JP2010042473A - Chamfering device for hard brittle sheet - Google Patents

Chamfering device for hard brittle sheet Download PDF

Info

Publication number
JP2010042473A
JP2010042473A JP2008208026A JP2008208026A JP2010042473A JP 2010042473 A JP2010042473 A JP 2010042473A JP 2008208026 A JP2008208026 A JP 2008208026A JP 2008208026 A JP2008208026 A JP 2008208026A JP 2010042473 A JP2010042473 A JP 2010042473A
Authority
JP
Japan
Prior art keywords
tool
camera
chamfering
downstream
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008208026A
Other languages
Japanese (ja)
Other versions
JP5301919B2 (en
Inventor
Tomoaki Obata
智昭 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2008208026A priority Critical patent/JP5301919B2/en
Publication of JP2010042473A publication Critical patent/JP2010042473A/en
Application granted granted Critical
Publication of JP5301919B2 publication Critical patent/JP5301919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chamfering device capable of measuring machining dimensions for all the machined workpieces without or almost without increasing cycle time and thus achieving higher machining accuracy without reducing productivity, in a chamfering device which machines a side of a hard brittle sheet such as a glass substrate for a display panel. <P>SOLUTION: An upstream side upper camera 5a for looking at an upper surface of a workpiece at both sides thereof is disposed in an upstream side of a sending direction of a table 2 with respect to a tool 3 at both sides in width direction. Also, a downstream side upper camera 5b for looking at an upper surface of a workpiece 1 at both sides thereof in a downstream side of a table sending direction of the tool 3 and a downstream lower camera 6b for looking at a lower surface of the workpiece at both sides thereof in the downstream side are provided. Chamfering is performed while the table is moved and fed, and the chamfering dimensions are measured by the downstream side cameras 5b and 6b immediately following the chamfering. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ディスプレイパネルなどに用いる矩形のガラス基板その他の硬質脆性板の辺を加工する面取装置に関するもので、特に、面取されるガラス基板を載置したテーブルの角度や加工工具の位置を正確に設定するために、加工寸法の計測を可能にした上記装置に関するものである。   The present invention relates to a chamfering device for processing a side of a rectangular glass substrate or other hard brittle plate used for a display panel or the like, and in particular, an angle of a table on which a glass substrate to be chamfered is mounted or a position of a processing tool. It is related with the said apparatus which enabled the measurement of the processing dimension in order to set correctly.

ガラス基板の面取装置は、割断などによって切断されたガラス基板の辺に生ずる鋭い稜線や角を工具(一般的には砥石)で面取りないし丸め加工する装置である。一般的なこの種の面取装置は、図8に示すように、ガラス基板1を負圧で吸着するテーブル2と、このテーブルの両側に配置された工具3とを備えており、テーブル2は、旋回装置で垂直軸回りに90度旋回可能であり、かつテーブル2と工具3、3とは、所定の送り方向(図のY方向)に相対移動可能で、基板1は加工しようとする辺8をこの送り方向と平行にしてテーブルに固定される。   A chamfering device for a glass substrate is a device that chamfers or rounds a sharp ridgeline or corner generated on a side of a glass substrate cut by cutting or the like with a tool (generally a grindstone). As shown in FIG. 8, a general chamfering apparatus of this type includes a table 2 for adsorbing the glass substrate 1 with a negative pressure, and tools 3 arranged on both sides of the table. The turning device can turn 90 degrees around the vertical axis, and the table 2 and the tools 3 and 3 can move relative to each other in a predetermined feed direction (Y direction in the figure), and the substrate 1 is the side to be processed. 8 is fixed to the table in parallel with the feeding direction.

ディスプレイパネルとして用いるガラス基板は、軽量化のために基板厚さが薄くなっており、加工精度も30μ前後の高い精度が要求されている。この精度を実現するために、ガラス基板1(又はこれに貼付されたシート)に、直交する2辺がガラス基板1の辺の方向となる直角三角形の頂点位置に位置決めマーク4を付し、テーブルの送り方向と直交する幅方向(図のX方向)に配置した2個のカメラ5、5で3個の位置決めマーク4の内の幅方向の2個を読取って、テーブルの角度や工具の位置を設定している。   A glass substrate used as a display panel has a thin substrate thickness in order to reduce weight, and high processing accuracy of about 30 μm is required. In order to achieve this accuracy, a positioning mark 4 is attached to the apex position of a right triangle in which two orthogonal sides are in the direction of the side of the glass substrate 1 on the glass substrate 1 (or a sheet attached thereto), and a table Two of the three positioning marks 4 are read by two cameras 5 and 5 arranged in the width direction (X direction in the figure) orthogonal to the feed direction of the table, and the table angle and tool position are read. Is set.

そして、基板の一方の対向辺8、8の加工が終了したら、テーブル2を90度旋回し、工具3の幅方向位置を新たな位置に設定して、第2の対向辺9、9の加工を行っている。   Then, when the processing of one of the opposing sides 8 and 8 of the substrate is completed, the table 2 is turned 90 degrees, the position in the width direction of the tool 3 is set to a new position, and the processing of the second opposing sides 9 and 9 is performed. It is carried out.

このように、ガラス基板1に付された位置決めマーク4の位置を基準としてテーブル角度や工具位置を設定することによって、正確な加工が行われるようにしている。しかし、例えば2つのカメラ5、5の位置関係に誤差があったり、工具3が磨耗したり、工具の高さに誤差があったときは、加工寸法の誤差が生じてくる。   As described above, by setting the table angle and the tool position with reference to the position of the positioning mark 4 attached to the glass substrate 1, accurate processing is performed. However, for example, when there is an error in the positional relationship between the two cameras 5 and 5, the tool 3 is worn out, or there is an error in the height of the tool, an error in the machining dimension occurs.

そこで従来は、試験加工した基板を面取装置から取り出して測定器に載せ、オペレータが測定器の顕微鏡で加工寸法(一般的には、図7に示した位置決めマーク4から面取線7までの距離a、b、面取幅c、d、角の加工寸法e、f)を計測し、その計測値に基づいてテーブルの角度や工具の幅方向及び高さ位置を制御しているNC装置に補正値を入力して、正確な加工が行われるようにしていた。更に、工具磨耗などの経時変化による加工精度の低下を修正するために、適宜加工済基板を抜き取って、上記と同様な方法で加工寸法を計測して、NC装置に必要な補正値を入力していた。   Therefore, conventionally, a test-processed substrate is taken out from the chamfering device and placed on a measuring instrument, and an operator performs processing dimensions (generally from the positioning mark 4 to the chamfering line 7 shown in FIG. To the NC device that measures distances a, b, chamfering widths c, d, corner machining dimensions e, f), and controls the table angle, tool width direction, and height position based on the measured values. A correction value was input so that accurate machining was performed. Furthermore, in order to correct the degradation of machining accuracy due to changes over time, such as tool wear, the processed substrate is appropriately extracted, the machining dimensions are measured in the same way as described above, and the necessary correction value is input to the NC unit. It was.

しかし、加工寸法の計測を人間が行う方法では、不注意や見間違いによる計測ミス、補正値の計算ミスや入力ミスなどが発生する。そこで本願出願人は、下記特許文献1において、テスト加工ないし抜取検査の対象となる板材の加工寸法を面取装置上で自動計測して、その計測値に基づいて面取装置のテーブルや工具の位置を修正する技術手段を提案している。   However, in a method in which a machining dimension is measured by a human, a measurement error due to carelessness or misunderstanding, a correction value calculation error, an input error, or the like occurs. Therefore, the applicant of the present application in Patent Document 1 below, automatically measures the processing dimensions of the plate material to be subjected to test processing or sampling inspection on the chamfering device, and based on the measured value, the table or tool of the chamfering device is measured. A technical means for correcting the position is proposed.

すなわち、面取装置の工具3の上流側(ワークが搬入される側)に、2個の上カメラ5、5とそれらの下方に配置した下カメラ6、6とを設ける。そして、テスト加工する基板や抜取検査する基板については、2つの上カメラ5、5でワーク1に付された幅方向の2個の位置決めマーク4、4を読み取り、テーブル2の角度及び工具3の位置を設定した後、テーブル2を送り方向(+Y方向)に相対移動(以下、単に「送り移動」と言う。)しながら第1の対向辺8、8を面取加工する。この加工が終了したら、テーブル2を戻り方向(−Y方向)に相対移動(以下、単に「戻り移動」と言う。)しながら上カメラ5の一方で送り方向に並んでいる2つの位置決めマーク4を読み取ってワークの傾きを検出する。そして、再びテーブル2を送り移動して、上下のカメラ5、6で上下の加工寸法を計測する。   That is, two upper cameras 5 and 5 and lower cameras 6 and 6 disposed below them are provided on the upstream side of the chamfering tool 3 (the side on which the workpiece is loaded). And about the board | substrate to test-process and the board | substrate to carry out sampling inspection, the two positioning marks 4 and 4 attached to the workpiece | work 1 with the two upper cameras 5 and 5 are read, the angle of the table 2, and the tool 3 are read. After the position is set, the first opposing sides 8 and 8 are chamfered while the table 2 is relatively moved in the feed direction (+ Y direction) (hereinafter simply referred to as “feed movement”). When this processing is completed, the two positioning marks 4 arranged in the feed direction on one side of the upper camera 5 while relatively moving the table 2 in the return direction (−Y direction) (hereinafter simply referred to as “return movement”). To detect the tilt of the workpiece. Then, the table 2 is moved again, and the upper and lower processing dimensions are measured by the upper and lower cameras 5 and 6.

次に、テーブル2を90度旋回し、テーブル2を戻り移動しながら第2の対向辺9、9の面取加工を行い、再び送り移動してワーク1の傾きを検出する。そして、再びテーブル2を戻り移動しながら第2の対向辺9の加工寸法の計測を行うというものである。   Next, the table 2 is turned 90 degrees, the chamfering processing of the second opposing sides 9 and 9 is performed while returning and moving the table 2, and the feed is moved again to detect the tilt of the workpiece 1. Then, the processing dimension of the second opposing side 9 is measured while returning and moving the table 2 again.

特許文献1で提案した方法では、基板の4辺の面取加工と加工寸法の計測をするために、テーブル2を3往復(6通過)させねばならない。なお、加工寸法を計測しないときのワークの加工は、テーブル2を送り移動しながら第1の対向辺8、8を加工し、テーブル2を90度旋回し、テーブル2を戻り移動しながら第2の対向辺9、9を加工する。   In the method proposed in Patent Document 1, the table 2 has to be reciprocated three times (six passes) in order to chamfer the four sides of the substrate and measure the processing dimensions. In addition, the machining of the workpiece when the machining dimension is not measured is performed by machining the first opposing sides 8 and 8 while feeding and moving the table 2, turning the table 2 by 90 degrees, and moving the table 2 back and moving. The opposite sides 9, 9 are processed.

一方、特許文献2には、工具に対してテーブルの送り方向上流側のテーブル幅方向左右に、ガラス基板の上面を見る上カメラと側面を見る側カメラとを配置した面取装置が提案されている。この装置では、上カメラでワークに付された位置決めマークを読んでテーブル角度と工具の位置設定とを行い、テーブルの送り移動で第1の対向側辺を加工し、戻り移動しながら第1の対向辺の加工寸法の計測を行い、戻った所でテーブルを90度旋回し、再度の送り移動で第2の対向辺を面取加工し、再度の戻り移動で第2の対向辺の加工寸法を計測する。この特許文献2で提案された方法では、4辺の面取加工と加工寸法の計測を行うのに、テーブルを2往復(4通過)させることとなる。   On the other hand, Patent Document 2 proposes a chamfering device in which an upper camera for viewing an upper surface of a glass substrate and a side camera for viewing a side surface are arranged on the left and right in the table width direction on the upstream side in the table feed direction with respect to the tool. Yes. In this apparatus, the upper camera reads the positioning mark attached to the workpiece, sets the table angle and the tool position, processes the first opposite side by the table feed movement, and moves the first side while moving back. Measure the processing dimension of the opposite side, turn the table 90 degrees at the return position, chamfer the second opposing side by the feed movement again, and process the dimension of the second opposing side by the return movement again Measure. In the method proposed in Patent Document 2, the table is reciprocated twice (four passes) in order to perform chamfering of four sides and measurement of the processing dimension.

更に下記特許文献3には、特許文献1の下カメラに相当する第2光源付の第2カメラを上カメラに相当する第1カメラの外側に並設し、第2光源の照射を左右の両ミラーによって板ガラスの下面に反射させるようにした構造が示されている。
特開2007−223005号公報 特開2007−38327号公報 特開2004−99424号公報
Further, in Patent Document 3 below, a second camera with a second light source corresponding to the lower camera of Patent Document 1 is arranged side by side on the outside of the first camera corresponding to the upper camera. A structure is shown in which the light is reflected on the lower surface of the plate glass by a mirror.
JP 2007-22305 A JP 2007-38327 A JP 2004-99424 A

特許文献1記載の発明では、加工寸法を計測するワークは3往復で加工と計測とを行っており、計測しないワークは、1往復で加工のみを行っている。一方、特許文献2記載の発明では、2往復でワークの加工と計測とを行っている。特許文献1の発明では、ワークの傾き検出を独立の計測項目としているため、加工と計測に3往復必要であるが、特許文献2のように、この計測項目を外せば、2往復でワークの加工と計測を行うことができる。   In the invention described in Patent Document 1, a workpiece for measuring a machining dimension is processed and measured in three reciprocations, and a workpiece that is not measured is processed only in one reciprocation. On the other hand, in the invention described in Patent Document 2, the workpiece is processed and measured in two reciprocations. In the invention of Patent Document 1, since workpiece tilt detection is an independent measurement item, three reciprocations are required for machining and measurement. However, as in Patent Document 2, if this measurement item is removed, the workpiece can be detected in two reciprocations. Processing and measurement can be performed.

特許文献1及び2記載の方法は、いずれも加工と計測とをそれぞれ独立のテーブルの相対移動で行っている。従って、4辺の加工と計測を行うためには、最低4回の相対移動が必要である。   In both methods described in Patent Documents 1 and 2, processing and measurement are performed by relative movement of independent tables. Therefore, at least four relative movements are required to perform the processing and measurement on the four sides.

工具の構造によっては、加工時のテーブル送り方向が1方向に限定されることがある。この場合には、ワークの搬送方向に面取装置を2台並べ、その中間にワークを90度転向させる転向台を設ける構造が加工のタクトタイムを速くする上で有利である。しかし、この場合、従来構造の面取装置では、面取装置上で加工寸法の計測を行うことができない。   Depending on the structure of the tool, the table feed direction during processing may be limited to one direction. In this case, a structure in which two chamfering devices are arranged in the workpiece conveyance direction and a turning table for turning the workpiece 90 degrees in the middle is advantageous in increasing the machining tact time. However, in this case, the chamfering device having the conventional structure cannot measure the machining dimension on the chamfering device.

