをプラズマ処理する技術である。特許文献3及び特許文献4はチャンバーを必要とせずに大気圧でプラズマ処理する技術である。  Among these methods, Patent Document 1 and Patent Document 2 are techniques for introducing a gas to be processed into a pressure-controlled chamber after evacuation and plasma processing a workpiece. Patent Documents 3 and 4 are techniques for performing plasma processing at atmospheric pressure without requiring a chamber.

しかしながら、減圧状態を必要とする装置は圧力制御が非常に困難であり、チャンバーをはじめ装置全体が大きくなると共に装置費用も高額である。大気圧でのプラズマ処理ではプラズマ放電時にプラズマ電極温度が上昇することによりプラズマ処理能力が低下し、又、高濃度・大風量の対象処理ガスにおいては放電分解効率も低下してしまう虞れがある。又、放電分解処理において酸素の供給量が不足すれば、副生成物の重合反応等が進行し、臭気の強い副生成物が多数発生してしまう虞れがある。  However, it is very difficult to control the pressure of a device that requires a reduced pressure state, and the entire device including the chamber becomes large and the cost of the device is high. In plasma processing at atmospheric pressure, the plasma electrode temperature rises during plasma discharge, resulting in a decrease in plasma processing capacity, and there is a risk that the discharge decomposition efficiency will also decrease in the target processing gas with high concentration and large air volume. . In addition, if the supply amount of oxygen is insufficient in the discharge decomposition treatment, a by-product polymerization reaction or the like proceeds, and there is a possibility that many by-products with strong odors are generated.

チューブ型の大気圧プラズマ素子において対象処理ガスはプラズマ放電域である筒状誘電体と内部電極との隙間を流路とすることから流路抵抗も大きく、大量な対象処理ガスの流通は困難である。また、対象処理ガスの分解・改質・合成に必要な酸化反応はプラズマ領域通過後に進行することから大気圧プラズマ素子後段配管内で高温に発熱し、安全で安定的な装置の稼動が困難である。  In a tube-type atmospheric pressure plasma device, the target process gas has a large flow resistance because the gap between the cylindrical dielectric, which is the plasma discharge area, and the internal electrode is used as a flow path, and it is difficult to distribute a large amount of the target process gas. is there. In addition, since the oxidation reaction required for decomposition, reforming, and synthesis of the target process gas proceeds after passing through the plasma region, it generates heat at a high temperature in the piping after the atmospheric pressure plasma element, making it difficult to operate a safe and stable device. is there.

そこで、本発明は叙上のような従来存した諸事情を鑑み創出されたもので、流通型プラズマ外部液体電極にて外部電極温度の上昇を防ぎ、高濃度・大風量の対象処理ガスに対しても安定した放電分解効率を連続して保つことができる。また、放電分解処理において酸素供給を可能にすることで副生成物の重合反応を阻止でき、酸素供給量を増加させることにより、ラジカル化又はイオン化反応を促進させることができるものとなる、また、減圧状態でのプラズマ反応はプラズマ放電部を減圧状態にすることが求められるが、低コストの装置化が可能であると共に、これによって放電プラズマにより励起された対象処理ガスを分解・合成・改質可能とし、また、対象処理ガス及びキャリアガスを選択することによりオゾン生成装置として使用可能としたプラズマ素子を提供することを目的とする。  Therefore, the present invention was created in view of the conventional circumstances as described above, and prevents an increase in the temperature of the external electrode with a flow-type plasma external liquid electrode. However, stable discharge decomposition efficiency can be continuously maintained. In addition, by allowing oxygen supply in the discharge decomposition treatment, the polymerization reaction of by-products can be prevented, and by increasing the oxygen supply amount, radicalization or ionization reaction can be promoted. The plasma reaction under reduced pressure requires that the plasma discharge part be in a reduced pressure state, but it is possible to reduce the cost of the apparatus and to decompose, synthesize, and reform the target processing gas excited by the discharge plasma. It is another object of the present invention to provide a plasma element that can be used as an ozone generator by selecting a target processing gas and a carrier gas.

