JP2010037622A - Plated product in which copper thin film is formed by electroless substitution plating - Google Patents

Plated product in which copper thin film is formed by electroless substitution plating Download PDF

Info

Publication number
JP2010037622A
JP2010037622A JP2008203931A JP2008203931A JP2010037622A JP 2010037622 A JP2010037622 A JP 2010037622A JP 2008203931 A JP2008203931 A JP 2008203931A JP 2008203931 A JP2008203931 A JP 2008203931A JP 2010037622 A JP2010037622 A JP 2010037622A
Authority
JP
Japan
Prior art keywords
copper
metal
thin film
plating
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008203931A
Other languages
Japanese (ja)
Inventor
Junichi Ito
順一 伊藤
Junji Yabe
淳司 矢部
Junnosuke Sekiguchi
淳之輔 関口
Toru Imori
徹 伊森
Yasuhiro Yamakoshi
康廣 山越
Shinichiro Senda
真一郎 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2008203931A priority Critical patent/JP2010037622A/en
Publication of JP2010037622A publication Critical patent/JP2010037622A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated product in which a seed layer is thinly film-formed at a uniform film thickness, capable of forming super fine wiring by improving film formation uniformity and adhesion when a seed layer is formed by electroless copper plating in damascene copper wiring or the like compared with the case where electroless copper plating is performed to the surface of a single substance metal, further, and dissolving the complication of the formation of two layers of a barrier layer and a catalyst metal layer prior to the film formation of a copper seed layer. <P>SOLUTION: The plated product is characterized in that a barrier alloy thin film for copper diffusion prevention composed of a metal B capable of substitution plating with copper ions comprised in an electroless plating liquid and also having barrier properties to copper and a metal A having barrier properties to copper is formed on a base material, the barrier alloy thin film for copper diffusion prevention has a composition in which the ratio of the metal A is controlled to 15-35 atom%, and a copper thin film is formed thereon by electroless substitution plating. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無電解置換めっきにより銅薄膜を形成しためっき物に関する。
特にULSI超微細銅配線(ダマシン銅配線)を形成する際のシード層として、無電解置換めっきにより銅薄膜を形成しためっき物に関する。
The present invention relates to a plated product in which a copper thin film is formed by electroless displacement plating.
In particular, the present invention relates to a plated product in which a copper thin film is formed by electroless displacement plating as a seed layer in forming ULSI ultrafine copper wiring (damascene copper wiring).

ULSI微細銅配線(ダマシン銅配線)の銅の成膜方法として、無電解銅めっき法は現行のスパッタリング法、電気銅めっき法に替わるものとして期待されている。
従来、半導体ウェハーのような鏡面上に無電解銅めっきを行った場合、析出しためっき膜に十分な密着性を得るのは困難であった。また、めっきの反応性が低く、基板全面に均一なめっきを行うことも困難であった。従来は、例えば、窒化タンタルなどのバリアメタル層上に無電解めっき法で銅シード層を形成する場合、めっきを均一に形成することが難しく密着力が十分でないという問題があった。
As a copper film forming method for ULSI fine copper wiring (damascene copper wiring), the electroless copper plating method is expected to replace the current sputtering method and electrolytic copper plating method.
Conventionally, when electroless copper plating is performed on a mirror surface such as a semiconductor wafer, it has been difficult to obtain sufficient adhesion to the deposited plating film. Moreover, the reactivity of plating was low, and it was difficult to perform uniform plating over the entire surface of the substrate. Conventionally, for example, when a copper seed layer is formed on a barrier metal layer such as tantalum nitride by an electroless plating method, there is a problem that it is difficult to form a uniform plating and adhesion is not sufficient.

本発明者らは、既に、無電解銅めっき液に添加剤として重量平均分子量(Mw)の小さい水溶性窒素含有ポリマーを加え、一方被めっき物の基板にはめっき液浸漬前に触媒金属を付着させるか、あるいは触媒金属を予め最表面に成膜した後、めっき液に浸漬させて該触媒金属上に窒素原子を介してポリマーを吸着させることにより、めっきの析出速度が抑制され、かつ結晶が非常に微細化して膜厚15nm以下の均一な薄膜がウェハーのような鏡面上に形成可能となることを見出した(特許文献1)。また、本発明者らは、前記発明の実施例において、触媒金属を予め最表面に成膜した後、めっき液に浸漬させて該触媒金属上に窒素原子を介してポリマーを吸着させることにより、めっきの析出速度が抑制され、かつ結晶が非常に微細化して膜厚6nm以下の均一な薄膜がウェハーのような鏡面上に形成可能となることを示した。   The present inventors have already added a water-soluble nitrogen-containing polymer having a small weight average molecular weight (Mw) as an additive to the electroless copper plating solution, while attaching a catalytic metal to the substrate of the object to be plated before dipping the plating solution. Alternatively, after depositing the catalyst metal on the outermost surface in advance, it is immersed in a plating solution and the polymer is adsorbed on the catalyst metal via nitrogen atoms, so that the deposition rate of plating is suppressed and the crystals are formed. It has been found that a uniform thin film having a film thickness of 15 nm or less can be formed on a mirror surface such as a wafer by miniaturization (Patent Document 1). In addition, in the embodiments of the present invention, the inventors previously deposited the catalyst metal on the outermost surface, and then immersed in a plating solution to adsorb the polymer via the nitrogen atom on the catalyst metal, It has been shown that the deposition rate of plating is suppressed, and the crystal is very fine so that a uniform thin film having a thickness of 6 nm or less can be formed on a mirror surface such as a wafer.

このような方法、すなわちダマシン銅配線形成において、触媒金属を成膜した後に無電解めっきにより銅シード層を設ける場合は、銅拡散防止のためのバリア層が触媒金属層とは別に予め形成されていることが必要であり、従って、銅シード層を成膜する前にバリア層と触媒金属層の二層もの層を形成することになるため、膜厚を厚くできない超微細配線では実工程への適用が困難であるという問題が判明した。
特願2007−064348号
In such a method, that is, in forming a damascene copper wiring, when a copper seed layer is provided by electroless plating after forming a catalyst metal film, a barrier layer for preventing copper diffusion is previously formed separately from the catalyst metal layer. Therefore, before the copper seed layer is formed, two layers of the barrier layer and the catalytic metal layer are formed. The problem was found to be difficult to apply.
Japanese Patent Application No. 2007-064348

本発明は、無電解銅めっきでシード層を形成した際の成膜均一性、および密着性を、単体の金属上に無電解銅めっきを行った場合と比較して向上させ、さらに、銅シード層の成膜に先立つ前記二つの層形成の煩雑さを解消して、超微細配線の形成が可能な、薄くかつ均一な膜厚でシード層を成膜しためっき物を提供することを目的とする。   The present invention improves the film formation uniformity and adhesion when a seed layer is formed by electroless copper plating as compared to the case where electroless copper plating is performed on a single metal, An object of the present invention is to provide a plated product in which a seed layer is formed in a thin and uniform film thickness, which eliminates the complexity of forming the two layers prior to the formation of the layer and enables formation of ultrafine wiring. To do.

本発明者らは鋭意検討した結果、無電解めっき液に含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性をもつ金属Bと、銅に対してバリア性を持つ金属Aからなる合金薄膜とすることにより、この上に銅置換めっきを行った際の成膜均一性、及び密着性が、単体の金属上に銅置換めっきを行った場合と比較して向上し、さらに銅シード層成膜に先立つ前記二つの層形成の煩雑さを解消できることを見出し本発明に至った。   As a result of intensive studies, the inventors of the present invention are composed of a metal B that is capable of displacement plating with copper ions contained in an electroless plating solution and has a barrier property against copper, and a metal A that has a barrier property against copper. By forming an alloy thin film, the uniformity of film formation and adhesion when copper displacement plating is performed on the alloy thin film are improved as compared with the case where copper displacement plating is performed on a single metal. The present inventors have found that the complexity of forming the two layers prior to the layer formation can be eliminated.

すなわち、本発明は以下のとおりである。
(1)基材上に、無電解めっき液に含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性を持つ金属Bと、銅に対してバリア性を持つ金属Aからなる銅拡散防止用バリア合金薄膜が形成され、該銅拡散防止用バリア合金薄膜が、前記金属Aを15原子%以上、35原子%以下とする組成であり、その上に無電解置換めっきにより銅薄膜が形成されたことを特徴とするめっき物。
(2)前記金属Bが、タングステンまたはモリブデンであり、金属Bがタングステンの場合、前記金属Aが、タンタル、モリブデン、ニオブから選ばれる少なくとも1種の金属であり、金属Bがモリブデンの場合、前記金属Aが、タンタル、タングステン、ニオブから選ばれる少なくとも1種の金属であることを特徴とする前記(1)記載のめっき物。
(3)前記無電解置換めっきにより形成された銅薄膜が膜厚10nm以下で、抵抗率10μΩ・cm以下であることを特徴とする前記(1)又は(2)記載のめっき物。
That is, the present invention is as follows.
(1) Copper diffusion comprising a metal B capable of displacement plating with a copper ion contained in an electroless plating solution and having a barrier property against copper and a metal A having a barrier property against copper on a substrate. A barrier alloy thin film for prevention is formed, and the barrier alloy thin film for copper diffusion prevention has a composition in which the metal A is 15 atomic% or more and 35 atomic% or less, and a copper thin film is formed thereon by electroless displacement plating A plated product characterized by being made.
(2) When the metal B is tungsten or molybdenum, and the metal B is tungsten, the metal A is at least one metal selected from tantalum, molybdenum, and niobium, and when the metal B is molybdenum, The plated product according to (1), wherein the metal A is at least one metal selected from tantalum, tungsten, and niobium.
(3) The plated product according to (1) or (2), wherein the copper thin film formed by the electroless displacement plating has a thickness of 10 nm or less and a resistivity of 10 μΩ · cm or less.

本発明によれば、基材上に、無電解めっき液に含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性を持つ金属Bと、銅に対してバリア性を持つ金属Aからなり、特定の組成を有する銅拡散防止用バリア合金薄膜を形成し、その上に無電解置換めっきにより銅薄膜を形成することにより、単体の金属上に銅置換めっきを行った場合と比較して、銅薄膜の成膜均一性、密着性を向上することができる。また、銅拡散防止用バリア合金薄膜とその上の無電解銅めっき層との界面においては実質的に酸素を含まない状態とすることができ、銅薄膜の抵抗を下げることができる。
さらに、前記合金薄膜は、ダマシン銅配線形成における、バリア層と触媒金属層との二層を形成する煩雑さを解消でき、さらに薄膜化が可能となる。
According to the present invention, from the metal B having a barrier property against copper and the metal B having a barrier property with respect to copper, which can be substituted with copper ions contained in the electroless plating solution on the substrate. Compared to the case where copper substitution plating is performed on a single metal by forming a barrier alloy thin film for preventing copper diffusion having a specific composition and forming a copper thin film thereon by electroless substitution plating. The film formation uniformity and adhesion of the copper thin film can be improved. In addition, the interface between the copper diffusion preventing barrier alloy thin film and the electroless copper plating layer thereon can be substantially free of oxygen, and the resistance of the copper thin film can be lowered.
Furthermore, the alloy thin film can eliminate the trouble of forming two layers of a barrier layer and a catalytic metal layer in forming a damascene copper wiring, and can be made thinner.

本発明は、基材上に、無電解めっき液に含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性を持つ金属Bと、銅に対してバリア性を持つ金属Aからなり、特定の組成を有する銅拡散防止用バリア合金薄膜が形成され、その上に無電解置換めっきにより銅薄膜が形成されためっき物に関する。   The present invention comprises, on a substrate, a metal B capable of displacement plating with copper ions contained in an electroless plating solution and having a barrier property against copper, and a metal A having a barrier property against copper, The present invention relates to a plated article in which a barrier alloy thin film for preventing copper diffusion having a specific composition is formed, and a copper thin film is formed thereon by electroless displacement plating.

無電解めっき液に含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性を持つ金属Bとしては、タングステンとモリブデンが挙げられ、これらの金属のいずれかを使用するが、中でもタングステンが好ましい。   Examples of the metal B that can be substituted with copper ions contained in the electroless plating solution and have a barrier property against copper include tungsten and molybdenum, and one of these metals is used. preferable.

銅に対してバリア性を持つ金属Aとしては、タンタル、タングステン、モリブデン、ニオブ等が挙げられる。前記金属Bがタングステンである場合は、銅に対してバリア性を持つ金属Aとしては、タンタル、モリブデン、ニオブ等のタングステン以外の金属とし、また、金属Bがモリブデンである場合は、金属Aとしてはタンタル、タングステン、ニオブ等のモリブデン以外の金属とする。前記金属Aと金属Bとの合金薄膜とすることにより、その上に無電解銅めっきをおこなった際に、単体の金属上に銅置換めっきを行った場合と比較して、成膜均一性、及び密着性が向上する。   Examples of the metal A having a barrier property against copper include tantalum, tungsten, molybdenum, niobium and the like. When the metal B is tungsten, the metal A having a barrier property with respect to copper is a metal other than tungsten such as tantalum, molybdenum, niobium, and the metal A when the metal B is molybdenum. Is a metal other than molybdenum, such as tantalum, tungsten, or niobium. By forming an alloy thin film of the metal A and the metal B, when electroless copper plating is performed thereon, compared with the case where copper displacement plating is performed on a single metal, film formation uniformity, And adhesion improves.

無電解めっき液に含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性を持つ金属Bと、銅に対してバリア性を持つ金属Aの銅拡散防止用バリア合金薄膜における組成は、金属Aの組成比は15原子%以上、35原子%以下が望ましく、25原子%以下がより望ましい。金属Aが15原子%より少なくなると、置換めっきが激しくなって銅の析出が不均一になり、銅膜の密着性が低下する。また、35原子%より多くなると、金属Aの酸化度合いが大きくなり、無電解銅めっき後も酸素が界面に残り、銅めっき膜の抵抗や密着性に悪影響を及ぼす。
尚、前記合金薄膜がタングステンとモリブデンの合金薄膜である場合は、いずれかの金属の組成比が上記範囲内であれば良い。
The composition in the barrier alloy thin film for preventing copper diffusion of the metal B that can be replaced with copper ions contained in the electroless plating solution and that has a barrier property against copper and the metal A that has a barrier property against copper, The composition ratio of the metal A is desirably 15 atomic% or more and 35 atomic% or less, and more desirably 25 atomic% or less. When the metal A is less than 15 atomic%, the displacement plating becomes intense and the copper deposition becomes uneven, and the adhesion of the copper film is lowered. On the other hand, if it exceeds 35 atomic%, the oxidation degree of metal A increases, oxygen remains at the interface even after electroless copper plating, and adversely affects the resistance and adhesion of the copper plating film.
When the alloy thin film is an alloy thin film of tungsten and molybdenum, the composition ratio of any metal may be in the above range.

前記合金薄膜は、前記金属Aと金属Bを含むスパッタリング合金ターゲットを用いて、基材上にスパッタリングで形成することが好ましい。前記組成の合金薄膜は、所望の合金薄膜の組成と略同一組成の金属Aと金属Bを含むスパッタリングターゲットにより形成することができる。
合金薄膜の膜厚は3〜20nmであることが好ましく、より好ましくは5〜15nmである。
The alloy thin film is preferably formed by sputtering on a substrate using a sputtering alloy target containing the metal A and the metal B. The alloy thin film having the above composition can be formed by a sputtering target containing a metal A and a metal B having substantially the same composition as that of the desired alloy thin film.
The film thickness of the alloy thin film is preferably 3 to 20 nm, more preferably 5 to 15 nm.

本発明において合金薄膜を形成する基材としては、半導体ウェハーが好ましく、酸処理、アルカリ処理、界面活性剤処理、超音波洗浄あるいはこれらを組み合わせた処理を実施することで、基材のクリーニング、濡れ性向上を図ることができる。   The substrate for forming the alloy thin film in the present invention is preferably a semiconductor wafer, and the substrate is cleaned, wetted by performing acid treatment, alkali treatment, surfactant treatment, ultrasonic cleaning or a combination thereof. It is possible to improve the performance.

無電解置換めっきで形成される銅薄膜は、無電解めっき液に含まれる銅イオンと金属Bとの置換反応により、無電解めっき液に含まれる銅イオンが金属として析出して形成される。
本発明において、置換めっきにより、銅薄膜が形成されることにより、前記合金薄膜の表面の酸化物が置換めっきの過程で除かれる。また上記の作用により、前記合金薄膜と銅薄膜との界面の酸素濃度をオージェ電子分光法(AES)にて分析したところ1原子%以下(検出限界以下)とすることができる。界面に酸素が存在する場合には、配線の抵抗が上がったり、バリア機能が落ちる等の悪影響がある。
また、その結果、銅薄膜の厚みを10nm以下でかつ抵抗率10μΩ・cm以下とすることができる。シード層の膜厚を薄くすることにより、線幅が数十nmレベルのダマシン銅配線への適用が可能となる。
The copper thin film formed by electroless displacement plating is formed by depositing copper ions contained in the electroless plating solution as a metal by a substitution reaction between copper ions contained in the electroless plating solution and metal B.
In the present invention, by forming a copper thin film by displacement plating, the oxide on the surface of the alloy thin film is removed in the process of displacement plating. Further, by the above action, when the oxygen concentration at the interface between the alloy thin film and the copper thin film is analyzed by Auger electron spectroscopy (AES), it can be reduced to 1 atomic% or less (below the detection limit). When oxygen is present at the interface, there are adverse effects such as an increase in wiring resistance and a decrease in barrier function.
As a result, the copper thin film can have a thickness of 10 nm or less and a resistivity of 10 μΩ · cm or less. By reducing the thickness of the seed layer, application to damascene copper wiring having a line width of several tens of nanometers becomes possible.

本発明における銅拡散防止用バリア合金薄膜を用いて無電解置換めっきを行う際に用いる無電解銅めっき方法としては、一般的な方法を用いることができる。同様に使用する銅めっき液も一般的な無電解銅めっき液を用いることができる。
無電解銅めっき液は、通常、銅イオン、銅イオンの錯化剤、還元剤、およびpH調整剤等を含んでいる。
A general method can be used as the electroless copper plating method used when performing electroless displacement plating using the barrier alloy thin film for preventing copper diffusion in the present invention. Similarly, a general electroless copper plating solution can also be used as the copper plating solution used.
The electroless copper plating solution usually contains copper ions, a complexing agent of copper ions, a reducing agent, a pH adjusting agent, and the like.

無電解銅めっき液の還元剤としては、ホルマリンの人体や環境への悪影響を考え、グリオキシル酸を用いることが好ましい。
グリオキシル酸の濃度は、めっき液中0.005〜0.5mol/Lが好ましく、0.01〜0.2mol/Lがより好ましい。濃度が0.005mol/L未満であるとめっき反応が起こらず、0.5mol/Lを超えるとめっき液が不安定になり分解する。
As the reducing agent for the electroless copper plating solution, it is preferable to use glyoxylic acid in view of the adverse effects of formalin on the human body and the environment.
The concentration of glyoxylic acid is preferably 0.005 to 0.5 mol / L, and more preferably 0.01 to 0.2 mol / L in the plating solution. When the concentration is less than 0.005 mol / L, the plating reaction does not occur, and when it exceeds 0.5 mol / L, the plating solution becomes unstable and decomposes.

本発明において無電解銅めっき液の銅イオン源としては、一般的に用いられている銅イオン源すべてを用いることができ、例えば、硫酸銅、塩化銅、硝酸銅等が挙げられる。また、銅イオンの錯化剤としても、一般的に用いられている錯化剤すべてを用いることができ、例えば、エチレンジアミン四酢酸、酒石酸等が挙げられる。
その他の添加剤として、めっき液に一般的に用いられている添加剤、例えば2,2’−ビピリジル、ポリエチレングリコール、フェロシアン化カリウム等を用いることができる。
In the present invention, as the copper ion source of the electroless copper plating solution, all commonly used copper ion sources can be used, and examples thereof include copper sulfate, copper chloride, and copper nitrate. Moreover, as a complexing agent of copper ions, all commonly used complexing agents can be used, and examples thereof include ethylenediaminetetraacetic acid and tartaric acid.
As other additives, additives generally used in plating solutions such as 2,2′-bipyridyl, polyethylene glycol, potassium ferrocyanide, and the like can be used.

また、本発明における無電解銅めっき液は、pH10〜14で用いることが好ましく、pH12〜13で用いることがより好ましい。pH調整剤としては、水酸化ナトリウム、水酸化カリウム等一般的に用いられているものを用いることができるが、半導体用途でナトリウム、カリウム等のアルカリ金属を避けたい場合には、水酸化テトラメチルアンモニウムを用いるとよい。
また、本発明における無電解銅めっき液は、浴温40〜90℃で使用するのが、浴安定性および銅の析出速度の点から好ましい。
Moreover, it is preferable to use the electroless copper plating solution in this invention by pH 10-14, and it is more preferable to use by pH 12-13. As the pH adjuster, commonly used ones such as sodium hydroxide and potassium hydroxide can be used. However, when it is desired to avoid alkali metals such as sodium and potassium in semiconductor applications, tetramethyl hydroxide is used. Ammonium may be used.
The electroless copper plating solution in the present invention is preferably used at a bath temperature of 40 to 90 ° C. from the viewpoint of bath stability and copper deposition rate.

本発明において無電解銅めっき液を用いてめっきを行う場合、被めっき材をめっき浴中に浸漬する。被めっき材は、前記のような合金薄膜を成膜したものである。
本発明の無電解置換めっきにより作製した銅薄膜の厚さは、3〜10nmがより好ましい。
In the present invention, when plating is performed using an electroless copper plating solution, the material to be plated is immersed in a plating bath. The material to be plated is obtained by forming the alloy thin film as described above.
As for the thickness of the copper thin film produced by the electroless displacement plating of this invention, 3-10 nm is more preferable.

本発明の無電解置換めっきにより作製された銅薄膜は、めっき膜が薄く、膜厚が均一となる。したがってダマシン銅配線用シード層として用いた場合、配線幅が100nm以下の微細なビア・トレンチ内にも膜厚の均一な薄膜シード層形成が可能であり、その結果ボイド・シーム等の欠陥の発生しない半導体ウェハーが得られる。   The copper thin film produced by the electroless displacement plating of the present invention has a thin plating film and a uniform film thickness. Therefore, when used as a seed layer for damascene copper wiring, it is possible to form a thin film seed layer with a uniform film thickness even in fine vias and trenches with a wiring width of 100 nm or less, resulting in the generation of defects such as voids and seams. A semiconductor wafer is obtained.

本発明のめっき物は、無電解めっきにより形成された銅薄膜上に、さらに、配線部をめっきにより設けることができる。めっきは、電気めっき又は無電解めっきを用いることができる。
配線部は銅又は銅を主成分とする合金であることが好ましく、銅がより好ましい。電気銅めっき液は、一般にダマシン銅配線埋め込み用に使用されている組成であればよく、特に限定されないが、例えば主成分として硫酸銅及び硫酸、微量成分として塩素、ポリエチレングリコール、二硫化ビス(3−スルホプロピル)二ナトリウム、ヤヌスグリーンなどを含んだ液を用いることができる。また、埋め込みに使用する無電解銅めっき液としては、例えば特開2005−038086号公報に記載の銅配線埋め込み用めっき液を用いることができる。
In the plated product of the present invention, a wiring portion can be further provided by plating on a copper thin film formed by electroless plating. For plating, electroplating or electroless plating can be used.
The wiring portion is preferably copper or an alloy containing copper as a main component, and more preferably copper. The electrolytic copper plating solution is not particularly limited as long as it is a composition generally used for embedding damascene copper wiring. For example, copper sulfate and sulfuric acid as main components, chlorine, polyethylene glycol, bis (2 disulfide) (3 -Sulfopropyl) A solution containing disodium, Janus green and the like can be used. Moreover, as an electroless copper plating solution used for embedding, for example, a plating solution for embedding copper wiring described in JP-A-2005-038086 can be used.

本発明のめっき物は、基材上に形成した前記特定の合金薄膜を有し、その上に無電解置換めっきにより形成したシード層として作用する銅薄膜を有する。前記特定の合金薄膜は既に述べているように置換めっきが可能でバリア機能を有する単一の層とすることができるので、触媒金属層と通常膜厚が数十nmとなるバリア層との二層の形成を要しない。このように本発明のめっき物においては、合金薄膜を置換めっきが可能でバリア機能を有する単一の層とすることができ、該シード層として作用する金属薄膜の膜厚が10nm以下であるので、この金属薄膜上に常法により配線部となる金属めっきすることにより、線幅が数十nmレベルのダマシン銅配線への適用が可能な半導体素子とすることができる。加えて、前記シード層として作用する金属薄膜の抵抗率が10μΩ・cm以下とすることができ、その後の電気めっき初期の均一成膜が容易となる。   The plated product of the present invention has the specific alloy thin film formed on the substrate, and has a copper thin film acting as a seed layer formed thereon by electroless displacement plating. Since the specific alloy thin film can be replaced with a single layer having a barrier function as already described, the catalyst metal layer and the barrier layer usually having a thickness of several tens of nanometers can be used. No layer formation is required. Thus, in the plated product of the present invention, the alloy thin film can be replaced with a single layer having a barrier function, and the thickness of the metal thin film acting as the seed layer is 10 nm or less. By plating the metal thin film on the metal thin film by a conventional method, a semiconductor element that can be applied to a damascene copper wiring having a line width of several tens of nanometers can be obtained. In addition, the resistivity of the metal thin film acting as the seed layer can be 10 μΩ · cm or less, and uniform film formation at the initial stage of electroplating thereafter becomes easy.

次に本発明を実施例によって説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1
半導体基板上に、無電解めっきに含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性を持つ金属としてタングステン、銅に対してバリア性を持つ金属としてタンタルからなるスパッタリング合金ターゲットを用いて膜厚10nmの合金薄膜を作製し、その合金膜上に無電解めっき法により銅めっき薄膜を形成した。前記スパッタリング合金ターゲットを用いて形成されたこの合金薄膜の組成、および無電解めっきにより形成された銅めっき薄膜の膜厚を表1に示す。
尚、無電解めっきによる銅膜の形成は、以下の組成のめっき液を用いて、pH12.5(調整剤:水酸化カリウム)、50℃×30〜40秒の条件で実施した。
めっき液組成
硫酸銅 0.02mol/L
エチレンジアミン四酢酸塩 0.21mol/L
グリオキシル酸 0.03mol/L
2、2’−ビピリジル 20mg/L
得られた銅めっき薄膜の膜厚、穴径10nm以上の孔の有無、抵抗率、合金薄膜中への銅の拡散の有無、銅めっき薄膜と合金薄膜の界面の酸化状態(酸素量)、銅めっき薄膜の密着性について評価した。膜厚は断面TEM観察により確認した。孔の有無は、表面SEM観察により確認した。抵抗率は、4端針法によるシート抵抗測定、および断面TEM観察による膜厚測定結果より算出した。銅の拡散の有無および界面の酸化状態は、AESデプスプロファイル測定により判定した。銅めっき薄膜の密着性は、セロハンテープ(CT24、ニチバン製)を使用したテープ剥離試験を実施し、指の腹でめっき面に密着させた後、テープを剥がして膜の剥離の有無を確認した。評価は、○:めっき膜の剥離無、×:めっき膜の剥離有とした。結果を表1にまとめた。
EXAMPLES Next, although an Example demonstrates this invention, this invention is not limited by these Examples.
Example 1
Using a sputtering alloy target made of tungsten as a metal capable of displacement plating with copper ions contained in electroless plating and having a barrier property against copper, and tantalum as a metal having a barrier property against copper on a semiconductor substrate An alloy thin film having a thickness of 10 nm was prepared, and a copper plating thin film was formed on the alloy film by an electroless plating method. Table 1 shows the composition of the alloy thin film formed using the sputtering alloy target and the film thickness of the copper plating thin film formed by electroless plating.
In addition, formation of the copper film by electroless plating was performed under the conditions of pH 12.5 (adjusting agent: potassium hydroxide) and 50 ° C. × 30 to 40 seconds using a plating solution having the following composition.
Plating solution composition Copper sulfate 0.02 mol / L
Ethylenediaminetetraacetate 0.21 mol / L
Glyoxylic acid 0.03 mol / L
2,2′-bipyridyl 20 mg / L
Film thickness of the obtained copper plating thin film, presence or absence of holes having a hole diameter of 10 nm or more, resistivity, presence or absence of copper diffusion into the alloy thin film, oxidation state (oxygen amount) at the interface between the copper plating thin film and the alloy thin film, copper The adhesion of the plated thin film was evaluated. The film thickness was confirmed by cross-sectional TEM observation. The presence or absence of holes was confirmed by surface SEM observation. The resistivity was calculated from the sheet resistance measurement by the four-end needle method and the film thickness measurement result by cross-sectional TEM observation. The presence or absence of copper diffusion and the oxidation state of the interface were determined by AES depth profile measurement. The adhesion of the copper-plated thin film was confirmed by performing a tape peeling test using a cellophane tape (CT24, manufactured by Nichiban). . The evaluation was as follows: ◯: no plating film peeling, x: plating film peeling. The results are summarized in Table 1.

また、線幅90nm、アスペクト比4のトレンチパターン付き半導体基板に対し、前記のスパッタ合金薄膜、及び無電解銅めっき薄膜を成膜後、それをシード層として電気銅めっきで配線の埋め込みを行った。
なお、電気めっきによる配線の埋め込みは、以下の組成のめっき液を用いて25℃×60秒、電気密度1A/dm2で実施した。
硫酸銅 0.25mol/L
硫酸 1.8mol/L
塩酸 10mmol/L
微量添加剤(ポリエチレングリコール、二硫化ビス(3−スルホプロピル)二ナトリ
ウム、ヤヌスグリーン)
得られた銅めっき膜の断面TEM観察により、線幅90nmトレンチ部の埋め込み性を評価した。ボイド・シームの有無を判定し、○:ボイド・シーム無、×:ボイド・シーム有とした。
結果を表1に示す。
Further, the sputtered alloy thin film and electroless copper plating thin film were formed on a semiconductor substrate with a trench pattern having a line width of 90 nm and an aspect ratio of 4, and then wiring was embedded by electrolytic copper plating using this as a seed layer. .
The wiring was embedded by electroplating using a plating solution having the following composition at 25 ° C. × 60 seconds and an electric density of 1 A / dm 2 .
Copper sulfate 0.25 mol / L
Sulfuric acid 1.8 mol / L
Hydrochloric acid 10mmol / L
Trace additive (polyethylene glycol, bis (3-sulfopropyl) dinatri disulfide
Umm, Janus Green)
Cross section TEM observation of the obtained copper plating film evaluated the embedding property of the trench portion with a line width of 90 nm. The presence / absence of void / seam was judged, and ○: no void / seam, x: void / seamed.
The results are shown in Table 1.

実施例2〜3、比較例1〜3
実施例1における合金薄膜の組成を表1記載のように変えた以外は実施例1と同様にして合金薄膜を作製し、無電解めっきを行い、評価した。
結果を表1に示す。
Examples 2-3 and Comparative Examples 1-3
An alloy thin film was prepared in the same manner as in Example 1 except that the composition of the alloy thin film in Example 1 was changed as shown in Table 1, and electroless plating was performed for evaluation.
The results are shown in Table 1.

Figure 2010037622
Figure 2010037622

Claims (3)

基材上に、無電解めっき液に含まれる銅イオンと置換めっきが可能でかつ銅に対してバリア性を持つ金属Bと、銅に対してバリア性を持つ金属Aからなる銅拡散防止用バリア合金薄膜が形成され、該銅拡散防止用バリア合金薄膜が、前記金属Aを15原子%以上、35原子%以下とする組成であり、その上に無電解置換めっきにより銅薄膜が形成されたことを特徴とするめっき物。   A barrier for preventing copper diffusion comprising a metal B capable of displacement plating with a copper ion contained in an electroless plating solution and having a barrier property against copper and a metal A having a barrier property against copper on a substrate. An alloy thin film was formed, and the copper diffusion preventing barrier alloy thin film had a composition in which the metal A was 15 atomic% or more and 35 atomic% or less, and a copper thin film was formed thereon by electroless displacement plating A plated product characterized by 前記金属Bが、タングステンまたはモリブデンであり、金属Bがタングステンの場合、前記金属Aが、タンタル、モリブデン、ニオブから選ばれる少なくとも1種の金属であり、金属Bがモリブデンの場合、前記金属Aが、タンタル、タングステン、ニオブから選ばれる少なくとも1種の金属であることを特徴とする請求項1記載のめっき物。   When the metal B is tungsten or molybdenum, and the metal B is tungsten, the metal A is at least one metal selected from tantalum, molybdenum, and niobium, and when the metal B is molybdenum, the metal A is The plated product according to claim 1, wherein the plated product is at least one metal selected from tantalum, tantalum, tungsten, and niobium. 前記無電解置換めっきにより形成された銅薄膜が膜厚10nm以下で、抵抗率10μΩ・cm以下であることを特徴とする請求項1又は2記載のめっき物。   The plated product according to claim 1 or 2, wherein the copper thin film formed by the electroless displacement plating has a thickness of 10 nm or less and a resistivity of 10 µΩ · cm or less.
JP2008203931A 2008-08-07 2008-08-07 Plated product in which copper thin film is formed by electroless substitution plating Withdrawn JP2010037622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203931A JP2010037622A (en) 2008-08-07 2008-08-07 Plated product in which copper thin film is formed by electroless substitution plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203931A JP2010037622A (en) 2008-08-07 2008-08-07 Plated product in which copper thin film is formed by electroless substitution plating

Publications (1)

Publication Number Publication Date
JP2010037622A true JP2010037622A (en) 2010-02-18

Family

ID=42010471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203931A Withdrawn JP2010037622A (en) 2008-08-07 2008-08-07 Plated product in which copper thin film is formed by electroless substitution plating

Country Status (1)

Country Link
JP (1) JP2010037622A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275572A (en) * 2009-05-26 2010-12-09 Jx Nippon Mining & Metals Corp Plated product having penetration silicon via and method of forming the same
WO2013125643A1 (en) 2012-02-23 2013-08-29 トヨタ自動車株式会社 Film formation device and film formation method for forming metal film
WO2014156310A1 (en) 2013-03-25 2014-10-02 トヨタ自動車株式会社 Apparatus and method for forming metal coating film film
WO2015019152A2 (en) 2013-08-07 2015-02-12 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and film deposition method
WO2015019154A2 (en) 2013-08-07 2015-02-12 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and metal film deposition method
WO2015025211A2 (en) 2013-08-20 2015-02-26 Toyota Jidosha Kabushiki Kaisha Film formation system and film formation method for forming metal film
WO2015050192A1 (en) 2013-10-03 2015-04-09 トヨタ自動車株式会社 Nickel solution for forming film and film-forming method using same
WO2015121727A1 (en) 2014-02-14 2015-08-20 Toyota Jidosha Kabushiki Kaisha Method of forming metal coating
EP2977488A1 (en) 2014-07-22 2016-01-27 Toyota Jidosha Kabushiki Kaisha Film-forming metal solution and metal film-forming method
US10151042B2 (en) 2015-03-11 2018-12-11 Toyota Jidosha Kabushiki Kaisha Coating forming device and coating forming method for forming metal coating

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275572A (en) * 2009-05-26 2010-12-09 Jx Nippon Mining & Metals Corp Plated product having penetration silicon via and method of forming the same
KR101623677B1 (en) 2012-02-23 2016-05-23 도요타 지도샤(주) Film formation device and film formation method for forming metal film
WO2013125643A1 (en) 2012-02-23 2013-08-29 トヨタ自動車株式会社 Film formation device and film formation method for forming metal film
US10047452B2 (en) 2012-02-23 2018-08-14 Toyota Jidosha Kabushiki Kaisha Film formation device and film formation method for forming metal film
WO2014156310A1 (en) 2013-03-25 2014-10-02 トヨタ自動車株式会社 Apparatus and method for forming metal coating film film
US9677185B2 (en) 2013-03-25 2017-06-13 Toyota Jidosha Kabushiki Kaisha Film formation apparatus and film formation method for forming metal film
US9840786B2 (en) 2013-08-07 2017-12-12 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and film deposition method
WO2015019154A2 (en) 2013-08-07 2015-02-12 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and metal film deposition method
WO2015019152A2 (en) 2013-08-07 2015-02-12 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and film deposition method
US10920331B2 (en) 2013-08-07 2021-02-16 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and metal film deposition method
WO2015025211A2 (en) 2013-08-20 2015-02-26 Toyota Jidosha Kabushiki Kaisha Film formation system and film formation method for forming metal film
US9909226B2 (en) 2013-08-20 2018-03-06 Toyota Jidosha Kabushiki Kaisha Film formation system and film formation method for forming metal film
WO2015050192A1 (en) 2013-10-03 2015-04-09 トヨタ自動車株式会社 Nickel solution for forming film and film-forming method using same
US10358734B2 (en) 2013-10-03 2019-07-23 Toyota Jidosha Kabushiki Kaisha Nickel solution for forming film and film-forming method using same
WO2015121727A1 (en) 2014-02-14 2015-08-20 Toyota Jidosha Kabushiki Kaisha Method of forming metal coating
US10301735B2 (en) 2014-02-14 2019-05-28 Toyota Jidosha Kabushiki Kaisha Method of forming metal coating
EP2977488A1 (en) 2014-07-22 2016-01-27 Toyota Jidosha Kabushiki Kaisha Film-forming metal solution and metal film-forming method
RU2614655C2 (en) * 2014-07-22 2017-03-28 Тойота Дзидося Кабусики Кайся Solution for metal film formation and for metal film formation
US10151042B2 (en) 2015-03-11 2018-12-11 Toyota Jidosha Kabushiki Kaisha Coating forming device and coating forming method for forming metal coating

Similar Documents

Publication Publication Date Title
JP4376959B2 (en) Plating object in which metal thin film is formed by electroless plating and manufacturing method thereof
JP2010037622A (en) Plated product in which copper thin film is formed by electroless substitution plating
JP4376958B2 (en) Plating object in which metal thin film is formed by electroless plating and manufacturing method thereof
JP5300156B2 (en) Plating material with copper thin film formed by electroless plating
JP5268159B2 (en) Substrate and manufacturing method thereof
JP5371783B2 (en) ULSI fine wiring member having ruthenium electroplating layer on barrier layer
JP5268160B2 (en) Substrate and manufacturing method thereof
JP4531114B2 (en) Electronic member having a barrier and seed layer formed on a substrate
JP5399421B2 (en) A substrate having an alloy film of a metal element having a barrier function and a metal element having a catalytic function
JP2010275572A (en) Plated product having penetration silicon via and method of forming the same
JPWO2009116347A1 (en) Electronic member having a barrier and seed layer formed on a substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100823

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101