JP2010048194A - 内燃機関の始動制御装置 - Google Patents

内燃機関の始動制御装置 Download PDF

Info

Publication number
JP2010048194A
JP2010048194A JP2008214285A JP2008214285A JP2010048194A JP 2010048194 A JP2010048194 A JP 2010048194A JP 2008214285 A JP2008214285 A JP 2008214285A JP 2008214285 A JP2008214285 A JP 2008214285A JP 2010048194 A JP2010048194 A JP 2010048194A
Authority
JP
Japan
Prior art keywords
intake
timing
fuel injection
valve
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008214285A
Other languages
English (en)
Inventor
Hideaki Kosuge
英明 小菅
衛 ▲吉▼岡
Mamoru Yoshioka
Akira Tomimatsu
亮 冨松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2008214285A priority Critical patent/JP2010048194A/ja
Priority to PCT/IB2009/006467 priority patent/WO2010020852A1/en
Publication of JP2010048194A publication Critical patent/JP2010048194A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/01Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】内燃機関の始動時、特に始動1サイクル目における燃料の気化或いは微粒化を促進し、それによりHCの排出を抑制できるようにする。
【解決手段】少なくとも始動時の1サイクル目は排気弁の閉タイミング(EVC)を吸気上死点よりも進角側であって、且つ、その閉タイミング(EVC)から吸気上死点までのクランク角度が吸気弁の開タイミング(IVO)と吸気上死点との間のクランク角度よりも大きくなるように制御する。また、少なくとも始動時の1サイクル目は燃料噴射期間が吸気弁の開タイミング(IVO)に重なるように燃料噴射弁の燃料噴射時期を制御する。
【選択図】図4