本発明にあたっては、二重管構造の誘電体の内管内側に対象処理ガスとキャリアガスを流通可能とした二重管誘電体の管隙間に流通させる導電性液体を外部電極とし、二重管誘電体及び外部電極を冷却し、二重管誘電体の内管内側に内接して配された螺旋状に正回転する非導電性第1羽根部分、螺旋状に逆回転する非導電性第2羽根部分とを交互に長手方向に延設して、羽根部の長手外周部に長手軸に対して任意のピッチで等間隔の螺旋状に加工した切欠き部に二重管誘電体内管に内接せずに任意の等距離を保って敷設した導電性連続コイルを内部電極とし、対象処理ガスとキャリアガスが羽根部により剪断力を受けて分割及び合流を繰り返すことにより両者が攪拌混合されると同時に両電極間に高周波・高電圧を印加し放電プラズマを誘起させ、プラズマ反応と攪拌混合による酸化反応により二重管誘電体の内管内側に流通する対象処理ガスの分解・合成・改質を可能としたことを特徴としている。  In the present invention, a conductive liquid that flows through the pipe gap of the double pipe dielectric that allows the target processing gas and carrier gas to flow inside the inner pipe of the double pipe structure dielectric is used as the external electrode, and the double pipe A non-conductive first non-conductive vane portion that cools the dielectric and the external electrode and is inscribed inside the inner tube of the double-pipe dielectric and rotates in a spiral shape, and a non-conductive second that rotates in a reverse shape in a spiral shape The blades are alternately extended in the longitudinal direction, and the double-tube dielectric inner tube is formed in a notch that is processed into a spiral at equal intervals with respect to the longitudinal axis on the longitudinal outer periphery of the blade. A conductive continuous coil laid at an equal distance without contact is used as an internal electrode, and the target processing gas and carrier gas receive shearing force from the blades and repeat division and merging to mix and mix them. At the same time, high frequency and high voltage are applied between both electrodes to induce discharge plasma. So, it is characterized in that which enables degradation, synthesis, modification of the target process gas flowing in the inner tube side of the double pipe dielectric by oxidation reaction with a plasma reaction and the stirring mixture.

前記非金属製第1羽根部分、非金属製第2羽根部分それぞれは当該両羽根部分間に境界部を設けて筒状誘電体部材の長手方向に沿って交互に一体成形して成るか若しくは予め分割形成された両羽根部分を交互に溶接又は接着結合して成るものとし、該境界部は、前記両羽根部分それぞれの端部が直交するように捩られて成形して成ることを特徴としている。  Each of the first non-metallic blade portion and the second non-metallic blade portion is formed by alternately forming a boundary portion between the two blade portions and alternately integrally forming in advance along the longitudinal direction of the cylindrical dielectric member. The two blade portions formed in a divided manner are alternately welded or adhesively bonded, and the boundary portion is formed by being twisted so that the ends of the blade portions are orthogonal to each other. .

更に、対象処理ガスのキャリアガスとして大気を利用したことを特徴としている。  Further, the present invention is characterized in that the atmosphere is used as a carrier gas for the target processing gas.

又、前記二重管誘電体の内管内側を減圧し、その圧力以上にて対象処理ガス及びキャリアガスを導入することを特徴としている。  Further, the inner pipe inner side of the double pipe dielectric is decompressed, and the target processing gas and the carrier gas are introduced at a pressure higher than that pressure.

又、プラズマ素子の上流に対象処理ガスに酸素を供給する酸素供給源を接続し、放電プラズマ反応と同時進行して該対象処理ガスは酸素との酸化分解処理が行われることを特徴としている。  Further, an oxygen supply source for supplying oxygen to the target processing gas is connected upstream of the plasma element, and the target processing gas is subjected to oxidative decomposition treatment with oxygen simultaneously with the discharge plasma reaction.

又、オゾン発生装置として使用可能としたことを特徴としている。  Further, it is characterized in that it can be used as an ozone generator.

