JP2010033803A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010033803A
JP2010033803A JP2008193356A JP2008193356A JP2010033803A JP 2010033803 A JP2010033803 A JP 2010033803A JP 2008193356 A JP2008193356 A JP 2008193356A JP 2008193356 A JP2008193356 A JP 2008193356A JP 2010033803 A JP2010033803 A JP 2010033803A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
mixture layer
electrode mixture
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008193356A
Other languages
Japanese (ja)
Other versions
JP5361271B2 (en
Inventor
Yuzuru Shimazaki
譲 島▲崎▼
Kenji Hara
賢二 原
Yusuke Ono
雄介 大野
Masahisa Okuda
昌久 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008193356A priority Critical patent/JP5361271B2/en
Publication of JP2010033803A publication Critical patent/JP2010033803A/en
Application granted granted Critical
Publication of JP5361271B2 publication Critical patent/JP5361271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery improved in input and output characteristics. <P>SOLUTION: The lithium ion secondary battery 60 has a battery can 41. An electrode group 5 in which a positive electrode plate and a negative electrode plate are wound around through a separator 21 is housed in the battery can 41. A positive electrode lead 3 is joined to a positive electrode terminal 51, and a negative electrode lead 13 is joined to the inner bottom of the battery can 41. A negative electrode mixture layer 12 is coated on both sides of a negative electrode current collector sheet 11. A negative electrode active material and a conductive material consisting of a conductive material are contained 96-99 wt.% in the negative electrode mixture layer 12 and are bound by a rubber binder. The negative electrode mixture layer 12 is established at ≤50 μm for the thickness on one side. Thereby, the density of the conductive material of the mixture layer 12 is improved and transfer of the lithium ion becomes easy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非水電解液二次電池に係り、特に、集電体にリチウムイオンを吸蔵放出可能な活物質を含む正極合材層が塗着された正極板ならびに集電体にリチウムイオンを吸蔵放出可能な活物質と選択的に導電材とを導電性物質として含む負極合材層が塗着された負極板がセパレータを介して配置された電極群と、電極群を浸潤する非水電解液とを備えた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and in particular, a positive electrode plate in which a positive electrode mixture layer containing an active material capable of occluding and releasing lithium ions is applied to a current collector, and a lithium ion to the current collector. An electrode group in which a negative electrode plate coated with a negative electrode mixture layer containing a releasable active material and a conductive material selectively as a conductive material is disposed via a separator, and a non-aqueous electrolyte infiltrating the electrode group And a non-aqueous electrolyte secondary battery.

非水電解液二次電池の中でも、リチウムイオンの吸蔵放出を利用したリチウムイオン二次電池は高エネルギー密度を有するため、VTRカメラやノート型パソコン、携帯電話などのポータブル機器の電源等に広く使用されている。一方、地球温暖化などの環境問題の顕在化により、自動車からの二酸化炭素排出量削減が求められており、二酸化炭素を排出しない電気エネルギーを動力とする電気自動車(EV)や、電気エネルギーを動力の一部とし、自動車の減速時に生じるエネルギーを回生して使用するハイブリッド自動車(HEV)の開発が急ピッチで進められている。リチウムイオン二次電池は、EVおよびHEVの車載用電源としても注目されている。   Among non-aqueous electrolyte secondary batteries, lithium ion secondary batteries that use the absorption and release of lithium ions have high energy density, so they are widely used as power sources for portable devices such as VTR cameras, notebook computers, and mobile phones. Has been. On the other hand, due to the emergence of environmental problems such as global warming, reduction of carbon dioxide emissions from automobiles is required. Electric vehicles (EV) powered by electric energy that does not emit carbon dioxide, and electric energy as power Development of a hybrid vehicle (HEV) that regenerates and uses energy generated when the vehicle decelerates is being promoted at a rapid pace. Lithium ion secondary batteries are also attracting attention as in-vehicle power supplies for EVs and HEVs.

従来リチウムイオン二次電池では、正負極板ともに活物質を含む合材層が集電体の両面にそれぞれ塗着されている。正極合材層にはリチウムイオンの吸蔵放出により活物質で生じた電位を集電体に伝達する際の電気抵抗を低減するための導電材が含有されている。一方、負極合材層には導電性物質が含有されない場合もある。一般に、合材層には導電性物質である活物質および導電材の他に、活物質および導電材の結着性のみならず、集電体および合材層の結着性を向上させるためのバインダが含有されており、バインダにはポリフッ化ビニリデン(以下、PVDFと略記する。)等が用いられている。   In a conventional lithium ion secondary battery, a mixture layer containing an active material is applied to both sides of a current collector in both positive and negative plates. The positive electrode mixture layer contains a conductive material for reducing the electric resistance when the potential generated in the active material due to occlusion and release of lithium ions is transmitted to the current collector. On the other hand, a conductive material may not be contained in the negative electrode mixture layer. Generally, in addition to the active material and the conductive material, which are conductive materials, the composite material layer not only improves the binding properties of the active material and the conductive material, but also improves the binding properties of the current collector and the composite material layer. A binder is contained, and polyvinylidene fluoride (hereinafter abbreviated as PVDF) or the like is used as the binder.

ところで、リチウムイオン二次電池は高容量であることが求められており、合材層のバインダをできる限り減量し活物質を増量すること、すなわち、合材層の活物質を高密度化することが有効である。例えば、特許文献1では、正極合材の調合方法を工夫することにより正極合材層の活物質を高密度化して、リチウムイオン二次電池の高容量化を実現している。また、民生用リチウムイオン二次電池(容量3Ah未満)では、PVDFの代わりにゴムバインダを用いて負極合材層の活物質を高密度化し、リチウムイオン二次電池の高容量を実現している。   By the way, a lithium ion secondary battery is required to have a high capacity, and it is necessary to reduce the binder of the composite layer as much as possible to increase the active material, that is, to increase the density of the active material of the composite layer. Is effective. For example, in Patent Document 1, the active material of the positive electrode mixture layer is densified by devising a method for preparing the positive electrode mixture, thereby realizing a high capacity lithium ion secondary battery. In addition, in a consumer lithium ion secondary battery (capacity less than 3 Ah), the active material of the negative electrode mixture layer is densified by using a rubber binder instead of PVDF to realize a high capacity of the lithium ion secondary battery.

特開2005−340072号公報JP 2005-340072 A

しかしながら、リチウムイオン二次電池では高容量だけでなく、高入出力特性も求められる。例えば、HEVでは発進時や加速時の動力アシストにモーターが使用されるため、このときに電源として使用される二次電池は、短時間で大電流を放電可能な高出力特性を備えていることが要求される。一方、HEVでは自動車の減速時に生じるエネルギーを回生して使用するため、短時間で生じた大電流を充電可能な高入力特性も備えていることが要求される。   However, lithium ion secondary batteries are required to have not only high capacity but also high input / output characteristics. For example, in HEV, since a motor is used for power assist when starting or accelerating, the secondary battery used as a power source at this time has a high output characteristic capable of discharging a large current in a short time. Is required. On the other hand, since HEV regenerates and uses energy generated when a vehicle is decelerated, it is required to have a high input characteristic capable of charging a large current generated in a short time.

本発明は上記事案に鑑み、入出力特性を向上させた非水電解液二次電池を提供することを課題とする。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery with improved input / output characteristics in view of the above-mentioned case.

上記課題を解決するために、本発明は集電体にリチウムイオンを吸蔵放出可能な活物質を含む正極合材層が塗着された正極板ならびに集電体にリチウムイオンを吸蔵放出可能な活物質と選択的に導電材とを導電性物質として含む負極合材層が塗着された負極板がセパレータを介して配置された電極群と、前記電極群を浸潤する非水電解液とを備え、前記負極合材層は、前記集電体の両面に塗着されており、片面あたりの厚さが50μm以下であり、かつ、前記負極合材層には前記導電性物質が96重量%以上、99重量%以下の範囲で含有されていることを特徴とする非水電解液二次電池である。   In order to solve the above problems, the present invention provides a positive electrode plate in which a positive electrode mixture layer containing an active material capable of occluding and releasing lithium ions is applied to a current collector, and an active material capable of occluding and releasing lithium ions in a current collector. A negative electrode plate coated with a negative electrode mixture layer containing a substance and a conductive material selectively as a conductive substance, and a non-aqueous electrolyte infiltrating the electrode group; The negative electrode mixture layer is coated on both sides of the current collector, and the thickness per side is 50 μm or less, and the conductive material is 96 wt% or more in the negative electrode mixture layer. , 99% by weight or less of the nonaqueous electrolyte secondary battery.

本発明では、負極合材層は集電体の片面あたりの厚さが50μm以下なので、負極合材層内外でリチウムイオンの授受が容易となり、一定体積あたりの電池内で正負極板の対向面積を増加させることができるとともに、負極合材層に導電性物質が96重量%以上、99重量%以下の範囲で含有されたことで、負極抵抗が低減されるので、入出力特性を向上させることができる。   In the present invention, since the negative electrode composite layer has a thickness of 50 μm or less per side of the current collector, it is easy to exchange lithium ions inside and outside the negative electrode composite layer, and the opposing area of the positive and negative electrode plates in the battery per fixed volume In addition, the negative electrode resistance is reduced when the conductive material is contained in the negative electrode mixture layer in the range of 96 wt% or more and 99 wt% or less, thereby improving the input / output characteristics. Can do.

この場合において、負極合材層にはゴムバインダが含有されていることが好ましく、ゴムバインダは、粒子状であり、粒子径が0.1〜1.0μmの範囲であることがより好ましい。また、出力密度が3200W/kg以上であり、入力密度が3000W/kg以上であることが望ましい。さらに、電極群は正負極板がセパレータを介して捲回されており、かつ、負極合材層の片面あたりの厚さが35μm以下であり、電池容量を3.5Ah以上としてもよい。   In this case, the negative electrode mixture layer preferably contains a rubber binder, and the rubber binder is more preferably in the form of particles and a particle diameter in the range of 0.1 to 1.0 μm. Further, it is desirable that the output density is 3200 W / kg or more and the input density is 3000 W / kg or more. Further, in the electrode group, the positive and negative electrode plates are wound with a separator interposed therebetween, the thickness of the negative electrode mixture layer per side is 35 μm or less, and the battery capacity may be 3.5 Ah or more.

本発明によれば、負極合材層は集電体の片面あたりの厚さが50μm以下なので、負極合材層内外でリチウムイオンの授受が容易となり、一定体積あたりの電池内で正負極板の対向面積を増加させることができるとともに、負極合材層に導電性物質が96重量%以上、99重量%以下の範囲で含有されたことで、負極抵抗が低減されるので、入出力特性を向上させることができる、という効果を得ることができる。   According to the present invention, since the negative electrode mixture layer has a thickness of 50 μm or less on one side of the current collector, it is easy to exchange lithium ions inside and outside the negative electrode mixture layer, and the positive and negative electrode plates of the positive electrode plate within the battery per fixed volume. The facing area can be increased, and the negative electrode resistance is reduced because the conductive material is contained in the negative electrode mixture layer in the range of 96% by weight to 99% by weight, improving the input / output characteristics. The effect that it can be made can be acquired.

(第1実施形態)
以下、図面を参照して、本発明を円柱状リチウムイオン二次電池に適用した第1の実施の形態について説明する。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery will be described with reference to the drawings.

本実施形態の円柱状リチウムイオン二次電池60は、図1に示すように、電池容器となるニッケルメッキを施された鉄製で有底円筒状の電池缶41を有している。電池缶41内には、帯状の正極板および負極板がセパレータ21を介して断面渦巻状に捲回された電極群5が収容されている。電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。本例では、セパレータ21には、厚さが25μm、長手方向と交差する幅(以下、単に幅と記載する。)が58mmのポリエチレン多孔膜が用いられている。また、本例ではリチウムイオン二次電池60は、直径が18mm、長さが65mmで作製されている。   As shown in FIG. 1, the columnar lithium ion secondary battery 60 of the present embodiment includes a nickel-plated iron-made bottomed cylindrical battery can 41 serving as a battery container. The battery can 41 accommodates an electrode group 5 in which a strip-like positive electrode plate and a negative electrode plate are wound in a spiral shape through a separator 21. An insulating coating (not shown) is applied to the entire outer peripheral surface of the electrode group 5. In this example, the separator 21 is a polyethylene porous film having a thickness of 25 μm and a width that intersects the longitudinal direction (hereinafter simply referred to as a width) of 58 mm. In this example, the lithium ion secondary battery 60 is manufactured with a diameter of 18 mm and a length of 65 mm.

電極群5の上側には、アルミニウム製でリボン状の正極リード3が導出されている。正極リード3の一端は正極集電体シート1に接合されており、他端は電極群5の上側に配置されたアルミニウム製で円盤状の正極端子51の下面に接合されている。正極端子51の下面と電極群5の上端面との間には、短絡を防止するためにポリエチレン製のインシュレータ31が配置されている。正極端子51には、電池内圧の上昇に応じて開裂する安全弁機構(不図示)が組み込まれている。一方、電極群5の下側にはニッケル製でリボン状の負極リード13が導出されている。負極リード13の一端は負極集電体シート11に接合されており、他端は電池缶41の内底面に接合されている。従って、負極板と電池缶41が電気的に接続されており、電池缶41が負極端子を兼ねている。電池缶41の内底面と電極群5の下端面との間にもインシュレータ31が配置されている。   Above the electrode group 5, a ribbon-like positive electrode lead 3 made of aluminum is led out. One end of the positive electrode lead 3 is bonded to the positive electrode current collector sheet 1, and the other end is bonded to the lower surface of an aluminum disc-shaped positive electrode terminal 51 disposed on the upper side of the electrode group 5. A polyethylene insulator 31 is disposed between the lower surface of the positive electrode terminal 51 and the upper end surface of the electrode group 5 in order to prevent a short circuit. The positive terminal 51 incorporates a safety valve mechanism (not shown) that cleaves in response to an increase in battery internal pressure. On the other hand, a ribbon-like negative electrode lead 13 made of nickel is led out below the electrode group 5. One end of the negative electrode lead 13 is bonded to the negative electrode current collector sheet 11, and the other end is bonded to the inner bottom surface of the battery can 41. Therefore, the negative electrode plate and the battery can 41 are electrically connected, and the battery can 41 also serves as the negative electrode terminal. An insulator 31 is also disposed between the inner bottom surface of the battery can 41 and the lower end surface of the electrode group 5.