Description

本発明は内燃機関の始動制御装置に関し、詳しくは、燃料を吸気ポートに噴射するポート噴射式内燃機関の始動制御装置に関する。
内燃機関の始動時におけるHCの排出を抑制するための技術としては、例えば、特開2007−40150号公報に記載されたシステムが知られている。この公報に記載のシステムは、燃焼室内に燃焼ガスが存在していない始動1サイクル目は、いわゆる吸気非同期噴射を行うことで吸気ポート内での燃料の蒸発時間を長く取り、それにより燃料の気化を促進している。また、燃焼室内に燃焼ガスが存在する2サイクル目以降は、排気弁の閉タイミングを吸気上死点よりも進角側に制御するとともに吸気弁の開タイミングに合わせて燃料噴射時期を設定することで、燃焼室内から吸気ポートへ吹き返される高温の燃焼ガスによって燃料の気化を促進している。
特開2007−40150号公報 特開2002−227630号公報 特開2003−120348号公報
しかしながら、特開2007−40150号公報に記載の技術にも未だ改良の余地は残っている。それは始動1サイクル目に関してであって、気化時間の確保によって得られる燃料の気化の促進効果には限界があるからである。燃焼ガスが存在しない始動1サイクル目においては、吸気ポート内の温度は環境温度の影響を強く受ける。このため、環境温度が低い場合には気化時間の確保のみでは燃料が十分に気化しない可能性がある。
本発明は、上述のような課題を解決するためになされたもので、内燃機関の始動時、特に始動1サイクル目における燃料の気化或いは微粒化を促進し、それによりHCの排出を抑制できるようにした内燃機関の始動制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、燃料を吸気ポートに噴射する燃料噴射弁と、閉タイミングを調整可能な排気弁とを有する内燃機関の始動制御装置において、
少なくとも始動時の1サイクル目は前記排気弁の閉タイミングを吸気上死点よりも進角側であって、且つ、その閉タイミングから吸気上死点までのクランク角度が吸気弁の開タイミングと吸気上死点との間のクランク角度よりも大きくなるように制御する排気弁閉タイミング制御手段と、
少なくとも始動時の1サイクル目は燃料噴射期間が前記吸気弁の開タイミングに重なるように前記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段と、
を備えることを特徴としている。
第2の発明は、第1の発明において、
前記燃料噴射時期制御手段は、燃料噴射期間の略中央付近が前記吸気弁の開タイミングに重なるように燃料噴射時期を制御することを特徴としている。
第3の発明は、第1又は第2の発明において、
前記燃料噴射時期制御手段は、燃料噴射期間を複数回に分割し、分割した燃料噴射期間の1つの期間が前記吸気弁の開タイミングに重なり、他の期間は前記吸気バルブの閉期間内となるように燃料噴射時期を制御することを特徴としている。
第4の発明は、第3の発明において、
前記燃料噴射時期制御手段は、始動時の2サイクル目以降は、前記吸気弁の開タイミングに重なる燃料噴射期間を機関回転数の上昇に応じて減少させていくことを特徴としている。
また、第5の発明は、上記の目的を達成するため、燃料を吸気ポートに噴射する燃料噴射弁と、閉タイミングを調整可能な排気弁と、開タイミングを調整可能な吸気弁とを有する内燃機関の始動制御装置において、
少なくとも始動時の1サイクル目は前記排気弁の閉タイミングを吸気上死点よりも進角側となるように制御する排気弁閉タイミング制御手段と、
少なくとも始動時の1サイクル目は前記吸気弁の開タイミングを前記吸気ポートの圧力と比して前記内燃機関の燃焼室の圧力が高いときとなるように制御する吸気弁開タイミング制御手段と、
少なくとも始動時の1サイクル目は燃料噴射期間が前記吸気弁の開タイミングに重なるように前記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段と、
を備えることを特徴としている。
また、第6の発明は、上記の目的を達成するため、燃料を吸気ポートに噴射する燃料噴射弁と、閉タイミングを調整可能な排気弁と、開タイミングを調整可能な吸気弁とを有する内燃機関の始動制御装置において、
少なくとも始動時の1サイクル目は前記排気弁の閉タイミングを吸気上死点よりも進角側となるように制御する排気弁閉タイミング制御手段と、
少なくとも始動時の1サイクル目は前記吸気弁の開タイミングを前記燃焼室から前記吸気ポートへ吹き返しが生じるときとなるように制御する吸気弁開タイミング制御手段と、
少なくとも始動時の1サイクル目は燃料噴射期間が前記吸気弁の開タイミングに重なるように前記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段と、
を備えることを特徴としている。
第7の発明は、第5又は第6の発明において、
前記吸気弁開タイミング制御手段は、前記吸気弁の開タイミングを前記排気弁の閉タイミングよりも遅角側とすることを特徴としている。
第8の発明は、第5又は第6の発明において、
前記吸気弁開タイミング制御手段は、前記吸気弁の開タイミングを前記排気弁の閉タイミングから吸気上死点までのクランク角度と同じかそれより小さいクランク角度だけ、吸気上死点よりも進角側とすることを特徴としている。
第9の発明は、第5又は第6の発明において、
前記排気弁閉タイミング制御手段は、前記排気弁の閉タイミングを吸気上死点よりも進角側にクランク角度で30度以内とすることを特徴としている。
第1の発明によれば、始動1サイクル目、排気弁の閉タイミングは吸気上死点よりも進角側であって、且つ、その閉タイミングから吸気上死点までのクランク角度が吸気弁の開タイミングと吸気上死点との間のクランク角度よりも大きくなるように制御されるので、吸気弁の開タイミングにおける筒内ガスの圧力は、排気弁の閉タイミングにおける筒内ガスの圧力よりも高くなる。このため、排気弁の閉タイミングから吸気弁の開タイミングまでの間に燃焼室内で圧縮された筒内ガスが吸気弁の開弁とともに吸気ポートへ吹き返される。始動1サイクル目の燃料噴射期間は吸気弁の開タイミングに重ねられているので、吸気ポートへ吹き返された筒内ガスは燃料噴射弁から噴射されている燃料噴霧に衝突することになる。この筒内ガスの衝突によって燃料噴霧は攪拌され、より気化が進んだ燃料蒸気或いはより微粒化が進んだ燃料噴霧となる。
第2の発明によれば、燃料噴射期間の略中央付近における燃料噴霧は粒径が小さく安定しているので、この燃料噴霧に筒内ガスを衝突させることで気化或いは微粒化の促進効果を全体として高めることができる。
第3の発明によれば、一部の燃料は燃料噴霧に筒内ガスを衝突させることで気化或いは微粒化を促進することができ、残りの燃料は吸気ポート内での気化時間の確保によって気化を促進することができる。
第4の発明によれば、機関回転数の上昇に伴って短くなる吹き返し時間に合わせて吸気弁の開タイミングに重なる燃料噴射期間を短くしていくことで、吹き返しによる攪拌効果が得られない燃料噴霧の発生を抑えることができる。
第5の発明によれば、始動1サイクル目、排気弁の閉タイミングが吸気上死点よりも進角側とされることで排気弁の閉後、ピストンの上昇に伴って筒内ガスは圧縮される。燃焼室の圧力はその後のピストンの上下動に応じて変化するが、吸気ポートの圧力と比して内燃機関の燃焼室の圧力が高いときに吸気弁が開かれる。このため、吸気弁の開弁時には燃焼室内で圧縮された筒内ガスが吸気ポートへ吹き返される。始動1サイクル目の燃料噴射期間は吸気弁の開タイミングに重ねられているので、吸気ポートへ吹き返された筒内ガスは燃料噴射弁から噴射されている燃料噴霧に衝突することになる。この筒内ガスの衝突によって燃料噴霧は攪拌され、より気化が進んだ燃料蒸気或いはより微粒化が進んだ燃料噴霧となる。
第6の発明によれば、始動1サイクル目、排気弁の閉タイミングが吸気上死点よりも進角側とされることで排気弁の閉後、ピストンの上昇に伴って筒内ガスは圧縮される。燃焼室の圧力はその後のピストンの上下動に応じて変化し、それに応じて吸気ポートの圧力と燃焼室の圧力との圧力差も変化するが、燃焼室から吸気ポートへ吹き返しが生じるときに吸気弁が開かれる。つまり、始動1サイクル目の吸気弁の開弁時には燃焼室から吸気ポートへ筒内ガスが吹き返される。始動1サイクル目の燃料噴射期間は吸気弁の開タイミングに重ねられているので、吸気ポートへ吹き返された筒内ガスは燃料噴射弁から噴射されている燃料噴霧に衝突することになる。この筒内ガスの衝突によって燃料噴霧は攪拌され、より気化が進んだ燃料蒸気或いはより微粒化が進んだ燃料噴霧となる。
第7の発明によれば、吸気弁の開タイミングは排気弁の閉タイミングよりも遅角側とすることで、排気弁の閉タイミングから吸気弁の開タイミングまでの間に筒内ガスを圧縮することができる。
第8の発明によれば、吸気弁の開タイミングを排気弁の閉タイミングから吸気上死点までのクランク角度と同じかそれより小さいクランク角度だけ、吸気上死点よりも進角側とすることで、吸気弁の開タイミングにおける筒内ガスの圧力を排気弁の閉タイミングにおける筒内ガスの圧力よりも確実に高くすることができる。
第9の発明によれば、排気弁の閉タイミングを吸気上死点よりも進角側にクランク角度で30度以内とすることで、筒内ガスを適度に圧縮することができる。
実施の形態1.
以下、本発明の実施の形態1について図1乃至図5の各図を参照して説明する。
図1は本発明の実施の形態1としての始動制御装置が適用された内燃機関の概略構成を示す図である。本実施形態にかかる内燃機関は火花点火式の4ストロークエンジンである。内燃機関は内部にピストン8が配置されたシリンダブロック6と、シリンダブロック6に組み付けられたシリンダヘッド4を備えている。ピストン8の上面からシリンダヘッド4までの空間は燃焼室10を形成している。燃焼室10の頂部には、点火プラグ16が取り付けられている。また、シリンダヘッド4には、燃焼室10に連通する吸気ポート36と排気ポート40が形成されている。
吸気ポート36と燃焼室10との接続部には、吸気ポート36と燃焼室10との連通状態を制御する吸気弁12が設けられている。吸気弁12の駆動系には、吸気弁12の開閉タイミング(以下、吸気弁タイミングという)を可変制御する吸気弁タイミング制御装置22が備えられている。本実施の形態では吸気弁タイミング制御装置22として、クランク軸18に対するカム軸の位相角を変化させることで作用角は一定のまま吸気弁12の開タイミングと閉タイミングを同時に変更することができる油圧式の弁タイミング可変機構(VVT)が用いられている。吸気弁タイミング制御装置22は、油圧が十分に高まっていない状態での誤作動を防止するためのロック構造を有している。このロック構造は油圧が低い状態では吸気弁タイミング制御装置22の動作をロックし、油圧がある程度まで上昇したらロックを自動解除するものである。吸気弁タイミング制御装置22がロック構造によりロックされているときには、吸気弁12の開タイミングは吸気TDC近傍、より詳しくは、吸気TDCよりも僅かに進角側にて固定されるようなっている。
一方、排気ポート40と燃焼室10との接続部には、排気ポート40と燃焼室10との連通状態を制御する排気弁14が設けられている。排気弁14の駆動系には、排気弁14の開閉タイミング(以下、排気弁タイミングという)を可変制御する排気弁タイミング制御装置24が備えられている。排気弁タイミング制御装置24としては、吸気弁タイミング制御装置22と同様に油圧式の弁タイミング可変機構が用いられている。排気弁タイミング制御装置24がロック構造によりロックされているときには、排気弁タイミングはその最進角位置にて固定されるようになっている。
吸気ポート36には吸気管30が接続されている。吸気管30にはスロットル32が配置されている。吸気管30はスロットル32の下流において気筒毎に分岐し、各気筒の吸気ポート36に接続されている。吸気管30の吸気ポート36との接続部の近傍には、燃料を吸気ポート36内に噴射する燃料噴射弁34が取り付けられている。
また、本実施の形態にかかる内燃機関は、その制御装置としてECU(Electronic Control Unit)50を備えている。ECU50の出力側には前述の吸気弁タイミング制御装置22、排気弁タイミング制御装置24、燃料噴射弁34、スロットル32、点火プラグ16の他、スタータ20等の種々の機器が接続されている。ECU50の入力側には、クランク角センサ52、水温センサ54、エアフローセンサ56等の種々のセンサや、スタートスイッチ58等の種々のスイッチが接続されている。クランク角センサ52は、クランク軸18の回転角度に応じた信号を出力するセンサである。水温センサ54は内燃機関の冷却水温に応じた信号を出力するセンサである。エアフローセンサ56は吸気管30内に吸入される空気の流量に応じた信号を出力するセンサである。そして、スタートスイッチ58は運転者から内燃機関への始動要求を受け付けるスイッチである。ECU50は、これらセンサ及びスイッチの各出力に基づき、所定の制御プログラムにしたがって各機器を駆動するようになっている。
本実施の形態は、ECU50により実行される内燃機関の制御のうち、始動時の排気弁タイミングの制御と燃料噴射時期の制御とに特徴がある。図2は、本実施の形態においてECU50により実行される排気弁タイミング制御の内容をフローチャートで示したものである。図2に示すルーチンは、スタートスイッチ58がオンにされてスタータ20により内燃機関のクランキングが開始されると同時に実行される。また、このルーチンは気筒毎に実行される。
図2に示すルーチンによれば、始動時の排気弁タイミングの制御として排気弁早閉じ制御が行われる(ステップS2)。排気弁早閉じ制御は、水温センサ54により計測される水温が目標水温に達するまで継続される(ステップS4)。ステップS4の判定で用いられる目標水温は、始動後暖機運転を経て内燃機関が十分に暖まったかどうかを判定するための基準値である。そして、水温が目標水温に達したら排気弁タイミングの制御は始動時の排気弁早閉じ制御から排気弁通常制御に切り替えられる(ステップS6)。
前記の排気弁早閉じ制御と排気弁通常制御の詳細について図3を用いて説明する。図3は、吸気弁12及び排気弁14の開閉タイミングを排気弁早閉じ制御時と排気弁通常制御時のそれぞれについて示す図である。図3中、EVOは排気弁14の開タイミング、EVCは排気弁14の閉タイミングをそれぞれ表し、EVOからEVCまでのクランク角度(黒い円弧で示す)が排気弁14の開期間を表している。また、IVOは吸気弁12の開タイミング、IVCは吸気弁12の閉タイミングをそれぞれ表し、IVOからIVCまでのクランク角度(白い円弧で示す)が吸気弁12の開期間を表している。
図3に示すように、排気弁早閉じ制御とは、排気弁14の閉タイミングを吸気TDCよりも進角側で、且つ、吸気弁12の閉タイミングよりも進角側に設定する制御である。前述のように、排気弁タイミング制御装置24にはロック構造が設けられていて、油圧が高まるまでは排気弁タイミングは最進角位置にて固定されている。また、吸気弁タイミング制御装置22のロック構造により、吸気弁タイミングはその開タイミングが吸気TDCよりもやや進角側になる位置にて固定されている。したがって、内燃機関の始動時には、少なくとも始動1サイクル目に関しては、排気弁タイミング制御装置24及び吸気弁タイミング制御装置22の構造上、自動的に排気弁早閉じ制御が行われることになる。
排気弁通常制御は、内燃機関の出力性能上の適切な位置に排気弁タイミングを設定する制御である。図3に示す例では、排気弁14の開期間と吸気弁12の開期間とがオーバーラップするように排気弁タイミングが制御されている。このような排気弁通常制御が可能となるのは、ロック構造による排気弁タイミング制御装置24のロックが解除されてからである。ステップS4の判定が成立したとき、すなわち、内燃機関の暖機が完了したときには、油圧も十分に上昇してロック構造による排気弁タイミング制御装置24のロックは解除された状態になっている。
上述のように、本実施の形態では、始動時の排気弁タイミング制御とは排気弁早閉じ制御を指す。そして、この排気弁早閉じ制御と並行して始動時の燃料噴射時期制御が行われる。図4は本実施の形態にて実行される始動時の燃料噴射時期制御の内容を説明するための図である。図4には、排気弁早閉じ制御による排気弁タイミングと吸気弁タイミング、及び、排気弁早閉じ制御によって実現される吸気弁部(吸気ポート36と燃焼室10との接続部分)の流速の変化を併せて示している。
図4に示すように、排気弁早閉じ制御時には排気弁14は吸気TDCの手前で閉じられ、吸気弁12は吸気TDC付近で開かれる。これにより燃焼室10内のガス(以下、筒内ガスという)は排気弁14の閉タイミングから吸気弁12の開タイミングまでの期間、ピストン8で圧縮されて高温高圧となり、吸気弁12の開弁とともに吸気ポート36に吹き返される。この吹き返しは吸気ポート36の圧力と比して内燃機関の燃焼室10の圧力が高いときに発生し、燃焼室10内から吸気ポート36に向かう高速のガス流れを発生させる。吸気ポート36に吹き返されたガスは、ピストン8の下降に従って吸気ポート36から燃焼室10内に再び吸入されることになる。図4では吸気ポート36から燃焼室10へ向かうガスの流速を+、燃焼室10から吸気ポート36へ向かうガスの流速を−で示している。なお、排気弁通常制御時には吸気TDC付近で排気弁14と吸気弁12がともに開いている期間がある。この期間は吸気ポート36の圧力と燃焼室10の圧力とがほぼ同じであるため、吸気ポート36への筒内ガスの吹き返しは小さいか、ほぼない。
図4に示す燃料噴射期間は、始動時の燃料噴射時期制御による燃料噴射期間である。本実施の形態では、燃料噴射期間の略中央付近が吸気弁12の開タイミングに重なるように燃料噴射時期が制御される。言い換えると、吸気弁12の開タイミングよりも前(進角側)に燃料噴射が開始され、吸気弁12の開タイミングの時点では燃料は噴射され続けており、吸気弁12の開タイミングよりも後(遅角側)に燃料噴射が終了する。これによれば、吸気弁12の開弁に伴って燃焼室10から吸気ポート36へ吹き返される高速の筒内ガスを燃料噴射弁34から噴射されている燃料噴霧に衝突させることができる。筒内ガスの衝突によって燃料噴霧は攪拌され、より気化が進んだ燃料蒸気或いはより微粒化が進んだ燃料噴霧となる。
また、始動時の燃料噴射時期制御は、始動1サイクル目から排気弁早閉じ制御が排気弁通常制御に切り替えられるまでの間、継続して行われる。この場合、始動1サイクル目と始動2サイクル目以降とでは吹き返される筒内ガスに違いがある。始動2サイクル目以降は、燃料の燃焼によって得られた高温高圧の燃焼ガスが吹き返される。これに対して、始動1サイクル目は、ピストン8により圧縮されて高温高圧になった空気が吹き返される。始動1サイクル目で吹き返される空気は、始動2サイクル目以降で吹き返される燃焼ガスほどは高温にはなっていない。しかし、吹き返された筒内ガスの衝突による燃料噴霧の攪拌効果は同等に得ることができる。吹き返しにより攪拌されることで、燃料噴霧はより気化が進んだ燃料蒸気或いはより微粒化が進んだ燃料噴霧となる。したがって、本実施の形態にかかる始動制御によれば、始動1サイクル目から燃料の気化或いは微粒化を促進することが可能であり、それにより始動時のHCの排出を抑制することができる。
