JP2010045170A - Sample mounting electrode - Google Patents

Sample mounting electrode Download PDF

Info

Publication number
JP2010045170A
JP2010045170A JP2008207899A JP2008207899A JP2010045170A JP 2010045170 A JP2010045170 A JP 2010045170A JP 2008207899 A JP2008207899 A JP 2008207899A JP 2008207899 A JP2008207899 A JP 2008207899A JP 2010045170 A JP2010045170 A JP 2010045170A
Authority
JP
Japan
Prior art keywords
sample
mounting electrode
electrode
sample mounting
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008207899A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshioka
健 吉岡
Yutaka Omoto
大本  豊
Tsunehiko Tsubone
恒彦 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008207899A priority Critical patent/JP2010045170A/en
Publication of JP2010045170A publication Critical patent/JP2010045170A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To evenly retain a sample surface temperature even when density of a coolant groove or a heater is locally uneven. <P>SOLUTION: The sample mounting electrode 113 is used in a plasma treatment device carrying out plasma treatment of a sample disposed in a treatment chamber by supplying treatment gas into the treatment chamber with a decompressed and exhausted interior, supplying high frequency energy into the treatment chamber, and creating plasma, and it is for mounting and holding the sample in the treatment chamber. The sample mounting electrode 113 is equipped with a base part 121 equipped with the coolant groove 122 for circulating a temperature-controlled coolant, and a soaking member 127 and a multilayer dielectric film 123 sequentially mounted on a face mounted with the sample of the base part 121. The soaking member is an AlSiC alloy, and the multilayer dielectric film mounted on the soaking member is equipped with a heater layer and an electrode layer for electrostatic adsorption held between dielectric films. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、試料載置電極に係り、特に、表面温度の均一性を改善した試料載置電極に関する。   The present invention relates to a sample mounting electrode, and more particularly to a sample mounting electrode with improved surface temperature uniformity.

エッチング装置などのプラズマ処理装置は、真空処理容器内に処理すべき試料を載置する電極を配置し、該電極に高周波バイアスを印加するとともに、マイクロ波等の高周波を真空容器内に導入してプラズマを形成し、生成したプラズマにより前記試料に処理を施す。   A plasma processing apparatus such as an etching apparatus arranges an electrode on which a sample to be processed is placed in a vacuum processing container, applies a high frequency bias to the electrode, and introduces a high frequency such as a microwave into the vacuum container. Plasma is formed and the sample is treated with the generated plasma.

前記載置電極は試料を静電的に吸着する静電吸着用電極を備える。また、試料に対するエッチングの均一性あるいはエッチング形状をコントロールするために、電極の平均温度あるいは電極表面上の径方向温度分布を調整して、試料表面温度を調整する。   The placement electrode includes an electrostatic adsorption electrode that electrostatically adsorbs a sample. In addition, in order to control the etching uniformity or etching shape with respect to the sample, the sample surface temperature is adjusted by adjusting the average temperature of the electrode or the radial temperature distribution on the electrode surface.

近年では、半導体デバイスの微細化と複雑化に伴い、多層膜を一括エッチングするニーズが多くなっている。ここで、多層膜とは、例えばレジストマスク/反射防止膜/カーボン膜/金属膜(Ti、W、Ta、Mo)/ポリSi膜/酸化絶縁膜(SiO、SiOC、ポーラスLow−k材など)などの多種多様の材料が複数層積層されている膜である。また、一括エッチングとは、上記のような多層膜の全てあるいは小グループに分けた多層膜部分を、ひとつのエッチング処理装置で、エッチング処理することを指す。 In recent years, with the miniaturization and complexity of semiconductor devices, there is an increasing need for batch etching of multilayer films. Here, the multilayer film is, for example, a resist mask / antireflection film / carbon film / metal film (Ti, W, Ta, Mo) / poly Si film / oxide insulating film (SiO 2 , SiOC, porous Low-k material, etc.) ) And the like are films in which a plurality of layers are laminated. The batch etching means that all the multilayer films as described above or a multilayer film portion divided into small groups is etched with one etching processing apparatus.

一括エッチングを行う場合、それぞれの膜毎に、試料(ウエハ)面内エッチング均一性を良好に保つとともにエッチングの形状(垂直性、エッチングマスクに対する寸法精度)を良好に保ちつつエッチングしなければならない。この場合、それぞれの膜毎に好適なウエハ温度と、その径方向温度分布が存在し、それらは膜種ごとに異なる。このため、エッチングすべき膜種が切り替わるごとに、ウエハ温度を高速、高精度に変更することが望ましい。   When performing batch etching, each film must be etched while maintaining good sample (wafer) in-plane etching uniformity and good etching shape (verticality, dimensional accuracy with respect to the etching mask). In this case, there is a wafer temperature suitable for each film and its radial temperature distribution, which differs for each film type. For this reason, it is desirable to change the wafer temperature at high speed and high accuracy each time the film type to be etched is switched.

試料(ウエハ)表面上に温度分布を付与するためには、(1)温度の異なる複数の冷媒を載置電極本体内に通流させる方法、(2)電極表面と試料との熱伝達のために配されるHe供給路を複数系統設け、各系統毎にHeの圧力を調整する方法、(3)載置電極本体上に薄いヒータ電極を薄い誘電体層を介して配置する方法がある。   In order to provide a temperature distribution on the surface of the sample (wafer), (1) a method of allowing a plurality of refrigerants having different temperatures to flow through the mounting electrode main body, and (2) heat transfer between the electrode surface and the sample. There are a method of providing a plurality of He supply paths arranged in the system and adjusting the He pressure for each system, and (3) a method of disposing a thin heater electrode on the mounting electrode body via a thin dielectric layer.