本発明によれば、流通型液体外部電極にて二重管誘電体及び外部電極温度の上昇を防ぎ、処理対象ガスの濃度・風量が増加しても連続して安定的な放電分解効率を保つことができ、また、放電分解処理において酸素供給を均一且つ増加可能とすることで副生成物の重合反応を阻止でき、しかも低コストで連続稼動させることができると共に、対象処理ガスへの酸素供給量を増加させて、ラジカル化又はオイン化反応を促進させることができるものとなり、これによって放電プラズマにより励起された対象処理ガスを容易に分解・合成・改質することができる。  According to the present invention, the flow-through liquid external electrode prevents the temperature of the double-pipe dielectric and the external electrode from rising, and maintains a stable discharge decomposition efficiency even when the concentration and air volume of the gas to be processed increase. In addition, by making the oxygen supply uniform and increased in the discharge decomposition treatment, it is possible to prevent the by-product polymerization reaction, and to operate continuously at a low cost and to supply oxygen to the target processing gas. By increasing the amount, the radicalization or oinization reaction can be promoted, whereby the target processing gas excited by the discharge plasma can be easily decomposed, synthesized, and modified.

また、真空排気設備や高精度な圧力制御設備等を必要とせず減圧状態で使用可能なプラズマ素子を容易且つ安価に製造することができる。  In addition, a plasma device that can be used in a reduced pressure state without requiring an evacuation facility or a highly accurate pressure control facility can be manufactured easily and inexpensively.

以下、本発明を実施する最良の形態として、大気圧中で放電プラズマを誘発させて処理する大気圧プラズマ素子を、図面を参照して説明する。  Hereinafter, as the best mode for carrying out the present invention, an atmospheric pressure plasma element for inducing and treating discharge plasma in atmospheric pressure will be described with reference to the drawings.

〔図1〕に示すように、該大気圧プラズマ素子は、例えば処理対象ガスであるトルエン・キシレン等VOC(揮発性有機化合物)ガスを、キャリアガスとして大気を長手方向に沿って流通させ、非平衡プラズマに接触・酸化することにより、分解・改質・合成をするものとなる。  As shown in FIG. 1, the atmospheric pressure plasma element, for example, circulates the atmosphere along the longitudinal direction using a VOC (volatile organic compound) gas such as toluene and xylene, which is a gas to be processed, as a carrier gas. By contacting and oxidizing the equilibrium plasma, it is decomposed, modified and synthesized.

プラズマ素子の構成としては〔図2〕、〔図3〕に示す様に、石英ガラス製二重管誘電体1の管隙間に濃度5%食塩水2を流通して外部電極とし、石英ガラス製二重管誘電体1及び濃度5%食塩水外部電極2を冷却し、二重管誘電体1の内管内側に内接して配された螺旋状に正回転して180度捩り回転するセラミックス製第1羽根部分3a、螺旋状に逆回転した180度捩り回転するするセラミックス製第2羽根部分4a戸を交互に長手方向に延設して、セラミックス製第1羽根部分3aセラミックス製第2羽根部分4aとは端部が約90度の角度で直行するように交互に溶接又は接着結合されことで、セラミックス製第1羽根部分3a,3bとセラミックス製第2羽根部分4a,4bにより二重管誘電体1内が2個の流路に仕切られて成る攪拌式の静止型流体混合器として形成されている。  As shown in FIG. 2 and FIG. 3, the structure of the plasma element is the quartz glass double-pipe dielectric 1 in which a 5% concentration saline solution 2 is circulated through the gap between the tubes to form an external electrode. The double tube dielectric 1 and the 5% concentration sodium chloride external electrode 2 are cooled, and are made of ceramics that rotate in a positive direction in a spiral and twisted 180 degrees by being inscribed inside the inner tube of the double tube dielectric 1. The first blade portion 3a, the ceramic second blade portion 4a that rotates in a twisted and reversely rotated 180 degrees, and alternately extends in the longitudinal direction, the ceramic first blade portion 3a and the ceramic second blade portion. 4a is alternately welded or adhesively bonded so that the end portion is perpendicular to the angle of about 90 degrees, and the double tube dielectric is formed by the ceramic first blade portions 3a and 3b and the ceramic second blade portions 4a and 4b. The body 1 is divided into two channels. They are formed as a static fluid mixer stirred.

また、〔図3〕、〔図4〕に示す様に、セラミックス製第1羽根部分3a及びセラミックス製第2羽根部分4aの長手外周部に長手軸に対して任意のピッチで等間隔の螺旋状に加工した切欠き部に二重管誘電体内管に内接せずに任意の等距離を保って敷設したステンレス製連続コイルを内部電極5として形成されている。両電極間にプラズマ電源7により1〜100kHz、0〜15kV(p−p)のパルス型高周波・高電圧を印加し、二重管誘電体1内管と内部電極5間をプラズマ生成領域6として非平衡プラズマを誘起させる。プラズマ生成領域6でプラズマ反応したVOCガスは管中心部に向かい大気或いは酸素と接触し、さらに羽根部により剪断力を受けて分割及び合流することにより、プラズマ反応、攪拌混合作用、酸化反応を該プラズマ素子内で同時に行い、この3工程を繰り返すことにより、VOCガスの分解・合成・改質を可能にするものとなる。  Further, as shown in FIG. 3 and FIG. 4, the first outer blade portion 3 a and the second blade portion 4 a made of ceramic are spirally spaced at regular intervals at an arbitrary pitch with respect to the longitudinal axis. A stainless steel continuous coil is formed as the internal electrode 5, which is laid at an equal distance without being inscribed in the double-pipe dielectric body tube, in the cut-out portion processed into a notch. A pulse power high frequency / high voltage of 1 to 100 kHz and 0 to 15 kV (pp) is applied between both electrodes by a plasma power source 7, and a plasma generation region 6 is formed between the inner tube 5 of the double tube dielectric 1 and the inner electrode 5. Non-equilibrium plasma is induced. The VOC gas that has undergone plasma reaction in the plasma generation region 6 is in contact with the atmosphere or oxygen toward the center of the tube, and is further subjected to shearing force by the blades and is divided and merged to perform plasma reaction, stirring and mixing action, and oxidation reaction. By performing these three steps simultaneously in the plasma element, the VOC gas can be decomposed, synthesized, and modified.

また、パルス型高周波・高電圧電源7を使用する替わりに、他の電源を使用することも可能である。更に、該プラズマ素子の二重管誘電体内管直径を85mm、プラズマ放電域を1mとしたチューブ型プラズマユニット反応器を並列に複数配置すると効率は増加し実用性に富むものとなる。  Further, instead of using the pulse type high frequency / high voltage power source 7, another power source may be used. Further, if a plurality of tube-type plasma unit reactors having a double tube dielectric inner diameter of the plasma element of 85 mm and a plasma discharge area of 1 m are arranged in parallel, the efficiency increases and the practicality becomes high.

そして、内部電極5が等隙間をもつコイル状であり、静止型流体混合器が平板を捩った螺旋状であることからガスの流路抵抗が少なく、VOCガスの処理流量を大幅に高められるものとなる。  Since the internal electrode 5 has a coil shape with equal gaps, and the static fluid mixer has a spiral shape in which a flat plate is twisted, the gas flow resistance is small, and the processing flow rate of the VOC gas can be greatly increased. It will be a thing.

さらに、〔図5〕に示す様にプラズマ素子上流側に、酸素供給源を接続することにより、対象処理ガスに酸素を供給するようにしても良い。この酸素供給手段としては、配管9内部に静止型流体混合器8を敷設した構造のものが最適である。また、配管及び静止型流体混合器はセラミックス、ガラス、ステンレス等の耐腐食性材が良い。  Further, as shown in FIG. 5, oxygen may be supplied to the target processing gas by connecting an oxygen supply source upstream of the plasma element. As this oxygen supply means, the one having a structure in which the static fluid mixer 8 is laid in the pipe 9 is optimal. Further, the piping and the static fluid mixer are preferably made of a corrosion-resistant material such as ceramics, glass, and stainless steel.

また、静止型流体混合器は、第1羽根部分3a、3b及び第2羽根部分4a、4bをそれぞれのエレメントとして長方形の板を180度捩った形状とし、捩れの方向により、右エレメントと左エレメントとを形成する。これら両エレメントの寸法は直径に比して約1.5倍の長さを有することを基本とする。  Further, the static fluid mixer has a shape in which a rectangular plate is twisted 180 degrees with the first blade portions 3a, 3b and the second blade portions 4a, 4b as respective elements, and the right element and the left depending on the direction of twist. Forming elements. The dimensions of both elements are basically about 1.5 times the length of the diameter.

また、上記した静止型流体混合器による攪拌混合原理としては、一つのエレメントを通過する毎に二分割される(分割数N=2のn(エレメント数)乗)分割作用と、エレメント内の捩れ面に沿って2重管誘電体内管中央部から壁部へ、また壁部から中央部へと並び替える転換作用と、1エレメント毎に捩れ方向が替わり、急激な慣性力の反転を受けて乱流攪拌される反転作用それぞれより2流体を効果的に混合するものである。
一般的に2重管誘電体内管内側を層流状態となって流れる流体は壁面との粘性力により壁面位置よりも中央位置の方が早く流れるため、流動中に不均一になり易いのであるが、上記した混合原理に基づけば、2重管誘電体内管内側を流れる流体は半径方向に均一化(半径方向に沿って速度勾配がゼロ)させるものとなる。また、このような大気圧プラズマ素子Pは低消費電力でのプラズマ処理が可能で、熱交換効率や流体のラジカル化効率も大幅に向上する。更に、インライン型連続反応器としても優れた効果を発揮する。
In addition, the principle of stirring and mixing by the above-described static fluid mixer is as follows. Each element passes through one element and is divided into two parts (division number N = 2 to the power of n (number of elements)), and the twist in the element. A double pipe dielectric body tube along the surface from the central part to the wall part, and from the wall part to the central part, and the twisting direction changes for each element, and a sudden reversal of the inertial force causes disturbance. The two fluids are effectively mixed by the reversal action that is stirred by flow.
In general, the fluid flowing in a laminar state inside the double-pipe dielectric inner tube flows faster at the center position than at the wall surface due to the viscous force with the wall surface. Based on the above mixing principle, the fluid flowing inside the double pipe dielectric tube is made uniform in the radial direction (the velocity gradient is zero along the radial direction). Further, such an atmospheric pressure plasma element P can perform plasma processing with low power consumption, and the heat exchange efficiency and the radicalization efficiency of the fluid are greatly improved. Furthermore, it exhibits an excellent effect as an inline type continuous reactor.

次に、以上のように構成された最良の形態について使用、動作の一例を説明する。〔図1〕に示すように、2重管誘電体内管の上流側からVOCガス等の対象処理ガスをキャリアガスである大気と共にプラズマ素子に導入する。  Next, an example of use and operation of the best mode configured as described above will be described. As shown in FIG. 1, a target processing gas such as a VOC gas is introduced into the plasma element from the upstream side of the double-pipe dielectric inner tube together with air as a carrier gas.

そして、キャリアガスとVOCガス等の対象処理ガスとを2重管誘電体内管の流路内で旋回させると同時に流路内で剪断力を受けて分割及び合流を繰り返すことで当該キャリアガスと対象処理ガスとが効率よく攪拌混合される。  Then, the carrier gas and the target processing gas such as VOC gas are swirled in the flow path of the double pipe dielectric body tube, and at the same time, receiving the shearing force in the flow path and repeating the division and joining, the carrier gas and the target gas The processing gas is efficiently stirred and mixed.

これと同時に、外部電極2とエレメントの長手外周部に敷設された内部電極5の両電極に1〜100kHz、0〜15kV(p−p)のパルス型高周波・高電圧を印加し、二重管誘電体1内管と内部電極5間をプラズマ生成領域6として非平衡プラズマを誘起させ、対象処理ガスとプラズマを接触させる。  At the same time, a pulse type high frequency / high voltage of 1 to 100 kHz and 0 to 15 kV (pp) is applied to both electrodes of the external electrode 2 and the internal electrode 5 laid on the outer periphery of the element in the longitudinal direction. A non-equilibrium plasma is induced between the inner tube of the dielectric 1 and the inner electrode 5 as a plasma generation region 6 to bring the target processing gas into contact with the plasma.

これにより、対象処理ガスのプラズマ反応と酸化反応とが同時進行して、当該対象処理ガスは酸化分解処理される。  As a result, the plasma reaction and the oxidation reaction of the target processing gas proceed simultaneously, and the target processing gas is subjected to oxidative decomposition processing.

尚、二重管誘電体内管の上流から大気のみ或いは酸素のみを導入することにより高濃度で大量のオゾンが生成される。  A large amount of ozone is generated at a high concentration by introducing only the atmosphere or only oxygen from the upstream of the double-pipe dielectric inner tube.

本発明を実施するための最良の形態における使用状態の概略プラズマ素子断面図である。It is a schematic plasma device sectional view of the use condition in the best mode for carrying out the present invention. 本発明を実施するための最良の形態における二重管誘電体の断面図である。It is sectional drawing of the double pipe | tube dielectric material in the best form for implementing this invention. 本発明を実施するための最良の形態における連設羽根部分の外観図である。It is an external view of the continuous blade | wing part in the best form for implementing this invention. 本発明を実施するための最良の形態における内部電極部分の外観図である。It is an external view of the internal electrode part in the best form for implementing this invention. 本発明を実施するための最良の形態における酸素供給源の接続図である。It is a connection diagram of an oxygen supply source in the best mode for carrying out the present invention.

符号の説明Explanation of symbols

P プラズマ素子
1 2重管誘電体
2 外部電極
3a 第1羽根部分
3b 第2羽根部分
4a 第1羽根部分
4b 第2羽根部分
5 内部電極
6 プラズマ放電域
7 プラズマ電源
8 静止型流体混合器
9 配管
P plasma element 1 double tube dielectric 2 external electrode 3a first blade portion 3b second blade portion 4a first blade portion 4b second blade portion 5 internal electrode 6 plasma discharge area 7 plasma power source 8 static fluid mixer 9 piping

Claims (6)

二重管構造の筒状誘電体の内管内側に処理対象ガスとキャリアガスを流通可能とした該2重管誘電体の管隙間に流通させる導電性液体を外部電極とし、該二重管誘電体の内管内側に内接して配された螺旋状に正半回転する非導電性第1羽根部分、螺旋状に逆半回転する非導電性第2羽根部分とを交互に長手方向に延設して、羽根部の長手外周部に長手軸に対して任意のピッチで等間隔の螺旋状に加工した切欠き部に該二重管誘電体内管に内接せずに任意の等距離を保って敷設した導電性連続コイルを内部電極とし、処理対象ガスとキャリアガスが羽根部により剪断力を受けて分割及び合流を繰り返すことにより両者が攪拌混合されると同時に両電極間に高周波・高電圧を印加し放電プラズマを誘起させ、プラズマ反応と攪拌混合により二重管誘電体の内管内側に流通する対象処理ガスの分解・合成・改質を可能としたことを特徴とするプラズマ素子。  A conductive liquid that flows through the pipe gap of the double pipe dielectric that allows the gas to be treated and the carrier gas to flow inside the inner pipe of the cylindrical dielectric having a double pipe structure is used as an external electrode, and the double pipe dielectric A non-conductive first blade portion that rotates in half a spiral and a non-conductive second blade portion that rotates in a semi-rotary manner are alternately extended in the longitudinal direction and are inscribed inside the inner tube of the body. Then, at the longitudinal outer peripheral portion of the blade portion, the notch portion processed into a spiral shape at an equal pitch with respect to the longitudinal axis is kept at an equal distance without being inscribed in the double pipe dielectric inner tube. The conductive continuous coil laid and used as an internal electrode, the gas to be treated and the carrier gas are subjected to shearing force by the blades and are repeatedly divided and merged, so that both are stirred and mixed, and at the same time, high frequency and high voltage between both electrodes Is applied to induce discharge plasma, and double tube by plasma reaction and stirring mixing Plasma element characterized in that it possible to degradation, synthesis, modification of the target process gas flowing in the inner tube side of the collector. 前記非金属製第1羽根部分、非金属製第2羽根部分それぞれは当該両羽根部分間に境界部を設けて管状誘電体部材の長手方向に沿って交互に一体成形して成るか若しくは予め分割形成された両羽根部分を交互に溶接又は接着結合して成るものとし、該境界部は、前記両羽根部分それぞれの端部が直交するように成形して成ることを特徴とする請求項1記載のプラズマ素子。  Each of the non-metallic first blade portion and the non-metallic second blade portion is formed by alternately integrally forming along the longitudinal direction of the tubular dielectric member by providing a boundary portion between the two blade portions, or divided in advance. 2. The formed blade portions are alternately welded or adhesively bonded, and the boundary portion is formed so that ends of the blade portions are orthogonal to each other. Plasma element. 対象処理ガスのキャリアガスとして大気を利用したことを特徴とする請求項1又は請求項2のプラズマ素子。  3. The plasma element according to claim 1, wherein the atmosphere is used as a carrier gas for the target processing gas. 前記2重管状誘電体の内管内を減圧し、その圧力以上の対象処理ガス及びキャリアガスを導入することを特徴とする請求項1又は請求項2記載のプラズマ素子。  The plasma device according to claim 1 or 2, wherein the inner tube of the double tubular dielectric is decompressed and a target processing gas and carrier gas exceeding the pressure are introduced. プラズマ素子の上流に処理対象ガスに酸素を供給する酸素供給源を接続し、放電プラズマ反応と同時進行して該対象処理ガスは酸素との酸化分解処理が行われることを特徴とする請求項1乃至4のいずれか記載のプラズマ素子。  2. An oxygen supply source for supplying oxygen to the gas to be processed is connected upstream of the plasma element, and the target gas is subjected to an oxidative decomposition process with oxygen simultaneously with a discharge plasma reaction. 5. The plasma element according to any one of 4 to 4. オゾン生成装置として使用可能としたことを特徴とする請求項1乃至5のいずれか記載のプラズマ素子。  6. The plasma device according to claim 1, wherein the plasma device can be used as an ozone generator.
JP2008246802A 2008-08-28 2008-08-28 Plasma device Pending JP2010051941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246802A JP2010051941A (en) 2008-08-28 2008-08-28 Plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246802A JP2010051941A (en) 2008-08-28 2008-08-28 Plasma device

Publications (1)

Publication Number Publication Date
JP2010051941A true JP2010051941A (en) 2010-03-11

Family

ID=42068431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246802A Pending JP2010051941A (en) 2008-08-28 2008-08-28 Plasma device

Country Status (1)

Country Link
JP (1) JP2010051941A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069799A1 (en) 2011-11-11 2013-05-16 国立大学法人佐賀大学 Plasma generation device
CN103906335A (en) * 2014-04-09 2014-07-02 中国科学院空间科学与应用研究中心 Generator of space plasma
WO2015090258A1 (en) * 2013-12-19 2015-06-25 Masarykova Univerzita Method of plasma treatment of an internal and/or external surface of a hollow electrically non-conductive body and a device for carrying out this method
WO2017025880A1 (en) * 2015-08-07 2017-02-16 King Abdullah University Of Science And Technology Methods for reformation of gaseous hydrocarbons using electrical discharge
JP2017050267A (en) * 2015-08-31 2017-03-09 積水化学工業株式会社 Plasma device, method of using the same, nitrogen gas plasma and irradiation method therefor
CN106714438A (en) * 2016-12-30 2017-05-24 宁波欧琳厨具有限公司 Plasma generator
CN108391365A (en) * 2018-02-24 2018-08-10 佛山市万善环保科技有限公司 A kind of double medium low temperature plasma generating means of electromagnetic induction coupling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279506A (en) * 1989-03-07 1990-11-15 Asea Brown Boveri Ag Ozone generating apparatus
JPH0429628A (en) * 1990-05-24 1992-01-31 Toyoda Mach Works Ltd Coupling device for four-wheel drive
JP2007059108A (en) * 2005-08-23 2007-03-08 Katsuya Tokumura Atmospheric pressure plasma element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279506A (en) * 1989-03-07 1990-11-15 Asea Brown Boveri Ag Ozone generating apparatus
JPH0429628A (en) * 1990-05-24 1992-01-31 Toyoda Mach Works Ltd Coupling device for four-wheel drive
JP2007059108A (en) * 2005-08-23 2007-03-08 Katsuya Tokumura Atmospheric pressure plasma element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069799A1 (en) 2011-11-11 2013-05-16 国立大学法人佐賀大学 Plasma generation device
US9114373B2 (en) 2011-11-11 2015-08-25 Saga University Plasma generation device
WO2015090258A1 (en) * 2013-12-19 2015-06-25 Masarykova Univerzita Method of plasma treatment of an internal and/or external surface of a hollow electrically non-conductive body and a device for carrying out this method
US10138554B2 (en) 2013-12-19 2018-11-27 Masarykova Univerzita Method of plasma treatment of an internal and/or external surface of a hollow electrically non-conductive body and a device for carrying out this method
CN103906335A (en) * 2014-04-09 2014-07-02 中国科学院空间科学与应用研究中心 Generator of space plasma
WO2017025880A1 (en) * 2015-08-07 2017-02-16 King Abdullah University Of Science And Technology Methods for reformation of gaseous hydrocarbons using electrical discharge
JP2017050267A (en) * 2015-08-31 2017-03-09 積水化学工業株式会社 Plasma device, method of using the same, nitrogen gas plasma and irradiation method therefor
CN106714438A (en) * 2016-12-30 2017-05-24 宁波欧琳厨具有限公司 Plasma generator
CN108391365A (en) * 2018-02-24 2018-08-10 佛山市万善环保科技有限公司 A kind of double medium low temperature plasma generating means of electromagnetic induction coupling

Similar Documents

Publication Publication Date Title
JP2010051941A (en) Plasma device
Stratton et al. Plasma-based water treatment: Conception and application of a new general principle for reactor design
CN106414342B (en) Apparatus and method for treating liquids containing organic contaminants
US20120152723A1 (en) Tubular flow reactor
Wang et al. Micro hollow cathode excited dielectric barrier discharge (DBD) plasma bubble and the application in organic wastewater treatment
KR102110637B1 (en) Plasma irradiation method and plasma irradiation device
KR20210109988A (en) Functional water production device using underwater plasma
KR101497591B1 (en) Apparatus for treating water using discharge in reactor
Jodzis et al. Kinetic and energetic analysis of the ozone synthesis process in oxygen-fed DBD reactor. Effect of power density, gap volume and residence time
KR20200102889A (en) Underwater plasma generating device and an application comprising the same
AU2019318817A1 (en) Electrochemical flow reactor
Jodzis et al. Ozone synthesis and decomposition in oxygen-fed pulsed DBD system: effect of ozone concentration, power density, and residence time
JP2007059108A (en) Atmospheric pressure plasma element
JP2012206898A (en) Ozone generator
JP2007268491A (en) Micro device and catalytic reaction method using the same
JP5930365B2 (en) Waste water treatment apparatus and waste water treatment method
JP6312494B2 (en) Chemical method for chemical products
JP6621573B1 (en) Gas production system and gas production method
JP2002326029A (en) Reaction vessel
JP2002210344A (en) Supercritical water oxidation reactor
EP3878549A1 (en) Capillary reactor with ultrasound
JP4342991B2 (en) Ozone generator
Hsiao et al. Numerical study on heat flow during catalytic dissociation of ozone in a dielectric barrier discharge ozonizer
US20110237842A1 (en) Uv reactor for chemical reactions and use thereof
JP2008018306A (en) Apparatus for treating organic matter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025