なお、燃料噴射期間の開始直後や終了間際ではなく、略中央付近が吸気弁12の開タイミングに重なるようにしているのは、筒内ガスの衝突による燃料噴霧の気化或いは微粒化の促進効果を最大限に引き出すためである。図5は燃料噴射期間内での燃料噴霧の粒径の変化を示す図である。噴射開始直後に噴かれた燃料は燃料噴射弁34の先端の動きのない空気に衝突し、粒径の大きい気化しにくい噴霧となる。また、噴射後半になるほど燃料噴射圧が低下するため、噴霧の粒径は不揃いになる。これらに対して燃料噴射期間の中央付近で噴かれた燃料噴霧は粒径が小さく安定している。この粒径が小さく安定した燃料噴霧に筒内ガスを衝突させることで、気化或いは微粒化の促進効果を全体として高めることができる。
実施の形態2.
次に、本発明の実施の形態2について図1、図6乃至図8の各図を参照して説明する。
本発明の実施の形態2としての始動制御装置は、実施の形態1と同様に図1に示す構成の内燃機関に適用される。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態と実施の形態1との違いは、ECU50により実行される始動時の燃料噴射制御にある。始動時の排気弁タイミング制御に関しては実施の形態1のものと共通している。図6は、本実施形態においてECU50により実行される始動時の燃料噴射制御の内容をフローチャートで示したものである。図6に示すルーチンは、スタートスイッチ58がオンにされ、スタータ20により内燃機関のクランキングが開始されると同時に開始される。また、このルーチンは気筒毎に実行される。
本ルーチンの最初のステップS100では、今回が始動1サイクル目かどうか判定される。今回が始動1サイクル目であれば、ステップS102以降の処理によって燃料噴射制御が行われ、今回が始動2サイクル目以降であれば、ステップS114以降の処理によって燃料噴射制御が行われる。つまり、本実施の形態では、始動1サイクル目か始動2サイクル目以降かで燃料噴射制御の内容に違いが設けられている。
今回が始動1サイクル目の場合、まず、ステップS102において水温センサ54によって計測された始動時水温(thws)が取り込まれる。次のステップS104では、始動時水温(thws)に基づいてマップから始動時噴射量(tausta)が求められる。ステップS106では、始動時噴射量(tausta)が最終噴射量(TAU)としてセットされる。最終噴射量(TAU)は燃料噴射期間に変換される。
ステップS108では、始動時水温(thws)が基準温度(α)よりも低いかどうか判定される。基準温度(α)は噴射燃料の吸気ポート36内での十分な気化が期待できる水温である。始動時水温(thws)が基準温度(α)よりも高い状況としては、例えばアイドリングストップからの再始動時である。始動時水温(thws)が基準温度(α)よりも高ければステップS112に進み、通常の燃料噴射時期制御が行われる。通常の燃料噴射時期制御とは、特別な気化或いは微粒化促進効果を必要としない状況での燃料噴射時期制御であり、具体的には吸気非同期噴射制御や吸気同期噴射制御が用いられる。吸気非同期噴射制御では、吸気弁12が閉じている期間内に燃料が噴射される。吸気同期噴射制御では、吸気弁12が開いているときに燃料が噴射される。
始動時水温(thws)が基準温度(α)よりも低い場合には、ステップS110の処理が行われる。ステップS110では、燃料噴射期間が吸気弁12の開タイミングに重なるように燃料噴射時期が制御される。吸気弁12の開タイミングは吸気TDC付近であるので、以下、この時期での燃料噴射を吸気TDC噴射制御という。実施の形態1で説明した通り、吸気TDC噴射制御によれば、吹き返された筒内ガスの衝突によって燃料噴霧を攪拌することができ、その攪拌効果によって燃料噴霧の気化或いは微粒化を促進することができる。
ステップS100の判定で今回が始動2サイクル目の場合は、まず、ステップS114において始動時水温(thws)に応じた燃料噴射量の増補正率(fwl)が求められる。図7は始動時水温(thws)から増補正率(fwl)を求めるためのマップのイメージを示す図である。始動時水温(thws)が低いほど増補正率(fwl)は大きく設定され、始動時水温(thws)がある温度以上であれば増補正率(fwl)はゼロに設定される。
次のステップS116では、基本の燃料噴射量(tau)が計算される。基本噴射量(tau)の計算には、エアフローセンサ56の信号から計算される吸入空気量(Ga)とクランク角センサ52の信号から計算される機関回転数(NE)とが用いられる。
ステップS118では、ステップS116で算出された基本噴射量(tau)と、ステップS114で算出された増補正率(fwl)とを用いて以下の式により最終噴射量(TAU)が計算される。下式においてfwlkは増補正率(fwl)を減衰させるための減衰係数である。Fwlkはその初期値を1とし、1回転毎に値が減少していく設定になっている。
TAU = tau×(1+fwl×fwlk)
次のステップS120では、後述する判定で用いられる基準値の計算が行われる。その判定とは燃料噴射時期を切り替えるための判定であって、吸入空気量の始動からの積分値(以下、積算Gaと表記する)が切替基準となる積算Ga(gaft)よりも大きいかどうかが判定される。図8は始動時水温(thws)から切替基準積算Ga(gaft)を求めるためのマップのイメージを示す図である。始動時水温(thws)が低いほど切替基準積算Ga(gaft)は大きく設定され、始動時水温(thws)がある温度以上であれば切替基準積算Ga(gaft)はゼロに設定される。
ステップS122では、前回から今回までの間にエアフローセンサ56から取り込まれた信号に基づいて始動からの積算Ga(gat)の値が更新される。そして、次のステップ124において、ステップS122で計算された現在までの積算Ga(gat)がステップS120で計算された切替基準積算Ga(gaft)を超えているかどうか判定される。
ステップS124の判定の結果、現在までの積算Ga(gat)が切替基準積算Ga(gaft)を超えていないときにはステップS110に進み、始動1サイクル目と同様に吸気TDC噴射制御が行われる。つまり、始動2サイクル目以降も、積算Ga(gat)が切替基準積算Ga(gaft)を超えるまでは、燃料噴射期間が吸気弁12の開タイミングに重なるように燃料噴射時期が制御される。これにより、燃焼室10内から吹き返された高温の燃焼ガスを燃料噴霧に衝突させることができ、燃焼ガスの熱と衝突による攪拌効果とによって燃料噴霧の気化或いは微粒化を促進することができる。
そして、現在までの積算Ga(gat)が切替基準積算Ga(gaft)を超えたときにはステップS126に進む。ステップS126が選択されることで、燃料噴射時期の制御は吸気TDC噴射制御から吸気非同期噴射制御に切り替えられる。なお、始動時水温(thws)が高くて切替基準積算Ga(gaft)がゼロに設定されているときには、始動2サイクル目から吸気非同期噴射制御が行われる。
実施の形態3.
次に、本発明の実施の形態3について図1及び図9を参照して説明する。
本発明の実施の形態3としての始動制御装置は、実施の形態1と同様に図1に示す構成の内燃機関に適用される。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態はECU50により実行される始動時の燃料噴射制御に特徴がある。本実施の形態に係る始動時の燃料噴射制御は、実施の形態2に係る始動時の燃料噴射制御がベースとなっている。図9は、本実施形態においてECU50により実行される始動時の燃料噴射制御の内容をフローチャートで示したものである。図9のフローチャートに示す各処理のうち実施の形態2と共通する処理については、それぞれ実施の形態2のものと同一のステップ番号を付している。以下では、実施の形態2と共通する処理についてはその説明を省略或いは簡略し、実施の形態2とは異なる処理について重点的に説明するものとする。
図9に示すルーチンの特徴は、ステップS108において始動時水温(thws)が基準温度(α)よりも低いと判定された場合の処理にある。このルーチンによれば、実施の形態2に係るステップS110の処理に代えてステップS200の処理が行われる。
ステップS200では、ステップS106で算出された最終噴射量(TAU)を複数回に分割して噴射する制御(以下、複数回噴射制御という)が行われる。ここでは、最終噴射量(TAU)は1:3に分割され、最終噴射量(TAU)の4分の1が吸気TDC噴射制御によって噴射される。そして、最終噴射量(TAU)4分の3は、吸気TDC噴射制御に先立ち、吸気非同期噴射制御によって噴射される。吸気非同期噴射制御の噴射終了時期は、吸気TDC噴射制御の燃料噴射期間との間で燃料噴射期間が重ならないような時期(例えば90°BTDC)に設定されている。
上述のように、本実施の形態にかかる始動制御では、少なくとも始動1サイクル目に関しては、燃料噴射時期制御として吸気TDC噴射制御と吸気非同期噴射制御とが併用される。これによれば、吸気TDC噴射制御のみを用いる場合に比較して次のような効果が得られる。
吸気TDC噴射制御によれば、燃焼室10から吹き返される筒内ガスを燃料噴霧に衝突させることができる。しかし、図4にも示すように燃料噴射期間に比較して筒内ガスの吹き返し時間は短い。このため、全ての燃料噴霧が吹き返しによる攪拌効果を得られるわけではない。そこで、本実施の形態では、吹き返しによる攪拌効果が得られる量の燃料については吸気TDC噴射制御を実施し、残りの燃料については吸気非同期噴射制御により早期に噴射することにした。吹き返しによって攪拌できない燃料は早期に噴射しておくことで、吸気ポート内での霧化時間と、霧化されていない燃料が自重で吸気弁12の近傍に溜まる時間とを確保することができる。吸気弁12の近傍に溜まった燃料は、吸気弁12の開弁時の吹き返しにより吸気ポート36の上流に吹き返されて、その気化或いは微粒化が促進される。したがって、本実施の形態にかかる始動制御によれば、噴射燃料全体として気化或いは微粒化を促進することが可能であり、それにより始動時のHCの排出を抑制することができる。
なお、図9に示すルーチンでは、吸気TDC噴射制御と吸気非同期噴射制御の吹き分け比率を1:3に設定しているが、これはあくまでも一例にすぎない。1:4に設定する等、吹き分け比率は適宜に設定することができる。
実施の形態4.
次に、本発明の実施の形態4について図1,図10及び図11を参照して説明する。
本発明の実施の形態4としての始動制御装置は、実施の形態1と同様に図1に示す構成の内燃機関に適用される。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態はECU50により実行される始動時の燃料噴射制御に特徴がある。本実施の形態に係る始動時の燃料噴射制御は、実施の形態3に係る始動時の燃料噴射制御がベースとなっている。図10は、本実施形態においてECU50により実行される始動時の燃料噴射制御の内容をフローチャートで示したものである。図10のフローチャートに示す各処理のうち実施の形態3と共通する処理については、それぞれ実施の形態3のものと同一のステップ番号を付している。以下では、実施の形態3と共通する処理についてはその説明を省略或いは簡略し、実施の形態3とは異なる処理について重点的に説明するものとする。
図10に示すルーチンの特徴は、始動2サイクル目以降の処理にある。このルーチンによれば、ステップS124において現在までの積算Ga(gat)が切替基準積算Ga(gaft)を超えていないと判定された場合、実施の形態3に係るステップS200の処理に代えてステップS300以降の処理が行われる。
まず、ステップS300では、吸気TDC噴射制御による上限燃料噴射量(以下、吸気TDC噴射量という)(tautdc)が現時点の機関回転数(NE)に基づいて決定される。吸気TDC噴射量(tautdc)は吹き返しによる攪拌効果が得られる燃料噴射量の上限値である。図11は機関回転数(NE)から吸気TDC噴射量(tautdc)を求めるためのマップのイメージを示す図である。このマップでは、機関回転数(NE)が高くなるほど吸気TDC噴射量(tautdc)は少なくされている。始動2サイクル目以降は機関回転数(NE)の上昇に伴って吹き返し時間は短くなっていくので、それに合わせて吸気TDC噴射量(tautdc)を少なくするためである。
次のステップS302では、ステップS118で算出された最終噴射量(TAU)がステップS300で得られた吸気TDC噴射量(tautdc)以上であるかどうか判定される。最終噴射量(TAU)が吸気TDC噴射量(tautdc)以上である場合には、一部の燃料は吸気TDC噴射制御では噴射することができない。この場合はステップS306に進み、吸気TDC噴射制御と吸気非同期噴射制御とに分けて燃料を噴射する複数回噴射制御が行われる。詳しくは、吸気TDC噴射制御に先立ち、最終噴射量(TAU)と吸気TDC噴射量(tautdc)との差分の燃料が吸気非同期噴射制御によって噴射される。そして、吸気TDC噴射量(tautdc)の分の燃料が吸気TDC噴射制御によって噴射される。なお、吸気非同期噴射制御の噴射終了時期は、吸気TDC噴射制御の燃料噴射期間との間で燃料噴射期間が重ならないような時期(例えば90°BTDC)に設定されている。
一方、最終噴射量(TAU)が吸気TDC噴射量(tautdc)よりも少ない場合には、全ての燃料を吸気TDC噴射制御によって噴射することができる。その場合は、まず、ステップS304の処理が行われる。ステップS304では、吸気TDC噴射量(tautdc)の値が最終噴射量(TAU)に置き換えられる。その後、ステップS306の処理が行われる。ステップS304の処理により最終噴射量(TAU)と吸気TDC噴射量(tautdc)との差分が無くなり、吸気非同期噴射制御によって噴射される燃料はゼロとなる。そして、最終噴射量(TAU)の分の全ての燃料が吸気TDC噴射制御によって噴射されることになる。
上述のように、本実施の形態にかかる始動制御では、機関回転数が上昇する始動2サイクル目以降は、機関回転数の上昇に伴って短くなる吹き返し時間に合わせて吸気TDC噴射制御による燃料噴射量も減量される。これによれば、吹き返しによる攪拌効果が得られない燃料噴霧の発生を抑えることができる。また、吸気TDC噴射制御において減らされた分の燃料は、吸気非同期噴射制御による早期の噴射によって霧化時間等を確保することができる。したがって、本実施の形態にかかる始動制御によれば、始動2サイクル目以降における噴射燃料全体としての気化或いは微粒化をさらに促進することができる。
実施の形態5.
次に、本発明の実施の形態5について図1及び図12を参照して説明する。
本発明の実施の形態5としての始動制御装置は、実施の形態1と同様に図1に示す構成の内燃機関に適用される。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態はECU50により実行される始動時の燃料噴射制御に特徴がある。本実施の形態に係る始動時の燃料噴射制御は、実施の形態4に係る始動時の燃料噴射制御がベースとなっている。図12は、本実施形態においてECU50により実行される始動時の燃料噴射制御の内容をフローチャートで示したものである。図12のフローチャートに示す各処理のうち実施の形態4と共通する処理については、それぞれ実施の形態4のものと同一のステップ番号を付している。以下では、実施の形態4と共通する処理についてはその説明を省略或いは簡略し、実施の形態4とは異なる処理について重点的に説明するものとする。
図12に示すルーチンの特徴は、始動2サイクル目以降に実施する吸気TDC噴射制御の上限燃料噴射量を、IVOを中心とする所定のクランク角範囲に対応する量としたことにある。前記の所定のクランク角範囲は、吹き返しによる攪拌効果を確実に得られる範囲とされている。このルーチンによれば、ステップS124において現在までの積算Ga(gat)が切替基準積算Ga(gaft)を超えていないと判定された場合、実施の形態4に係るステップS300の処理に代えてステップS400及びS402の処理が行われる。
ステップS400では、IVOを中心とする60°クランク角の範囲で噴射可能な燃料量(以下、60°CA噴射量)(tauca)が現時点の機関回転数(NE)に基づいて決定される。60°CA噴射量(tauca)は機関回転数(NE)が高くなるほど減少する。次のステップS402では、ステップS400で求められた60°CA噴射量(tauca)が吸気TDC噴射量(tautdc)として設定される。
次のステップS302の判定後、このルーチンによれば、実施の形態4に係るステップS306の処理に代えてステップS404の処理が行われる。ステップS404では、吸気TDC噴射制御と吸気非同期噴射制御とに分けて燃料を噴射する複数回噴射制御が行われる。ただし、最終噴射量(TAU)が吸気TDC噴射量(tautdc)よりも少なくてステップS304の処理が行われた場合には、全ての燃料が吸気TDC噴射制御で噴射される。
ステップS404で行われる吸気TDC噴射制御は、燃料噴射の終了時期を基準にして燃料噴射期間が設定されることに特徴がある。ステップS200や実施の形態3に係るステップS306で実行される吸気TDC噴射制御にはそのような限定は無い。これらに関しては、燃料噴射の開始時期を基準にして吸気TDC噴射制御による燃料噴射期間を設定してもよい。ステップS404では、吸気TDC噴射制御による燃料噴射の終了時期をIVOから30°クランク角後としている。
上述のように、本実施の形態にかかる始動制御では、燃料噴射期間がIVOを中心とする60°クランク角の範囲に収まるように、IVOから30°クランク角後を噴射終了時期として吸気TDC噴射制御が行われる。これによれば、吹き返しによる攪拌効果が得られない燃料噴霧の発生をより効果的に防止することができる。
なお、図12に示すルーチンでは、吸気TDC噴射量(tautdc)をIVOを中心とする60°クランク角の範囲に対応する噴射量としているが、IVOを中心とする60°クランク角はあくまでも一例にすぎない。前記のクランク角範囲は、燃料噴射弁34と吸気弁12との位置関係や吸気ポート36の構造に応じて適宜に設定すればよい。また、IVOを中心とするのではなく、IVO前のクランク角とIVO後のクランク角とを異なる設定としてもよい。
実施の形態6.
次に、本発明の実施の形態6について図1及び図13を参照して説明する。
本発明の実施の形態6としての始動制御装置は、実施の形態1と同様に図1に示す構成の内燃機関に適用される。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態はECU50により実行される始動時の燃料噴射制御に特徴がある。本実施の形態に係る始動時の燃料噴射制御は、実施の形態5に係る始動時の燃料噴射制御がベースとなっている。図13は、本実施形態においてECU50により実行される始動時の燃料噴射制御の内容をフローチャートで示したものである。図13のフローチャートに示す各処理のうち実施の形態5と共通する処理については、それぞれ実施の形態5のものと同一のステップ番号を付している。以下では、実施の形態5と共通する処理についてはその説明を省略或いは簡略し、実施の形態5とは異なる処理について重点的に説明するものとする。
図13に示すルーチンの特徴は、始動2サイクル目以降に実施する吸気TDC噴射制御の内容を最終噴射量(TAU)が吸気TDC噴射量(tautdc)以上かどうかによって異ならせたことにある。このルーチンによれば、ステップS302において最終噴射量(TAU)が吸気TDC噴射量(tautdc)以上と判定された場合は、実施の形態5と同様にステップS404の処理が行われる。一方、最終噴射量(TAU)が吸気TDC噴射量(tautdc)よりも少ないと判定された場合は、ステップS304の処理の後、ステップS404ではなく、ステップS500の処理が行われる。
ステップS500で行われる吸気TDC噴射制御は、燃料噴射の終了時期ではなく、燃料噴射の開始時期を基準にして燃料噴射期間が設定されることに特徴がある。ステップS500では、吸気TDC噴射制御による燃料噴射の開始時期をIVOから30°クランク角前としている。
上述のように、本実施の形態にかかる始動制御では、最終噴射量(TAU)が吸気TDC噴射量(tautdc)に収まる場合には、IVOの30°クランク角前から燃料噴射が開始される。これによれば、吹き返しと燃料噴霧の衝突割合を最大化することができ、衝突による燃料噴霧の攪拌効果をより高めることができる。
実施の形態7.
次に、本発明の実施の形態7について図1,図14及び図15を参照して説明する。
本発明の実施の形態7としての始動制御装置は、実施の形態1と同様に図1に示す構成の内燃機関に適用される。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態は始動1サイクル目における吸気弁12の開タイミングに特徴がある。始動1サイクル目における排気弁14の閉タイミングは、実施の形態1と同様に吸気TDCよりも進角側である。より詳しくは、本実施の形態では、排気弁14の閉タイミングは吸気TDCよりも進角側に30°に設定されている。排気弁14の早閉じによる筒内ガスの圧縮効果と圧縮仕事によるクランキングの負荷とのバランスを考慮すると、排気弁14の閉タイミングとしては30°程度が好ましい。
上記のように排気弁14の閉タイミングを決めた場合、図14に示すように、吸気弁12の開タイミングを吸気TDCより進角側に30°(30°BTDC)程度から吸気TDCより遅角側に30°(30°ATDC)程度の範囲内とすることで、吸気弁12の開タイミングにおける筒内ガスの圧力を排気弁14の閉タイミングにおける筒内ガスの圧力よりも高くすることができる。つまり、吸気ポート36への吹き返しを発生させることができる。したがって、図14に示す範囲内に吸気弁12の開タイミングを定め、その開タイミングで燃料噴射を行えば、吹き返された筒内ガスに燃料噴霧が衝突することになる。この筒内ガスの衝突によって燃料噴霧は攪拌され、より気化が進んだ燃料蒸気或いはより微粒化が進んだ燃料噴霧となる。
図15は本実施にかかる排気弁早閉じ制御時の吸気弁及び排気弁の開閉タイミングを示す図である。図15に示すように、本実施の形態では、少なくとも始動1サイクル目の吸気弁12の開タイミングは吸気TDCの近傍に設定される。吸気弁12の開タイミングを吸気TDCに近づけるほど、吸気弁12の開タイミングにおける筒内ガスの圧力と、排気弁14の閉タイミングにおける筒内ガスの圧力との圧力差を大きくすることができる。したがって、本実施の形態によれば、吸気弁12の開弁時に発生する筒内ガスの吹き返しの流速を高めることができ、ひいては、筒内ガスの吹き返しによる燃料噴霧の攪拌効果を高めることができる。
実施の形態8.
次に、本発明の実施の形態8について図1及び図16を参照して説明する。
本発明の実施の形態8としての始動制御装置は、実施の形態1と同様に図1に示す構成の内燃機関に適用される。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態は、始動1サイクル目における吸気弁12の開タイミングを例えば運転条件に応じて制御可能にしている。また、本実施の形態では吸気弁タイミング制御装置22として、吸気弁12をソレノイドによって駆動する電磁式の動弁機構、若しくは、電気モータによってカムを回転させるモータ駆動式の動弁機構が用いられている。これらの動弁機構に共通することは、開弁信号によって瞬時に吸気弁12を開弁させることができることにある。
実施の形態7で述べたように、排気弁14の閉タイミングから吸気TDCまでのクランク角度が吸気弁12の開タイミングと吸気TDCとの間のクランク角度よりも大きくなっている場合には、吸気弁12の開弁時には燃焼室10から吸気ポート36への吹き返しを確実に生じさせることができる。しかし、吹き返しが生じるのであれば、図16に示すように、排気弁14の閉タイミングから吸気TDCまでのクランク角度が吸気弁12の開タイミングと吸気TDCとの間のクランク角度よりも小さくなっていてもよい。例えば、排気弁14の閉タイミングから吸気弁12の開タイミングまでの間に外部から加えられた熱によって筒内ガスの内部エネルギーが増大したときには、図16に示すような吸気弁12の開タイミングでも吹き返しは生じ得る。
燃焼室10から吸気ポート36へ吹き返しが生じる条件は、吸気ポート36の圧力と比して燃焼室10の圧力が高いことである。そこで、本実施の形態に係るECU50は、前記の条件の成立を判定するため、吸気ポート36の圧力を吸気管圧センサ(図示は省略)によって計測し、燃焼室10内の圧力を燃焼室10に設置された筒内圧センサ(図示は省略)によって計測する。そして、燃焼室10の圧力が吸気ポート36の圧力よりも低くなる前に吸気弁タイミング制御装置22を操作して吸気弁12を開弁させる。
なお、始動時の1サイクル目はスロットル32が全開のため吸気ポート36の圧力は大気圧にほぼ等しい。したがって、吸気管圧センサの出力値の代わりとして大気圧センサの出力値と筒内圧センサの出力値とを比較するのでもよい。
その他.
以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、次のように変形して実施してもよい。
実施の形態1では、燃料噴射期間の略中央付近が吸気弁12の開タイミングに重なるようにしているが、このことは、吸気弁12の開タイミングが燃料噴射期間の中央から外れることを否定するものではない。燃料噴射期間の開始直後から終了間際までの少なくとも一部が吸気弁12の開タイミングに重なっているならば、筒内ガスの衝突による燃料噴霧の気化或いは微粒化の促進効果は生じる。
また、実施の形態3乃至6のそれぞれにおいて、始動1サイクル目に実施しているステップS200の燃料噴射時期制御は、吸気TDC噴射制御と吸気非同期噴射制御との吹き分け比率を可変にすることもできる。例えば、始動時水温(thws)に応じて吹き分け比率を変更するのでもよい。
本発明の実施の形態1としての始動制御装置が適用された内燃機関の概略構成図である。 本発明の実施の形態1において実行される排気弁タイミング制御のルーチンを示すフローチャートである。 本発明の実施の形態1にかかる吸気弁及び排気弁の開閉タイミングを排気弁早閉じ制御時と排気弁通常制御時のそれぞれについて示す図である。 本発明の実施の形態1において実行される始動時の燃料噴射時期制御を説明するための図である。 燃料噴射期間内での燃料噴霧の粒径の変化を示す図である。 本発明の実施の形態2において実行される始動時の燃料噴射時期制御のルーチンを示すフローチャートである。 始動時水温(thws)に対する燃料噴射量の増補正率(fwl)の設定を示す図である。 始動時水温(thws)に対する噴射時期切替基準積算Ga(gaft)の設定を示す図である。 本発明の実施の形態3において実行される始動時の燃料噴射時期制御のルーチンを示すフローチャートである。 本発明の実施の形態4において実行される始動時の燃料噴射時期制御のルーチンを示すフローチャートである。 機関回転数(NE)に対する吸気TDC噴射時間(tautdc)の設定を示す図である。 本発明の実施の形態5において実行される始動時の燃料噴射時期制御のルーチンを示すフローチャートである。 本発明の実施の形態6において実行される始動時の燃料噴射時期制御のルーチンを示すフローチャートである。 本発明の実施の形態7にかかる排気弁早閉じ制御時の吸気弁の開タイミングの設定範囲を示す図である。 本発明の実施の形態7にかかる排気弁早閉じ制御時の吸気弁及び排気弁の開閉タイミングを示す図である。 本発明の実施の形態8にかかる排気弁早閉じ制御時の吸気弁及び排気弁の開閉タイミングを示す図である。
符号の説明
10 燃焼室
12 吸気弁
14 排気弁
16 点火プラグ
18 クランク軸
20 スタータ
22 吸気弁タイミング制御装置
24 排気弁タイミング制御装置
30 吸気管
32 スロットル
34 燃料噴射弁
36 吸気ポート
40 排気ポート
50 ECU
52 クランク角センサ
54 水温センサ
56 エアフローセンサ
58 スタートスイッチ
EVO 排気弁の開タイミング
EVC 排気弁の閉タイミング
IVO 吸気弁の開タイミング
IVC 吸気弁の閉タイミング

Claims (9)

  1. 燃料を吸気ポートに噴射する燃料噴射弁と、閉タイミングを調整可能な排気弁とを有する内燃機関の始動制御装置において、
    少なくとも始動時の1サイクル目は前記排気弁の閉タイミングを吸気上死点よりも進角側であって、且つ、その閉タイミングから吸気上死点までのクランク角度が吸気弁の開タイミングと吸気上死点との間のクランク角度よりも大きくなるように制御する排気弁閉タイミング制御手段と、
    少なくとも始動時の1サイクル目は燃料噴射期間が前記吸気弁の開タイミングに重なるように前記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段と、
    を備えることを特徴とする内燃機関の始動制御装置。
  2. 前記燃料噴射時期制御手段は、燃料噴射期間の略中央付近が前記吸気弁の開タイミングに重なるように燃料噴射時期を制御することを特徴とする請求項1記載の内燃機関の始動制御装置。
  3. 前記燃料噴射時期制御手段は、燃料噴射期間を複数回に分割し、分割した燃料噴射期間の1つの期間が前記吸気弁の開タイミングに重なり、他の期間は前記吸気バルブの閉期間内となるように燃料噴射時期を制御することを特徴とする請求項1又は2記載の内燃機関の始動制御装置。
  4. 前記燃料噴射時期制御手段は、始動時の2サイクル目以降は、前記吸気弁の開タイミングに重なる燃料噴射期間を機関回転数の上昇に応じて減少させていくことを特徴とする請求項3記載の内燃機関の始動制御装置。
  5. 燃料を吸気ポートに噴射する燃料噴射弁と、閉タイミングを調整可能な排気弁と、開タイミングを調整可能な吸気弁とを有する内燃機関の始動制御装置において、
    少なくとも始動時の1サイクル目は前記排気弁の閉タイミングを吸気上死点よりも進角側となるように制御する排気弁閉タイミング制御手段と、
    少なくとも始動時の1サイクル目は前記吸気弁の開タイミングを前記吸気ポートの圧力と比して前記内燃機関の燃焼室の圧力が高いときとなるように制御する吸気弁開タイミング制御手段と、
    少なくとも始動時の1サイクル目は燃料噴射期間が前記吸気弁の開タイミングに重なるように前記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段と、
    を備えることを特徴とする内燃機関の始動制御装置。
  6. 燃料を吸気ポートに噴射する燃料噴射弁と、閉タイミングを調整可能な排気弁と、開タイミングを調整可能な吸気弁とを有する内燃機関の始動制御装置において、
    少なくとも始動時の1サイクル目は前記排気弁の閉タイミングを吸気上死点よりも進角側となるように制御する排気弁閉タイミング制御手段と、
    少なくとも始動時の1サイクル目は前記吸気弁の開タイミングを前記燃焼室から前記吸気ポートへ吹き返しが生じるときとなるように制御する吸気弁開タイミング制御手段と、
    少なくとも始動時の1サイクル目は燃料噴射期間が前記吸気弁の開タイミングに重なるように前記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段と、
    を備えることを特徴とする内燃機関の始動制御装置。
  7. 前記吸気弁開タイミング制御手段は、前記吸気弁の開タイミングを前記排気弁の閉タイミングよりも遅角側とすることを特徴とする請求項5又は6記載の内燃機関の始動制御装置。
  8. 前記吸気弁開タイミング制御手段は、前記吸気弁の開タイミングを前記排気弁の閉タイミングから吸気上死点までのクランク角度と同じかそれより小さいクランク角度だけ、吸気上死点よりも進角側とすることを特徴とする請求項5又は6記載の内燃機関の始動制御装置。
  9. 前記排気弁閉タイミング制御手段は、前記排気弁の閉タイミングを吸気上死点よりも進角側にクランク角度で30度以内とすることを特徴とする請求項5又は6記載の内燃機関の始動制御装置。
JP2008214285A 2008-08-22 2008-08-22 内燃機関の始動制御装置 Withdrawn JP2010048194A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008214285A JP2010048194A (ja) 2008-08-22 2008-08-22 内燃機関の始動制御装置
PCT/IB2009/006467 WO2010020852A1 (en) 2008-08-22 2009-08-06 Engine-start control device and method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214285A JP2010048194A (ja) 2008-08-22 2008-08-22 内燃機関の始動制御装置

Publications (1)

Publication Number Publication Date
JP2010048194A true JP2010048194A (ja) 2010-03-04

Family

ID=41328494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214285A Withdrawn JP2010048194A (ja) 2008-08-22 2008-08-22 内燃機関の始動制御装置

Country Status (2)

Country Link
JP (1) JP2010048194A (ja)
WO (1) WO2010020852A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056527A1 (ja) * 2010-10-27 2012-05-03 トヨタ自動車 株式会社 車載内燃機関の制御装置
JP2013050061A (ja) * 2011-08-30 2013-03-14 Nippon Soken Inc 内燃機関バルブタイミング制御装置
WO2013054407A1 (ja) * 2011-10-12 2013-04-18 トヨタ自動車 株式会社 内燃機関制御装置
US8433501B2 (en) 2009-11-19 2013-04-30 Mitsubishi Electric Corporation Internal combustion engine fuel injection control method
US8554455B2 (en) 2010-08-25 2013-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
WO2014050287A1 (ja) * 2012-09-27 2014-04-03 日立オートモティブシステムズ株式会社 筒内噴射エンジンの制御装置
JP2016011656A (ja) * 2014-06-30 2016-01-21 いすゞ自動車株式会社 内燃機関の始動補助装置
JP2020016218A (ja) * 2018-07-27 2020-01-30 アイシン精機株式会社 内燃機関

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098477B2 (ja) * 2013-11-07 2017-03-22 トヨタ自動車株式会社 火花点火式内燃機関の制御システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525737B2 (ja) * 1998-05-06 2004-05-10 日産自動車株式会社 筒内噴射ガソリンエンジン
JP4394318B2 (ja) * 2001-10-12 2010-01-06 株式会社デンソー 内燃機関のバルブタイミング制御装置
JP4049108B2 (ja) * 2004-03-02 2008-02-20 トヨタ自動車株式会社 バルブタイミング制御装置
JP4701871B2 (ja) * 2005-06-28 2011-06-15 日産自動車株式会社 エンジンの制御装置
JP4404028B2 (ja) * 2005-08-02 2010-01-27 トヨタ自動車株式会社 内燃機関の制御装置
JP4367398B2 (ja) * 2005-10-19 2009-11-18 トヨタ自動車株式会社 内燃機関の制御装置
FR2904370B1 (fr) * 2006-07-25 2008-10-17 Peugeot Citroen Automobiles Sa Procede de reduction des emissions d'hydrocarbures d'un moteur froid a injection indirecte d'essence et moteur pour la mise en oeuvre de ce procede

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8433501B2 (en) 2009-11-19 2013-04-30 Mitsubishi Electric Corporation Internal combustion engine fuel injection control method
US8554455B2 (en) 2010-08-25 2013-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
WO2012056527A1 (ja) * 2010-10-27 2012-05-03 トヨタ自動車 株式会社 車載内燃機関の制御装置
US9657657B2 (en) 2010-10-27 2017-05-23 Toyota Jidosha Kabushiki Kaisha Control device for in-vehicle internal combustion engine
CN103189624A (zh) * 2010-10-27 2013-07-03 丰田自动车株式会社 车载内燃机的控制装置
CN103189624B (zh) * 2010-10-27 2015-12-16 丰田自动车株式会社 车载内燃机的控制装置
JP2013050061A (ja) * 2011-08-30 2013-03-14 Nippon Soken Inc 内燃機関バルブタイミング制御装置
US9031767B2 (en) 2011-10-12 2015-05-12 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control device
JPWO2013054407A1 (ja) * 2011-10-12 2015-03-30 トヨタ自動車株式会社 内燃機関制御装置
WO2013054407A1 (ja) * 2011-10-12 2013-04-18 トヨタ自動車 株式会社 内燃機関制御装置
JP2014066221A (ja) * 2012-09-27 2014-04-17 Hitachi Automotive Systems Ltd 筒内噴射エンジンの制御装置
WO2014050287A1 (ja) * 2012-09-27 2014-04-03 日立オートモティブシステムズ株式会社 筒内噴射エンジンの制御装置
JP2016011656A (ja) * 2014-06-30 2016-01-21 いすゞ自動車株式会社 内燃機関の始動補助装置
JP2020016218A (ja) * 2018-07-27 2020-01-30 アイシン精機株式会社 内燃機関

Also Published As

Publication number Publication date
WO2010020852A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP2010048194A (ja) 内燃機関の始動制御装置
US7726289B2 (en) Control apparatus and control method for internal combustion engine
US7716919B2 (en) Control device and control method for internal combustion engine
US7720590B2 (en) Homogenous charge compression ignition engine and controlling method of the engine
JP4525517B2 (ja) 内燃機関
US9014949B2 (en) Apparatus for and method of controlling internal combustion engine
US9494101B2 (en) Control system for internal combustion engine and controlling method for internal combustion engine
US7853399B2 (en) Internal combustion engine control apparatus and method
US6405706B1 (en) System and method for mixture preparation control of an internal combustion engine
JP2008286175A (ja) 可変バルブタイミング機構の制御装置
EP2222945B1 (en) Control device for internal combustion engine
JP2006037812A (ja) エンジンのバルブ特性制御装置
JP2005201185A (ja) エンジンの制御装置
JP2006118452A (ja) 内燃機関のアイドル制御装置
JP2006132398A (ja) デュアル噴射型内燃機関の制御方法
JP5316129B2 (ja) 吸気量制御装置
JP2009216035A (ja) 内燃機関の制御装置
JP4220736B2 (ja) 火花点火式内燃機関の始動制御装置
JP3873809B2 (ja) 内燃機関のバルブタイミング可変制御装置
JP2014185524A (ja) 内燃機関の制御装置
JP2010180724A (ja) 筒内直噴内燃機関の制御装置
JP4120452B2 (ja) 筒内噴射式内燃機関
JP2011202528A (ja) 内燃機関の制御装置
JP2005325782A (ja) 内燃機関の燃料噴射制御装置
US20200141367A1 (en) Fuel injection control system and method

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100415