しかし、(1)の方法は、電極温度分布を高速で変化させることができない。(2)の方法は、例えばLSIゲート加工用のエッチング装置のようにプラズマからの入熱が小さいときには十分な温度変化が得られない。(3)の方法はこのような問題を避けることができるので、近年採用されることが多い。   However, the method (1) cannot change the electrode temperature distribution at high speed. In the method (2), a sufficient temperature change cannot be obtained when the heat input from the plasma is small as in an etching apparatus for LSI gate processing, for example. Since the method (3) can avoid such a problem, it is often adopted in recent years.

図3は、従来の載置電極の例を説明する図である。図に示すように、冷媒溝122を有するTi製基材部121の上面に、溶射法によって、高抵抗アルミナ膜、ヒータ層、吸着層および静電吸着膜で構成する多層膜123が形成されている(特許文献1参照)。なお、電極を構成する基材部121にTiを用いる理由は、Alを主成分とする前記溶射膜の線膨張係数とほぼ等しく、電極温度の変化に伴う熱応力を軽減することができるためと、Tiの熱伝導率が低い(17W・m/K)ことを利用して冷媒溝と基材上面との間に適度な断熱性能を付与するためである。
特開2007−88411号公報
FIG. 3 is a diagram illustrating an example of a conventional placement electrode. As shown in the figure, a multilayer film 123 composed of a high-resistance alumina film, a heater layer, an adsorption layer, and an electrostatic adsorption film is formed on the upper surface of the Ti base member 121 having the coolant groove 122 by a thermal spraying method. (See Patent Document 1). The reason why Ti is used for the base material portion 121 constituting the electrode is substantially equal to the linear expansion coefficient of the sprayed film containing Al 2 O 3 as a main component, and can reduce the thermal stress accompanying the change in electrode temperature. This is because the heat conductivity of Ti is low (17 W · m / K) and appropriate heat insulating performance is imparted between the coolant groove and the upper surface of the base material.
JP 2007-88411 A

しかしながら、上述のように試料載置電極を構成する基材としてTiを用いると、熱伝導率の低さが次の2点に関して問題となる。ひとつは、冷媒溝の配置の不均一に伴う伝熱の不均一が基材表面においても緩和されず、電極表面上での温度分布が不均一になる点である。もうひとつは、電極表面に配置されるヒータの配置が不均一であることに伴い電極表面上における温度分布が不均一になる点である。   However, when Ti is used as the base material constituting the sample mounting electrode as described above, low thermal conductivity becomes a problem with respect to the following two points. One is that the non-uniform heat transfer due to the non-uniform arrangement of the refrigerant grooves is not relaxed even on the substrate surface, and the temperature distribution on the electrode surface becomes non-uniform. The other is that the temperature distribution on the electrode surface becomes non-uniform due to the non-uniform arrangement of the heaters arranged on the electrode surface.

本発明はこれらの問題点に鑑みてなされたもので、表面温度の均一性を改善した試料載置電極を提供するものである。   The present invention has been made in view of these problems, and provides a sample mounting electrode with improved surface temperature uniformity.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

内部が減圧排気される処理室内に処理ガスを供給し、さらに該処理室内に高周波エネルギを供給してプラズマを生成し前記処理室内に配置された試料にプラズマ処理を施すプラズマ処理装置に用いられ、試料を前記処理室内に載置して保持する試料載置電極において、該試料載置電極は、温度調節された冷媒を通流させるための冷媒溝を備えた基材部と、該基材部の試料を載置する面上に順次配置された均熱部材および多層誘電体膜を備え、前記均熱部材はAlSiC合金であり、前記均熱部材上に配置した多層誘電体膜は誘電体膜間に狭持されたヒータ層および静電吸着用電極層を具備する。   Used in a plasma processing apparatus for supplying a processing gas into a processing chamber whose inside is evacuated and further supplying high-frequency energy into the processing chamber to generate plasma and performing plasma processing on a sample placed in the processing chamber, In the sample mounting electrode for mounting and holding the sample in the processing chamber, the sample mounting electrode includes a base material portion having a coolant groove for allowing a temperature-controlled coolant to flow, and the base material portion. A soaking member and a multilayer dielectric film sequentially disposed on the surface on which the sample is placed, wherein the soaking member is an AlSiC alloy, and the multilayer dielectric film disposed on the soaking member is a dielectric film. A heater layer and an electrostatic adsorption electrode layer sandwiched between the electrodes are provided.

本発明は、以上の構成を備えるため、冷媒溝あるいはヒータ密度に局所的不均一がある場合においても試料の表面温度の均一性を確保することができる。   Since the present invention has the above-described configuration, it is possible to ensure the uniformity of the surface temperature of the sample even when there is local nonuniformity in the coolant groove or the heater density.

以下、最良の実施形態を添付図面を参照しながら説明する。図1は、本発明の第1の実施形態にかかる試料載置電極が適用されるエッチング装置を説明する図である。図1において、マイクロ波源101から出力されたマイクロ波は導波管104を介して処理室111に導入される。処理室111には図示しない真空排気系とガス導入系が接続され、プラズマ処理に適した雰囲気、圧力に保持することができる。   Hereinafter, the best embodiment will be described with reference to the accompanying drawings. FIG. 1 is a view for explaining an etching apparatus to which a sample mounting electrode according to the first embodiment of the present invention is applied. In FIG. 1, the microwave output from the microwave source 101 is introduced into a processing chamber 111 through a waveguide 104. A vacuum exhaust system (not shown) and a gas introduction system (not shown) are connected to the processing chamber 111 and can be maintained in an atmosphere and pressure suitable for plasma processing.

処理室に導入されたマイクロ波により、処理室111内のガスはプラズマ化され、被処理材である試料(ウエハ)112に所定のプラズマ処理を行うことができる。なお、プラズマの生成手段は、マイクロ波源によるもののみではなく、高周波を用いた誘導結合手段、または高周波を用いた静電結合手段によるものであって良い。   By the microwaves introduced into the processing chamber, the gas in the processing chamber 111 is turned into plasma, and a predetermined plasma process can be performed on the sample (wafer) 112 that is a material to be processed. The plasma generating means is not limited to a microwave source, but may be an inductive coupling means using a high frequency or an electrostatic coupling means using a high frequency.

試料112は、試料載置電極113上に設置され、自動整合器114を介してバイアス電源115によるバイアス電位が印加される。バイアス電位によりプラズマ中のイオンを試料表面に引き込み、プラズマエッチングを実行する。載置電極113には、試料112と電極113表面との熱伝導を確実にするためのHe導入系116、静電チャックのための吸着用直流電源117、ヒータ温度制御のためのヒータ電源118、電極113を構成する基材を冷却するための冷媒を温調し、循環させるための温調器119が接続されている。また、ヒータ電源118には、載置電極113内の複数個所の温度をモニタし、ヒータ電源にその出力指令値を供給する試料温度制御部120が接続される。   The sample 112 is placed on the sample mounting electrode 113, and a bias potential from the bias power source 115 is applied via the automatic matching unit 114. Plasma etching is performed by attracting ions in the plasma to the sample surface by the bias potential. The mounting electrode 113 includes a He introduction system 116 for ensuring heat conduction between the sample 112 and the surface of the electrode 113, a suction DC power source 117 for electrostatic chuck, a heater power source 118 for heater temperature control, A temperature controller 119 for controlling the temperature of the coolant for cooling the base material constituting the electrode 113 and circulating it is connected. The heater power supply 118 is connected to a sample temperature control unit 120 that monitors temperatures at a plurality of locations in the mounting electrode 113 and supplies output command values to the heater power supply.

図2は、試料載置電極113の詳細を説明する図であり、図2(a)は試料載置電極を示す図、図2(b)は多層誘電体膜23の詳細を示す図である。   2A and 2B are diagrams illustrating details of the sample mounting electrode 113, FIG. 2A is a diagram illustrating the sample mounting electrode, and FIG. 2B is a diagram illustrating details of the multilayer dielectric film 23. FIG. .

試料載置電極は、Tiで構成される基材部121を備え、基材部121内には基材を冷却するための冷媒を流す冷媒溝122が設けられる。冷媒溝122は、載置電極上面での温度均一性を確保するために、ほぼ等間隔に配置される。冷媒溝を流れる冷媒は、たとえばフロン系の冷媒を用い、この冷媒を、流量4〜10l/min、冷凍能力1〜5KW程度のサーキュレータを用いて循環させる。   The sample mounting electrode includes a base material part 121 made of Ti, and a coolant groove 122 through which a coolant for cooling the base material flows is provided in the base material part 121. The coolant grooves 122 are arranged at substantially equal intervals in order to ensure temperature uniformity on the top surface of the placement electrode. As the refrigerant flowing in the refrigerant groove, for example, a fluorocarbon refrigerant is used, and this refrigerant is circulated using a circulator having a flow rate of 4 to 10 l / min and a refrigerating capacity of about 1 to 5 kW.

基材部121の上面には、AlSiC合金で形成された均熱部材127を配置する。均熱部材を構成するAlSiC合金は下地の基材にブレージングまたは金属接着剤により接合する。AlSiCからなる均熱部材127は、厚さ1mmないし4mmの範囲が好適である。後述の計算例では2mmを用いた。   On the upper surface of the base member 121, a heat equalizing member 127 made of an AlSiC alloy is disposed. The AlSiC alloy constituting the soaking member is joined to the underlying base material by brazing or a metal adhesive. The soaking member 127 made of AlSiC is preferably in the range of 1 mm to 4 mm in thickness. In the calculation example described later, 2 mm was used.

均熱部材127を構成するAlSiCは線膨張係数が、7.8×10−6/℃であり、上層に形成される溶射多層膜(主としてAl2O3)の線膨張係数7.3×10−6/℃、およびTi基材の線膨張係数8.4×10−6/℃]と似通っている。このため、これら三者間に温度差が生じても、熱膨張の違いによる熱応力は小さく、溶射膜に剥がれ等が起こりにくく機械的信頼性を向上することができる。   AlSiC constituting the soaking member 127 has a linear expansion coefficient of 7.8 × 10 −6 / ° C., and the thermal expansion multilayer film (mainly Al 2 O 3) formed on the upper layer has a linear expansion coefficient of 7.3 × 10 −6 / And the linear expansion coefficient of the Ti substrate is 8.4 × 10 −6 / ° C.]. For this reason, even if a temperature difference occurs between these three components, the thermal stress due to the difference in thermal expansion is small, and the thermal spraying film is unlikely to peel off and the mechanical reliability can be improved.

また、均熱部材127を構成するAlSiCは、熱伝導率が250W・m/Kと、Ti基材の17W・m/Kに比べて大きい。このため、水平方向の温度均一化能力が大きい。なお、AlSiCは、電気伝導性を有し、かつ高熱伝導、低線膨張係数を有する他の材料、たとえば、Cu−W合金、Cu−Mo合金、純Mo、純W等で置換することができる。これらの材料は、高発熱密度の半導体用ヒートシンクに良く用いられる材料であり、工業的信頼度は確立されている。   Further, AlSiC constituting the soaking member 127 has a thermal conductivity of 250 W · m / K, which is larger than that of the Ti base material of 17 W · m / K. For this reason, the ability to equalize the temperature in the horizontal direction is large. AlSiC can be replaced with other materials having electrical conductivity, high thermal conductivity, and low linear expansion coefficient, such as Cu—W alloy, Cu—Mo alloy, pure Mo, pure W, and the like. . These materials are frequently used for heat sinks for semiconductors having a high heat generation density, and industrial reliability has been established.

AlSiCからなる均熱部材127上には、溶射法によって、静電吸着機能、ヒータ機能を有する多層誘電体膜123を形成する。多層誘電体膜123は、ヒータ電極機能を備えたヒータ層124、静電吸着用電極125、表面吸着層126を備え、ヒータ層の上下は層間絶縁のためのAl層が配設されている。 On the soaking member 127 made of AlSiC, a multilayer dielectric film 123 having an electrostatic adsorption function and a heater function is formed by a thermal spraying method. The multilayer dielectric film 123 includes a heater layer 124 having a heater electrode function, an electrostatic adsorption electrode 125, and a surface adsorption layer 126, and Al 2 O 3 layers for interlayer insulation are disposed above and below the heater layer. ing.

ヒータ層124は、ウエハの中心から径方向に、順次、中央部分、ミドル部分、エッジ部分の3領域に分割されており、温度の径方向分布を任意にリアルタイムで調整できるようになっている。なお、前記3領域を構成する各ヒータは、ほぼ等面積なるように形成する。各ヒータへの通電電力は、たとえば1.5KWの電源を3個用いて給電する。また、前記誘電体層123は、ヒータ金属等を挟み込んだ例えばAlO3、AlN、Y等からなる焼結セラミックスで構成することができる。 The heater layer 124 is divided into three regions of a central portion, a middle portion, and an edge portion sequentially from the center of the wafer in the radial direction, and the temperature radial distribution can be arbitrarily adjusted in real time. In addition, each heater which comprises the said 3 area | region is formed so that it may become substantially equal area. The energization power to each heater is supplied using, for example, three 1.5 kW power supplies. The dielectric layer 123 can be made of a sintered ceramic made of Al 2 O 3, AlN, Y 2 O 3 or the like with a heater metal or the like sandwiched therebetween.

図3は、従来技術として説明した載置電極の構造を示す図であり、Tiで構成される基材部121の上面に、溶射法によって、図2と同様の構成の多層膜123が形成されている。   FIG. 3 is a diagram showing the structure of the mounting electrode described as the prior art, and a multilayer film 123 having the same configuration as that of FIG. 2 is formed on the upper surface of the base material portion 121 made of Ti by a thermal spraying method. ing.

以下、図2に示す本実施形態の載置電極による作用効果を、図2に示す従来の載置電極による作用効果と定量的に比較して説明する。なお、本実施形態による効果については、以下に述べる数値計算によって確認した。数値計算は、電極基材、試料(ウエハ)、電極基材の上面に配置する誘電体溶射薄膜、誘電体溶射薄膜層内に埋め込んだWヒータ層、ウエハと電極表面との間に存在するHe層の各層を、半径方向84メッシュ、高さ方向14メッシュに分割し、軸対称2次元の熱伝導方程式を数値計算するものである。なお、この数値解析手法は、別途実験データとベンチマークされており、計算は一定の信頼度を有する。ウェハと電極との間に封入するHe圧力は1.0KPa一定とした。静電吸着によるウエハの電極への押し付け力は、約10KPaとした。また冷媒の温度は20℃とした。   Hereinafter, the operational effects of the mounting electrode of the present embodiment shown in FIG. 2 will be described in quantitative comparison with the operational effects of the conventional mounting electrode shown in FIG. In addition, the effect by this embodiment was confirmed by the numerical calculation described below. The numerical calculation includes an electrode substrate, a sample (wafer), a dielectric sprayed thin film disposed on the upper surface of the electrode substrate, a W heater layer embedded in the dielectric sprayed thin film layer, and a He existing between the wafer and the electrode surface. Each layer is divided into 84 meshes in the radial direction and 14 meshes in the height direction, and an axisymmetric two-dimensional heat conduction equation is numerically calculated. This numerical analysis method is separately benchmarked with experimental data, and the calculation has a certain level of reliability. The He pressure sealed between the wafer and the electrode was constant at 1.0 KPa. The pressing force of the wafer against the electrode by electrostatic adsorption was about 10 KPa. The temperature of the refrigerant was 20 ° C.

Tiからなる載置電極113に配置する冷媒溝は、図4に示すように、ほぼ等間隔で配置するが、配置される冷媒溝が局所的に不均一に配置される場合がある。すなわち、載置電極には、例えば、ヒータに給電するための給電シャフト、静電吸着膜に給電するための給電シャフト、ウエハ搬送のためのプッシャピン用のシャフト等の縦シャフトが存在する。冷媒溝はこれらを避けて配置しなければならないため、冷媒溝は局所的に不均等に配置されることになる。   As shown in FIG. 4, the refrigerant grooves arranged on the mounting electrode 113 made of Ti are arranged at substantially equal intervals, but the arranged refrigerant grooves may be locally unevenly arranged. That is, the mounting electrode includes a vertical shaft such as a power supply shaft for supplying power to the heater, a power supply shaft for supplying power to the electrostatic adsorption film, and a pusher pin shaft for wafer transfer. Since the refrigerant grooves must be arranged avoiding these, the refrigerant grooves are locally unevenly arranged.

このような場合には、載置電極表面に温度ムラが発生し、仮にヒータ発熱密度が均一であっても、表面温度は不均一になる。   In such a case, temperature unevenness occurs on the surface of the mounting electrode, and even if the heater heat generation density is uniform, the surface temperature becomes non-uniform.

図5および図6は、冷媒溝が不均一に配置されたときの、電極表面での温度不均一の改善の様子を示すための図であって、図5が従来技術の場合、図6が第1の実施形態の電極(図2に示す電極)の場合における温度分布を示す。   FIGS. 5 and 6 are diagrams for illustrating a state of temperature non-uniformity improvement on the electrode surface when the refrigerant grooves are non-uniformly arranged. FIG. The temperature distribution in the case of the electrode (electrode shown in FIG. 2) of 1st Embodiment is shown.