一方、ワークを90度旋回させる機構を備えた面取装置では、特許文献1、2に記載のように、テーブルの往復相対移動の間にワークの旋回動作を入れることにより、1台の面取装置で4辺の加工を行うことができる。そして、ワークの加工を一方向の相対移動時にのみで行うときは、次の加工動作を行うためにテーブルを戻す必要があるので、この戻り移動のときに、加工寸法の計測を行ってやれば、面取装置上で加工寸法を自動計測することによるタクトタイムの増加は生じないようにも考えられる。   On the other hand, in a chamfering device having a mechanism for turning a workpiece by 90 degrees, as described in Patent Documents 1 and 2, a chamfering operation is performed by moving the workpiece during the reciprocal relative movement of the table. Processing of four sides can be performed by the apparatus. And when machining the workpiece only during relative movement in one direction, it is necessary to return the table to perform the next machining operation, so if the machining dimension is measured during this return movement It is also conceivable that the tact time is not increased by automatically measuring the machining dimension on the chamfering device.

しかし、実際は、戻り移動を高速で行うと、カメラの画像が流れて加工寸法の計測ができず、高速加工が可能な砥石を使用したときは、加工時の送り速度より計測時の戻り速度の方を遅くしなければならないこともある。すなわち、計測を行わないときは、高速の戻り移動が可能であるが、計測するときは、戻り速度が遅くなり、従って、タクトタイムが延びるということになる。   However, in reality, if the return movement is performed at a high speed, the image of the camera flows and the machining dimensions cannot be measured.When a grindstone capable of high-speed machining is used, the return speed at the time of measurement is more Sometimes you have to slow down. That is, when the measurement is not performed, the return movement can be performed at a high speed. However, when the measurement is performed, the return speed is decreased, and therefore the tact time is extended.

このようなことから、予め定めた複数個のワーク加工毎に一回のワーク寸法の計測を行って、必要な補正値を設定していた。この場合、次回の計測を行うまでの間の複数個のワーク加工中に加工誤差が許容値を超えて不良品が生ずることがないように、マージンを取って補正値を設定する必要がある。すなわち許容される加工誤差より高い精度で補正値を設定する必要がある。このマージンを大きく取ることができれば、それだけ計測動作の間でのワークの加工個数を多くすることができ、生産性を高くできる。   For this reason, the workpiece size is measured once for each of a plurality of predetermined workpieces, and a necessary correction value is set. In this case, it is necessary to set a correction value with a margin so that a machining error does not exceed an allowable value and a defective product does not occur during machining of a plurality of workpieces until the next measurement is performed. That is, it is necessary to set the correction value with higher accuracy than the allowable machining error. If this margin can be made large, the number of workpieces to be processed during the measurement operation can be increased, and productivity can be increased.

しかし、要求される加工精度が厳格になると、このマージンを取ることが困難になり、最終的には加工された総てのワークの加工寸法を計測してその都度必要に応じて補正値を変更しなければならなくなり、従来構造の面取装置では、生産性の低下を余儀なくされることになる。   However, if the required machining accuracy becomes strict, it will be difficult to take this margin, and eventually the machining dimensions of all the workpieces that have been machined will be measured, and the correction value will be changed as necessary. In the conventional chamfering apparatus, productivity must be reduced.

この発明は、上記の問題を解決するためになされたものである。すなわち、タクトタイムを全く又は殆ど増加させることなく、加工した総てのワークについて加工寸法の計測を行うことが可能な、従って、より高い加工精度を生産性を低下させることなく実現することができる面取装置を提供することを課題としている。   The present invention has been made to solve the above problems. That is, it is possible to measure the machining dimensions of all the workpieces that have been processed with little or no increase in tact time, and therefore higher machining accuracy can be achieved without reducing productivity. It is an object to provide a chamfering device.

この発明では、テーブル2の工具3に対する送り方向上流側の幅方向両側、すなわち装置にワーク1が最初に送り込まれる側のワーク1を幅方向に挟む両側に、ワークの両側辺部上面を見る上流側上カメラ5aを配置すると共に、工具3のテーブル送り方向下流側でワーク1の両側辺部上面を見る下流側上カメラ5bと、当該下流側でワークの両側辺部下面を見る下流側下カメラ6bとを設けた面取装置を提供することにより、上記課題を解決している。   In the present invention, the upstream side of the side surfaces of the workpieces is viewed upstream on both sides in the width direction upstream of the tool 2 of the table 2, that is, on both sides of the workpiece 1 on the side where the workpiece 1 is first fed into the apparatus in the width direction. A downstream upper camera 5b in which the upper side camera 5a is disposed and the upper surface of both sides of the workpiece 1 is viewed on the downstream side in the table feed direction of the tool 3 and the lower surface of both sides of the workpiece is viewed on the downstream side. The above-mentioned problem is solved by providing a chamfering device provided with 6b.

工具3と下流側カメラ5b、6bとの送り方向の間隔は、一定であり、当該間隔は、工具3と上流側上カメラ5aとの送り方向の間隔より狭く、一般的には半分以下である。また、カメラ5a、5b、6bと工具3とは、同時に幅方向移動できる構造とすることができる。従って、工具3をワーク1の寸法に応じて幅方向に移動させる幅方向移動台16にカメラ5a、5b、6bを装着し、当該幅方向移動台16に上下動自在に工具3を装着する構造が採用可能である。   The distance in the feed direction between the tool 3 and the downstream cameras 5b and 6b is constant, and the distance is narrower than the distance in the feed direction between the tool 3 and the upstream upper camera 5a, and is generally less than half. . In addition, the cameras 5a, 5b, 6b and the tool 3 can be configured to be movable in the width direction at the same time. Therefore, a structure in which the cameras 5a, 5b, and 6b are mounted on the width direction moving table 16 that moves the tool 3 in the width direction according to the dimensions of the workpiece 1, and the tool 3 is mounted on the width direction moving table 16 so as to be movable up and down. Can be adopted.

ガラス基板の面取は、表裏両面に行われるので、加工寸法を計測するためには、特許文献1、2に示すように、4個のカメラが必要である。従って、この発明の面取装置では、カメラの設置個数が2個増えることになる。もし、ワークの面取加工をテーブルの送り移動(正送り方向の相対移動)と戻り移動(負送り方向の相対移動)との両方向で行いたいときは、ワークの側辺部下面を見る下カメラ6aをワークの送り方向上流側にも設ける必要がある。従って、この場合には、従来構造に比べて4個のカメラが増設されることとなる。   Since the chamfering of the glass substrate is performed on both the front and back surfaces, four cameras are required as shown in Patent Documents 1 and 2 in order to measure the processing dimensions. Therefore, in the chamfering apparatus of the present invention, the number of cameras installed is increased by two. If you want to chamfer the workpiece in both directions of the table feed movement (relative movement in the positive feed direction) and return movement (relative movement in the negative feed direction), the lower camera that looks at the bottom of the side of the workpiece 6a must also be provided on the upstream side of the workpiece feeding direction. Therefore, in this case, four cameras are added as compared with the conventional structure.

上流側カメラ5a、6aと工具3とは、従来装置と同様な位置関係で設けられる。下流側カメラ5b、6bは、工具3との間の送り方向の距離をできるだけ接近させて設けるのが好ましい。しかし、ワーク1を加工するときは、工具3に切削水(純水)が供給されるので、この切削水の水滴が下流側カメラ5b、6bで見ている部分に残らないようにする必要があり、そのために、工具3と下流側カメラ5b、6bとの間に、切削水を遮断しかつワークに付着した水滴を除去するための、エアカーテンを設けることが通常は必要である。   The upstream cameras 5a and 6a and the tool 3 are provided in the same positional relationship as in the conventional apparatus. The downstream cameras 5b and 6b are preferably provided with the distance in the feed direction between the tools 3 as close as possible. However, since the cutting water (pure water) is supplied to the tool 3 when the workpiece 1 is machined, it is necessary to prevent the water droplets of the cutting water from remaining in the portions viewed by the downstream cameras 5b and 6b. For this reason, it is usually necessary to provide an air curtain between the tool 3 and the downstream cameras 5b and 6b for blocking the cutting water and removing water droplets adhering to the workpiece.

この発明の面取装置では、上流側上カメラ5aでワークに設けた位置決めマークを読取ってテーブルの角度(又は送り移動中の工具の幅方向移動。特開2003−340697号公報参照。)と工具の位置とを設定する。そして、テーブルを送り移動しながら面取加工を行い、加工を行った直後に下流側カメラ5b、6bで面取寸法の計測を行う。従って、ワークの1回の相対送り(パスないし通過)でワークの加工と加工寸法の計測とを行うことができる。   In the chamfering apparatus of the present invention, the positioning mark provided on the workpiece is read by the upstream upper camera 5a, and the angle of the table (or movement in the width direction of the tool during feed movement; refer to Japanese Patent Laid-Open No. 2003-340697) and the tool. Set the position. Then, chamfering is performed while feeding and moving the table, and the chamfer dimension is measured by the downstream cameras 5b and 6b immediately after the processing. Therefore, the workpiece can be machined and the machining dimension can be measured by one relative feed (pass or pass) of the workpiece.

下カメラ6(6a、6b)は、ワークの側辺部下面を見るカメラであって、必ずしもワークの下方に配置する必要はない。例えば図2に示すように、下流側上カメラ5bと下カメラ6bとをワーク1の側辺部上方となる位置に下カメラ6bをワークの幅方向外側となる位置にして共に下向きにして配置し、テーブル2のワーク載置面より下に配置した45度傾斜した2枚のミラー25、26で下カメラ6bの光軸19をワーク1の側辺部下面に向ける構造を採用することができる。図4に示すように、下カメラ6bの光軸が幅方向内側に向くように斜めに設けたときは、一枚のミラー25でその光軸19をワーク1の側辺部下面に向けることもできる。   The lower camera 6 (6a, 6b) is a camera that looks at the lower surface of the side part of the workpiece, and is not necessarily arranged below the workpiece. For example, as shown in FIG. 2, the downstream upper camera 5b and the lower camera 6b are arranged at positions above the side of the work 1, and the lower camera 6b is arranged at the position outside the width direction of the work and both face downward. A structure in which the optical axis 19 of the lower camera 6b is directed to the lower surface of the side portion of the work 1 by two mirrors 25 and 26 inclined by 45 degrees arranged below the work placement surface of the table 2 can be employed. As shown in FIG. 4, when the lower camera 6 b is provided obliquely so that the optical axis is directed inward in the width direction, the optical axis 19 may be directed to the lower surface of the side portion of the work 1 with a single mirror 25. it can.

更にこのような取付構造において、下カメラ6bの光軸19がテーブル2の上面高さを通過する位置にその光軸をテーブル2の幅方向内側に水平に反射させるハーフミラー28を置き、ワーク寸法が変わったときのテーブル2の段取替え時にテーブル上面(ワーク載置面)の高さを計測することも可能である。この場合、下カメラ6bがワーク2の側辺部下面を見るか、テーブル2の側面を見るかは、それぞれの読取方向に設けた照明ランプ29、30をオンオフすることによって選択できる。すなわち、ワークの側辺部下面を照明するランプ29を点灯したときは、下カメラ6bは当該下面を読むこととなり、テーブル側面を照明するランプ30を点灯したときは、下カメラ6bは、テーブル2の上面の高さを計測する。   Further, in such a mounting structure, a half mirror 28 that horizontally reflects the optical axis of the lower camera 6b on the inner side in the width direction of the table 2 is placed at a position where the optical axis 19 of the lower camera 6b passes the height of the upper surface of the table 2. It is also possible to measure the height of the table upper surface (work placement surface) when the table 2 is replaced when the table changes. In this case, whether the lower camera 6b sees the lower surface of the side portion of the workpiece 2 or the side of the table 2 can be selected by turning on and off the illumination lamps 29 and 30 provided in the respective reading directions. That is, when the lamp 29 that illuminates the lower surface of the side of the workpiece is turned on, the lower camera 6b reads the lower surface, and when the lamp 30 that illuminates the side of the table is lit, the lower camera 6b Measure the height of the top surface.

この発明の面取装置では、工具3に対するテーブル2の1パス(1通過)で面取加工と加工寸法の計測とが行われる。従って、加工寸法の計測のためにテーブル2の相対移動を行う必要がなくなり、加工される総てのワークについて加工寸法の計測を行っても、タクトタイムが全く増加しない(計測速度が加工速度より速い場合。)かタクトタイムの増加が僅かで済む(加工速度より計測速度が遅い場合。この場合は、加工速度を計測速度に合せる必要がある。)ので、生産性を全く、又は殆ど低下させないで、総てのワークの加工寸法の計測を行って、一枚のワークの加工毎に必要な補正値の設定を行うことが可能になり、高精度の面取加工を高い生産性で行うことができるという効果がある。   In the chamfering apparatus of the present invention, the chamfering and the measurement of the machining dimension are performed in one pass (one pass) of the table 2 with respect to the tool 3. Accordingly, it is not necessary to perform relative movement of the table 2 for measuring the machining dimension, and the tact time is not increased at all even if the machining dimension is measured for all workpieces to be machined (the measurement speed is higher than the machining speed). (In the case of high speed.) Or tact time increases only slightly (when the measurement speed is slower than the processing speed. In this case, it is necessary to match the processing speed to the measurement speed), so the productivity is not reduced at all or hardly. Therefore, it is possible to measure the machining dimensions of all workpieces and set the necessary correction value for each workpiece machining, and perform high-precision chamfering with high productivity. There is an effect that can be.

以下、この発明の好ましい実施形態の幾つかについて、図面を参照して説明する。   Several preferred embodiments of the present invention will be described below with reference to the drawings.

図1ないし図3は、この発明のに面取装置の第1実施例を示した図で、図1は主要機器構成の概要を示す斜視図、図2は工具及びカメラの装着構造を示す模式的な斜視図、図3は下流側カメラとワークの位置関係を示す正面図である。   1 to 3 are views showing a first embodiment of a chamfering apparatus according to the present invention. FIG. 1 is a perspective view showing an outline of the main equipment configuration. FIG. 2 is a schematic view showing a tool and camera mounting structure. FIG. 3 is a front view showing the positional relationship between the downstream camera and the workpiece.

図において、11は図示しないy方向のレールに沿って移動するテーブル基台、2aはテーブル基台11に図示しない鉛直軸回りの旋回装置を介して装着された円テーブル、2bは円テーブル2aの幅方向(図のX方向)両側にテーブル基台11に対して幅方向に近接離隔自在に装着された送り方向に細長い側テーブルである。両側の側テーブル2bは、ワーク1の加工する側辺8、9の間隔に応じて幅方向に移動し、ワーク1の旋回や角度の設定は、円テーブル2aが側テーブル2bより僅かに高く上昇した後、円テーブル2aが旋回し、旋回後下降してワーク1を側テーブル2bで支持することにより行われる。このような円テーブル2aとその両側の側テーブル2bを備えたテーブル2は、本願出願人が特開2005−329471号公報に詳細に開示している。   In the figure, 11 is a table base that moves along a rail in the y direction (not shown), 2a is a circular table mounted on the table base 11 via a turning device around a vertical axis (not shown), and 2b is a circular table 2a. The side table is elongated in the feed direction and is mounted on the both sides of the table base 11 in the width direction (X direction in the drawing) so as to be close to and away from each other in the width direction. The side tables 2b on both sides move in the width direction in accordance with the distance between the side edges 8 and 9 to be processed of the workpiece 1, and the circular table 2a is slightly higher than the side table 2b when the workpiece 1 is turned and the angle is set. After that, the circular table 2a is turned, lowered after turning, and supported by the side table 2b. The table 2 having such a circular table 2a and side tables 2b on both sides thereof is disclosed in detail in Japanese Patent Application Laid-Open No. 2005-329471.

16は、テーブル2の送り方向の移動ストロークの中間位置において、テーブル2を幅方向に挟む両側の位置に立設された図示しないコラムに、両側のものがそれぞれ幅方向に個別に移動可能に装着された幅方向移動台、17は幅方向移動台16に昇降自在に装着された昇降台、3は昇降台17に装着された工具(複数枚の円板砥石からなる砥石ユニット)である。18は、工具駆動モータ、5aは上流側上カメラ、5bは下流側上カメラ、6bは下流側下カメラである。工具駆動モータ18は、昇降台17に固定されている。カメラ5a、5b、6bは、幅方向移動台16に上下位置を微調整可能に取付けられている。   16 is attached to a column (not shown) standing on both sides sandwiching the table 2 in the width direction at the middle position of the movement stroke in the feed direction of the table 2 so that both sides can be individually moved in the width direction. Reference numeral 17 denotes a width-moving table, 17 is a lifting table mounted on the width-moving table 16 so as to be movable up and down, and 3 is a tool (a grindstone unit made up of a plurality of disc grindstones) mounted on the lifting table 17. Reference numeral 18 denotes a tool drive motor, 5a denotes an upstream upper camera, 5b denotes a downstream upper camera, and 6b denotes a downstream lower camera. The tool drive motor 18 is fixed to the lifting platform 17. The cameras 5a, 5b, and 6b are attached to the movable table 16 in the width direction so that the vertical position can be finely adjusted.

下流側カメラ5b、6bは、図3に示すように、工具3がワーク1の側辺8、9を加工する位置に幅方向移動台16が移動したときに、下流が上カメラ5bがその側辺部の上方に位置するように取付けられ、下流側下カメラ6bがその幅方向外側で、ワークの側辺8、9から外れた位置の情報に位置するように取付けられている。   As shown in FIG. 3, the downstream cameras 5b and 6b are arranged such that when the width direction moving table 16 is moved to a position where the tool 3 processes the sides 8 and 9 of the workpiece 1, the upstream camera 5b is on the downstream side. It is attached so that it may be located above a side part, and it is attached so that the downstream lower camera 6b may be located in the information of the position which removed from the sides 8 and 9 of the work outside the width direction.

25及び26は、下流側下カメラ6bの光軸19を90度づす屈曲して当該光軸をワーク1の側辺部下方に向けるミラー、28は、下流側下カメラの光軸19がテーブル2の上面位置を通過する高さの位置に設けられたハーフミラーで、当該光軸19をテーブル2の側面に向く方向に屈曲させる。29は、ワーク1の側辺部下面を照明する下ランプ、30はテーブル2の側面を照明する側ランプである。ワーク1の側辺部上面を照明するランプは、下流側上カメラ5bに内蔵されているものを使用している。これらのミラー25、26及びハーフミラー28並びにランプ29、30は、幅方向移動台16に取付け螺れている。   Reference numerals 25 and 26 denote mirrors which bend the optical axis 19 of the downstream lower camera 6b by 90 degrees and direct the optical axis downward to the side of the work 1, and reference numeral 28 denotes the optical axis 19 of the downstream lower camera. The optical axis 19 is bent in a direction toward the side surface of the table 2 by a half mirror provided at a height that passes through the upper surface position of 2. Reference numeral 29 denotes a lower lamp that illuminates the lower surface of the side portion of the workpiece 1, and 30 denotes a side lamp that illuminates the side surface of the table 2. As the lamp that illuminates the upper surface of the side portion of the work 1, the lamp built in the downstream upper camera 5b is used. These mirrors 25, 26, half mirror 28 and lamps 29, 30 are attached to the width direction moving table 16 and twisted.

31及び32は、工具3と下流側カメラ5b、6bとのワーク送り方向の間の位置において、幅方向外側端を幅方向移動台16に固定されて、幅方向内側に延在しているエアノズルである。上ノズル31は、テーブル2に固定したワーク1の上面の上方に位置し、下ノズル32は、テーブル2に固定したワーク1の下面の下方に位置している。上ノズル31の下面及び下ノズル32の上面には、幅方向に長いスリット状のノズル孔が設けられ、工具3がワーク1の側辺を加工するとき、これらのノズル31、32から空気が膜状に噴出して、工具3と下流側カメラ5b、6b及びミラー25、26の間を遮断するエアカーテンが形成される。   31 and 32 are air nozzles that extend inward in the width direction, with the width direction outer end fixed to the width direction moving table 16 at a position between the tool 3 and the downstream camera 5b, 6b in the workpiece feeding direction. It is. The upper nozzle 31 is located above the upper surface of the work 1 fixed to the table 2, and the lower nozzle 32 is located below the lower surface of the work 1 fixed to the table 2. On the lower surface of the upper nozzle 31 and the upper surface of the lower nozzle 32, slit-like nozzle holes that are long in the width direction are provided, and when the tool 3 processes the side of the workpiece 1, air is filmed from these nozzles 31 and 32. Thus, an air curtain is formed that blocks the tool 3 from the downstream cameras 5b and 6b and the mirrors 25 and 26.

テーブル基台11の送り方向の移動動作、円テーブル2aの旋回動作、側テーブル2bの幅方向移動動作、幅方向移動台16の移動動作、昇降台17の昇降動作は、図示しないNC制御器の指令値で制御されるサーボモータによって駆動されている。これらの指令値は、NC制御器の補正値メモリに設定された補正値によって補正されて、各動作を駆動するサーボモータに与えられている。   The movement operation of the table base 11 in the feeding direction, the turning operation of the circular table 2a, the movement operation in the width direction of the side table 2b, the movement operation of the width direction movement table 16, and the raising / lowering operation of the lifting table 17 are performed by an NC controller (not shown). It is driven by a servo motor controlled by the command value. These command values are corrected by the correction value set in the correction value memory of the NC controller, and are given to the servo motor that drives each operation.

NC制御器には、画像処理装置が付加されており、カメラ5a、5b、6bの所定のタイミングにおける画像が画像処理装置に読込まれ、その画像処理により、位置決めマーク4、面取線(面取面とワーク表面との交線)、ワークの側辺8、9等が認識され、その座標から指令値と計測値との差が演算され、計測値が指令値と一致するように、補正値が演算されて、NC制御器のメモリに設定される。   An image processing apparatus is added to the NC controller, and images at predetermined timings of the cameras 5a, 5b, and 6b are read into the image processing apparatus, and the positioning mark 4 and chamfering line (chamfering line) are obtained by the image processing. The intersection between the surface and the workpiece surface), the sides 8 and 9, etc. of the workpiece are recognized, the difference between the command value and the measured value is calculated from the coordinates, and the correction value is set so that the measured value matches the command value. Is calculated and set in the memory of the NC controller.

次に、図1〜3に示した第1実施例におけるワークの加工・計測動作を説明する。
(1)上流側上カメラ5aで幅方向に並んだ2つの位置決めマーク4、4を読取り、読取ったマーク位置データに基づいてテーブル2の鉛直軸回りの角度と工具3の幅方向位置とを設定する。
(2)テーブル2を送り移動しながら、第1の対向辺8、8の面取加工を行う。テーブル2の送り移動に伴ってワークの加工部が下流側カメラ5b、6bの位置に来るから、予め定められた所定の位置毎における下流側カメラ5b、6bの画像から(ディスプレイ用のガラス基板であれば、計測位置を示すマークが付されているので、下流側カメラかこのマークを検出した位置でその画像を取込む。)、当該位置での加工寸法を計測する。このとき、上流側カメラ5aでワークの辺を検出して、第1の対向辺8、8の割断精度を計測できる。
(3)(2)の送り移動が終了したら、円テーブル2aを若干上昇し、(1)の状態で送り方向に並んでいた位置決めマーク4、4が戻り移動時における移動方向前側で幅方向に並ぶように、90度旋回する。
(4)下流側上カメラ5bで幅方向に並んだ2個の位置決めマーク4、4を読取り、読取ったマーク位置データに基づいてテーブル2の鉛直軸回りの角度と工具3の幅方向位置とを設定する。
(5)高速戻り移動。
(6)(2)と同じ動作で、第2の対向辺9、9の面取加工と、加工寸法の計測とを行う。(2)と同様に、第2の対向辺9、9の割断精度も計測できる。
(7)(6)の送り移動が終了したら、テーブル2からワークをアンロードし、高速戻り移動して次のワークの受取り位置に戻る。
(8)制御器は、(2)(6)で計測した加工寸法に基づいて、次のワークを加工する際のテーブル2の角度や工具3の幅方向位置及び高さ方向位置の指令値に対する補正値を更新する。
Next, the workpiece machining / measurement operation in the first embodiment shown in FIGS.
(1) Two positioning marks 4 and 4 aligned in the width direction are read by the upstream upper camera 5a, and the angle around the vertical axis of the table 2 and the width direction position of the tool 3 are set based on the read mark position data. To do.
(2) Chamfering the first opposing sides 8 and 8 while feeding and moving the table 2. Since the workpiece processing part comes to the position of the downstream cameras 5b and 6b as the table 2 is moved, from the images of the downstream cameras 5b and 6b at predetermined positions (on the glass substrate for display) If there is, a mark indicating the measurement position is attached, and the image is taken in at the position where the downstream camera or this mark is detected.) The processing dimension at the position is measured. At this time, it is possible to measure the cutting accuracy of the first opposing sides 8 and 8 by detecting the sides of the workpiece with the upstream camera 5a.
(3) When the feed movement of (2) is completed, the circular table 2a is slightly raised, and the positioning marks 4, 4 arranged in the feed direction in the state of (1) are moved in the width direction on the front side in the movement direction during the return movement. Turn 90 degrees to line up.
(4) Two positioning marks 4 and 4 aligned in the width direction are read by the downstream upper camera 5b, and the angle around the vertical axis of the table 2 and the width direction position of the tool 3 are determined based on the read mark position data. Set.
(5) High speed return movement.
(6) The chamfering processing of the second opposing sides 9 and 9 and the measurement of the processing dimensions are performed by the same operation as (2). Similarly to (2), the cleaving accuracy of the second opposing sides 9, 9 can also be measured.
(7) When the feed movement of (6) is completed, the work is unloaded from the table 2, and the high speed return movement is made to return to the receiving position of the next work.
(8) Based on the machining dimensions measured in (2) and (6), the controller controls the angle of the table 2 when machining the next workpiece and the command values for the width direction position and the height direction position of the tool 3. Update the correction value.

なお、上記の動作では、(1)と(4)で位置決めマークの読取りを2度行っているが、テーブル2の旋回精度(旋回時にワークがテーブル上面でずれないことも含めて)が充分であれば、(4)の位置決めマークの読取りを省略できる。この場合は、(2)の送り移動時に上流側上カメラ5aで送り方向に並んだ2つの位置決めマーク4、4を読取って両者の間隔データに基づいて工具3の幅方向位置を設定する。   In the above operation, the positioning mark is read twice in (1) and (4), but the turning accuracy of the table 2 (including that the workpiece does not shift on the upper surface of the table during turning) is sufficient. If there is, reading of the positioning mark of (4) can be omitted. In this case, at the time of the feed movement of (2), the two positioning marks 4 and 4 aligned in the feed direction are read by the upstream upper camera 5a, and the width direction position of the tool 3 is set based on the interval data between them.

図5は、この発明の第2実施例を示した模式的な斜視図(図1に相当する図)である。第2実施例と第1実施例の相違点は、上流側上カメラ5aの下方の位置に、工具3の上流側でワーク1の側辺部下面を見る上流側下カメラ6aが設けられている点、及び工具3が、送り移動時でも戻り移動時でも、面取加工を行うことができる構造である点、の2点である。   FIG. 5 is a schematic perspective view (corresponding to FIG. 1) showing a second embodiment of the present invention. The difference between the second embodiment and the first embodiment is that an upstream lower camera 6a for viewing the lower surface of the side portion of the workpiece 1 on the upstream side of the tool 3 is provided at a position below the upstream upper camera 5a. This is two points, that is, a point and a structure in which the tool 3 can perform chamfering regardless of whether the tool 3 moves forward or returns.

面取工具3は、当該工具に接触している部分におけるワーク1の相対移動に伴って工具がワークに深く切込まれるように設けられている。従って、送り移動時と戻り移動時に同じ加工を可能にするためには、2個の工具をその送り方向の向きを反対にしてそれぞれの側に設けるか、送り移動時と戻り移動時とで工具の傾きを変えるなどの操作が、一般的には、必要である。   The chamfering tool 3 is provided so that the tool is deeply cut into the workpiece as the workpiece 1 moves relative to the portion in contact with the tool. Therefore, in order to enable the same machining during the feed movement and the return movement, two tools are provided on each side with their feed directions opposite to each other, or the tool is used during the feed movement and the return movement. In general, an operation such as changing the inclination of the image is necessary.

この第2実施例の構造では、テーブル2の一往復の相対移動により、ワーク1の4辺の面取加工と加工寸法の計測を行うことができる。すなわち、
(1)第1実施例の(1)の動作と同じ。すなわち、上流側上カメラ5aで位置決めマーク4、4を読取り、テーブル2の角度と工具3の幅方向位置を設定する。
(2)第1実施例の(2)の動作と同じ。すなわち、テーブル2を送り移動しながら、第1の対向辺8、8の面取加工と、下流側カメラ5b、6bで加工寸法を計測する。上流側カメラ5a又は6aで割断精度を計測することもできる。
(3)第1実施例の(3)の動作と同じ。すなわち、円テーブル2aでワークを90度旋回する。
(4)第1実施例の(4)の動作と同じ。すなわち、下流側上カメラ5bで幅方向に並んだ2個の位置決めマーク4、4を読取り、テーブル2の角度と工具3の幅方向位置とを設定する。
(5)テーブル2を戻り移動しながら、第2の対向辺9、9の面取加工を行う。テーブル2の送り移動に伴ってワークの加工部が上流側カメラ5a、6aの位置に来るから、予め定められた所定の位置毎における上流側カメラ5a、6aの画像から、当該位置での加工寸法を計測する。このとき、下流側上又は下カメラ5b、6bで割断精度を計測できる。
(6)(5)の戻り移動が終了したら、テーブル2からワークをアンロードし、次のワークの受取る。
(7)制御器は、(2)(5)で計測した加工寸法に基づいて、次のワークを加工する際のテーブル2の角度や工具3の幅方向位置及び高さ方向位置の指令値に対する補正値を更新する。
In the structure of the second embodiment, the chamfering of the four sides of the workpiece 1 and the measurement of the machining dimensions can be performed by one reciprocal relative movement of the table 2. That is,
(1) Same operation as (1) in the first embodiment. That is, the positioning marks 4 and 4 are read by the upstream upper camera 5a, and the angle of the table 2 and the width direction position of the tool 3 are set.
(2) Same operation as (2) in the first embodiment. That is, while the table 2 is fed and moved, the chamfering processing of the first opposing sides 8 and 8 and the processing dimensions are measured by the downstream cameras 5b and 6b. The cleaving accuracy can also be measured by the upstream camera 5a or 6a.
(3) Same operation as (3) of the first embodiment. That is, the work is turned 90 degrees on the circular table 2a.
(4) Same operation as (4) of the first embodiment. That is, two positioning marks 4 and 4 aligned in the width direction are read by the downstream upper camera 5b, and the angle of the table 2 and the position of the tool 3 in the width direction are set.
(5) Chamfering the second opposing sides 9 and 9 while moving the table 2 back. Since the processing part of the workpiece comes to the position of the upstream cameras 5a, 6a as the table 2 moves, the processing dimension at the position is determined from the images of the upstream cameras 5a, 6a at predetermined positions. Measure. At this time, the cleaving accuracy can be measured by the upper or lower cameras 5b and 6b on the downstream side.
(6) When the return movement of (5) is completed, the work is unloaded from the table 2 and the next work is received.
(7) Based on the machining dimensions measured in (2) and (5), the controller controls the angle of the table 2 when machining the next workpiece and the command values for the width direction position and the height direction position of the tool 3. Update the correction value.

第2実施例の装置の上記動作によれば、第1実施例に比べてタクトタイムをより短縮できる。しかし、上流側カメラ5a、6aと工具3とは幅移動機構などのため離れていること、カメラが2つ余分に必要なこと、工具3として正逆両方向で加工が可能な工具を使用しなければならない、という不利益がある。   According to the operation of the apparatus of the second embodiment, the tact time can be further shortened compared to the first embodiment. However, the upstream cameras 5a, 6a and the tool 3 are separated due to a width movement mechanism, etc., two extra cameras are required, and a tool capable of machining in both forward and reverse directions must be used as the tool 3. There is a disadvantage that it must.

図6に示すように、ワークの搬送方向に面取装置を2台設置してその間にワークを90度旋回する旋回台20を配置した構成において、面取装置としてこの発明の面取装置を用いれば、加工された総てのワークの加工寸法の計測が可能な、生産性の極めて高い加工動作を実現できる。この場合の面取装置としては、上流側に上カメラ5aのみを設けた第1実施例の構造であって、かつ旋回機構を有しない(図6の例では円テーブル2aを有しない)テーブルを備えたものを用いればよい。   As shown in FIG. 6, in a configuration in which two chamfering devices are installed in the workpiece conveyance direction and a swivel base 20 that turns the workpiece 90 degrees therebetween is arranged, the chamfering device of the present invention is used as the chamfering device. For example, it is possible to realize a machining operation with extremely high productivity capable of measuring machining dimensions of all the workpieces that have been machined. As a chamfering device in this case, a table having the structure of the first embodiment in which only the upper camera 5a is provided on the upstream side and having no turning mechanism (in the example of FIG. 6, the circular table 2a is not provided). What is provided may be used.

第1実施例の主要機器構成の概要を示す斜視図The perspective view which shows the outline | summary of the main apparatus structure of 1st Example. 工具及びカメラの装着構造を示す模式的な斜視図Schematic perspective view showing tool and camera mounting structure 下流側カメラとワークの位置関係を示す正面図Front view showing the positional relationship between the downstream camera and the workpiece 下流側カメラとワークの他の位置関係を示す正面図Front view showing other positional relationship between downstream camera and workpiece 第2実施例の主要機器構成の概要を示す斜視図The perspective view which shows the outline | summary of the main apparatus structure of 2nd Example. 第3実施例の主要機器構成の概要を示す斜視図The perspective view which shows the outline | summary of the main apparatus structure of 3rd Example. 位置決めマークと加工寸法との関係を示すワークの部分拡大平面図Partial enlarged plan view of the workpiece showing the relationship between positioning marks and machining dimensions 従来装置の主要機器構成の概要を示す斜視図The perspective view which shows the outline | summary of the main apparatus structure of a conventional apparatus.

符号の説明Explanation of symbols

1 硬質脆性板
2 テーブル
3 面取工具
4 マーク
5a 上流側上カメラ
5b 上流側下カメラ
6b 下流側下カメラ
25,26 ミラー
28 ハーフミラー
1 Hard brittle plate 2 Table 3 Chamfering tool 4 Mark
5a Upstream upper camera
5b Upstream lower camera
6b Downstream camera
25,26 mirror
28 half mirror

Claims (4)

上面に硬質脆性板(1)を固定保持するためのテーブル(2)と、このテーブルの幅方向両側に配置された面取工具(3)と、この工具に対して前記テーブルを前記幅方向と直交する方向である送り方向に相対移動する送り装置と、前記硬質脆性板の側辺部に付された位置決めマーク(4)を読み取る上流側上カメラ(5a)とを備え、この上流側上カメラのマーク読取りデータに基づいて前記工具の幅方向位置を設定し、次に前記テーブルを送り方向に相対移動して前記硬質脆性板の辺の面取加工を行う硬質脆性板の面取装置において、
前記工具を挟んで前記上流側カメラの前記送り方向反対の側に、前記工具で加工された後の前記硬質脆性板の側辺部の上面及び下面を読取る下流側上カメラ(5b)及び下流側下カメラ(6b)を備え、当該下流側カメラ(5b,6b)の撮像信号により前記面取加工を行う際のテーブルの相対移動時にその加工直後の位置で加工寸法の計測を行うことを特徴とする、硬質脆性板の面取装置。
A table (2) for fixing and holding the hard brittle plate (1) on the upper surface, a chamfering tool (3) disposed on both sides in the width direction of the table, and the table in the width direction with respect to the tool An upstream upper camera (5a) that reads a positioning device (5a) that reads a positioning mark (4) attached to a side portion of the hard brittle plate; In the chamfering device for a hard brittle plate that sets the position in the width direction of the tool based on the mark read data, and then chamfers the side of the hard brittle plate by relatively moving the table in the feed direction,
Downstream upper camera (5b) and downstream side for reading the upper and lower surfaces of the side edges of the hard brittle plate after being processed by the tool on the opposite side of the feed direction of the upstream camera across the tool A lower camera (6b) is provided, and the processing dimension is measured at a position immediately after the processing when the table is moved relative to the chamfering process by the imaging signal of the downstream camera (5b, 6b). A chamfering device for hard brittle plates.
前記工具(3)と下流側上カメラ(5b)及び同下カメラ(6b)との間に、当該工具の加工位置に供給される加工液を遮断するエアカーテンが形成される、請求項1記載の硬質脆性板の面取装置。   The air curtain which interrupts | blocks the process liquid supplied to the process position of the said tool is formed between the said tool (3), the downstream upper camera (5b), and the same lower camera (6b). Chamfering device for hard brittle plates. 下流側下カメラ(6b)が、前記テーブルの上面より上方の下流側上カメラ(5b)の前記幅方向外側に下向きに配置され、その光軸を前記硬質脆性板の側辺部下面に向けるミラー(25,26)を備えている、請求項1又は2記載の硬質脆性板の面取装置。   The downstream lower camera (6b) is disposed on the outer side in the width direction of the downstream upper camera (5b) above the upper surface of the table and has its optical axis directed to the lower surface of the side edge of the hard brittle plate. The chamfering device for a hard brittle plate according to claim 1 or 2, comprising (25, 26). 前記光軸が前記テーブルの上面の高さを通過する位置に当該光軸を前記テーブル側に向けて水平に反射させるハーフミラー(28)を備えている、請求項3記載の硬質脆性板の面取装置。   The surface of the hard brittle plate according to claim 3, further comprising a half mirror (28) for horizontally reflecting the optical axis toward the table at a position where the optical axis passes through the height of the upper surface of the table. Taking device.
JP2008208026A 2008-08-12 2008-08-12 Hard brittle plate chamfering device Expired - Fee Related JP5301919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208026A JP5301919B2 (en) 2008-08-12 2008-08-12 Hard brittle plate chamfering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208026A JP5301919B2 (en) 2008-08-12 2008-08-12 Hard brittle plate chamfering device

Publications (2)

Publication Number Publication Date
JP2010042473A true JP2010042473A (en) 2010-02-25
JP5301919B2 JP5301919B2 (en) 2013-09-25

Family

ID=42014274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208026A Expired - Fee Related JP5301919B2 (en) 2008-08-12 2008-08-12 Hard brittle plate chamfering device

Country Status (1)

Country Link
JP (1) JP5301919B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004740A1 (en) 2010-02-26 2011-11-17 Hitachi Automotive Systems, Ltd. shock absorber
JP2012051076A (en) * 2010-09-01 2012-03-15 Asahi Glass Co Ltd Apparatus and method for manufacturing plate-like object, and device and method for grinding end surface of the plate-like object
JP2013503049A (en) * 2009-08-27 2013-01-31 コーニング インコーポレイテッド Apparatus and method for precision edge finishing
JP2014050946A (en) * 2012-09-05 2014-03-20 Samsung Corning Precision Materials Co Ltd Device for chamfering glass substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226004A (en) * 1989-02-27 1990-09-07 Toyoda Gosei Co Ltd Optical detector
JPH06258231A (en) * 1991-01-31 1994-09-16 Central Glass Co Ltd Defect detecting device for plate glass
JP2002062122A (en) * 2000-08-23 2002-02-28 Asahi Glass Co Ltd Method and apparatus for measurement of shape of glass sheet
JP2003098122A (en) * 2001-09-21 2003-04-03 Toshiba Ceramics Co Ltd Visual examination device for glass board
JP2004099424A (en) * 2002-07-16 2004-04-02 Shiraitekku:Kk Device for working glass
JP2004195647A (en) * 2002-12-17 2004-07-15 Lg Philips Lcd Co Ltd Device and method for measuring polishing amount of liquid crystal display panel
JP2005144314A (en) * 2003-11-14 2005-06-09 Kanto Auto Works Ltd Coating efficiency evaluation method and apparatus
JP2006300663A (en) * 2005-04-19 2006-11-02 Asahi Glass Co Ltd Defect detection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226004A (en) * 1989-02-27 1990-09-07 Toyoda Gosei Co Ltd Optical detector
JPH06258231A (en) * 1991-01-31 1994-09-16 Central Glass Co Ltd Defect detecting device for plate glass
JP2002062122A (en) * 2000-08-23 2002-02-28 Asahi Glass Co Ltd Method and apparatus for measurement of shape of glass sheet
JP2003098122A (en) * 2001-09-21 2003-04-03 Toshiba Ceramics Co Ltd Visual examination device for glass board
JP2004099424A (en) * 2002-07-16 2004-04-02 Shiraitekku:Kk Device for working glass
JP2004195647A (en) * 2002-12-17 2004-07-15 Lg Philips Lcd Co Ltd Device and method for measuring polishing amount of liquid crystal display panel
JP2005144314A (en) * 2003-11-14 2005-06-09 Kanto Auto Works Ltd Coating efficiency evaluation method and apparatus
JP2006300663A (en) * 2005-04-19 2006-11-02 Asahi Glass Co Ltd Defect detection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503049A (en) * 2009-08-27 2013-01-31 コーニング インコーポレイテッド Apparatus and method for precision edge finishing
DE102011004740A1 (en) 2010-02-26 2011-11-17 Hitachi Automotive Systems, Ltd. shock absorber
JP2012051076A (en) * 2010-09-01 2012-03-15 Asahi Glass Co Ltd Apparatus and method for manufacturing plate-like object, and device and method for grinding end surface of the plate-like object
CN102380807A (en) * 2010-09-01 2012-03-21 旭硝子株式会社 Manufacture apparatus, manufacture method, end face grinding apparatus and method for plate object
JP2014050946A (en) * 2012-09-05 2014-03-20 Samsung Corning Precision Materials Co Ltd Device for chamfering glass substrate

Also Published As

Publication number Publication date
JP5301919B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
CN205438085U (en) Periphery processingequipment of panel
TWI438163B (en) Multi-stroke head loading scribing device and cutter wheel automatic replacement system
JP4621605B2 (en) Method for measuring and correcting machining dimension in chamfering device for plate material
JP5912395B2 (en) Substrate upper surface detection method and scribing apparatus
JP2006189472A (en) Spectacle lens processing device
KR101997928B1 (en) Printing inspection apparatus, printing inspection system, statistical method for inspection data, program, and substrate manufacturing method
JP5301919B2 (en) Hard brittle plate chamfering device
CN102110587A (en) Consumption managing method of cutting blade
CN110504191B (en) Inspection jig and inspection method
JP4554265B2 (en) Method for detecting misalignment of cutting blade
KR20160020125A (en) Aligning Module for Grinding Device and Controlling Method for the Same
JP5389604B2 (en) Method for managing consumption of cutting blade in cutting apparatus
JP5431973B2 (en) Split method
JP2008171873A (en) Positioning apparatus, positioning method, processing apparatus and processing method
JP4986880B2 (en) Tool length compensation method for micromachines and micromilling machines
JP2006026845A (en) Adjustment method for tool position of chamfering machine
KR101743290B1 (en) Apparatus for chamfering of hard brittle plate
JP2015131303A (en) Operation characteristic detection method for processing feeding mechanism in laser processor, and laser processor
TWI492820B (en) Rigid brittle plate chamfering device
KR102595400B1 (en) Machining apparatus
JP6404002B2 (en) Curved plate peripheral edge processing method
JP4296029B2 (en) Electronic component mounting equipment
JP2006228793A (en) Apparatus and method of mounting electronic part
JP6189689B2 (en) Cutting equipment
JP5389603B2 (en) Method for managing consumption of cutting blade in cutting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees