JP2010041839A - Control device for permanent-magnet synchronous motor - Google Patents

Control device for permanent-magnet synchronous motor Download PDF

Info

Publication number
JP2010041839A
JP2010041839A JP2008202615A JP2008202615A JP2010041839A JP 2010041839 A JP2010041839 A JP 2010041839A JP 2008202615 A JP2008202615 A JP 2008202615A JP 2008202615 A JP2008202615 A JP 2008202615A JP 2010041839 A JP2010041839 A JP 2010041839A
Authority
JP
Japan
Prior art keywords
axis
current
inductance
motor
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008202615A
Other languages
Japanese (ja)
Other versions
JP5223109B2 (en
Inventor
Hisafumi Nomura
尚史 野村
Yasushi Matsumoto
康 松本
Takashi Kuroda
岳志 黒田
Nobuo Itoigawa
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008202615A priority Critical patent/JP5223109B2/en
Publication of JP2010041839A publication Critical patent/JP2010041839A/en
Application granted granted Critical
Publication of JP5223109B2 publication Critical patent/JP5223109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve torque control accuracy by highly accurately measuring a permanent-magnet magnetic flux and an inductance from information of a current, a terminal voltage, and a speed in a control device for a permanent-magnet synchronous motor. <P>SOLUTION: A control device for a permanent-magnet synchronous motor includes an electric-constant measuring means for measuring a permanent-magnet magnetic flux and an inductance from a current detection value, a terminal-voltage detection value, and a speed detection value of a motor 80. The electric-constant measuring means includes: a d-axis magnetic-flux estimator 100 that catches the terminal voltage and the current of the motor 80 as vectors so as to estimate a magnetic flux from a current detection value, a terminal-voltage detection value, and a speed detection value; a current command generator 31 for controlling d-axis currents to a plurality of values when a magnetic-pole direction of a rotor is set as a d-axis and a direction orthogonal to the d-axis as a q-axis; and a parameter estimator 101 that approximates a relationship between the d-axis currents controlled to the plurality of values and each magnetic-flux estimated value respectively corresponding to each of the d-axis currents by a linear function, measures a d-axis inductance from a gradient of the linear function, and measures a permanent-magnet magnetic flux from an intercept of the linear function. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、永久磁石形同期電動機の制御装置に関し、詳しくは、永久磁石形同期電動機の永久磁石磁束及びインダクタンスを高精度に測定するための技術に関するものである。   The present invention relates to a control device for a permanent magnet type synchronous motor, and more particularly to a technique for measuring the permanent magnet magnetic flux and inductance of a permanent magnet type synchronous motor with high accuracy.

永久磁石形同期電動機(以下、PMSMともいう)は、回転子のd軸(回転子の磁極方向)とd軸から90度進んだq軸とからなるd,q座標上で電流制御を行うことにより、高精度なトルク制御を実現可能である。ここで、PMSMのトルクは数式1によって表される。   A permanent magnet type synchronous motor (hereinafter also referred to as PMSM) performs current control on d and q coordinates including a d axis (rotor magnetic pole direction) of a rotor and a q axis 90 degrees advanced from the d axis. Thus, highly accurate torque control can be realized. Here, the torque of PMSM is expressed by Equation 1.

Figure 2010041839
Figure 2010041839

このため、トルクを高精度に制御するには、永久磁石磁束とインダクタンスとを正確に測定し、これに基づいて電流を制御するのが望ましい。このことから、PMSMの電圧方程式モデルに基づいて、電流、端子電圧及び速度の情報から永久磁石磁束とインダクタンスとを測定する技術が実用化されている。   For this reason, in order to control the torque with high accuracy, it is desirable to accurately measure the permanent magnet magnetic flux and the inductance and control the current based on this. For this reason, based on the voltage equation model of PMSM, a technique for measuring permanent magnet magnetic flux and inductance from information on current, terminal voltage and speed has been put into practical use.

例えば、非特許文献1には、PMSMの電流を零に制御したときの端子電圧が、永久磁石磁束によって端子に誘導される誘起電圧に等しくなることを利用して、電流を零に制御したときの端子電圧を速度で除算することにより永久磁石磁束を測定する技術が記載されている。更に、PMSMの電圧方程式を利用して、電流、端子電圧及び速度から、d軸インダクタンスとq軸インダクタンスとを測定する技術が記載されている。   For example, in Non-Patent Document 1, when the current is controlled to zero by utilizing that the terminal voltage when the PMSM current is controlled to zero is equal to the induced voltage induced in the terminal by the permanent magnet magnetic flux. A technique for measuring the permanent magnet magnetic flux by dividing the terminal voltage of the current by the speed is described. Furthermore, a technique for measuring the d-axis inductance and the q-axis inductance from the current, the terminal voltage and the speed using the voltage equation of PMSM is described.

また、特許文献1に記載された同期電動機の定数同定方法では、q軸電圧方程式に基づく誘起電圧のq軸成分から求めた「補正量を加えない速度推定値」(特許文献1の(6)式により演算)と、d,q軸電圧方程式に基づく誘起電圧のベクトル和から演算した「補正量を加えた速度推定値」(特許文献1の(7)式により演算)とが一致するように、永久磁石磁束(特許文献1では誘起電圧定数k)を演算している。更に、d軸電流を異なる値に制御してもq軸誘起電圧推定値が一定値になるように、d軸インダクタンスを演算することが記載されている(なお、上記の説明は、特許文献1におけるγ,δ軸(d,q軸の推定軸)での説明をd,q軸に置き換えたものである)。 Moreover, in the constant identification method of the synchronous motor described in Patent Document 1, “speed estimation value without adding a correction amount” obtained from the q-axis component of the induced voltage based on the q-axis voltage equation ((6) of Patent Document 1) So that the “estimated speed value with correction amount” calculated from the vector sum of the induced voltages based on the d and q-axis voltage equations (calculated by equation (7) in Patent Document 1) matches. The permanent magnet magnetic flux (induced voltage constant k e in Patent Document 1) is calculated. Further, it is described that the d-axis inductance is calculated so that the q-axis induced voltage estimated value becomes a constant value even if the d-axis current is controlled to a different value (the above description is described in Patent Document 1). The description on the γ and δ axes (estimated axes of d and q axes) is replaced with d and q axes).

特許第3707659号公報(請求項1,請求項3、段落[0006]〜[0014]、図1,図2等)Japanese Patent No. 3707659 (Claim 1, Claim 3, Paragraphs [0006] to [0014], FIG. 1, FIG. 2, etc.) 森本 茂雄,武田 洋次,平紗 多賀男,「PMモータのdq軸等価回路定数の測定法」,電気学会論文誌D,113巻11号,p.1330〜1331,1993年Shigeo Morimoto, Yoji Takeda, Tagao Hirata, “Measuring method of dq axis equivalent circuit constant of PM motor”, IEEJ Transactions D, Vol. 113, No. 11, p. 1330-1331, 1993

まず、従来技術の第1の問題点について説明する。
非特許文献1、特許文献1に記載された方法により永久磁石磁束及びインダクタンスを測定するためには、電動機を所定の速度で運転する必要がある。このため、電動機が負荷に結合されている場合には、負荷トルクを発生させる必要があり、q軸電流を必ずしも零に制御することはできない。ここで、埋込磁石構造永久磁石形同期電動機(以下、IPMSMという)は、回転子の突極性によりd軸インダクタンスとq軸インダクタンスとが異なるため、d軸電流を積極的に制御することで、数式1の右辺第2項であるリラクタンストルクを利用してトルク/電流を増加させることが多い。このことから、負荷トルクが大きいときには、d軸電流を零に制御できない場合がある。
First, the first problem of the prior art will be described.
In order to measure the permanent magnet magnetic flux and the inductance by the methods described in Non-Patent Document 1 and Patent Document 1, it is necessary to operate the electric motor at a predetermined speed. For this reason, when the electric motor is coupled to the load, it is necessary to generate a load torque, and the q-axis current cannot always be controlled to zero. Here, since the embedded magnet structure permanent magnet type synchronous motor (hereinafter referred to as IPMSM) has different d-axis inductance and q-axis inductance depending on the saliency of the rotor, by actively controlling the d-axis current, In many cases, the torque / current is increased using the reluctance torque which is the second term on the right side of Formula 1. For this reason, when the load torque is large, the d-axis current may not be controlled to zero.

以下、負荷運転時における非特許文献1、特許文献1に係る従来技術の問題点について説明する。
前述したように、非特許文献1では、永久磁石磁束を測定するために電流を零に制御する必要があるので、負荷運転時には永久磁石磁束を測定することができない。また、d軸インダクタンスの測定には永久磁石磁束の値が必要であるため、負荷運転時にはd軸インダクタンスの測定が不可能である。
更に、特許文献1においては、電流が零でない条件で誘起電圧を演算するためにインダクタンスの情報が必要であるから、負荷運転時には永久磁石磁束を測定することができない。
Hereinafter, problems of the related art according to Non-Patent Document 1 and Patent Document 1 during load operation will be described.
As described above, in Non-Patent Document 1, since it is necessary to control the current to zero in order to measure the permanent magnet magnetic flux, the permanent magnet magnetic flux cannot be measured during load operation. Further, since the value of the permanent magnet magnetic flux is necessary for measuring the d-axis inductance, it is impossible to measure the d-axis inductance during load operation.
Further, in Patent Document 1, since information on inductance is necessary to calculate the induced voltage under a condition where the current is not zero, the permanent magnet magnetic flux cannot be measured during load operation.

次に、従来技術の第2の問題点について説明する。
非特許文献1によるq軸インダクタンスの測定は、q軸電流を零でない値に制御する必要があるため、q軸インダクタンスの測定時にトルクが発生し、電動機が急加減速する恐れがある。
ところで、q軸インダクタンスは、例えば特開2000−50700号公報に示されているように、回転子が静止している状態でq軸方向に交番する交流電流を通流したときの電流と端子電圧との関係から測定することができる。しかしながら、上記交流電流としては一般に高周波の電流を通流するため、表皮効果の影響により、正確に測定できないことがある。
Next, the second problem of the prior art will be described.
In the measurement of the q-axis inductance according to Non-Patent Document 1, since the q-axis current needs to be controlled to a non-zero value, torque is generated during the measurement of the q-axis inductance, and the electric motor may be suddenly accelerated or decelerated.
Incidentally, the q-axis inductance is, for example, as shown in Japanese Patent Laid-Open No. 2000-50700, the current and the terminal voltage when an alternating current that alternates in the q-axis direction is passed while the rotor is stationary. It can be measured from the relationship. However, since the alternating current generally passes a high-frequency current, it may not be accurately measured due to the skin effect.

そこで、本発明の解決課題は、上述した種々の問題点を解消し、負荷条件によらずに永久磁石磁束及びインダクタンスを高精度に測定可能とした永久磁石形同期電動機の制御装置を提供することにある。   Accordingly, the problem to be solved by the present invention is to provide a control device for a permanent magnet type synchronous motor that solves the above-mentioned various problems and can measure the permanent magnet magnetic flux and the inductance with high accuracy regardless of the load conditions. It is in.

上記課題を解決するため、請求項1に係る発明は、永久磁石形同期電動機の電流検出値、端子電圧検出値及び速度検出値から前記電動機の永久磁石磁束及びインダクタンスを測定する電気定数測定手段を備えた永久磁石形同期電動機の制御装置において、
前記電気定数測定手段は、
前記電動機の端子電圧及び電流をベクトルとしてとらえ、
前記電動機の電流検出値、端子電圧検出値及び速度検出値から磁束を推定する手段と、
前記電動機の回転子の磁極方向をd軸、これに直交する方向をq軸とした時に、d軸電流を複数の値に制御する手段と、
複数の値に制御した前記d軸電流と、これらのd軸電流にそれぞれ対応する前記磁束の推定値との関係を一次関数により近似し、この一次関数の傾きから前記電動機のd軸インダクタンスを測定し、前記一次関数の切片から前記電動機の永久磁石磁束を測定する手段と、を備えたものである。
これにより、負荷条件によらず、永久磁石形同期電動機の永久磁石磁束及びd軸インダクタンスを正確に測定することができる。
In order to solve the above-mentioned problems, the invention according to claim 1 comprises an electrical constant measuring means for measuring the permanent magnet magnetic flux and the inductance of the motor from the detected current value, the detected terminal voltage value and the detected speed value of the permanent magnet type synchronous motor. In the control device of the permanent magnet type synchronous motor provided,
The electrical constant measuring means includes
Taking the terminal voltage and current of the motor as a vector,
Means for estimating the magnetic flux from the current detection value, terminal voltage detection value and speed detection value of the motor;
Means for controlling the d-axis current to a plurality of values when the magnetic pole direction of the rotor of the electric motor is the d-axis and the direction perpendicular thereto is the q-axis;
The relationship between the d-axis current controlled to a plurality of values and the estimated value of the magnetic flux corresponding to each of these d-axis currents is approximated by a linear function, and the d-axis inductance of the motor is measured from the slope of this linear function. And means for measuring the permanent magnet magnetic flux of the electric motor from the intercept of the linear function.
As a result, the permanent magnet magnetic flux and the d-axis inductance of the permanent magnet type synchronous motor can be accurately measured regardless of the load condition.

請求項2に係る発明は、請求項1に記載した制御装置において、前記回転子が停止している状態で前記電動機に交流電流を通流したとき、または、交流電圧を印加したときの電流検出値と端子電圧検出値との関係から、前記電動機のd軸インダクタンス及びq軸インダクタンスを測定する第2のインダクタンス測定手段と、
この第2のインダクタンス測定手段により測定したd軸インダクタンス及びq軸インダクタンスと、前記電気定数測定手段により測定したd軸インダクタンスとから、前記電動機のq軸インダクタンスを測定する手段と、を備えたものである。
これにより、表皮効果の影響を受けずにq軸インダクタンスを正確に測定することができる。
According to a second aspect of the present invention, in the control device according to the first aspect, the current detection is performed when an alternating current is passed through the motor or an alternating voltage is applied while the rotor is stopped. Second inductance measuring means for measuring the d-axis inductance and the q-axis inductance of the electric motor from the relationship between the value and the terminal voltage detection value;
Means for measuring the q-axis inductance of the motor from the d-axis inductance and the q-axis inductance measured by the second inductance measuring means and the d-axis inductance measured by the electrical constant measuring means. is there.
As a result, the q-axis inductance can be accurately measured without being affected by the skin effect.

本発明によれば、負荷条件によらずに、PMSMの永久磁石磁束及びインダクタンスを高精度に測定することができ、トルク制御性能を向上させることができる。   According to the present invention, the permanent magnet magnetic flux and inductance of the PMSM can be measured with high accuracy regardless of the load condition, and the torque control performance can be improved.

以下、図に沿って本発明の第1実施形態を説明する。図1は、この実施形態に係る制御装置を示すブロック図である。
まず、PMSMの速度を指令値に制御する方法を、制御装置の構成と共に説明する。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a control device according to this embodiment.
First, a method for controlling the PMSM speed to a command value will be described together with the configuration of the control device.

前述したように、PMSMはd,q座標上で電流制御を行うことにより高精度な制御を実現可能であるため、以下に述べる速度制御もd,q座標上で行うものとする。
図1において、入力電圧検出回路12は、インバータ等からなる電力変換器70の入力電圧Edcを検出する。また、磁極位置検出器90は、PMSM80の磁極位置θを検出し、速度検出値91は、PMSM80の速度ωを検出する。
As described above, since PMSM can achieve high-precision control by performing current control on the d and q coordinates, the speed control described below is also performed on the d and q coordinates.
In FIG. 1, an input voltage detection circuit 12 detects an input voltage E dc of a power converter 70 composed of an inverter or the like. The magnetic pole position detector 90 detects the magnetic pole position θ 1 of the PMSM 80, and the speed detection value 91 detects the speed ω 1 of the PMSM 80.

速度指令値ωと速度検出値ωとの偏差を減算器16にて演算し、この偏差を速度調節器17により増幅してトルク指令値τを演算する。
電流指令演算部18は、トルク指令値τと速度検出値ωとから、PMSM80の端子電圧が電力変換器70の最大出力電圧以下になる条件でトルク/電流が最大になり、かつ、所望のトルクを出力するd,q軸電流指令値id0 ,iq0 を演算する。
A deviation between the speed command value ω * and the detected speed value ω 1 is calculated by the subtractor 16, and this deviation is amplified by the speed regulator 17 to calculate the torque command value τ * .
Based on the torque command value τ * and the speed detection value ω 1 , the current command calculation unit 18 maximizes the torque / current under the condition that the terminal voltage of the PMSM 80 is less than or equal to the maximum output voltage of the power converter 70 and D and q-axis current command values i d0 * and i q0 * are output.

次に、上記d軸電流指令値id0 と電気定数測定用電流指令発生器31の出力であるidm とを加算器32により加算して、d軸電流指令値i を演算する。ここで、idm は二つの異なる値に制御する。
一方、q軸電流指令値i には、電流指令演算部18から出力された前記q軸電流指令値iq0 を設定する。
Then added by the adder 32 i dm * and which corresponds to the output of the d-axis current command value i d0 * and the electric constant measurement current command generator 31 calculates the d-axis current command value i d * . Here, i dm * is controlled to two different values.
On the other hand, the q-axis current command value i q * is set to the q-axis current command value i q0 * output from the current command calculation unit 18.

電流座標変換器14は、u相電流検出器11u、w相電流検出器11wによりそれぞれ検出した相電流検出値i,iを、磁極位置検出値θに基づいてd,q軸電流検出値i,iにそれぞれ座標変換する。
d軸電流指令値i とd軸電流検出値iとの偏差を減算器19aにて演算し、この偏差をd軸電流調節器20aにより増幅してd軸電圧指令値v を演算する。一方、q軸電流指令値i とq軸電流検出値iとの偏差を減算器19bにて演算し、この偏差をq軸電流調節器20bにより増幅してq軸電圧指令値v を演算する。
これらのd,q軸電圧指令値v ,v は、電圧座標変換器15によって磁極位置検出値θに基づき相電圧指令値v ,v ,v に変換される。
The current coordinate converter 14 detects the phase current detection values i u and i w detected by the u-phase current detector 11u and the w-phase current detector 11w, respectively, based on the magnetic pole position detection value θ 1 and detects the d and q-axis currents. Coordinates are converted to values i d and i q , respectively.
The deviation between the d-axis current command value i d * and the d-axis current detection value i d calculated by the subtractor 19a, this deviation is amplified by a d-axis current regulator 20a d axis voltage value v d * Calculate. On the other hand, a deviation between the q-axis current command value i d * and the q-axis current detection value i q is calculated by the subtractor 19b, and this deviation is amplified by the q-axis current regulator 20b to be q-axis voltage command value v q. * to calculate the.
These d and q axis voltage command values v d * and v q * are converted into phase voltage command values v u * , v v * , and v w * by the voltage coordinate converter 15 based on the magnetic pole position detection value θ 1. The

整流回路60は、三相交流電源50の三相交流電圧を整流して直流電圧に変換し、この直流電圧を電力変換器70に供給する。
PWM回路13は、相電圧指令値v ,v ,v 、及び、入力電圧検出回路12が検出した電力変換器70の入力電圧Edcとから、電力変換器70の出力電圧を前記相電圧指令値v ,v ,v に制御するためのゲート信号を生成する。電力変換器70はゲート信号に基づいて内部の半導体スイッチング素子を制御することで、PMSM80の端子電圧を相電圧指令値v ,v ,v に制御する。
以上の演算処理により、PMSM80の速度を指令値に制御することができる。
The rectifier circuit 60 rectifies the three-phase AC voltage of the three-phase AC power source 50 to convert it into a DC voltage, and supplies this DC voltage to the power converter 70.
The PWM circuit 13 outputs the output voltage of the power converter 70 from the phase voltage command values v u * , v v * , v w * and the input voltage E dc of the power converter 70 detected by the input voltage detection circuit 12. the phase voltage command values v u *, v v *, v generates a gate signal for controlling the w *. The power converter 70 controls the internal semiconductor switching element based on the gate signal, thereby controlling the terminal voltage of the PMSM 80 to the phase voltage command values v u * , v v * , v w * .
With the above arithmetic processing, the speed of the PMSM 80 can be controlled to a command value.

次に、PMSM80の永久磁石磁束及びインダクタンスを測定するための電気定数測定手段30の詳細について説明する。図2は、この電気定数測定手段30のブロック図を示している。
図2において、d軸磁束推定器100は、PMSMのq軸電圧方程式に基づいて、d軸磁束を推定する。PMSMのd,q軸電圧方程式は数式2に示す通りである。
Next, details of the electric constant measuring means 30 for measuring the permanent magnet magnetic flux and the inductance of the PMSM 80 will be described. FIG. 2 shows a block diagram of the electric constant measuring means 30.
In FIG. 2, the d-axis magnetic flux estimator 100 estimates the d-axis magnetic flux based on the PMSM q-axis voltage equation. The PMSM d and q-axis voltage equations are as shown in Equation 2.

Figure 2010041839
Figure 2010041839

また、d軸磁束Ψは数式3によって表される。 Further, the d-axis magnetic flux Ψ d is expressed by Equation 3.

Figure 2010041839
Figure 2010041839

数式2,数式3より、d軸磁束推定器100は、d軸磁束推定値Ψdestを数式4により演算する。 From Equations 2 and 3, the d-axis magnetic flux estimator 100 calculates the d-axis magnetic flux estimated value ψ dest by Equation 4.

Figure 2010041839
Figure 2010041839

次に、パラメータ推定器101は、数式3に示したように、d軸磁束Ψがd軸電流iの一次関数であることを利用し、d軸電流iを二つの異なる値に制御したときのd軸磁束推定値Ψdestから永久磁石磁束とd軸インダクタンスとを演算する。なお、d軸電流iを異なる二つの値に制御する動作は、図1における電気定数測定用電流指令発生器31が、idm を二つの異なる値に制御することにより実現される。 Next, the parameter estimator 101 uses the fact that the d-axis magnetic flux Ψ d is a linear function of the d-axis current i d as shown in Equation 3, and controls the d-axis current id to two different values. The permanent magnet magnetic flux and the d-axis inductance are calculated from the estimated d-axis magnetic flux Ψ dest at that time. The operation of controlling the two different values of d-axis current i d, the electric constant measurement current instruction generator 31 in FIG 1 is a i dm * is realized by controlling the two different values.

図3は、パラメータ推定器101の動作原理を示すものである。すなわち、図3において、d軸電流をId1,Id2に制御したときのd軸磁束推定値がそれぞれΨd1,Ψd2であるとき、d軸インダクタンスは、二つの動作点を結ぶ一次関数の傾きに等しい。このことから、d軸インダクタンスLdestを数式5により演算する。 FIG. 3 shows the operation principle of the parameter estimator 101. That is, in FIG. 3, when the d-axis current is I d1, I d2 d-axis magnetic flux estimation value each [psi d1 when controlled to, [psi d2, d-axis inductance, the primary function of connecting the two operating point Equal to the slope. From this, the d-axis inductance L dest is calculated by Equation 5.

Figure 2010041839
Figure 2010041839

一方、永久磁石磁束は一次関数の切片に等しいことから、数式6により演算する。   On the other hand, since the permanent magnet magnetic flux is equal to the intercept of the linear function, the calculation is performed using Equation 6.

Figure 2010041839
Figure 2010041839

以上の演算処理により、負荷運転時にも永久磁石磁束とd軸インダクタンスとを正確に測定することができる。   Through the above arithmetic processing, the permanent magnet magnetic flux and the d-axis inductance can be accurately measured even during load operation.

次に、本発明の第2実施形態を説明する。この実施形態は、回転子が静止している状態で、交番電流を通流したとき、または、交流電圧を印加したときの電流検出値と端子電圧との関係から、第2のd軸インダクタンスLdhest及び第2のq軸インダクタンスLqhestを測定し、これらの測定値と第1実施形態により測定した第1のd軸インダクタンスLdestとを用いてq軸インダクタンスを求めるものである。 Next, a second embodiment of the present invention will be described. In this embodiment, the second d-axis inductance L is determined from the relationship between the detected current value and the terminal voltage when an alternating current is passed or the AC voltage is applied while the rotor is stationary. The dest and the second q-axis inductance L qest are measured, and the q-axis inductance is obtained using these measured values and the first d-axis inductance L dest measured according to the first embodiment.

第2のd軸インダクタンスLdhest及び第2のq軸インダクタンスLqhestは、表皮効果によってそれぞれ誤差を持つことがあるが、両インダクタンスの比(Lqhest/Ldhest)は正確に測定可能である。一方、第1のd軸インダクタンスLdestは、表皮効果の影響を受けずに数式5によって正確に測定することができる。これらのことから、第2実施形態によれば、数式7により、q軸インダクタンスLqestを表皮効果の影響を受けないで正確に測定可能である。 The second d-axis inductance L dest and the second q-axis inductance L qhest may have errors due to the skin effect, but the ratio of both inductances (L qhest / L dhest ) can be accurately measured. On the other hand, the first d-axis inductance L dest can be accurately measured by Equation 5 without being affected by the skin effect. For these reasons, according to the second embodiment, the q-axis inductance L qest can be accurately measured by Equation 7 without being affected by the skin effect.

Figure 2010041839
Figure 2010041839

なお、上述した各実施形態は、図1のように磁極位置検出器90及び速度検出器91を用いて速度制御を行う場合について説明したが、本発明に係る制御装置は、これらの磁極位置検出器や速度検出器を用いずに、PMSM80の電流及び端子電圧の情報から間接的に磁極位置と速度とを演算して速度制御を行う、いわゆるセンサレス制御を行う場合にも同様に適用可能である。
また、各実施形態では、d軸磁束推定値ΨdestをPMSM80のq軸電圧方程式から直接演算しているが、磁極オブザーバによって演算しても良い。
In the above-described embodiments, the case where the speed control is performed using the magnetic pole position detector 90 and the speed detector 91 as shown in FIG. 1 has been described. However, the control device according to the present invention detects these magnetic pole positions. The present invention can be similarly applied to so-called sensorless control in which speed control is performed by indirectly calculating the magnetic pole position and speed from the current and terminal voltage information of the PMSM80 without using a detector or speed detector. .
In each embodiment, the d-axis magnetic flux estimated value ψ dest is directly calculated from the q-axis voltage equation of PMSM80, but may be calculated by a magnetic pole observer.

本発明の第1実施形態を示すブロック図である。1 is a block diagram showing a first embodiment of the present invention. 図1における電気定数測定手段のブロック図である。It is a block diagram of the electrical constant measurement means in FIG. 図2におけるパラメータ推定器の動作原理を示す図である。It is a figure which shows the principle of operation of the parameter estimator in FIG.

符号の説明Explanation of symbols

11u u相電流検出器
11w w相電流検出器
12 入力電圧検出回路
13 PWM回路
14 電流座標変換器
15 電圧座標変換器
16 減算器
17 速度調節器
18 電流指令演算部
19a,19b 減算器
20a d軸電流調節器
20b q軸電流調節器
30 電気定数測定手段
31 電気定数測定用電流指令発生器
32 加算器
50 三相交流電源
60 整流回路
70 電力変換器
80 永久磁石形同期電動機(PMSM)
90 磁極位置検出器
91 速度検出器
100 d軸磁束推定器
101 パラメータ推定器
11u u-phase current detector 11w w-phase current detector 12 input voltage detection circuit 13 PWM circuit 14 current coordinate converter 15 voltage coordinate converter 16 subtractor 17 speed adjuster 18 current command calculation units 19a and 19b subtractor 20a d-axis Current regulator 20b q-axis current regulator 30 Electrical constant measuring means 31 Current command generator 32 for electrical constant measurement 32 Adder 50 Three-phase AC power supply 60 Rectifier circuit 70 Power converter 80 Permanent magnet synchronous motor (PMSM)
90 magnetic pole position detector 91 speed detector 100 d-axis magnetic flux estimator 101 parameter estimator

Claims (2)

永久磁石形同期電動機の電流検出値、端子電圧検出値及び速度検出値から前記電動機の永久磁石磁束及びインダクタンスを測定する電気定数測定手段を備えた永久磁石形同期電動機の制御装置において、
前記電気定数測定手段は、
前記電動機の端子電圧及び電流をベクトルとしてとらえ、
前記電動機の電流検出値、端子電圧検出値及び速度検出値から磁束を推定する手段と、
前記電動機の回転子の磁極方向をd軸、これに直交する方向をq軸とした時に、d軸電流を複数の値に制御する手段と、
複数の値に制御した前記d軸電流と、これらのd軸電流にそれぞれ対応する前記磁束の推定値との関係を一次関数により近似し、この一次関数の傾きから前記電動機のd軸インダクタンスを測定し、前記一次関数の切片から前記電動機の永久磁石磁束を測定する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In a control apparatus for a permanent magnet type synchronous motor provided with an electric constant measuring means for measuring a permanent magnet magnetic flux and an inductance of the electric motor from a detected current value, a detected terminal voltage value and a detected speed value of the permanent magnet type synchronous motor,
The electrical constant measuring means includes
Taking the terminal voltage and current of the motor as a vector,
Means for estimating the magnetic flux from the current detection value, terminal voltage detection value and speed detection value of the motor;
Means for controlling the d-axis current to a plurality of values when the magnetic pole direction of the rotor of the electric motor is the d-axis and the direction perpendicular thereto is the q-axis;
The relationship between the d-axis current controlled to a plurality of values and the estimated value of the magnetic flux corresponding to each of these d-axis currents is approximated by a linear function, and the d-axis inductance of the motor is measured from the slope of this linear function. And means for measuring the permanent magnet magnetic flux of the electric motor from the intercept of the linear function;
A control device for a permanent magnet type synchronous motor.
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記回転子が停止している状態で前記電動機に交流電流を通流したとき、または、交流電圧を印加したときの電流検出値と端子電圧検出値との関係から、前記電動機のd軸インダクタンス及びq軸インダクタンスを測定する第2のインダクタンス測定手段と、
この第2のインダクタンス測定手段により測定したd軸インダクタンス及びq軸インダクタンスと、前記電気定数測定手段により測定したd軸インダクタンスとから、前記電動機のq軸インダクタンスを測定する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
From the relationship between the detected current value and the detected terminal voltage when an alternating current is passed through the motor while the rotor is stopped, or when an alternating voltage is applied, the d-axis inductance of the motor and second inductance measuring means for measuring q-axis inductance;
Means for measuring the q-axis inductance of the motor from the d-axis inductance and the q-axis inductance measured by the second inductance measuring means, and the d-axis inductance measured by the electrical constant measuring means;
A control device for a permanent magnet type synchronous motor.
JP2008202615A 2008-08-06 2008-08-06 Control device for permanent magnet type synchronous motor Active JP5223109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202615A JP5223109B2 (en) 2008-08-06 2008-08-06 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202615A JP5223109B2 (en) 2008-08-06 2008-08-06 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2010041839A true JP2010041839A (en) 2010-02-18
JP5223109B2 JP5223109B2 (en) 2013-06-26

Family

ID=42013798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202615A Active JP5223109B2 (en) 2008-08-06 2008-08-06 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP5223109B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2421146A1 (en) * 2010-08-16 2012-02-22 Baumüller Nürnberg GmbH Device and method for identifying magnetomechanical parameters of an alternating current synchronous motor without using a rotary encoder
WO2014073031A1 (en) * 2012-11-06 2014-05-15 パイオニア株式会社 Motor control device and motor control method
CN104158459A (en) * 2014-07-29 2014-11-19 长城汽车股份有限公司 Inductance determination method and device for permanent-magnet synchronous motor
JP2016226089A (en) * 2015-05-27 2016-12-28 ファナック株式会社 Temperature estimating device of synchronous motor
EP2770625A3 (en) * 2013-02-21 2017-09-13 Kabushiki Kaisha Toshiba Magnet flux amount estimation device, abnormal demagnetize determination device, synchronous motor driving device, and electric motor car
JP2018082557A (en) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 Vehicle controller
JP2018098866A (en) * 2016-12-09 2018-06-21 アイシン精機株式会社 Synchronous motor controller
JP2020018063A (en) * 2018-07-24 2020-01-30 ファナック株式会社 Motor controller and method for controlling motor
JP2020184868A (en) * 2019-04-30 2020-11-12 有限会社シー・アンド・エス国際研究所 Inductance identification device for synchronous motor
JP2021002949A (en) * 2019-06-21 2021-01-07 株式会社日立製作所 Driving device for permanent magnet synchronous motor, driving method and electric vehicle
CN114337447A (en) * 2020-09-24 2022-04-12 罗克韦尔自动化技术公司 Method, apparatus and computer program product for traffic map identification

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156993A (en) * 1998-11-18 2000-06-06 Hitachi Ltd Apparatus and method for control of permanent magnet synchronous machine
JP2000312498A (en) * 1999-04-26 2000-11-07 Toyo Electric Mfg Co Ltd Pm motor controller with constant measurement setting function
JP2001069782A (en) * 1999-09-01 2001-03-16 Toyo Electric Mfg Co Ltd Controller for permanent-magnet synchronous motor
JP2001352800A (en) * 2000-06-08 2001-12-21 Yaskawa Electric Corp Constant identification method of synchronous motor and control unit with constant identification function therefor
JP2004159400A (en) * 2002-11-05 2004-06-03 Daihatsu Motor Co Ltd Magnetic flux detection device of hybrid vehicle
JP2008086129A (en) * 2006-09-28 2008-04-10 Hitachi Ltd Ac motor controller and constant measurement apparatus
JP2008141835A (en) * 2006-11-30 2008-06-19 Denso Corp Motor control method and motor control device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156993A (en) * 1998-11-18 2000-06-06 Hitachi Ltd Apparatus and method for control of permanent magnet synchronous machine
JP2000312498A (en) * 1999-04-26 2000-11-07 Toyo Electric Mfg Co Ltd Pm motor controller with constant measurement setting function
JP2001069782A (en) * 1999-09-01 2001-03-16 Toyo Electric Mfg Co Ltd Controller for permanent-magnet synchronous motor
JP2001352800A (en) * 2000-06-08 2001-12-21 Yaskawa Electric Corp Constant identification method of synchronous motor and control unit with constant identification function therefor
JP2004159400A (en) * 2002-11-05 2004-06-03 Daihatsu Motor Co Ltd Magnetic flux detection device of hybrid vehicle
JP2008086129A (en) * 2006-09-28 2008-04-10 Hitachi Ltd Ac motor controller and constant measurement apparatus
JP2008141835A (en) * 2006-11-30 2008-06-19 Denso Corp Motor control method and motor control device using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375119A (en) * 2010-08-16 2012-03-14 包米勒公司 Apparatus and method for identification of magneto-mechanical parameters of an AC synchronous motor
US8587250B2 (en) 2010-08-16 2013-11-19 Baumuller Nurnberg Gmbh Apparatus and method for rotating-sensor-less identification of magneto-mechanical parameters of an AC synchronous motor
CN102375119B (en) * 2010-08-16 2015-11-25 包米勒公司 Identify equipment and the method for autosynchronous motor magnetic machinery characterisitic parameter
EP2421146A1 (en) * 2010-08-16 2012-02-22 Baumüller Nürnberg GmbH Device and method for identifying magnetomechanical parameters of an alternating current synchronous motor without using a rotary encoder
WO2014073031A1 (en) * 2012-11-06 2014-05-15 パイオニア株式会社 Motor control device and motor control method
EP2770625A3 (en) * 2013-02-21 2017-09-13 Kabushiki Kaisha Toshiba Magnet flux amount estimation device, abnormal demagnetize determination device, synchronous motor driving device, and electric motor car
CN104158459A (en) * 2014-07-29 2014-11-19 长城汽车股份有限公司 Inductance determination method and device for permanent-magnet synchronous motor
JP2016226089A (en) * 2015-05-27 2016-12-28 ファナック株式会社 Temperature estimating device of synchronous motor
US9825579B2 (en) 2015-05-27 2017-11-21 Fanuc Corporation Temperature estimating apparatus for synchronous motor
JP2018082557A (en) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 Vehicle controller
JP2018098866A (en) * 2016-12-09 2018-06-21 アイシン精機株式会社 Synchronous motor controller
JP2020018063A (en) * 2018-07-24 2020-01-30 ファナック株式会社 Motor controller and method for controlling motor
JP2020184868A (en) * 2019-04-30 2020-11-12 有限会社シー・アンド・エス国際研究所 Inductance identification device for synchronous motor
JP2021002949A (en) * 2019-06-21 2021-01-07 株式会社日立製作所 Driving device for permanent magnet synchronous motor, driving method and electric vehicle
CN114337447A (en) * 2020-09-24 2022-04-12 罗克韦尔自动化技术公司 Method, apparatus and computer program product for traffic map identification

Also Published As

Publication number Publication date
JP5223109B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP5445892B2 (en) Control device for permanent magnet type synchronous motor
JP4928855B2 (en) Sensorless control device for synchronous machine
JP2014222954A (en) Synchronous machine control device
JP2008220096A (en) Sensorless controller of synchronous electric motor
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP5120621B2 (en) Control device for permanent magnet type synchronous motor
JP2009290980A (en) Controller for permanent magnet type synchronous motor
CN109391186B (en) Control device and control method
JP2009278760A (en) Motor control device and motor control method
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP5332301B2 (en) Control device for permanent magnet type synchronous motor
JP2013146155A (en) Winding temperature estimating device and winding temperature estimating method
JP6102516B2 (en) Control method and control device for permanent magnet type synchronous motor
JP5534991B2 (en) Control device for synchronous motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP2011045185A (en) Control unit of permanent-magnet type synchronous motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP6108109B2 (en) Control device for permanent magnet type synchronous motor
JP2013042631A (en) Control device of permanent magnet synchronous motor
JP2011004483A (en) Device for control of permanent magnet type synchronous motor
JP2007082380A (en) Synchronous motor control device
JP6573213B2 (en) Control device for permanent magnet type synchronous motor
JP2015192463A (en) Motor control device and power generator control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R150 Certificate of patent or registration of utility model

Ref document number: 5223109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250