図5および図6は、図4に示すように冷媒溝が均等に並んでいるA−A断面と、冷媒溝が不均等に並んでいるB−B断面で、それぞれ温度分布を計算したものであり、図5の従来技術においては、冷媒溝均等部分では、電極表面(ウエハ表面)温度ははほぼ均一であるが、溝が不均一であるB−B断面部分では、温度差が1.4℃あり、電極表面温度は不均一である。これに対して、図6に示す本実施形態の電極の場合は、温度差が0.6℃と改善されていることがわかる。
次に、ヒータ層の局所不均一配置について述べる。溶射ヒータは、図7に示すように、線幅1.5〜3mmのヒータ線を、ほぼ等間隔で配置するが、載置電極には、例えば、ヒータへの給電シャフト、静電吸着膜への給電シャフト、ウエハ搬送のためのプッシャピン用のシャフト、He供給のためのシャフト等のさまざまな縦シャフトが存在する。このために、ヒータは局所的にシャフト部を迂回して配置する必要が生じる。このとき、前記迂回に起因する温度ムラが発生し、表面温度は不均一になる。
FIG. 5 and FIG. 6 show temperature distributions calculated on the AA cross section where the refrigerant grooves are evenly arranged and the BB cross section where the refrigerant grooves are non-uniformly arranged as shown in FIG. In the prior art of FIG. 5, the temperature of the electrode surface (wafer surface) is substantially uniform at the coolant groove uniform portion, but the temperature difference is 1.4 at the BB cross section where the groove is non-uniform. The electrode surface temperature is non-uniform. On the other hand, in the case of the electrode of this embodiment shown in FIG. 6, it can be seen that the temperature difference is improved to 0.6 ° C.
Next, the local non-uniform arrangement of the heater layer will be described. As shown in FIG. 7, the thermal spray heater has heater wires with a line width of 1.5 to 3 mm arranged at almost equal intervals. For the mounting electrode, for example, a feeding shaft to the heater or an electrostatic adsorption film There are various vertical shafts such as a power feeding shaft, a pusher pin shaft for wafer transfer, and a He supply shaft. For this reason, the heater needs to be locally disposed around the shaft portion. At this time, temperature unevenness due to the detour occurs, and the surface temperature becomes non-uniform.

図8および図9は、図7に示すヒータ迂回部における電極表面での温度不均一の様子を示す図であり、図8が第1の実施形態に示す電極の場合、図9が従来技術の電極の場合の温度分布を示す。   FIGS. 8 and 9 are diagrams showing a state of temperature non-uniformity on the electrode surface in the heater bypass portion shown in FIG. 7. FIG. 8 shows the case of the electrode shown in the first embodiment, and FIG. The temperature distribution in the case of an electrode is shown.

図8および図9においては、シャフト中心からの径方向位置を横軸にとり、ヒータが存在しない直径11mmの円形の迂回領域が生じていると仮定して計算している。図9に示す従来技術における載置電極の冷媒溝均等部分では、シャフト中心部とシャフトから遠方との間の温度差が、ウエハ表面上で約1.0℃生じる。これに対して、図8に示す第1に実施形態の場合には、前記温度差が0.3℃に改善されていることがわかる。   In FIGS. 8 and 9, the calculation is performed assuming that a circular detour region having a diameter of 11 mm in which the heater is not present occurs with the radial position from the shaft center as the horizontal axis. In the refrigerant groove equivalent portion of the mounting electrode in the prior art shown in FIG. 9, a temperature difference between the central portion of the shaft and the distance from the shaft is about 1.0 ° C. on the wafer surface. On the other hand, in the first embodiment shown in FIG. 8, it can be seen that the temperature difference is improved to 0.3 ° C.

図10は、従来技術の載置電極におけるウエハ昇温時の応答性を示す図である。凡例のcenter,middle,edgeは、それぞれR=0,110,147mmの地点における計算値を示す。時間20秒の時点で、ヒータパワーを投入して、昇温を始め、目標値(C(センター)/M(ミドル)/E(エッジ)=70/70/70℃)に達すると、温度を維持すべくフィードバック制御が働くと仮定して計算している。温度上昇時の速度は1.75℃/S、であった。   FIG. 10 is a diagram showing the responsiveness when the wafer is heated in the conventional mounting electrode. Legend center, middle, and edge indicate calculated values at points R = 0, 110, and 147 mm, respectively. At the time of 20 seconds, the heater power is turned on to start the temperature increase. When the target value (C (center) / M (middle) / E (edge) = 70/70/70 ° C.) is reached, the temperature is It is calculated assuming that feedback control works to maintain. The speed at the time of temperature rise was 1.75 ° C./S.

図11は、第1の実施形態における応答性を示す図である。この例では昇温時の温度上昇速度は1.70℃/Sと、従来技術に対してやや性能の劣る結果となった。このような場合、すなわち表面温度の均一性と同時に、応答速度の向上を実現したい場合には、以下に示す第2の実施形態にかかる電極構成を用いるのが好ましい。   FIG. 11 is a diagram illustrating responsiveness in the first embodiment. In this example, the temperature increase rate at the time of temperature increase was 1.70 ° C./S, which was slightly inferior to the prior art. In such a case, that is, when it is desired to improve the response speed simultaneously with the uniformity of the surface temperature, it is preferable to use the electrode configuration according to the second embodiment described below.

図12は、第2実施形態にかかる載置電極を説明する図である。試料載置電極113は、Tiで構成される基材部121を備え、基材部121内には基材を冷却するための冷媒を流す冷媒溝122が設けられる。基材部121の上面には、適度な断熱部材として機能するTiAlV合金層129を配置する。断熱部材を構成するTiAlV合金は下地の基材にブレージングまたは金属接着剤により接合する。また、TiAlV合金層129上にAlSiC合金で形成された均熱部材127を配置する。また、均熱部材127上には、溶射法によって、静電吸着機能、ヒータ機能を有する多層誘電体膜123を形成する。また、ヒータ層124、および静電吸着用電極層125には給電線125が配設される。なお、図において図2に示される部分と同一部分については同一符号を付してその説明を省略する。   FIG. 12 is a diagram for explaining the mounting electrode according to the second embodiment. The sample mounting electrode 113 includes a base material portion 121 made of Ti, and a coolant groove 122 for flowing a coolant for cooling the base material is provided in the base material portion 121. A TiAlV alloy layer 129 that functions as an appropriate heat insulating member is disposed on the upper surface of the base member 121. The TiAlV alloy constituting the heat insulating member is bonded to the underlying base material by brazing or a metal adhesive. A soaking member 127 made of an AlSiC alloy is disposed on the TiAlV alloy layer 129. On the soaking member 127, a multilayer dielectric film 123 having an electrostatic adsorption function and a heater function is formed by a thermal spraying method. In addition, a power supply line 125 is disposed on the heater layer 124 and the electrostatic adsorption electrode layer 125. In the figure, the same parts as those shown in FIG.

TiAlV合金は、熱伝導率が8.1W・m/Kと、Ti金属のそれ(17〜20W・m/K)に比べ小さく、適度な断熱部材として機能する。また線膨張係数はTiと同一であるので、熱応力ひずみの問題は回避できる。また、層の厚さは4mmないし8mmが好適である。後述の計算例では6mmを用いた。   The TiAlV alloy has a thermal conductivity of 8.1 W · m / K, which is smaller than that of Ti metal (17 to 20 W · m / K), and functions as an appropriate heat insulating member. Further, since the linear expansion coefficient is the same as that of Ti, the problem of thermal stress strain can be avoided. The layer thickness is preferably 4 mm to 8 mm. In the calculation example described later, 6 mm was used.

図13は第2の実施形態にかかる載置電極の昇温時の応答性を示す計算結果である。昇温速度は2.28℃/Sと改善される。温度上昇速度は、基材上部と下部の間の熱コンダクタンスが小さいほど、大きくとれるので、低熱伝導部材であるTiAlV」合金を用いたことにより温度上昇性能が向上したものである。
図14は、冷媒溝が不均一に配置されたときの、電極表面での温度不均一の改善の様子を示すための図であって、図6に示す第1の実施形態の電極(図2に示す電極)の場合に比して温度の制御精度および温度分布が改善されていることが分かる。
FIG. 13 is a calculation result showing the responsiveness of the mounting electrode according to the second embodiment when the temperature is raised. The heating rate is improved to 2.28 ° C./S. Since the temperature increase rate increases as the thermal conductance between the upper part and the lower part of the base material decreases, the temperature increase performance is improved by using the TiAlV alloy which is a low heat conductive member.
FIG. 14 is a diagram for illustrating a state of temperature non-uniformity improvement on the electrode surface when the refrigerant grooves are non-uniformly arranged, and is an electrode according to the first embodiment shown in FIG. 6 (FIG. 2). It can be seen that the temperature control accuracy and temperature distribution are improved as compared with the case of the electrode shown in FIG.

水平方向の温度均一性は均一板(ここではAlSiC部材)の熱伝導率が高ければ高いほど、またその下の断熱部材(ここではTiAlV合金部材)の熱伝導率が低ければ低いほど、改善傾向になる。図13は図6に比して、断熱部材をTiAlVにした分、水平方向の均一性も向上したものである。   The temperature uniformity in the horizontal direction tends to improve as the thermal conductivity of the uniform plate (here AlSiC member) is higher and as the thermal conductivity of the thermal insulation member (here TiAlV alloy member) is lower. become. Compared to FIG. 6, FIG. 13 shows an improvement in the uniformity in the horizontal direction as much as the heat insulating member is TiAlV.

図15は、図7に示すヒータ迂回部における電極表面での温度不均一の様子を示す図である。図15に示すように電極表面(ウエハ表面)での、温度不均一性は0.3℃となり、第1の実施形態の場合と同様に、均一性が改善されることがわかる。   FIG. 15 is a diagram showing a state of temperature non-uniformity on the electrode surface in the heater bypass portion shown in FIG. As shown in FIG. 15, the temperature non-uniformity on the electrode surface (wafer surface) is 0.3 ° C., and it can be seen that the uniformity is improved as in the case of the first embodiment.

以上説明したように、本実施形態によれば、冷媒溝あるいはヒータ密度の局所的不均一がある場合においても試料表面温度を均一に保持することができる。   As described above, according to the present embodiment, the sample surface temperature can be kept uniform even when there is local nonuniformity in the coolant groove or the heater density.

第1の実施形態にかかる試料載置電極が適用されるエッチング装置を説明する図である。It is a figure explaining the etching apparatus with which the sample mounting electrode concerning 1st Embodiment is applied. 試料載置電極を説明する図である。It is a figure explaining a sample mounting electrode. 従来の載置電極を説明する図である。It is a figure explaining the conventional mounting electrode. 冷媒溝の局所不均一を説明する図である。It is a figure explaining the local nonuniformity of a refrigerant groove. 冷媒溝に局所不均一がある場合のウエハ表面温度分布の解析例(従来例)を示す図である。It is a figure which shows the example of analysis (conventional example) of wafer surface temperature distribution in case a coolant groove has local nonuniformity. 冷媒溝に局所不均一がある場合のウエハ表面温度分布の解析例(実施形態1)を示す図である。It is a figure which shows the example of analysis of wafer surface temperature distribution (Embodiment 1) in case a coolant groove has local nonuniformity. ヒータの局所不均一を説明する図である。It is a figure explaining the local nonuniformity of a heater. ヒータに局所不均一がある場合のウエハ表面温度分布の解析例(従来例)を示す図である。It is a figure which shows the analysis example (conventional example) of wafer surface temperature distribution in case a heater has local nonuniformity. ヒータに局所不均一がある場合のウエハ表面温度分布の解析例(実施形態1)を示す図である。It is a figure which shows the analysis example (embodiment 1) of a wafer surface temperature distribution in case a heater has local nonuniformity. ウエハ表面温度上昇時の解析例(従来例)を示す図である。It is a figure which shows the example of analysis (conventional example) at the time of wafer surface temperature rise. ウエハ表面温度上昇時の解析例(実施形態1)を示す図である。It is a figure which shows the example of analysis at the time of wafer surface temperature rise (Embodiment 1). 試料載置電極(実施形態2)を説明する図であるIt is a figure explaining a sample mounting electrode (embodiment 2). ウエハ表面温度上昇時の解析例を示す図である。It is a figure which shows the example of an analysis at the time of wafer surface temperature rise. 冷媒溝に局所不均一がある場合のウエハ表面温度分布の解析例を示す図である。It is a figure which shows the example of analysis of wafer surface temperature distribution in case a coolant groove has local nonuniformity. ヒータの局所不均一がある場合のウエハ表面温度分布の解析例を示す図である。It is a figure which shows the example of analysis of wafer surface temperature distribution in case there exists a local nonuniformity of a heater.

符号の説明Explanation of symbols

101 マイクロ波源
111 処理室
112 試料(ウエハ)
113 試料載置電極
114 自動整合器
115 バイアス電源
116 He供給系
117 静電吸着用電源
118 ヒータ電源
119 冷媒温調器
120 ウエハ温度制御部
121 基材部
122 冷媒溝
123 多層誘電体膜
124 ヒータ層
125 静電吸着用電極層
126 表面吸着層
127 均熱部材
101 Microwave source 111 Processing chamber 112 Sample (wafer)
DESCRIPTION OF SYMBOLS 113 Sample mounting electrode 114 Automatic matching device 115 Bias power supply 116 He supply system 117 Power supply for electrostatic adsorption 118 Heater power supply 119 Refrigerant temperature controller 120 Wafer temperature control part 121 Base material part 122 Refrigerant groove 123 Multilayer dielectric film 124 Heater layer 125 Electrostatic adsorption electrode layer 126 Surface adsorption layer 127 Heat equalizing member

Claims (6)

内部が減圧排気される処理室内に処理ガスを供給し、さらに該処理室内に高周波エネルギを供給してプラズマを生成し前記処理室内に配置された試料にプラズマ処理を施すプラズマ処理装置に用いられ、試料を前記処理室内に載置して保持する試料載置電極において、
該試料載置電極は、温度調節された冷媒を通流させるための冷媒溝を備えた基材部と、
該基材部の試料を載置する面上に順次配置された均熱部材および多層誘電体膜を備え、
前記均熱部材はAlSiC合金であり、前記均熱部材上に配置した多層誘電体膜は誘電体膜間に狭持されたヒータ層および静電吸着用電極層を具備することを特徴とする試料載置電極。
Used in a plasma processing apparatus for supplying a processing gas into a processing chamber whose inside is evacuated and further supplying high-frequency energy into the processing chamber to generate plasma and performing plasma processing on a sample placed in the processing chamber, In the sample mounting electrode for mounting and holding the sample in the processing chamber,
The sample mounting electrode includes a base material portion provided with a coolant groove for allowing a temperature-controlled coolant to flow therethrough,
A heat equalizing member and a multilayer dielectric film sequentially disposed on a surface on which the sample of the base material is placed;
The soaking member is an AlSiC alloy, and the multilayer dielectric film disposed on the soaking member includes a heater layer and an electrostatic adsorption electrode layer sandwiched between the dielectric films. Mounting electrode.
内部が減圧排気される処理室内に処理ガスを供給し、さらに該処理室内に高周波エネルギを供給してプラズマを生成し前記処理室内に配置された試料にプラズマ処理を施すプラズマ処理装置に用いられ、試料を前記処理室内に載置して保持する試料載置電極において、
該試料載置電極は、温度調節された冷媒を通流させるための冷媒溝を備えた基材部と、
該基材部の試料を載置する面上に順次配置された断熱部材、均熱部材および多層誘電体膜を備え、
前記断熱部材はTiAlV合金であり、均熱部材はAlSiCからなり、前記均熱部材上に配置した多層誘電体膜は誘電体膜間に狭持されたヒータ層および静電吸着用電極層を具備することを特徴とする試料載置電極。
Used in a plasma processing apparatus for supplying a processing gas into a processing chamber whose inside is evacuated and further supplying high-frequency energy into the processing chamber to generate plasma and performing plasma processing on a sample placed in the processing chamber, In the sample mounting electrode for mounting and holding the sample in the processing chamber,
The sample mounting electrode includes a base material portion provided with a coolant groove for allowing a temperature-controlled coolant to flow therethrough,
A heat insulating member, a heat equalizing member, and a multilayer dielectric film sequentially disposed on a surface on which the sample of the base material is placed;
The heat insulating member is a TiAlV alloy, the soaking member is made of AlSiC, and the multilayer dielectric film disposed on the soaking member includes a heater layer sandwiched between the dielectric films and an electrostatic adsorption electrode layer. A sample mounting electrode.
請求項2記載の試料載置電極において、
断熱部材を構成するTiAlV合金は下地の基材にブレージングまたは金属接着剤により接合されていることを特徴とする試料載置電極。
In the sample mounting electrode according to claim 2,
A sample mounting electrode, wherein a TiAlV alloy constituting a heat insulating member is bonded to an underlying base material by brazing or a metal adhesive.
請求項1記載の試料載置電極において、
均熱部材を構成するAlSiC合金は下地の基材にブレージングまたは金属接着剤により接合されていることを特徴とする試料載置電極。
In the sample mounting electrode according to claim 1,
A sample mounting electrode, wherein the AlSiC alloy constituting the heat equalizing member is joined to a base material by brazing or a metal adhesive.
請求項1または2記載の試料載置電極において、
前記均熱部材はCu−W合金、Cu−Mo合金、Mo、Wのいずれかで構成されていることを特徴とする試料載置電極。
In the sample mounting electrode according to claim 1 or 2,
The soaking member is made of any one of a Cu-W alloy, a Cu-Mo alloy, Mo, and W.
請求項2記載の試料載置電極において、
前記断熱部材の熱伝達率は8.1W・m/K、厚さは4mmないし8mmであることを特徴とする試料載置電極。
In the sample mounting electrode according to claim 2,
The sample mounting electrode, wherein the heat insulating member has a heat transfer coefficient of 8.1 W · m / K and a thickness of 4 mm to 8 mm.
JP2008207899A 2008-08-12 2008-08-12 Sample mounting electrode Pending JP2010045170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207899A JP2010045170A (en) 2008-08-12 2008-08-12 Sample mounting electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207899A JP2010045170A (en) 2008-08-12 2008-08-12 Sample mounting electrode

Publications (1)

Publication Number Publication Date
JP2010045170A true JP2010045170A (en) 2010-02-25

Family

ID=42016325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207899A Pending JP2010045170A (en) 2008-08-12 2008-08-12 Sample mounting electrode

Country Status (1)

Country Link
JP (1) JP2010045170A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147931A1 (en) * 2011-04-27 2012-11-01 住友大阪セメント株式会社 Electrostatic chuck device
JP2014053481A (en) * 2012-09-07 2014-03-20 Tokyo Electron Ltd Plasma etching device
JP2015035446A (en) * 2013-08-07 2015-02-19 日本特殊陶業株式会社 Electrostatic chuck
JP2018530921A (en) * 2015-10-04 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pressurized chamber with low thermal mass
US10573510B2 (en) 2015-10-04 2020-02-25 Applied Materials, Inc. Substrate support and baffle apparatus
US10777405B2 (en) 2015-10-04 2020-09-15 Applied Materials, Inc. Drying process for high aspect ratio features
US11133174B2 (en) 2015-10-04 2021-09-28 Applied Materials, Inc. Reduced volume processing chamber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269600B2 (en) 2011-04-27 2016-02-23 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
WO2012147931A1 (en) * 2011-04-27 2012-11-01 住友大阪セメント株式会社 Electrostatic chuck device
JP6052169B2 (en) * 2011-04-27 2016-12-27 住友大阪セメント株式会社 Electrostatic chuck device
US10153138B2 (en) 2012-09-07 2018-12-11 Tokyo Electron Limited Plasma etching apparatus
JP2014053481A (en) * 2012-09-07 2014-03-20 Tokyo Electron Ltd Plasma etching device
JP2015035446A (en) * 2013-08-07 2015-02-19 日本特殊陶業株式会社 Electrostatic chuck
JP2018530921A (en) * 2015-10-04 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pressurized chamber with low thermal mass
KR102062873B1 (en) * 2015-10-04 2020-01-06 어플라이드 머티어리얼스, 인코포레이티드 Small thermal mass pressurized chamber
US10573510B2 (en) 2015-10-04 2020-02-25 Applied Materials, Inc. Substrate support and baffle apparatus
US10777405B2 (en) 2015-10-04 2020-09-15 Applied Materials, Inc. Drying process for high aspect ratio features
US11133174B2 (en) 2015-10-04 2021-09-28 Applied Materials, Inc. Reduced volume processing chamber
JP2021184479A (en) * 2015-10-04 2021-12-02 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Small thermal mass pressurized chamber
US11424137B2 (en) 2015-10-04 2022-08-23 Applied Materials, Inc. Drying process for high aspect ratio features
JP7223075B2 (en) 2015-10-04 2023-02-15 アプライド マテリアルズ インコーポレイテッド Pressurized chamber with low thermal mass

Similar Documents

Publication Publication Date Title
KR100802667B1 (en) Upper electrode, plasma processing apparatus and method, and recording medium having a control program recorded therein
TWI481297B (en) Method and apparatus for controlling spatial temperature distribution
US8295026B2 (en) Electrostatic chuck and substrate processing apparatus having same
US8282769B2 (en) Shower head and plasma processing apparatus having same
JP2022020732A (en) Extreme uniformity heated substrate support assembly
US20060291132A1 (en) Electrostatic chuck, wafer processing apparatus and plasma processing method
JP6196095B2 (en) Electrostatic chuck
JP2010045170A (en) Sample mounting electrode
JP2016027601A (en) Placing table and plasma processing apparatus
JP2011009351A (en) Plasma processing apparatus and plasma processing method
KR101613950B1 (en) Plasma processing apparatus
JP2006261541A (en) Substrate mounting board, substrate processor and method for processing substrate
JP6239894B2 (en) Electrostatic chuck
TW201936014A (en) Plasma processing apparatus
JP2013008987A (en) Plasma processing device and plasma processing method
JPH11265931A (en) Vacuum processor
JP2007067036A (en) Vacuum processing device
JPH10223621A (en) Vacuum treating apparatus
JP2010157559A (en) Plasma processing apparatus
KR101898079B1 (en) Plasma processing apparatus
JP2008251681A (en) Wafer stage
JP5654083B2 (en) Electrostatic chuck and substrate processing apparatus
CN111261571A (en) Substrate fixing device
JP6392961B2 (en) Electrostatic chuck
JP2004014752A (en) Electrostatic chuck, work piece placement table, and plasma treating apparatus