(正極板)
電極群5を構成する正極板は、正極集電体シート1の両面に活物質を含む合材が塗着され、正極合材層2が形成されている。本例では、正極集電体シート1として厚さ20μmのアルミニウム箔が用いられている。合材には、正極活物質としてマンガン酸リチウムと、導電材として黒鉛およびアセチレンブラックの混合物と、バインダとしてPVDF(呉羽化学工業(株)製 KF#1120)とが80:10:10の重量比率で混合されている。正極集電体シート1に合材を塗布するときには、溶媒であるN−メチルピロリドン(以下、NMPと略記する。)に略均一に分散させて合材スラリーが作製される。正極集電体シート1の両面に合材スラリーが略均一にロール塗工法により塗布される。120℃で乾燥後、プレス一体化され、正極集電体シート1の両面に正極合材層2がそれぞれ塗着される。本例では、正極板の厚さが90μm、幅が54mm、長さが450mmに設定されている。すなわち、正極集電体シート1の片面に塗着された正極合材層2の厚さは、35μmに設定されている。また、正極板の端部には正極リード3が接合されている。
(Positive electrode plate)
In the positive electrode plate constituting the electrode group 5, a mixture containing an active material is applied to both surfaces of the positive electrode current collector sheet 1 to form a positive electrode mixture layer 2. In this example, an aluminum foil having a thickness of 20 μm is used as the positive electrode current collector sheet 1. In the composite material, lithium manganate as a positive electrode active material, a mixture of graphite and acetylene black as a conductive material, and PVDF (KF # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder are in a weight ratio of 80:10:10. Is mixed in. When the composite material is applied to the positive electrode current collector sheet 1, a composite material slurry is produced by dispersing the composite material substantially uniformly in a solvent N-methylpyrrolidone (hereinafter abbreviated as NMP). The mixture slurry is applied to both surfaces of the positive electrode current collector sheet 1 substantially uniformly by a roll coating method. After drying at 120 ° C., they are press-integrated, and the positive electrode mixture layers 2 are respectively applied to both surfaces of the positive electrode current collector sheet 1. In this example, the positive electrode plate has a thickness of 90 μm, a width of 54 mm, and a length of 450 mm. That is, the thickness of the positive electrode mixture layer 2 applied to one surface of the positive electrode current collector sheet 1 is set to 35 μm. A positive electrode lead 3 is joined to the end of the positive electrode plate.

(負極板)
一方、負極板は、負極集電体シート11の両面に活物質を含む合材が塗着され、負極合材層12が形成されている。本例では、負極集電体シート11として厚さ10μmの銅箔が用いられている。合材には、負極活物質として黒鉛と、導電材としてアセチレンブラックと、バインダとしてスチレン−ブタジエン共重合体ゴム(以下、SBRと略記する。)粒子と、増粘材としてカルボキシメチルセルロース(以下、CMCと略記する。)とが95:4:0.5:0.5の重量比率で混合されている。すなわち、負極合材層12には負極活物質および導電材からなる導電性物質が99(=95+4)重量%含有されている。負極合材層12の形成に用いられるバインダは、いわゆるゴムバインダである。本例では、ゴムバインダとして数平均粒子径が0.15μmのSBR粒子が用いられている。負極集電体シート11に合材を塗布するときには、分散溶媒である水に略均一に分散させて合材スラリーが作製される。負極集電体シート11の両面に合材スラリーが略均一にロール塗工法により塗布される。120℃で乾燥後、プレス一体化され、負極集電体シート11の両面に負極合材層12がそれぞれ塗着される。本例では、負極板の厚さが76μm、幅が56mm、長さが500mmに設定されている。すなわち、負極集電体シート11の片面に塗着された負極合材層12の厚さは、33μmに設定されている。また、負極板の端部には負極リード13が接合されている。
(Negative electrode plate)
On the other hand, the negative electrode plate is formed by coating a negative electrode current collector sheet 11 with a composite material containing an active material on both sides, thereby forming a negative electrode composite material layer 12. In this example, a copper foil having a thickness of 10 μm is used as the negative electrode current collector sheet 11. The composite material includes graphite as a negative electrode active material, acetylene black as a conductive material, styrene-butadiene copolymer rubber (hereinafter abbreviated as SBR) particles as a binder, and carboxymethyl cellulose (hereinafter referred to as CMC) as a thickener. Are mixed in a weight ratio of 95: 4: 0.5: 0.5. That is, the negative electrode mixture layer 12 contains 99 (= 95 + 4) wt% of a negative electrode active material and a conductive material made of a conductive material. The binder used for forming the negative electrode mixture layer 12 is a so-called rubber binder. In this example, SBR particles having a number average particle size of 0.15 μm are used as the rubber binder. When the composite material is applied to the negative electrode current collector sheet 11, the composite material slurry is produced by dispersing the composite material substantially uniformly in water as a dispersion solvent. The mixed material slurry is applied to both surfaces of the negative electrode current collector sheet 11 substantially uniformly by a roll coating method. After drying at 120 ° C., press integration is performed, and the negative electrode mixture layers 12 are applied to both surfaces of the negative electrode current collector sheet 11. In this example, the thickness of the negative electrode plate is set to 76 μm, the width is 56 mm, and the length is 500 mm. That is, the thickness of the negative electrode mixture layer 12 applied to one surface of the negative electrode current collector sheet 11 is set to 33 μm. A negative electrode lead 13 is joined to the end of the negative electrode plate.

また、図1に示すように、正極端子51は、絶縁性のガスケットを介して電池缶41の上部にカシメ固定されている。このため、リチウムイオン二次電池60の内部は密封されている。また、電池缶41内には、図示を省略した非水電解液が注液されている。非水電解液には、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびジエチルカーボネート(DEC)が体積比1:1:1の割合で混合された混合溶媒中に、リチウム塩として6フッ化リン酸リチウム(LiPF)が1モル/リットル溶解されたものが用いられている。 Moreover, as shown in FIG. 1, the positive electrode terminal 51 is caulked and fixed to the upper part of the battery can 41 via an insulating gasket. For this reason, the inside of the lithium ion secondary battery 60 is sealed. In addition, a nonaqueous electrolyte solution (not shown) is injected into the battery can 41. The non-aqueous electrolyte includes phosphorus hexafluoride as a lithium salt in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1: 1. A solution in which 1 mol / liter of lithium acid (LiPF 6 ) is dissolved is used.

(第2実施形態)
次に、本発明を適用した円柱状リチウムイオン二次電池60の第2の実施の形態について説明する。本実施形態は、第1実施形態で示した負極合材の混合比のみを変えたものである。なお、本実施形態において第1実施形態と同一の構成要素には同一の符号を付してその説明を省略し、異なる箇所のみ説明する。
(Second Embodiment)
Next, a second embodiment of a cylindrical lithium ion secondary battery 60 to which the present invention is applied will be described. In the present embodiment, only the mixing ratio of the negative electrode mixture shown in the first embodiment is changed. In addition, in this embodiment, the same code | symbol is attached | subjected to the component same as 1st Embodiment, the description is abbreviate | omitted, and only a different location is demonstrated.

(負極板)
本実施形態の負極板は、負極合材の混合比のみを変えた以外は第1実施形態と同様にして作製されている。すなわち、負極合材には、負極活物質として黒鉛と、導電材としてアセチレンブラックと、バインダとしてSBR粒子と、増粘材としてCMCとが92:4:2:2の重量比率で混合されている。すなわち、本実施形態の負極合材層12には導電性物質が96(=92+4)重量%含有されている。
(Negative electrode plate)
The negative electrode plate of this embodiment is produced in the same manner as in the first embodiment except that only the mixing ratio of the negative electrode mixture is changed. That is, in the negative electrode mixture, graphite as a negative electrode active material, acetylene black as a conductive material, SBR particles as a binder, and CMC as a thickener are mixed in a weight ratio of 92: 4: 2: 2. . That is, the negative electrode mixture layer 12 of the present embodiment contains 96 (= 92 + 4) wt% of a conductive substance.

次に、上記実施形態に従い作製したリチウムイオン二次電池60の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, examples of the lithium ion secondary battery 60 manufactured according to the above embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1、実施例2)
実施例1では、第1実施形態に従い、負極合材層12に導電性物質を99重量%含有させたリチウムイオン二次電池60を作製した。実施例2では、第2実施形態に従い、負極合材層12に導電性物質を96重量%含有させたリチウムイオン二次電池60を作製した。
(Example 1, Example 2)
In Example 1, a lithium ion secondary battery 60 in which 99% by weight of a conductive material was contained in the negative electrode mixture layer 12 was produced according to the first embodiment. In Example 2, a lithium ion secondary battery 60 in which 96% by weight of a conductive material was contained in the negative electrode mixture layer 12 was produced according to the second embodiment.

(比較例1、比較例2)
比較例1では、負極合材を変えた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。すなわち、負極活物質として黒鉛と、導電材としてアセチレンブラックと、バインダとしてPVDF(呉羽化学工業(株)製 KF#1120)とを88:4:8の重量比率で混合した合材を用いてリチウムイオン二次電池を作製した。比較例1の負極合材層には、導電性物質が92(=88+4)重量%含有されている。比較例2では、負極合材の混合比のみを変えた以外は比較例1と同様にしてリチウムイオン二次電池の作製を試みた。すなわち、負極活物質と、導電材と、バインダとを92:4:4の重量比率で混合した合材を用いた。比較例2の負極合材層には、導電性物質が96(=92+4)重量%含有されている。
(Comparative Example 1 and Comparative Example 2)
In Comparative Example 1, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode mixture was changed. That is, lithium is obtained using a composite material in which graphite as a negative electrode active material, acetylene black as a conductive material, and PVDF (KF # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder are mixed in a weight ratio of 88: 4: 8. An ion secondary battery was produced. The negative electrode mixture layer of Comparative Example 1 contains 92 (= 88 + 4) wt% of a conductive substance. In Comparative Example 2, an attempt was made to produce a lithium ion secondary battery in the same manner as in Comparative Example 1, except that only the mixing ratio of the negative electrode mixture was changed. That is, a composite material in which a negative electrode active material, a conductive material, and a binder were mixed at a weight ratio of 92: 4: 4 was used. The negative electrode mixture layer of Comparative Example 2 contains 96 (= 92 + 4) wt% of a conductive substance.

(評価)
実施例1、2および比較例1のリチウムイオン二次電池を125mAで4.1Vまで充電し、1週間放置した。その後、JEVS D713:2003(日本電動車両規格 ハイブリッド電気自動車用密閉形ニッケル・水素電池の出力密度および入力密度試験方法)の条件に準じて、充電深度50%の各電池の入出力特性を評価した。実施例1のリチウムイオン二次電池60では出力密度が3500W/kg、かつ、入力密度が3300W/kg、実施例2のリチウムイオン二次電池60では出力密度が3200W/kg、かつ、入力密度が3000W/kgであることが判明した。これに対して、比較例1のリチウムイオン二次電池では出力密度が2700W/kg、かつ、入力密度が2500W/kgを示した。なお、比較例2では、負極合材層に導電性物質を96重量%含有させることで、比較例1より負極合材層の導電性物質を高密度化して電池性能を向上させることを試みた。しかしながら、バインダ量が比較例1より減量されたため、結着性が低下して負極合材層が負極集電体シートから剥離した。このため、リチウムイオン二次電池を作製することができなかった。
(Evaluation)
The lithium ion secondary batteries of Examples 1 and 2 and Comparative Example 1 were charged to 4.1 V at 125 mA and left for 1 week. Thereafter, the input / output characteristics of each battery with a charge depth of 50% were evaluated in accordance with the conditions of JEVS D713: 2003 (Testing method of power density and input density of sealed nickel-hydrogen battery for Japanese electric vehicle standard hybrid electric vehicle). . In the lithium ion secondary battery 60 of Example 1, the output density is 3500 W / kg and the input density is 3300 W / kg, and in the lithium ion secondary battery 60 of Example 2, the output density is 3200 W / kg and the input density is It was found to be 3000 W / kg. On the other hand, the lithium ion secondary battery of Comparative Example 1 showed an output density of 2700 W / kg and an input density of 2500 W / kg. In Comparative Example 2, an attempt was made to improve the battery performance by increasing the density of the conductive material of the negative electrode mixture layer from Comparative Example 1 by including 96% by weight of the conductive material in the negative electrode mixture layer. . However, since the amount of the binder was reduced from that of Comparative Example 1, the binding property was lowered, and the negative electrode mixture layer was peeled off from the negative electrode current collector sheet. For this reason, a lithium ion secondary battery could not be produced.

実施例1、2および比較例1の評価結果から、負極合材層の導電性物質(活物質および導電材)の重量比率を96重量%以上、99重量%以下にすることにより、リチウムイオン二次電池の入力密度および出力密度がいずれも向上することが明らかとなった。すなわち、リチウムイオン二次電池の入出力特性が向上することが判った。これは、負極合材層の導電性物質が高密度化されるとともに、負極抵抗が低減したためと考えられる。また、負極バインダとして汎用のPVDFを用いた場合には、負極合材層の導電性物質の重量比率を96重量%以上にすると、バインダの結着性が十分でないため負極集電体シートから負極合材層が剥離してしまい、リチウムイオン二次電池を作製することができないことが判った。これに対して、負極バインダとしてゴムバインダであるSBRを用いた場合には、負極合材層の導電性物質の重量比率が96重量%以上、99重量%以下のリチウムイオン二次電池を作製できることが判明した。   From the evaluation results of Examples 1 and 2 and Comparative Example 1, the weight ratio of the conductive material (active material and conductive material) of the negative electrode mixture layer was set to 96% by weight or more and 99% by weight or less. It became clear that both the input density and the output density of the secondary battery were improved. That is, it was found that the input / output characteristics of the lithium ion secondary battery are improved. This is presumably because the negative electrode resistance was reduced while the conductive material of the negative electrode mixture layer was densified. In addition, when general-purpose PVDF is used as the negative electrode binder, if the weight ratio of the conductive material of the negative electrode mixture layer is set to 96% by weight or more, the binding property of the binder is not sufficient, so that the negative electrode current collector sheet to the negative electrode It was found that the composite material layer was peeled off and a lithium ion secondary battery could not be produced. In contrast, when SBR, which is a rubber binder, is used as the negative electrode binder, a lithium ion secondary battery in which the weight ratio of the conductive material of the negative electrode mixture layer is 96 wt% or more and 99 wt% or less can be manufactured. found.

(作用等)
次に、上記実施形態のリチウムイオン二次電池60の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 60 of the above embodiment will be described.

上記実施形態のリチウムイオン二次電池60では、正極集電体シート1の片面あたりに塗着された正極合材層2の厚さが35μmに設定されている。また、負極集電体シート11の片面あたりに塗着された負極合材層12の厚さが33μmに設定されている。すなわち、正負極板の合材層は集電体の片面あたりの厚さがそれぞれ35μm以下である。正負極板の合材層は集電体の片面あたりの厚さが50μmより大きい場合には、合材層の表面から集電体側の深層まで、または、集電体側の深層から合材層の表面までリチウムイオンの伝達を阻害することがある。このため、正負極合材層の集電体の片面あたりの厚さをそれぞれ50μm以下にすることで、合材層内外でリチウムイオンの授受が容易となる。また、一定体積あたりの電池内で正負極板の対向面積を増加させることができる。これにより、リチウムイオン二次電池60の入出力特性を向上させることができる。合材層の片面あたりの厚さをそれぞれ35μm以下にすることで、入出力特性をさらに向上させることができる。   In the lithium ion secondary battery 60 of the above embodiment, the thickness of the positive electrode mixture layer 2 applied to one side of the positive electrode current collector sheet 1 is set to 35 μm. Further, the thickness of the negative electrode mixture layer 12 applied to one side of the negative electrode current collector sheet 11 is set to 33 μm. In other words, each of the composite material layers of the positive and negative electrode plates has a thickness of one side of the current collector of 35 μm or less. When the thickness of the positive and negative electrode plate mixture layer on one side of the current collector is larger than 50 μm, from the surface of the mixture layer to the deep layer on the current collector side, or from the deep layer on the current collector side to the depth of the composite material layer May interfere with lithium ion transfer to the surface. For this reason, when the thickness per side of the current collector of the positive and negative electrode mixture layer is 50 μm or less, it is easy to exchange lithium ions inside and outside the mixture layer. Further, the facing area of the positive and negative electrode plates can be increased in the battery per fixed volume. Thereby, the input / output characteristics of the lithium ion secondary battery 60 can be improved. Input / output characteristics can be further improved by setting the thickness per one side of the composite material layer to 35 μm or less.

また、第1実施形態のリチウムイオン二次電池60では、負極活物質および導電材からなる導電性物質が99重量%用いられており、第2実施形態のリチウムイオン二次電池60では、導電性物質が96重量%用いられている。負極合材層12の導電性物質が96重量%未満の場合には、負極合材層12の導電性物質の密度が十分でなく、負極抵抗を十分に低減することができない。一方、負極合材層12の導電性物質が99重量%を超える場合には、負極合材層12のバインダ量が不足し、結着性が確保されないため、負極合材層12が負極集電体シートから剥離する可能性がある。従って、負極合材層12に導電性物質が96重量%以上、99重量%以下の範囲で含有されていることにより、負極合材層12の導電性物質が高密度化するとともに、負極抵抗が低減する。これにより、リチウムイオン二次電池60の入出力特性を向上させることができる。   In the lithium ion secondary battery 60 of the first embodiment, 99% by weight of a conductive material made of a negative electrode active material and a conductive material is used. In the lithium ion secondary battery 60 of the second embodiment, the conductive material 96% by weight of the material is used. When the conductive material of the negative electrode mixture layer 12 is less than 96% by weight, the density of the conductive material of the negative electrode mixture layer 12 is not sufficient, and the negative electrode resistance cannot be sufficiently reduced. On the other hand, when the conductive material of the negative electrode mixture layer 12 exceeds 99% by weight, the binder amount of the negative electrode mixture layer 12 is insufficient and the binding property is not ensured. There is a possibility of peeling from the body sheet. Therefore, when the conductive material is contained in the negative electrode mixture layer 12 in the range of 96 wt% or more and 99 wt% or less, the conductive material of the negative electrode mixture layer 12 is densified and the negative electrode resistance is reduced. To reduce. Thereby, the input / output characteristics of the lithium ion secondary battery 60 can be improved.

さらに、上記実施形態のリチウムイオン二次電池60では、負極合材層12にはゴムバインダであるSBR粒子が含有されており、粒子径が数平均粒子径で0.15μmに設定されている。一般的に用いられているバインダのPVDFでは、それ自体の結着性が低く、分子鎖のからみ合いにより合材等を結着させる。このため、バインダの添加量を減らすと結着性を維持できなくなる(比較例2も参照)。これに対して、ゴムバインダでは、主にゴムバインダ表面が結着性を発揮し、活物質や導電材などに比べて粒子径の小さなゴムバインダが負極合材層12内に略均一に分散されている。このため、負極合材のゴムバインダを減量しその分導電性物質を増量しても、活物質および導電材の結着性ならびに、負極合材層12と負極集電体シート11との結着性を維持することができる。ゴムバインダの粒子径が1.0μmより大きい場合には、負極合材層12内の活物質と導電材との接触および導電経路がゴムバインダ粒子により阻害されやすくなる。一方、ゴムバインダの粒子径が0.1μm未満の場合には、取り扱いが難しくなる。従って、ゴムバインダの粒径を0.1〜1.0μmの範囲にすることで、結着性を確保しながら、導電性物質が高密度化され、導電性の向上が図られるので、リチウムイオン二次電池60の入出力特性を向上させることができる。   Furthermore, in the lithium ion secondary battery 60 of the above embodiment, the negative electrode mixture layer 12 contains SBR particles that are rubber binders, and the particle diameter is set to 0.15 μm in terms of the number average particle diameter. Generally used binder PVDF has a low binding property and binds a mixture or the like by entanglement of molecular chains. For this reason, if the additive amount of the binder is reduced, the binding property cannot be maintained (see also Comparative Example 2). On the other hand, in the rubber binder, the surface of the rubber binder mainly exhibits binding properties, and the rubber binder having a particle diameter smaller than that of the active material or the conductive material is dispersed substantially uniformly in the negative electrode mixture layer 12. Therefore, even if the rubber binder of the negative electrode mixture is reduced and the conductive material is increased accordingly, the binding properties of the active material and the conductive material and the binding properties of the negative electrode mixture layer 12 and the negative electrode current collector sheet 11 are reduced. Can be maintained. When the particle size of the rubber binder is larger than 1.0 μm, the contact between the active material and the conductive material in the negative electrode mixture layer 12 and the conductive path are likely to be hindered by the rubber binder particles. On the other hand, when the particle size of the rubber binder is less than 0.1 μm, handling becomes difficult. Therefore, by setting the particle size of the rubber binder in the range of 0.1 to 1.0 μm, the conductive material is densified and the conductivity is improved while ensuring the binding property. The input / output characteristics of the secondary battery 60 can be improved.

またさらに、上記実施形態のリチウムイオン二次電池60では、正負極板の合材層は集電体の片面あたりの厚さがそれぞれ35μm以下であり、かつ、負極合材層12に導電性物質が96重量%以上、99重量%以下の範囲で含有されている。従って、入力特性および出力特性をともに向上させ、出力密度が3200W/kg以上、かつ、入力密度が3000W/kg以上のリチウムイオン二次電池60を得ることができる。このような高入出力特性を有するリチウムイオン二次電池60では、例えば、HEV等の電源に用いられるような容量3.5Ah以上の電池に好適に使用することができる。   Furthermore, in the lithium ion secondary battery 60 of the above embodiment, the composite layer of the positive and negative electrode plates has a thickness of 35 μm or less per side of the current collector, and the negative electrode composite layer 12 has a conductive material. Is contained in the range of 96 wt% or more and 99 wt% or less. Therefore, both the input characteristics and the output characteristics can be improved, and the lithium ion secondary battery 60 having an output density of 3200 W / kg or more and an input density of 3000 W / kg or more can be obtained. The lithium ion secondary battery 60 having such a high input / output characteristic can be suitably used for a battery having a capacity of 3.5 Ah or more as used for a power source such as HEV.

なお、上記実施形態では、負極合材層12に活物質の黒鉛が含有されている例を示したが、本発明はこれに限定されるものではない。リチウムイオンを吸蔵放出可能であり、導電性を有する物質であれば特に制限されるものではない。黒鉛以外の活物質としては、通常リチウムイオン二次電池に使用されるものであればよく、例えば、非晶質炭素材等を挙げることができ、その形状においても、層状、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。また、上記実施形態では、負極合材層12に導電材のアセチレンブラックが含有されている例を示したが、本発明はこれに限定されるものではない。リチウムイオンの吸蔵放出に伴い生じた電位を負極集電体シート11に伝達することを補助するのであれば特に制限されるものではなく、通常リチウムイオン二次電池に使用されるものを用いることができる。   In the above embodiment, an example in which the negative electrode mixture layer 12 contains graphite as an active material has been described, but the present invention is not limited to this. There is no particular limitation as long as it is a substance that can occlude and release lithium ions and has conductivity. Any active material other than graphite may be used as long as it is usually used for a lithium ion secondary battery, and examples thereof include an amorphous carbon material, and the shape thereof is also layered, scale-like, spherical, There are no particular restrictions such as fibrous or lump-like shapes. Moreover, in the said embodiment, although the example in which the negative electrode compound material layer 12 contained the acetylene black of the electrically conductive material was shown, this invention is not limited to this. There is no particular limitation as long as it assists the transmission of the potential generated with the insertion and extraction of lithium ions to the negative electrode current collector sheet 11, and the use of one that is normally used for lithium ion secondary batteries is used. it can.

また、上記実施形態では、負極合材層12にゴムバインダであるSBR粒子が含有されている例を示したが、本発明はこれに限定されるものではない。本発明では、導電性物質の量が96重量%以上、99重量%以下と多くなり、バインダ量が少なくなることを考慮すると、PVDFに比べてバインダ量が少なくても結着性を確保することができるゴムバインダを用いることが好ましい。本発明で用いることができるSBR以外のゴムバインダとしては、SBRの変性体、アクリロニトリル−ブタジエン共重合体ゴムおよびその変性体、アクリルゴムおよびその変性体などが挙げられる。また、ゴムバインダを用い、かつ、合材スラリーを作製する際の分散溶媒にNMP等の有機溶媒ではなく水系溶媒を用いた場合には、疎水性を有するゴムバインダが凝集して水系溶媒中に分散しにくくなる。この場合には、カルボキシル基などの親水性官能基をゴムバインダ表面に導入することでゴムバインダの凝集を抑制し分散性を向上させることができる。なお、さらに分散性を向上させるために界面活性剤を添加してもよい。さらに、界面活性剤添加による塗工時の泡立ちを抑制する消泡剤を添加してもよい。本発明で用いることができる界面活性剤としては、例えば、n−ドデシル硫酸ナトリウム(SDS)等を用いることができる。また、消泡剤としては、例えば、n−オクタノール、ポリシロキサンなどを用いることができる。   Moreover, in the said embodiment, although the example in which SBR particle | grains which are rubber binders were contained in the negative mix layer 12 was shown, this invention is not limited to this. In the present invention, in consideration of the fact that the amount of the conductive material is increased to 96 wt% or more and 99 wt% or less and the amount of the binder is reduced, it is possible to ensure the binding property even if the amount of the binder is small as compared with PVDF. It is preferable to use a rubber binder that can be used. Examples of rubber binders other than SBR that can be used in the present invention include SBR modified products, acrylonitrile-butadiene copolymer rubber and modified products thereof, acrylic rubber and modified products thereof. In addition, when a rubber binder is used and an aqueous solvent instead of an organic solvent such as NMP is used as a dispersion solvent when preparing the composite slurry, the hydrophobic rubber binder aggregates and is dispersed in the aqueous solvent. It becomes difficult. In this case, by introducing a hydrophilic functional group such as a carboxyl group into the rubber binder surface, aggregation of the rubber binder can be suppressed and dispersibility can be improved. A surfactant may be added to further improve dispersibility. Furthermore, you may add the antifoamer which suppresses the foaming at the time of coating by surfactant addition. As the surfactant that can be used in the present invention, for example, sodium n-dodecyl sulfate (SDS) can be used. Moreover, as an antifoamer, n-octanol, polysiloxane, etc. can be used, for example.

さらに、上記実施形態では、負極集電体シート11に合材スラリーを塗布する際の好適な粘度に調整するため、増粘材としてCMCを例示したが、本発明はこれに限定されるものではない。本発明で用いることができるCMC以外の増粘材としては、例えば、CMCの誘導体、ポリビニルピロリドン(PVP)およびその誘導体、ポリビニルアルコール(PVA)およびその誘導体を挙げることができる。   Furthermore, in the said embodiment, in order to adjust to the suitable viscosity at the time of apply | coating a mixture slurry to the negative electrode collector sheet 11, CMC was illustrated as a thickener, However, This invention is not limited to this. Absent. Examples of thickeners other than CMC that can be used in the present invention include CMC derivatives, polyvinylpyrrolidone (PVP) and derivatives thereof, and polyvinyl alcohol (PVA) and derivatives thereof.

またさらに、上記実施形態では、正極活物質にマンガン酸リチウムを例示したが、本発明はこれに限定されるものではない。リチウムイオンを吸蔵放出可能な物質であれば特に制限されるものではない。本発明で用いることができる正極活物質としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、リン酸鉄リチウムなどに代表されるリチウム複酸化物が挙げられる。また、結晶中のリチウムや遷移金属元素の一部をFe、Co、Ni、Cr、Al、Mg等の他の遷移金属元素で置換またはドープしたリチウム遷移金属複酸化物を用いてもよい。さらに、結晶構造についても特に制限はなく、スピネル型、層状型、オリビン型のいずれの結晶構造を有していてもよい。またさらに、本発明は正極板に用いられる導電材やバインダにも特に制限されるものではなく、ゴムバインダを含めて通常リチウムイオン二次電池に使用されるものを用いることができる。   Furthermore, in the said embodiment, although lithium manganate was illustrated as a positive electrode active material, this invention is not limited to this. The substance is not particularly limited as long as it is a substance capable of occluding and releasing lithium ions. Examples of the positive electrode active material that can be used in the present invention include lithium double oxides typified by lithium cobaltate, lithium nickelate, and lithium iron phosphate. Alternatively, a lithium transition metal double oxide in which a part of lithium or a transition metal element in a crystal is substituted or doped with another transition metal element such as Fe, Co, Ni, Cr, Al, or Mg may be used. Further, there is no particular limitation on the crystal structure, and the crystal structure may be any of spinel type, layered type, and olivine type. Furthermore, the present invention is not particularly limited to the conductive material and binder used for the positive electrode plate, and those usually used for lithium ion secondary batteries including rubber binders can be used.

さらにまた、上記実施形態では、正極集電体シート1にアルミニウム箔、負極集電体シート11に銅箔を例示したが、本発明はこれらに限定されるものではない。非水電解液との接触および活物質のリチウムイオンの吸蔵放出により劣化しない、通常リチウムイオン二次電池の正負極板に使用される導電性を有した材料(膜、穿孔板等)を用いることができる。また、上記実施形態では、合剤スラリーを正負極集電体シート1、11にロール塗工法により塗布する例を示したが、本発明はこれに限定されるものではない。例えば、スリットダイ塗工法を用いてもよい。さらに、負極板の合剤スラリーを作製する際に用いる分散溶媒についても制限されるものではなく、例えば、水、メタノール、エタノールおよびこれらの混合溶液を用いることができる。   Furthermore, in the said embodiment, although aluminum foil was illustrated for the positive electrode collector sheet 1 and the copper foil was used for the negative electrode collector sheet 11, this invention is not limited to these. Use conductive materials (membranes, perforated plates, etc.) normally used for positive and negative plates of lithium ion secondary batteries that do not deteriorate due to contact with non-aqueous electrolytes and occlusion and release of lithium ions in the active material. Can do. Moreover, in the said embodiment, although the example which applied the mixture slurry to the positive / negative electrode collector sheets 1 and 11 by the roll coating method was shown, this invention is not limited to this. For example, a slit die coating method may be used. Furthermore, the dispersion solvent used when preparing the mixture slurry of the negative electrode plate is not limited, and for example, water, methanol, ethanol, and a mixed solution thereof can be used.

また、上記実施形態では、非水電解液としてEC、DMC、DECの混合溶媒にリチウム塩のLiPFを1モル/リットル程度溶解させたものを例示したが、本発明で用いることのできる非水電解液には特に制限はない。有機溶媒としては、通常リチウムイオン二次電池に使用されるものであればよい。例えば、カーボネート系の有機溶媒であるプロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)等を用いてもよく、これら有機溶媒を単体または混合して用いてもよい。リチウム塩としても、通常リチウムイオン二次電池に使用されるものであればよく、例えば、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒の混合比やリチウム塩の含有量にも特に制限されるものではない。 In the above embodiment, the non-aqueous electrolyte is a solution in which about 1 mol / liter of lithium salt LiPF 6 is dissolved in a mixed solvent of EC, DMC, and DEC. However, the non-aqueous electrolyte can be used in the present invention. There is no restriction | limiting in particular in electrolyte solution. As an organic solvent, what is normally used for a lithium ion secondary battery may be used. For example, carbonate organic solvents such as propylene carbonate (PC) and methyl ethyl carbonate (MEC) may be used, and these organic solvents may be used alone or in combination. Even lithium salt, as long as it is used in conventional lithium ion secondary battery, for example, LiClO 4, LiAsF 6, LiBF 4, LiB (C 6 H 5) 4, CH 3 SO 3 Li, CF 3 SO 3 Li or the like or a mixture thereof can be used. Further, the mixing ratio of the organic solvent and the content of the lithium salt are not particularly limited.

さらに、上記実施形態では、捲回式の円柱状リチウムイオン二次電池60を例示したが、本発明はこれに限定されるものではない。また、上記実施形態では、比較的小型のリチウムイオン二次電池60を例示したが、本発明はこれに制限されるものではない。リチウムイオンを吸蔵放出可能な活物質および非水電解液を用いたいずれの二次電池にも適用可能である。換言すれば、本発明は、電池用途、電池の種類、電池容量、サイズ、形状等に制限されるものではない。本発明の適用可能な捲回式以外の電池としては、集電体に活物質層が塗着された正負極板がセパレータを介して積層された構造の電池を挙げることができる。また、本発明の適用可能な電池の構造としては、上述した電池缶41に正極端子51がカシメ固定されて封口されている構造のリチウムイオン二次電池60以外であっても構わない。このような構造の一例として正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して押し合っている状態の電池を挙げることができる。   Furthermore, in the said embodiment, although the wound type cylindrical lithium ion secondary battery 60 was illustrated, this invention is not limited to this. Moreover, although the comparatively small lithium ion secondary battery 60 was illustrated in the said embodiment, this invention is not restrict | limited to this. The present invention can be applied to any secondary battery using an active material capable of occluding and releasing lithium ions and a non-aqueous electrolyte. In other words, the present invention is not limited to battery usage, battery type, battery capacity, size, shape, and the like. Examples of batteries other than the winding type to which the present invention can be applied include batteries having a structure in which a positive and negative electrode plate in which an active material layer is coated on a current collector is laminated via a separator. The battery structure to which the present invention can be applied may be other than the lithium ion secondary battery 60 having a structure in which the positive electrode terminal 51 is caulked and sealed to the battery can 41 described above. As an example of such a structure, a battery in a state where positive and negative external terminals penetrate through the battery lid and are pressed through the shaft core in the battery container can be mentioned.

本発明は、入出力特性を向上させた非水電解液二次電池を提供するものであるため、非水電解液二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a non-aqueous electrolyte secondary battery with improved input / output characteristics, it contributes to the manufacture and sale of non-aqueous electrolyte secondary batteries, and thus has industrial applicability. .

本発明を適用した実施形態の円柱状リチウムイオン二次電池を一部切り欠いて示す正面図である。1 is a front view showing a cylindrical lithium ion secondary battery according to an embodiment to which the present invention is applied with a part cut away.

符号の説明Explanation of symbols

1 正極集電体シート(集電体)
2 正極合材層
5 電極群
11 負極集電体シート(集電体)
12 負極合材層
21 セパレータ
60 円柱状リチウムイオン二次電池(非水電解液二次電池)
1 Positive current collector sheet (current collector)
2 Positive electrode mixture layer 5 Electrode group 11 Negative electrode current collector sheet (current collector)
12 Negative electrode mixture layer 21 Separator 60 Cylindrical lithium ion secondary battery (non-aqueous electrolyte secondary battery)

Claims (5)

集電体にリチウムイオンを吸蔵放出可能な活物質を含む正極合材層が塗着された正極板ならびに集電体にリチウムイオンを吸蔵放出可能な活物質と選択的に導電材とを導電性物質として含む負極合材層が塗着された負極板がセパレータを介して配置された電極群と、
前記電極群を浸潤する非水電解液と、
を備え、
前記負極合材層は、前記集電体の両面に塗着されており、片面あたりの厚さが50μm以下であり、かつ、前記負極合材層には前記導電性物質が96重量%以上、99重量%以下の範囲で含有されていることを特徴とする非水電解液二次電池。
A positive electrode plate in which a positive electrode material layer containing an active material capable of occluding and releasing lithium ions is applied to a current collector, and an active material capable of occluding and releasing lithium ions to a current collector and a conductive material selectively. An electrode group in which a negative electrode plate coated with a negative electrode mixture layer containing a substance is disposed via a separator;
A non-aqueous electrolyte infiltrating the electrode group;
With
The negative electrode mixture layer is applied to both sides of the current collector, the thickness per one side is 50 μm or less, and the conductive material is 96 wt% or more in the negative electrode mixture layer, A non-aqueous electrolyte secondary battery comprising 99% by weight or less.
前記負極合材層にはゴムバインダが含有されていることを特徴とする請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode mixture layer contains a rubber binder. 前記ゴムバインダは、粒子状であり、粒子径が0.1μm〜1.0μmの範囲であることを特徴とする請求項2に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein the rubber binder is particulate and has a particle diameter in the range of 0.1 μm to 1.0 μm. 出力密度が3200W/kg以上、かつ、入力密度が3000W/kg以上であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の非水電解液二次電池。   4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the output density is 3200 W / kg or more and the input density is 3000 W / kg or more. 5. 前記電極群は前記正負極板が前記セパレータを介して捲回されており、かつ、前記負極合材層の片面あたりの厚さが35μm以下であり、電池容量が3.5Ah以上であることを特徴とする請求項1に記載の非水電解液二次電池。   In the electrode group, the positive and negative electrode plates are wound through the separator, the thickness of the negative electrode mixture layer per side is 35 μm or less, and the battery capacity is 3.5 Ah or more. The nonaqueous electrolyte secondary battery according to claim 1.
JP2008193356A 2008-07-28 2008-07-28 Non-aqueous electrolyte secondary battery Expired - Fee Related JP5361271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008193356A JP5361271B2 (en) 2008-07-28 2008-07-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008193356A JP5361271B2 (en) 2008-07-28 2008-07-28 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010033803A true JP2010033803A (en) 2010-02-12
JP5361271B2 JP5361271B2 (en) 2013-12-04

Family

ID=41738043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008193356A Expired - Fee Related JP5361271B2 (en) 2008-07-28 2008-07-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5361271B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066911A1 (en) * 2010-11-17 2012-05-24 Jsr株式会社 Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder
JP2015198007A (en) * 2014-04-01 2015-11-09 株式会社豊田中央研究所 Electrode for non-aqueous secondary battery and non-aqueous secondary battery
CN106058260A (en) * 2015-04-06 2016-10-26 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
CN111129430A (en) * 2018-10-30 2020-05-08 三洋电机株式会社 Secondary battery and method for manufacturing secondary battery
CN115000525A (en) * 2022-06-27 2022-09-02 厦门海辰新能源科技有限公司 Lithium ion battery cell, preparation method thereof and lithium ion battery
US12009520B2 (en) 2018-04-26 2024-06-11 Samsung Sdi Co., Ltd. Secondary lithium battery anode and secondary lithium battery including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176557A (en) * 1999-12-20 2001-06-29 Toyota Central Res & Dev Lab Inc Non-aqueous electrolyte secondary battery
JP2003308841A (en) * 2002-04-16 2003-10-31 Hitachi Powdered Metals Co Ltd Slurry for forming negative electrode coating film of nonaqueous secondary battery
JP2007335360A (en) * 2006-06-19 2007-12-27 Hitachi Ltd Lithium secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176557A (en) * 1999-12-20 2001-06-29 Toyota Central Res & Dev Lab Inc Non-aqueous electrolyte secondary battery
JP2003308841A (en) * 2002-04-16 2003-10-31 Hitachi Powdered Metals Co Ltd Slurry for forming negative electrode coating film of nonaqueous secondary battery
JP2007335360A (en) * 2006-06-19 2007-12-27 Hitachi Ltd Lithium secondary cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013011184; 古川健吾 他3名: '高出力ニッケル・水素電池の開発-1400Wkg-1級Dサイズ電池の開発-' GS Yuasa Technical Report 第2巻 第2号, 200512, 12〜17頁, GS Yuasa Corporation *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066911A1 (en) * 2010-11-17 2012-05-24 Jsr株式会社 Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder
JPWO2012066911A1 (en) * 2010-11-17 2014-05-12 Jsr株式会社 Binder for electrochemical device electrode, method for producing the same, and storage method for binder for electrochemical device electrode
JP2015198007A (en) * 2014-04-01 2015-11-09 株式会社豊田中央研究所 Electrode for non-aqueous secondary battery and non-aqueous secondary battery
CN106058260A (en) * 2015-04-06 2016-10-26 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
JP2016197559A (en) * 2015-04-06 2016-11-24 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR101858334B1 (en) * 2015-04-06 2018-05-15 도요타지도샤가부시키가이샤 Non-aqueous electrolyte secondary battery
US10312520B2 (en) 2015-04-06 2019-06-04 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
DE102016106136B4 (en) 2015-04-06 2023-06-01 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
US12009520B2 (en) 2018-04-26 2024-06-11 Samsung Sdi Co., Ltd. Secondary lithium battery anode and secondary lithium battery including same
CN111129430A (en) * 2018-10-30 2020-05-08 三洋电机株式会社 Secondary battery and method for manufacturing secondary battery
CN115000525A (en) * 2022-06-27 2022-09-02 厦门海辰新能源科技有限公司 Lithium ion battery cell, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP5361271B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP6567280B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method
TWI458154B (en) Lithium secondary battery
JP5568023B2 (en) Non-aqueous electrolyte battery
US20070026316A1 (en) Non-aqueous electrolyte battery
EP2980887B1 (en) Nonaqueous electrolyte battery, battery module, and battery pack
JP6587105B2 (en) Secondary battery
US20090053602A1 (en) Positive electrode for non-aqueous electrolyte battery and method of manufacturing the same, and non-aqueous electrolyte battery and method of manufacturing the same
KR20150122172A (en) Positive electrode active material, positive electrode material, positive electrode, and nonaqueous electrolyte secondary battery
KR20150119876A (en) Positive-electrode active substance, positive-electrode material, positive electrode, and nonaqueous-electrolyte secondary cell
JP2008098142A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010160982A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
WO2015001871A1 (en) Nonaqueous electrolyte secondary cell and method for producing same
JP6287185B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP5361271B2 (en) Non-aqueous electrolyte secondary battery
CN113826262A (en) Electrochemical device and electronic device
JP6058444B2 (en) Negative electrode, non-aqueous electrolyte battery, battery pack and automobile
JP6470081B2 (en) Negative electrode and non-aqueous electrolyte battery
CN114583098A (en) Electrochemical device, method for manufacturing the same, and electronic device
US20140023898A1 (en) Non-aqueous electrolyte secondary cell
JP2013069579A (en) Lithium ion secondary battery and manufacturing method therefor
JP2010146808A (en) Nonaqueous electrolyte secondary battery
US20140023915A1 (en) Non-aqueous electrolyte secondary cell
EP2983235B1 (en) Nonaqueous electrolyte secondary battery
CN116073004B (en) Isolation film, secondary battery, battery module, battery pack and electricity utilization device
JP2008243441A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees