JP2010033573A - Information processing method - Google Patents

Information processing method Download PDF

Info

Publication number
JP2010033573A
JP2010033573A JP2009172548A JP2009172548A JP2010033573A JP 2010033573 A JP2010033573 A JP 2010033573A JP 2009172548 A JP2009172548 A JP 2009172548A JP 2009172548 A JP2009172548 A JP 2009172548A JP 2010033573 A JP2010033573 A JP 2010033573A
Authority
JP
Japan
Prior art keywords
image
area
regular
line segment
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009172548A
Other languages
Japanese (ja)
Inventor
Hajime Narukawa
肇 鳴川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narukawa Hajime
Original Assignee
Narukawa Hajime
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narukawa Hajime filed Critical Narukawa Hajime
Priority to JP2009172548A priority Critical patent/JP2010033573A/en
Publication of JP2010033573A publication Critical patent/JP2010033573A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Image Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce local distortion on a rectangular plane when displaying a solid face region containing a spherical region and a polyhedron region on the rectangular plane. <P>SOLUTION: This information processing method includes steps of: maintaining a relative positional relation of each face of a plurality of start faces composed of continuous faces defined by lines and points, maintaining the lines of each face as lines, and associating one by one the information of the start face with the information of a plurality of end faces filling the rectangular plane without gaps by deforming each face while maintaining the lines of each face as they are and filling in the rectangular plane without gaps or in the opposite way. The first area ratio of the total area of the start face and at least some of the area of the start face and the second area ratio of the area of the rectangular plane and at least some of the area of the end face on the rectangular plane are substantially equal. The first line segment ratio of the length of each line segment forming at least part of the start face and the second line segment ratio of the length of each line segment forming at least part of the end face on the rectangular plane are substantially equal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば情報を矩形平面に表示する際の連続する面に含まれる情報の表示方法に関し、典型例として地球表面の情報を平面表示する際の局部的な位置の歪みを低減する情報処理方法に関する。  The present invention relates to a method for displaying information included in a continuous surface when information is displayed on a rectangular plane, for example, and as a typical example, information processing for reducing local positional distortion when displaying information on the earth's surface on a plane. Regarding the method.

平面化した球面情報の歪み補正においてバックミンスター・フラーのダイマキシオン・マップ(非特許文献1)は、球面情報を正二〇面体に投影し展開するため該正二〇面体と、球状正二〇面体化した球面情報の各正三角形面が対応し各面の全球に対する面積比を保つ事ができ、全球面情報を正二〇面体に投影する際に正三角形の各辺の長さが等しくなるよう平面化した、大陸の面積や形状の歪みが少ない投影法である。  Backminster Fuller's Dimaxion Map (Non-Patent Document 1) is used to correct the distortion of planarized spherical information and to project and expand spherical information onto an icosahedron, and the spherical icosahedron. Each equilateral triangle surface of the converted spherical information corresponds, and the area ratio of each surface to the entire sphere can be maintained, and the length of each side of the equilateral triangle is equal when projecting the entire spherical information onto the icosahedron. This is a flat projection method with little continental area and shape distortion.

Laurence P.Lee,national mapping agency in New Zealand(非特許文献2)は1965年に地球を正四面体に投影し展開するtriangular projectionにより、正三角形の等角な世界地図を提案している。(以下Lee’s projection)  Laurence P.M. Lee, national mapping in New Zealand (Non-patent Document 2) proposed an equilateral world map of equilateral triangles in 1965 by a triangular projection that projects the earth onto a regular tetrahedron. (Hereafter Lee ’s projection)

特許文献1は、全球画像を正四面体に投影し展開する720°全方位矩形画像モニタリングシステムにより、矩形の全方位画像を提案している。これらは複数並べ平面充填でき、隣接する画像情報は途切れず一致する。  Patent Document 1 proposes a rectangular omnidirectional image by a 720 ° omnidirectional rectangular image monitoring system that projects and develops a spherical image on a regular tetrahedron. A plurality of these can be arranged side by side, and adjacent image information matches without interruption.

特開2007−13514公報  JP 2007-13514 A

Dymaxion Map,『INVENTIONS』,R.Buckminster Fuller(St.Martins’ Press,1983)  Dymaxion Map, “INVENTIONS”, R.D. Buckminster Fuller (St. Martins' Press, 1983) triangular projection,Laurence P.Lee,national mapping agency in New Zealand,1965(http://www.progonos.com/furuti/index.html)  triangular projection, Laurence P.M. Lee, national mapping agility in New Zealand, 1965 (http://www.progonos.com/furuti/index.html)

ダイマキシオン・マップ(非特許文献1)は正二十面体の展開図であるため世界地図の外形がジクザグになり地理関係が認識しにくい。つまり地図として理想的な矩形平面に地理情報を隙間無く充填できない。これに海流を表す際、該地図の二十個の正三角形を再配列しても海洋の連続的関係が分断される。  Since the Dimaxion Map (Non-Patent Document 1) is a development of an icosahedron, the outer shape of the world map is zigzag and it is difficult to recognize the geographical relationship. In other words, it is impossible to fill geographic information without any gaps on an ideal rectangular plane as a map. When the ocean current is expressed in this, even if the 20 equilateral triangles of the map are rearranged, the continuous relationship of the ocean is broken.

Lee’s projection(非特許文献2)が用いる正四面体は全方位画像を4等分するに過ぎず歪みが大きく、正四面体の頂点付近の画像は面積で5倍以上に肥大する。またこの技術は矩形の平面画像の提案ではない。またこの地図のレイアウトによると南極大陸が地図の端部で分断される。  The regular tetrahedron used by Lee's projection (Non-Patent Document 2) only divides the omnidirectional image into four equal parts, and the distortion is large. The image near the apex of the regular tetrahedron is enlarged five times or more in area. This technique is not a proposal for a rectangular planar image. The map layout also divides Antarctica at the edge of the map.

特許文献1の考え方つまり720°全方位モニタリングシステムは平面化する際に展開した正四面体の稜線上で画像が不自然に折れる歪みを抱えている。  The idea of Patent Document 1, that is, the 720 ° omnidirectional monitoring system has a distortion that causes an image to be unnaturally bent on the ridgeline of a regular tetrahedron that is developed when planarized.

上記従来技術を分類すると、全方位の情報をとり込んだ球等の立体表面上の画像を平面化する際、面積と線分の長さの誤差を抑えようとすると地図自体の輪郭がジグザグになり、一方で矩形平面に余過分なく納めようとすると線分の長さの誤差及び/又は面積に誤差が出るどちらか一方の問題を抱えていた。  When the above prior art is classified, when flattening an image on a three-dimensional surface such as a sphere that incorporates omnidirectional information, the contour of the map itself becomes zigzag when trying to suppress errors in area and line length. However, on the other hand, when it is tried to fit in the rectangular plane, there is one of the problems that an error in the length of the line segment and / or an error in the area occurs.

本発明の目的は、例えば地球上の情報を平面に展開する場合に又はその逆の操作において局部的な歪みを低減することのできる情報処理方法を提供することにある。  An object of the present invention is to provide an information processing method capable of reducing local distortion when, for example, information on the earth is developed on a plane or vice versa.

本発明の更なる目的は、例えば地球上の大陸や島の面積比の誤差による歪みを分散したうえで距離つまり円弧の長さの誤差による歪みを分散しながら矩形平面で表示することのできる情報処理方法を提供することにある。  A further object of the present invention is, for example, information that can be displayed on a rectangular plane while dispersing distortion due to an error in the area ratio of continents and islands on the earth and dispersing distortion due to an error in distance, that is, an arc length. It is to provide a processing method.

本願発明は典型的には内接又は外接する球系多面体を使って面分割又は面統合を繰り返すことで矩形の平面に情報を生成することを特徴とする。これを上位概念化して説明すると面分割または面統合する面全ての面積に対して各面の面積比を維持しつつこれらの面を規定する線分同士の長さの比を維持する事を特徴とする。これらによって情報の歪みを低減及び/又は歪みを均一に分散させることができる。  The present invention is typically characterized in that information is generated in a rectangular plane by repeating surface division or surface integration using a spherical polyhedron that is inscribed or circumscribed. When this is explained as a superordinate concept, it is characterized by maintaining the ratio of the lengths of the line segments that define these surfaces while maintaining the area ratio of each surface with respect to the area of all surfaces to be divided or integrated. And By these, distortion of information can be reduced and / or the distortion can be uniformly distributed.

具体的には、上記の技術的課題は、本発明によれば、線と点で規定される面が連続している複数のスタート面における各面の相対的な位置関係を維持し且つ各面の線を線として維持し又各面の点を点として維持しながら各面を変形させて矩形平面に隙間無く埋める又はその逆の操作により、前記スタート面の情報と前記矩形平面を隙間無く埋める複数のエンド面の情報とを一対一で対応させる情報処理方法であって、
前記スタート面の全面積と該スタート面の少なくとも一部の面積との第1の面積比と、前記矩形平面の面積と該矩形平面上のエンド面の少なくとも一部の面積との第2の面積比とが実質的に等しいことを特徴とする情報処理方法が提供される。
そのうえで前記スタート面の少なくとも一部を構成する線分とこの線分を複数に分割した各区分の線分との比(第1の線分比)と、前記矩形平面上のエンド面の少なくとも一部を構成する線分とこの線分を複数に分割した各区分の線分との比(第2の線分比)とが実質的に等しいことを特徴とする情報処理方法が提供される。これらによれば、歪みを低減し及び/又は均一に分散させることによって達成される。
Specifically, according to the present invention, the above technical problem is to maintain the relative positional relationship of each surface in a plurality of start surfaces in which surfaces defined by lines and points are continuous, and each surface. While maintaining the line as a line and maintaining each point as a point, each surface is deformed and filled in the rectangular plane without gaps, or vice versa, and the start plane information and the rectangular plane are filled without gaps. An information processing method for associating information on a plurality of end faces on a one-to-one basis,
A first area ratio between the total area of the start surface and the area of at least a part of the start surface, and a second area of the area of the rectangular plane and the area of at least a part of the end surface on the rectangular plane An information processing method is provided in which the ratio is substantially equal.
In addition, a ratio (first line segment ratio) between a line segment constituting at least a part of the start surface and a line segment of each section obtained by dividing the line segment into a plurality of segments, and at least one of the end surfaces on the rectangular plane. There is provided an information processing method characterized in that a ratio (second line segment ratio) between a line segment constituting the section and a line segment of each section obtained by dividing the line segment into a plurality of segments is substantially equal. According to these, this is achieved by reducing distortion and / or distributing uniformly.

本発明の実施形態を説明する前に、本発明の基礎となる考え方を説明する。
第1例
連続する複数の面の全面積に対する特定の面の面積比に関して、立体、特に球体を例に説明する。球面の全面積に対する面積比を「立体角」と言う。立体角について図1を用い説明する。立体角とは被写体2を球S1の中心01から見る広がりを表す数で、通常ステラジアン(sr)で表す。その大きさは01から被写体2に向けて結ぶ半直線の集合で出来る錘を01を中心とする半径1の単位球面S1で切る際、球面上部分の面積3で表す。特に01から見た全空間の立体角は4πsr、半球の立体角は2πsrである。つまり世界地図で言えば大陸等の面積に相当する。
Prior to describing embodiments of the present invention, the concept underlying the present invention will be described.
First example :
The area ratio of a specific surface to the total area of a plurality of continuous surfaces will be described by taking a solid, particularly a sphere as an example. The area ratio of the spherical surface to the total area is called “solid angle”. The solid angle will be described with reference to FIG. The solid angle is a number that represents the extent of viewing the subject 2 from the center 01 of the sphere S1, and is usually expressed in steradians (sr). The size is represented by the area 3 of the upper part of the spherical surface when a weight formed by a set of half straight lines connecting from 01 to the subject 2 is cut by a unit spherical surface S1 having a radius 1 centered on 01. In particular, the solid angle of the entire space viewed from 01 is 4πsr, and the solid angle of the hemisphere is 2πsr. In other words, the world map corresponds to the area of the continent.

一方、画角による視野の数値化は、単位球面上の小円C2のように表すしかない。この小円をイメージサークルと呼ぶ。イメージサークルの場合全方位情報を半球に二等分した時のみ余過分なく分割される。これを用いた先行技術がIPIX(非特許文献1)の魚眼レンズによる技術である。立体角は視野がどんな形でも面積により数値化できるため球面情報の切り貼りが容易になる。  On the other hand, the visual field based on the angle of view can only be expressed as a small circle C2 on the unit spherical surface. This small circle is called an image circle. In the case of an image circle, only when the omnidirectional information is equally divided into two hemispheres, it is divided without excess. The prior art using this is a technique using a fisheye lens of IPIX (Non-patent Document 1). Since the solid angle can be quantified by the area regardless of the field of view, it is easy to cut and paste spherical information.

立体角をはじめとする連続する複数の面、例えば立体表面の全表面積に対する特定の面の面積比を保つ写像を便宜的に「正積写像」と呼ぶ事にする。写像とは光学的な投影の他、ある1つの面を変形させたり、複数の連続する面を変形して1つの面に統合したり、逆に1つの面を変形して複数の連続する面に分割する操作を含む。正積写像を用いた矩形表示を観測、診断することで、人の視覚では困難な定量的観測ができる。内視鏡診断、地図、磁力測定、天空率計算など各分野において疾患部の広がりや分布、オゾンホールの面積、磁束密度と分布、建築物の射影面積が精査できる。  A map that maintains the area ratio of a specific surface with respect to the total surface area of a solid surface such as a solid angle, for example, a solid surface, will be referred to as an “equal product map” for convenience. In addition to optical projection, mapping is a transformation of a single surface, a transformation of a plurality of continuous surfaces into a single surface, or a transformation of a single surface to a plurality of continuous surfaces. Including operations to divide By observing and diagnosing the rectangular display using the product map, quantitative observations that are difficult for human vision can be performed. In each field such as endoscopic diagnosis, map, magnetic force measurement, sky ratio calculation, etc., the spread and distribution of diseased areas, the area of ozone holes, the magnetic flux density and distribution, and the projected area of buildings can be examined.

全方位等の画像情報の正積写像による矩形化について、正四面体を用いて説明する。正多面体に基づき区分することで全方位の情報は立体角だけでなく面角、線分同士の角度である内角の誤差も均等に分散できる。図2、図3は正四面体P10上のグリッドG1とこれに対応し、P10と接する球状正四面体上グリッドG2を示す概念図である。図4、図5はG2を光心O10から正四面体上に光学的に投影したグリッドG3を示す概念図である。  A description will be given of rectangularization by a product map of image information such as omnidirectional using a regular tetrahedron. By classifying based on the regular polyhedron, not only the solid angle but also the error of the interior angle, which is the angle between the surface angle and the line segment, can be uniformly distributed. 2 and 3 are conceptual diagrams showing a grid G1 on a regular tetrahedron P10 and a grid G2 on a spherical regular tetrahedron corresponding to the grid G1 and in contact with P10. 4 and 5 are conceptual diagrams showing a grid G3 obtained by optically projecting G2 from the optical center O10 onto a regular tetrahedron.

G1において正四面体の正三角形面の頂点とその対辺の中点を測地線である直線で結びこれと平行で各辺を四等分する点を通る線分により24個の合同な三角形(一部鏡像を含む)に等分する、線分長さおよび線分同士の内角が共に数種類に統一されたグリッドができる。そのうちの一つが斜線部34である。こうして正四面体は96等分される。  In G1, the vertex of the regular triangle of the regular tetrahedron and the midpoint of the opposite side are connected by a straight line which is a geodesic line, and 24 congruent triangles (one A grid in which the length of line segments and the internal angles of the line segments are unified into several types is formed. One of them is a hatched portion 34. In this way, the regular tetrahedron is divided into 96 equal parts.

グリッドG2において球状正四面体の稜線の円弧の中点30、35、36と頂点V6、V7、V5を測地線である大円弧で結ぶ。それらは点09で交わる。次に球状四角形09、35、V6、36を点28と該球状四角形の稜線の中点及び各頂点とを大円弧で結び面積を八等分する。他の四角形も同様に分割して、2種類の球状三角形(一部鏡像を含む)24個に等分する、線分長さ、内角が共に数種類に統一されたグリッドができる。そのうちの一つが領域37である。球状正四面体の各面で同様の操作を行い球面は96等分される。もちろんこれを球状96面体と考えてもよい。  In the grid G2, the midpoints 30, 35, and 36 of the arcs of the spheres of the spherical regular tetrahedron are connected to the vertices V6, V7, and V5 by a large arc that is a geodesic line. They meet at point 09. Next, the spherical quadrilaterals 09, 35, V6, and 36 are connected to the point 28, the midpoint of the edge of the spherical quadrilateral and each vertex with a large arc, and the area is divided into eight equal parts. The other quadrilaterals are similarly divided to equally divide into 24 kinds of two types of spherical triangles (including some mirror images), and a grid in which line segment lengths and interior angles are unified into several kinds can be formed. One of them is a region 37. The same operation is performed on each surface of the spherical regular tetrahedron, and the spherical surface is divided into 96 equal parts. Of course, this may be considered as a spherical 96-hedron.

一方、図5のようにグリッドG2を正四面体上に光学的に投影するとグリッドG3を得る。グリッドG3の各格子点はグリッドG2と中心O10を結ぶ直線上にある。図4のようにグリッドG2上で立体角(球全体に対する面積比)の等しい球状三角形領域37と70aはグリッドG3上の領域37aと70bに夫々写像されるが、領域37aの正四面体の全体の面積に対する面積比の値が70bの値に対し5.1倍になる。そこで領域37の立体角を保ちつつグリッドG1上の領域34に写像するというのが正積写像である。上記分割を正積分割、上記分割グリッドを正積グリッドと呼ぶ。  On the other hand, when the grid G2 is optically projected onto a regular tetrahedron as shown in FIG. 5, a grid G3 is obtained. Each grid point of the grid G3 is on a straight line connecting the grid G2 and the center O10. As shown in FIG. 4, spherical triangular regions 37 and 70a having the same solid angle (area ratio to the entire sphere) on the grid G2 are mapped to the regions 37a and 70b on the grid G3, respectively, but the entire regular tetrahedron of the region 37a. The value of the area ratio with respect to the area is 5.1 times the value of 70b. Therefore, mapping to the area 34 on the grid G1 while maintaining the solid angle of the area 37 is a product mapping. The above division is called an equal product division, and the divided grid is called an equal product grid.

以下に記載する技術的事項は、この第1例に限定されずに、他の例にも同様に適用可能であるが、この第1例の正積分割は大円等の測地線を用いなくても良い。これには小円を含む曲線、これらが連鎖する線分を含む。また分割は部分的に不均等でも良い。なお球や正四面体を挙げたが、本発明における写像は任意の立体を対象とする。ここで言う任意の立体には正多面体や半正多面体を含む多面体、双曲面をはじめとする面が開いている立体、曲面を含む立体、回転体などがある。天空率の測定等で使用する半球等上記立体を部分的に用いてもよい。また、この正積分割には理論的には正四面体の稜線のみを用い分割する場合を含むが、監視カメラ等のアプリケーションでは、正四面体を含まない多面体の稜線を使うのが良いことは言うまでもない。  The technical matters described below are not limited to the first example, but can be applied to other examples as well. However, the product division of the first example does not use a geodesic line such as a great circle. Also good. This includes curves that include small circles, and line segments that link these. The division may be partially uneven. In addition, although the sphere and the regular tetrahedron are mentioned, the mapping in the present invention targets an arbitrary solid. The arbitrary solid mentioned here includes a polyhedron including a regular polyhedron and a semi-regular polyhedron, a solid having an open surface such as a hyperboloid, a solid including a curved surface, and a rotating body. The above three-dimensional object such as a hemisphere used for measuring the sky ratio may be partially used. In addition, theoretically, this product division includes the case of splitting using only the regular tetrahedron ridgeline, but it goes without saying that in applications such as surveillance cameras, it is better to use the polyhedron ridgeline not including the regular tetrahedron. Yes.

また、グリッドの分割数を調節し正積写像の精度を調整できる。図6のグリッドG5はG2を細分割した球状正四面体の8分割グリッドであり、これに基づいて球面情報はG1を細分化した正四面体の8分割グリッドG4に写像される。例えば球面上の三角形71は、三角形71aに写像される。  In addition, the accuracy of the equal product map can be adjusted by adjusting the number of divisions of the grid. The grid G5 in FIG. 6 is an 8-divided grid of spherical regular tetrahedrons obtained by subdividing G2, and based on this, spherical information is mapped to an 8-divided grid G4 of regular tetrahedrons obtained by subdividing G1. For example, the triangle 71 on the spherical surface is mapped to the triangle 71a.

図7は地球(全方位情報)を正積写像した正四面体画像である。正四面体の稜線E3の中点9と頂点10、11を結ぶ線分をE4、E5とする。E3の両端の頂点を15、16とする。この正四面体画像をE4、E5及びE3に切り込みを入れて展開し、平面化する。  FIG. 7 is a regular tetrahedron image obtained by normal product mapping of the earth (omnidirectional information). The line segments connecting the midpoint 9 and the vertices 10 and 11 of the regular tetrahedron ridge line E3 are defined as E4 and E5. The vertices at both ends of E3 are 15 and 16. The regular tetrahedron image is expanded by cutting into E4, E5, and E3, and flattened.

図8のSC1はこうして得られる縦横比L1:L2=1:√3の矩形全方位画像、この場合矩形の正積図法の世界地図である。ここに図7の点9は図8の長方形の各頂点17に配され、点10、15、11は、夫々点20、18、19に配される。正四面体は各頂点での面の内角の和が180度になるためこのように矩形平面が得られる。一方、同様の過程から正積写像を省いた世界地図SC1aを示す。4つの頂点が均等に分散され大枠の立体角、中心角は共に正四面体の均一性により保たれるため歪みが局部に集中する事は無いがSC1aでは各頂点付近で被写体が肥大化する歪みが見られる。  SC1 in FIG. 8 is a rectangular omnidirectional image of aspect ratio L1: L2 = 1: √3 obtained in this way, in this case, a rectangular world map world map. Here, the point 9 in FIG. 7 is arranged at each vertex 17 of the rectangle in FIG. 8, and the points 10, 15 and 11 are arranged at points 20, 18 and 19, respectively. In the regular tetrahedron, the sum of the inner angles of the faces at the respective vertices is 180 degrees, and thus a rectangular plane is obtained. On the other hand, the world map SC1a is shown in which the equal product map is omitted from the same process. Since the four vertices are evenly distributed and the solid and central angles of the large frame are both maintained by the regular tetrahedron uniformity, the distortion does not concentrate locally, but in SC1a the distortion that causes the subject to enlarge near each vertex Is seen.

以下に記載する技術的事項は、この第1例に限定されずに、他の例にも同様に適用可能であるが、例えば正積分割の分割数やパターンは上記第1例の説明に制限されるものではない。上記第1例では、全方位の被写体を球に撮り込み球系96面体、正四面体を経由した例で多階層な写像(以下多階層写像と呼ぶ)を含め説明したが、直接矩形平面に正積写像してよい。  The technical matters described below are not limited to the first example, but can be applied to other examples as well. For example, the division number and pattern of the equal product division are limited to the description of the first example. It is not something. In the first example described above, an omnidirectional subject is captured on a sphere and passed through a sphere system 96-hedron and a regular tetrahedron, and a multi-layered map (hereinafter referred to as a multi-layered map) has been described. It may be an equal product map.

本発明を理解するにあたっては幾何学に基づいた説明が必要である。しかしこれを適用するにあたってはコンピュータ等による実際の操作や実際の製作上の変形は当然伴うものである。従って本件発明の理解にあたってはこれらの変形は本件発明の範疇に含まれるものと理解されたい。上記第1例の正積分割及び内角の統一を実施するにあたって生じる誤差は上記第1例の内容と同じ効果が得られる範囲内であれば近似値でよいものとする。また写像の対象となる立体や平面の形状が、多少歪んでいたり、欠けてもよい。  In order to understand the present invention, explanation based on geometry is necessary. However, when this is applied, an actual operation by a computer or the like and an actual production modification are naturally accompanied. Therefore, in understanding the present invention, it should be understood that these modifications are included in the scope of the present invention. The error that occurs in implementing the equal product division and interior angle unification in the first example may be an approximate value as long as it is within a range where the same effects as the contents of the first example can be obtained. In addition, the shape of the solid or plane to be mapped may be slightly distorted or missing.

また、球に正四面体が内接している例で説明したが写像対象となる立体は互いに離れていても交差していても良い。また正四面体上の任意の線分に切れ目を入れ矩形平面化してよい。矩形にこだわらなければ正三角形等の多角形や円等の曲線を含む形状に展開してよい。湾曲した面など任意の立体面でもよい。また正四面体の展開図が好適だが、矩形にこだわらなければ他の多面体の展開図を用いてもよい。  Further, although an example in which a regular tetrahedron is inscribed in a sphere has been described, solids to be mapped may be separated from each other or may intersect. Further, a rectangular plane may be formed by cutting a line segment on a regular tetrahedron. If not sticking to a rectangle, it may be developed into a shape including a polygon such as a regular triangle or a curve such as a circle. Any solid surface such as a curved surface may be used. Further, a development view of a regular tetrahedron is preferable, but a development view of another polyhedron may be used as long as it does not stick to a rectangle.

得られた全方位矩形画像SC1を縦横に平面充填すると図9の画像ができる。点線E7は正四面体の稜線が写像された線分であり、三方向グリッドを形成する。前述の世界地図SC1とは縦横比が異なる世界地図1つ分のビューアVR1、VR3、VR4が得られる。これらは方向転換できかつ三方向グリッド23、24、25に沿った三方向に連続移動できる。これらのビューアの縦横比はL3:L4=4:√3である。  When the obtained omnidirectional rectangular image SC1 is horizontally and vertically filled, the image of FIG. 9 is formed. A dotted line E7 is a line segment obtained by mapping a ridge line of a regular tetrahedron, and forms a three-way grid. Viewers VR1, VR3, VR4 corresponding to one world map having an aspect ratio different from that of the aforementioned world map SC1 are obtained. They can change direction and move continuously in three directions along the three-way grids 23, 24, 25. The aspect ratio of these viewers is L3: L4 = 4: √3.

SC1は南極及び豪州を中心とした世界地図だが前記世界地図1つ分のビューアを移動することで適切な二次的セルの全方位画像、正積世界地図を提供できる。図10と図11は該平面充填画像から得る様々な地域を中心に据えた縦横比4:√3の世界地図を示す。これらは大陸を略分断せず示す世界地図である。ここに、LC1〜8は順に中近東、太平洋、南極、インドと中国、ヨーロッパ、中米、オセアニア、日本が夫々中心の正積世界地図である。  SC1 is a world map centered on Antarctica and Australia, but it can provide an appropriate omnidirectional image of a secondary cell and an equivalent world map by moving the viewer for one world map. 10 and 11 show world maps with an aspect ratio of 4: √3 centered on various regions obtained from the plane-filled image. These are world maps that show the continent without any substantial division. Here, LC1 to 8 are the world map of the world centered in the Middle East, Pacific Ocean, Antarctica, India and China, Europe, Central America, Oceania and Japan, respectively.

図12は、図9と同じ平面充填画像だが上述の地図以外に縦横比1:√3の矩形世界地図SC2、SC3、SC4を取り出せる事を示す。また例えば地図SC4の四隅の周辺地理(タスマニア付近)を把握できるよう一回り大きい世界地図SC40を提供できる。また16πsrのビューアSC400では地図の四隅でも全世界に対する地理関係を把握できる。これらは世界の海流や航路、気象観測図や人工衛星の軌跡等を途切れず示せる。  FIG. 12 shows that rectangular world maps SC2, SC3, and SC4 having the same plane-filled image as FIG. 9 but having an aspect ratio of 1: √3 other than the above-described map can be taken out. Further, for example, the world map SC40 that is one size larger can be provided so as to grasp the peripheral geography (near Tasmania) of the four corners of the map SC4. In addition, the 16πsr viewer SC400 can grasp the geographical relations to the whole world at the four corners of the map. These can show the currents and routes of the world, meteorological observation maps, and the locus of satellites without interruption.

図13に示すシナジェティクスに記載のDymaxionMapによる世界の一月の海流142と比較して図14の本発明に従う矩形地図に示す同様の海流142では海流が連続的に示されていることが分かる。  It can be seen that the ocean current is shown continuously in the similar ocean current 142 shown in the rectangular map according to the present invention of FIG. 14 compared to the ocean current 142 of the world by DymaxionMap described in the synergetics shown in FIG. .

以下に記載する技術的事項は、この第1例に限定されずに、他の例にも同様に適用可能であるが、例えば上記第1例の矩形セル以外にも正三角形のセル等の多角形を取り出してよい。北半球等4πsr以下の部分を取り出してよい。ここでは正四面体展開図を縦横に平面充填する例を挙げたが、他の多面体に置換してよい。1列や円環状に並べてよい。隙間のある平面配列でもよい。平面充填した際、一部の被写体表示に連続性がなくても良い。  The technical items described below are not limited to the first example, but can be applied to other examples in the same manner. For example, in addition to the rectangular cell of the first example, there are many regular triangular cells and the like. You may take out the square. A portion of 4πsr or less such as the northern hemisphere may be taken out. Here, an example in which a regular tetrahedron development is filled horizontally and vertically is given, but other polyhedrons may be substituted. They may be arranged in a single row or in an annular shape. A planar arrangement with a gap may be used. When filling a plane, some subject display may not be continuous.

上記第1例は地球と言う被写体の中心に向け視点を内向きに全方向から観る世界地図を例に説明したが、1つの視点から外向きに全方位を観る全方位写真も光軸の向きが内か外向きかに関わらず全方位情報は同様に球面画像として扱える。従来技術ではこれらの技術を別個な物として扱かっていたが本発明では等しく扱う。よって他の例にも同様に適用可能であるが、上記第1例を全方位写真技術に適用してもよい。  In the first example described above, the world map in which the viewpoint is viewed inward from all directions toward the center of the subject called the earth has been described as an example, but an omnidirectional photograph in which all directions are viewed from one viewpoint outward is also the direction of the optical axis. Regardless of whether the is inward or outward, the omnidirectional information can be treated as a spherical image in the same manner. The prior art treats these techniques as separate objects, but the present invention treats them equally. Therefore, the present invention can be applied to other examples as well, but the first example may be applied to the omnidirectional photographic technique.

第2例
立方体の正積分割を説明する。立方体は8つの内4頂点を面に置換すると正四面体になる為立方体に沿って6つの光軸を配して撮像後明快に正四面体面に再写像できる。図15は立方体の正積グリッドG6とこれと頂点を共有し外接する球状立方体の正積グリッドG7のみを取り出したものを示す。グリッドG6は正方形面の対角線を引き、各辺の中点同士を結び16個の三角形に等分する正積グリッドである。そのうちの一つが領域82である。こうして立方体を96等分する。グリッドG7は球状正方形の対角線を大円弧で結び交点O13aと各頂点を大円弧で結ぶ。さらに該点O13aと該各頂点を結ぶ大円弧の中点78〜81と該球状正方形の各辺の中点を大円弧で結び球状三角形16個に等分するグリッドである。そのうちの1つが領域82aである。こうして球面(球状立方体)を96等分にする。こうして球面上の例えば領域82aを立方体上の領域82に正積写像できる。正積写像し得られた立方体画像を、点V8、V9、V12、V13を頂点に持つ正四面体の各面に正射投影して正積写像された正四面体ができる。なお頂点V10、V11、V14、V15による正四面体に同様に写像するともう一つの正四面体画像が出来る。
Second example :
The cube equal product division will be described. Since a cube becomes a regular tetrahedron when four of the eight vertices are replaced with a surface, six optical axes are arranged along the cube and can be clearly re-mapped to a regular tetrahedron surface after imaging. FIG. 15 shows only a cubic product grid G6 and a spherical product grid G7 that shares and circumscribes the cube. The grid G6 is a square product grid that draws a diagonal line of a square surface, connects midpoints of each side, and equally divides the triangle into 16 triangles. One of them is a region 82. In this way, the cube is divided into 96 equal parts. The grid G7 connects the diagonals of the spherical square with a large arc and connects the intersection O13a with each vertex with a large arc. Furthermore, a grid is formed by connecting the midpoints 78 to 81 of the large arc connecting the point O13a and the vertices and the midpoints of the sides of the spherical square with a large arc and equally dividing into 16 spherical triangles. One of them is the area 82a. In this way, the spherical surface (spherical cube) is divided into 96 equal parts. Thus, for example, the area 82a on the spherical surface can be mapped to the area 82 on the cube. A cubic image obtained by orthogonal product mapping is orthographically projected onto each surface of a regular tetrahedron having vertices at points V8, V9, V12, and V13, thereby forming a regular tetrahedron. Note that another regular tetrahedron image can be obtained by mapping in the same manner to a regular tetrahedron with vertices V10, V11, V14, and V15.

第3例
本発明の正積分割は立体角を均等に分割した後、経緯線等でさらに細分割した正積グリッドを含む。また本発明の正積写像は矩形断面を持つ多面体を用い多面体の画像情報を前記断面に正積写像することで矩形平面化する方法を含む。ここでは球状八面体を稜線により大まかな中心角を保ちつつ面積比を等分後、経緯線に沿い細分割した正積グリッドとこれに応じた八面体上の経緯線正積グリッドを用い八面体に正積写像した上で矩形の表裏に写像し矩形、特に正方形の全方位画像を提供する例を説明する。
Third example :
The product division of the present invention includes a product grid obtained by dividing the solid angle equally and then further subdividing it with graticules. In addition, the normal product mapping of the present invention includes a method of using a polyhedron having a rectangular cross section and converting the image information of the polyhedron into a rectangular flat surface by mapping the polyhedron image information onto the cross section. Here, the spherical octahedron is equally divided into octahedrons using an equal grid obtained by dividing the area ratio into equal parts while maintaining a rough central angle with the ridgeline, and then subdividing along the graticule and the corresponding graticule grid on the octahedron. An example will be described in which an omnidirectional image of a rectangle, particularly a square, is provided by mapping to the front and back of a rectangle after mapping.

図16に示す全方位球面情報である地球を球状正八面体の稜線90、91、92により等分する。例えば90は赤道、91、92は経線である。グリッドG12は球状正八面体を経緯線により細分割する。そのうちの一つが領域89である。グリッドG12の一部を球S6上に示す。経線同士のなす角度が均等になるように、また緯線は互いに平行になるように配される。経線92、91の交点93、94は北極点と南極点にあたる。S6を上から、つまり北極点93を中心に見た図を図17に示す。  The earth as the omnidirectional spherical information shown in FIG. 16 is equally divided by the ridge lines 90, 91, 92 of the spherical regular octahedron. For example, 90 is the equator, and 91 and 92 are meridians. The grid G12 subdivides a spherical regular octahedron with graticules. One of them is a region 89. A part of the grid G12 is shown on the sphere S6. The meridians are arranged so that the angles formed by the meridians are equal, and the parallels are parallel to each other. The intersections 93 and 94 of the meridians 92 and 91 correspond to the north pole and the south pole. FIG. 17 shows S6 as viewed from above, that is, with the north pole 93 as the center.

図18は球S6に頂点を共有して内接する正八面体P5上のグリッドG9の一部であり、正方形95、96、97はこの正八面体と頂点を共有する。グリッドG9は北極点93と正八面体の頂点間を四等分する点102、103、104を結ぶ経線と98、99を結ぶ線分と平行に配した緯線により構成される。経線同士のなす角度が均等になるように配しても良い。領域89aはG9による一分割領域である。こうしてグリッドG12からG9へ各区分領域は正積写像され、例えば領域89は領域89aに写像される。  FIG. 18 is a part of the grid G9 on the regular octahedron P5 that shares the vertex with the sphere S6, and the squares 95, 96, and 97 share the vertex with the regular octahedron. The grid G9 is composed of meridians connecting points 102, 103, 104 that divide the north pole 93 and the vertices of the regular octahedron into four equal parts, and parallels arranged parallel to the lines connecting 98, 99. You may arrange | position so that the angle which meridians make may become equal. The area 89a is a divided area by G9. In this way, each divided area is mapped from the grids G12 to G9, for example, the area 89 is mapped to the area 89a.

図19に示すグリッドG11は図16のグリッドG12を平面展開したものである。グリッドG9は正八面体P5上のグリッドの正面図である。グリッドG11からG9への各区分領域が正積写像されるよう経線にあたる線分の間隔は約h1:h2:h3:h4=22.3:21.5:19.9:17.5となるよう調整されている。  A grid G11 shown in FIG. 19 is a flat development of the grid G12 of FIG. The grid G9 is a front view of the grid on the regular octahedron P5. The interval between line segments corresponding to meridians is adjusted to be about h1: h2: h3: h4 = 22.3: 21.5: 19.9: 17.5 so that each divided area from the grid G11 to G9 is an equal product map. Has been.

この操作を正八面体の各面で行った全方位画像を正方形領域95、96、97何れかに写像する。図18の正八面体画像を正方形領域95の表面と裏面の領域F4、F5に上下から写像したものを図20の領域F4、F5に示す。正八面体上のグリッドG9はG10に写像され、領域89aは領域89bに写像される。F4、F5を図20のように隣接して配置すると1:2の矩形画像を得る。図21は正八面体P5の斜視図である。領域F5を4分割して回転しF4と統合すると点106、107、108、109に囲まれた正方形全方位画像ができる。なお写像面95を用いて行った上記操作は正方形領域96、97を用いた場合に置換でき、合計三つの矩形画像ができる。  An omnidirectional image obtained by performing this operation on each surface of the regular octahedron is mapped to any of the square regions 95, 96, and 97. Images obtained by mapping the regular octahedron image of FIG. 18 onto the front and back regions F4 and F5 of the square region 95 from above and below are shown in regions F4 and F5 of FIG. The grid G9 on the regular octahedron is mapped to G10, and the region 89a is mapped to the region 89b. When F4 and F5 are arranged adjacent to each other as shown in FIG. 20, a 1: 2 rectangular image is obtained. FIG. 21 is a perspective view of the regular octahedron P5. When the region F5 is divided into four and rotated and integrated with F4, a square omnidirectional image surrounded by points 106, 107, 108, and 109 is formed. The above operation performed using the mapping surface 95 can be replaced when the square areas 96 and 97 are used, and a total of three rectangular images are formed.

本発明を説明するにあたっては幾何学に基づいて説明するのが、最も理解が得やすい。しかし本発明を適用するにあたってはコンピュータ等による実際の操作や実際の製作上の変形や変更は当然伴うものである。従って、これらの変形や変更は本件発明の範疇に含まれるものと理解されたい。上記第3例に限らず他の例でも適用可能だが、上記第3例の説明に用いた「等分割」、「均等」、「平行」、「正八面体」、「1:2」は、夫々、「実質的な等分割」、「実質的な平行」、「実質的な正八面体」「約1:2」に置換しても良い。  The description of the present invention is based on geometry and is most easily understood. However, when the present invention is applied, an actual operation by a computer or the like and an actual production modification or change are naturally accompanied. Therefore, it should be understood that these modifications and changes are included in the scope of the present invention. Although not limited to the third example, the present invention can be applied to other examples, but “equal division”, “equal”, “parallel”, “octahedral”, and “1: 2” used in the description of the third example are , “Substantially equally divided”, “substantially parallel”, “substantially octahedral”, and “about 1: 2”.

このように立体を構成する面の任意の面に含まれる2つの点と他の面に含まれる少なくとも1点とで規定される面が矩形であれば同様の写像方法により面を統合することで矩形平面が得られる。  In this way, if a surface defined by two points included in an arbitrary surface constituting a solid and at least one point included in another surface is a rectangle, the surfaces are integrated by the same mapping method. A rectangular plane is obtained.

こうして得る画像が例えば図22の世界地図LC13、LC14、LC15でありメルカトル図法では歪む南極大陸や北極海の氷原も正積で表示されつつ同心状に平行な緯線と極地から放射状に延びる経線の関係が保たれる。  The images obtained in this way are, for example, the world maps LC13, LC14, and LC15 of FIG. 22, and the Mercator projection displays the distorted Antarctica and Arctic sea ice fields in the same product, while the relationship between concentric parallel parallels and meridians extending radially from the polar regions. Kept.

以下に記載する技術的事項は、この第3例に限定されずに、他の例にも同様に適用可能であるが、上記分割に用いたグリッドは表示してよい。経度や緯度、仰角や方位角、距離等の目盛をつけてもよい。もちろん球面正八面体を用いず、既存の世界地図図法やパノラマ写真、魚眼レンズの画像等の平面画像を歪みを除きながら直接矩形平面に修正しても良い。  The technical matters described below are not limited to the third example, but can be applied to other examples as well, but the grid used for the division may be displayed. Scales such as longitude, latitude, elevation, azimuth, and distance may be provided. Needless to say, a spherical regular octahedron may not be used, and a plane image such as an existing world map projection, panoramic photograph, or fisheye lens image may be directly corrected to a rectangular plane while removing distortion.

図23と図24は上記画像LC14とLC15をセル(単位)画像として配列した平面充填画像を示すが、正方形の各辺の中点140、141付近のように南極大陸や北極海の氷原が2つ連続して繋がる事が稀にある。一方LC13を平面充填したものが図25であり全陸地が快適に表示できる。このように一つの正八面体から三つの全方位画像が得られ見やすい平面充填画像を選択できる。  FIGS. 23 and 24 show a plane-filled image in which the images LC14 and LC15 are arranged as cell (unit) images. As shown in the vicinity of the midpoints 140 and 141 of each side of the square, there are 2 ice fields in Antarctica and the Arctic Ocean. There are rarely two consecutive connections. On the other hand, FIG. 25 shows a plane-filled LC13 that can comfortably display the entire land. In this way, three omnidirectional images can be obtained from one regular octahedron, and a plane filling image that is easy to see can be selected.

また、図25に示す平面充填画像から点122、133、134、132に囲まれた北極が中心の2次的なセルLC20を取り出せかつ縦横比1:2の世界地図も取り出せる。点121、129、130、131で囲まれたセルLC16はその一例で北極を正確に表示しつつランベルト正積方位図法では歪む南半球の被写体も見やすい。また縦横比1:4の世界地図LC17も取り出せる。  In addition, the secondary cell LC20 centered at the North Pole surrounded by the points 122, 133, 134, 132 can be extracted from the plane filling image shown in FIG. 25, and a world map with an aspect ratio of 1: 2 can be extracted. The cell LC16 surrounded by the points 121, 129, 130, and 131 displays the north pole accurately in one example, and the subject in the southern hemisphere that is distorted by the Lambert's erect azimuth projection is easy to see. A world map LC17 with an aspect ratio of 1: 4 can also be taken out.

この領域LC17は矢印方向113に連続移動及び方向転換するビューアにでき、矩形世界地図LC18を取り出せる。この領域LC18も矢印方向114に連続移動及び方向転換でき、LC16も矢印方向115に連続移動及び方向転換するビューアにでき、矩形世界地図LC19を取り出せる。LC19も矢印方向116に連続移動及び方向転換するビューアにできる。このように縦横比が選べる最大4πsr領域のビューアを設定でき任意の地域が中心の矩形世界地図が作れる。  This area LC17 can be a viewer that continuously moves and changes direction in the direction of arrow 113, and a rectangular world map LC18 can be taken out. This area LC18 can also be continuously moved and changed in the direction of arrow 114, and LC16 can also be a viewer that is continuously moved and changed in the direction of arrow 115, and the rectangular world map LC19 can be taken out. LC 19 can also be a viewer that continuously moves and changes direction in the arrow direction 116. In this way, a viewer with a maximum 4πsr area where the aspect ratio can be selected can be set, and a rectangular world map centered on an arbitrary area can be created.

以下に記載する技術的事項は、この第3例に限定されずに、他の例にも同様に適用可能であるが、上記ビューアは移動しつつ変形してよい。上記ビューアの形状は上記の縦横比の矩形形状とは異なる任意の形状をとってよい。また正積分割はコンピュータの処理能力などを考慮して近似化および簡略化してよい。この場合歪みの分散は限定的なものになる。また三次元を平面に写像する際距離情報を捨て単位球面に取り込む過程を省略してよい。この場合3次元空間を変形する操作になる。例えば天球情報を距離情報を保ちつつ変換すると、ある視点からは全方位の星空が矩形画像により一望でき視点を変えると、各天体までの距離を把握できる特殊な立体空間が得られる。  The technical matters described below are not limited to the third example, but can be similarly applied to other examples. However, the viewer may be deformed while moving. The viewer may have an arbitrary shape different from the rectangular shape having the aspect ratio. Further, the product division may be approximated and simplified in consideration of the processing capability of the computer. In this case, the dispersion of strain is limited. In addition, the process of discarding the distance information and taking it into the unit sphere when mapping the three dimensions to the plane may be omitted. In this case, the operation is to deform the three-dimensional space. For example, if the celestial sphere information is converted while maintaining the distance information, the starry sky in all directions can be seen from a certain viewpoint from a rectangular image, and if the viewpoint is changed, a special three-dimensional space that can grasp the distance to each celestial body is obtained.

対象となる空間を大小様々な半径を持つ球である点を中心に同心円上に何層も切り取り、各球面間の被写体を分担して夫々の球に写像後、本発明に基づき矩形平面化又は/及び平面配列してよい。この場合半径の大小順に平面配列を行えば配列位置によって前記中心点からの距離情報も平面座標で示す事ができる。  The target space is cut into several layers on a concentric circle around a point that is a sphere with various radii, large and small, and the object between each spherical surface is divided and mapped to each sphere. / And planar arrangement. In this case, if the plane arrangement is performed in the order of the radius, the distance information from the center point can also be indicated by the plane coordinates depending on the arrangement position.

第4例
上記写像方法は正八面体を他の立体、例えば正四面体に置換してよい。図51は全方位正四面体画像PG16の概念図である。正四面体の正三角形の面2つを正方形F23に写像する。F23は正四面体の稜線と該平行であれば、正四面体PG16の内外部は問わない。他の2つの正三角形の面もF23の裏面に写像する。裏面を回転し表面の画像に統合することで全方位画像が得られる。またこれらを用いて上記例同様平面充填する事ができる。
Fourth example :
In the above mapping method, the regular octahedron may be replaced with another solid, for example, a regular tetrahedron. FIG. 51 is a conceptual diagram of an omnidirectional regular tetrahedral image PG16. Two regular tetrahedral faces of the regular tetrahedron are mapped to the square F23. As long as F23 is parallel to the ridgeline of the regular tetrahedron, the inside and outside of the regular tetrahedron PG16 may be used. The other two equilateral triangular surfaces are also mapped to the back surface of F23. An omnidirectional image is obtained by rotating the back surface and integrating it with the image on the front surface. Moreover, plane filling can be performed using these as in the above example.

また立方体等を斜めから写像し正六角形画像など正多角形を取得し平面配列してよい。また準正32面体など線が連鎖し大円を形成する多面体の多角形面に写像してよい。この場合得られる画像は正10角形2つとなる。これらを被写体の連続性を保って並べると隙間のある平面配列画像になる。写像はこれらの面の片面だけでも良い。なお正四面体画像を正八面体画像PG17に再写像してよい。  Further, a cube or the like may be mapped from an oblique direction to obtain a regular polygon such as a regular hexagonal image and arranged in a plane. Further, it may be mapped to a polygonal surface of a polyhedron in which lines are chained to form a great circle such as a quasi-regular 32-hedron. In this case, the obtained images are two regular decagons. If these are arranged while maintaining the continuity of the subject, a flat array image with a gap is formed. The mapping may be just one of these surfaces. Note that the regular tetrahedron image may be re-mapped to the regular octahedron image PG17.

第5例
本発明の扱う平面充填画像には時間性を与えたものを含む(以下全経緯画像と呼ぶ)。図28の平面充填画像MX1は全方位矩形画像SC20をセルとして毎秒1枚撮像し時系列順に横60枚縦60枚に並べた平面充填画像の説明図である。横方向に秒単位、縦方向に分単位で時間と空間が連続する1時間の全経緯を一望できる画像ができる。また前述のビューアを用いて各セルを時系列で映せば動画のような表示ができる。つまり動画記録が各セルの境界領域において被写体の連続性が確保された1枚の画像として提供できる。
Example 5 :
The plane-filled images handled by the present invention include those given time characteristics (hereinafter referred to as all background images). A plane filling image MX1 in FIG. 28 is an explanatory diagram of a plane filling image in which one omnidirectional rectangular image SC20 is captured as a cell and arranged in 60 horizontal rows and 60 vertical rows in time series. An image can be obtained in which the entire history of one hour in which time and space are continuous in units of seconds in the horizontal direction and minutes in the vertical direction can be viewed. Moreover, if each cell is projected in time series using the above-mentioned viewer, a display like a moving image can be performed. That is, the moving image recording can be provided as one image in which the continuity of the subject is ensured in the boundary region of each cell.

以下に記載する技術的事項は、この第5例に限定されずに、他の例にも同様に適用可能であるが、上記第5例の全経緯画面は各セルの静止画を動画に置換してよい。例えば撮像間隔に従って各セルで1秒間の動画を表示すれば全経緯を1秒の動画で一望できる。1秒間の25コマの画像を表示画面の奥行方向に重ねる等立体的な配置をしてよい。監視対象により、撮像頻度、シャッタスピード、縦横のコマ数等は任意で良い。毎分1枚撮像し、横60縦24枚並べれば1日の出来事が一望できる。雑踏に設置する場合シャッタスピードを1分間に設定すれば動いている通行人は写らず、放置された不審物のみ表示できる。セルの並べ方も用途に応じて縦横に充填せず隙間が存在したり、1列または円環状に並べても良い。各セルを非時系列で並べても良い。各セル内の画像を部分的に入れ替えても良い。  The technical items described below are not limited to the fifth example, but can be applied to other examples as well. However, the entire background screen of the fifth example replaces still images in each cell with moving images. You can do it. For example, if a 1-second moving image is displayed in each cell according to the imaging interval, the entire history can be viewed in a 1-second moving image. A three-dimensional arrangement may be made such that 25 frames of images for one second are overlapped in the depth direction of the display screen. Depending on the monitoring target, the imaging frequency, shutter speed, number of vertical and horizontal frames, etc. may be arbitrary. One image can be taken every minute, and 24 images can be seen from 60 by 60. When installed in a crowd, if the shutter speed is set to 1 minute, no moving passers-by will be shown, and only suspicious objects that have been neglected can be displayed. Depending on the application, the cells may be arranged vertically or horizontally without gaps, or may be arranged in a single row or in an annular shape. Each cell may be arranged in a non-time series. You may replace the image in each cell partially.

本発明は上記全経緯画像から異常箇所のみを取り出す検索用画像を含む。図29の画像MX2はセル画像SC20aを縦60横60コマ反復し並べた平面充填画像の説明図である。画像SC20aは前述の全方位画像SC20をネガ反転したものであり、監視空間の平常時を表す、テンプレート画像として用いる。  The present invention includes a search image for extracting only an abnormal part from the entire background image. An image MX2 in FIG. 29 is an explanatory diagram of a plane filling image in which the cell image SC20a is repeated 60 rows and 60 frames and arranged. The image SC20a is a negative inversion of the above-described omnidirectional image SC20, and is used as a template image representing the normal time of the monitoring space.

一方、図30は検索用画像MX3の説明図である。画像MX3は前記時系列の平面充填画像MX1と前記テンプレート画像を反復したMX2を合成したものである。ここに図MX3の白無地部分は無変化部分である。テンプレート画像に写る被写体と監視中に撮像された該被写体は変化の無い場合補色が一致し無地になる為である。一方、異変があった被写体61は補色関係が崩れ図柄として表示でき監視期間中の出来事として被写体61を浮き立たせられる。こうして迅速に被写体61周囲の画像領域を拡大検証し、前述のビューアを動かしながら前後関係を調べられる。  On the other hand, FIG. 30 is an explanatory diagram of the search image MX3. The image MX3 is a composite of the time-series planar filling image MX1 and MX2 obtained by repeating the template image. Here, the white plain portion in FIG. MX3 is the unchanged portion. This is because the subject that appears in the template image and the subject that has been imaged during monitoring are the same in color and become plain when there is no change. On the other hand, the subject 61 that has changed can be displayed as a symbol because the complementary color relationship is lost, and the subject 61 can be raised as an event during the monitoring period. In this way, the image area around the subject 61 can be quickly enlarged and verified, and the context can be examined while moving the viewer.

また、ハードディスク等で記録する際、無変化部は無地のため画像圧縮技術を用い容量を大幅に圧縮できる。また、該平面充填画像に別途記録した画像SC20を再度合成すれば元の画像が得られる。こうして長時間録画の際、画素数が急増する平面充填画像データの容量を減らせる。  Further, when recording with a hard disk or the like, the unchanged part is plain, and the capacity can be greatly compressed using an image compression technique. Further, if the image SC20 separately recorded on the plane filling image is synthesized again, the original image can be obtained. In this way, it is possible to reduce the capacity of the plane filling image data in which the number of pixels rapidly increases during long-time recording.

なお、テンプレート画像は任意に更新して良い。例えば一定間隔のセル数ごと又はランダムに更新し異時刻のテンプレート画像を混在させたり、該テンプレート画像内を区分した領域にも異時刻の画像が混在してよい。全経緯画像の位置をずらしネガ反転し例えば1コマずらした画像のネガと元の画像を合成し短時間の変化を表示してよい。また全経緯画像をネガ反転してよい。合成する画像の一方又は双方の色要素例えばRGB,CMYK,HSB,Lab等を合成したり、透明度を調整し無変化部の彩度、明度、色相、輝度などを均一化し、無地や単色画像にする等、変化部を際立たせ上記同様の効果を得ても良い。  The template image may be updated arbitrarily. For example, the template images at different times may be mixed at a certain number of cells or randomly, or the images at different times may be mixed in an area divided within the template image. The positions of all the background images may be shifted and the negatives reversed, for example, the negative of the image shifted by one frame and the original image may be combined to display a short time change. Also, the entire background image may be negatively inverted. Synthesize one or both color elements of the image to be combined, such as RGB, CMYK, HSB, Lab, etc., adjust the transparency to uniformize the saturation, brightness, hue, brightness, etc. of the unchanged part, and make it a solid or single color image For example, the same effect as described above may be obtained by making the change part stand out.

第6例
本発明における写像は平面から平面への写像を含む。全周魚眼レンズによる円形画像を矩形化する方法を図63に示す。領域SS200は全方位を2度に分け撮像した全周魚眼画像を並べて配置したものである。ここで前述の図2に示すグリッドG2による正積分割に基づきつつ前記レンズによる投影の特性を加味しながら、撮像時の立体角を基準に線分SE20によるグリッドを作成する。線分SE20の一部は曲線となる。領域SS200は96個の画像領域SS20に等分されている。斜線領域はその1つである。矩形平面RS200は線分RE20によるグリッドにより区分される。線分RE20のうち1つを図示する。これらの線分RE20は前述の図2に図示するグリッドG1による正積分割に基づき96個の画像領域RS20に等分する。斜線領域はその1つである。各領域SS20を対応する領域RS20に写像することでSS200全体をRS200に正積写像することで矩形化される。
Sixth example :
The mapping in the present invention includes a plane-to-plane mapping. FIG. 63 shows a method of rectangularizing a circular image using the all-around fisheye lens. The area SS200 is an all-around fisheye image obtained by dividing the omnidirectional image in two degrees and arranged. Here, a grid by the line segment SE20 is created on the basis of the solid angle at the time of imaging while taking into account the characteristics of the projection by the lens based on the above-mentioned product division by the grid G2 shown in FIG. A part of the line segment SE20 is a curve. The area SS200 is equally divided into 96 image areas SS20. The hatched area is one of them. Rectangular plane RS200 is divided by a grid formed by line segment RE20. One of the line segments RE20 is illustrated. These line segments RE20 are equally divided into 96 image regions RS20 based on the equal product division by the grid G1 shown in FIG. The hatched area is one of them. By mapping each region SS20 to the corresponding region RS20, the entire SS200 is squarely mapped to the RS200.

従来技術により平面に撮り込まれた上記画像を矩形平面に写像する場合、撮像時の立体角を加味して平面に表記されている画像の立体角(面積比)を修正しながら矩形平面に写像する事が必要である。また上記のように正積グリッドには曲線を含むものもある。  When mapping the above image captured on a flat surface to a rectangular plane using conventional technology, the solid angle (area ratio) of the image displayed on the plane is corrected while taking into account the solid angle at the time of imaging. It is necessary to do. In addition, as described above, some equal product grids include curves.

第7例
既存の世界地図など従来の投影による平面情報を本発明に基づき矩形化する方法を図64に示す。領域CR10は球面情報、典型的には地球SPR10を投影した従来の円筒図法の概念図である。球面SPR10上の線SPE1〜8は線CE1〜8に、領域SPR1〜8は領域CR1〜8に夫々投影されている。線CE1〜8が領域CR10を領域CR1〜8に8等分している。一方、領域OR10は前述の図20に図示する方法に基づく矩形平面領域である。線分OE1〜8が領域OR10を領域OR1〜8に8等分している。
Example 7 :
FIG. 64 shows a method of rectangularizing plane information by conventional projection such as an existing world map based on the present invention. A region CR10 is a conceptual diagram of conventional cylindrical projection in which spherical information, typically the earth SPR10, is projected. The lines SPE1 to SPE8 on the spherical surface SPR10 are projected onto the lines CE1 to 8, and the areas SPR1 to 8 are projected onto the areas CR1 to CR8. Lines CE1-8 divide region CR10 into eight regions CR1-8. On the other hand, the region OR10 is a rectangular planar region based on the method shown in FIG. Line segments OE1 to 8 divide the region OR10 into eight regions OR1 to 8.

領域CR1〜8を夫々領域OR1〜8に対応させて写像することで領域CR10全体を領域OR10に正積写像し矩形化する。線分CE1〜8は線分OE1〜8に写像される。なお線分CE−Nは本来北極点を示すものであり、より忠実に球面上の相対的な地理関係を保つべく領域OR10では点O−Nに変換する。一方線分CE−Sは本来南極点を示す物であり、より忠実に球面上の相対的な地理関係を保つべく領域OR10では点O−Sに変換される。ただし点O−Sは4点に分散される。これは領域OR10の4隅にO−Sを中心の1点に配した世界地図OR20が配列できる事を示す。このように1点が1点に対応して写像されない場合があるが、従来の円筒図法のように球上の点が線として表記されるような事は無い。  By mapping the areas CR1 to 8 in correspondence with the areas OR1 to 8, respectively, the entire area CR10 is mapped to the area OR10 and rectangular. The line segments CE1 to 8 are mapped to the line segments OE1 to OE8. Note that the line segment CE-N originally indicates the north pole, and is converted into a point ON in the region OR10 in order to maintain a relative geographical relationship on the spherical surface more faithfully. On the other hand, the line segment CE-S originally represents the South Pole, and is converted to the point OS in the region OR10 in order to maintain the relative geographical relationship on the spherical surface more faithfully. However, the point OS is distributed to 4 points. This indicates that the world map OR20 in which OS is arranged at one central point can be arranged at the four corners of the region OR10. Thus, one point may not be mapped corresponding to one point, but the point on the sphere is not represented as a line unlike the conventional cylindrical projection.

領域OR10は典型的には世界地図を示し、地球1つ分の地理情報を余過分無く示すため当然領域OR10の4隅に位置する点O−S周囲の地理情報が把握しにくい。これは本来地球のような球面は過去に無限平面として把握されていたように面上の任意の点において全方向に広がりを持つため、全球面を平面に展開した場合、該平面の外周領域の相対的な地理関係を完全に再現できていないともいえる。  The region OR10 typically shows a world map, and the geographic information for one earth is fully displayed, so naturally it is difficult to grasp the geographical information around the point OS located at the four corners of the region OR10. This is because a spherical surface like the Earth originally has an omnidirectional spread at an arbitrary point on the surface as previously understood as an infinite plane. It can be said that the relative geographical relationship is not completely reproduced.

ただし、他の例でも言える事だが、本発明では必要に応じて前記領域OR10の周囲にさらに領域OR1〜8を繰り返し配列することができる。例えばこのような配列領域OR100を見てみると、領域OR10の外周に面する領域OR5〜8の相対的な地理関係が保たれている事が分かる。例えば球上で領域SPR8がSPR4、5、7と線を介して隣接しているように斜線領域で示すOR8はOR4、5、7と線を介して隣接している。  However, as can be said in other examples, in the present invention, the regions OR1 to OR8 can be further repeatedly arranged around the region OR10 as necessary. For example, when looking at such an array region OR100, it can be seen that the relative geographical relationship of the regions OR5 to 8 facing the outer periphery of the region OR10 is maintained. For example, OR8 indicated by a hatched area is adjacent to OR4, 5, 7 via a line so that the area SPR8 is adjacent to SPR4, 5, 7 via a line on the sphere.

第8例
多階層写像を経由して矩形平面画像を得る方法を正多面体を例に説明する。正多面体を用いた場合面積比つまり立体角と共に中心角、面角共に均等に歪みを分散する事ができる。図26は正二十面体から正十二面体への写像の説明図である。正二十面体の頂点を面に、面を頂点に置換した物が正十二面体である。全方位正二十面体画像の正三角形領域の中心39と頂点38及び辺の中点を結び六つの領域、例えば領域72に等分する。この操作を他の面でも行い、正二十面体を120等分する。該領域を正二十面体に接する正十二面体の正五角形の中心4から辺の中点及び正十二面体の頂点39を結ぶ線分により120等分した領域に写像する。例えば正十二面体上の領域73に領域72を写像する。
Eighth example :
A method for obtaining a rectangular planar image via a multi-layered mapping will be described using a regular polyhedron as an example. When a regular polyhedron is used, the area ratio, that is, the solid angle as well as the center angle and the surface angle can be evenly distributed. FIG. 26 is an explanatory diagram of mapping from an icosahedron to a regular dodecahedron. A regular dodecahedron is obtained by replacing the vertices of the icosahedron with a face and the face with the vertex. The center 39 of the equilateral triangle region of the omnidirectional regular icosahedron image, the vertex 38 and the midpoint of the side are connected and divided into six regions, for example, the region 72. This operation is also performed on the other surface, and the regular icosahedron is divided into 120 equal parts. The region is mapped to a region divided into 120 equal parts by a line segment connecting the center 4 of the regular dodecahedron that touches the regular icosahedron to the midpoint of the side and the vertex 39 of the regular dodecahedron. For example, the region 72 is mapped onto the region 73 on the regular dodecahedron.

図27はさらに正十二面体から立方体への写像の概念図である。ここで正十二面体の正五角形面に接する立方体の辺41は正十二面体の各面を三角形46と台形48に分割する。該領域を立方体上の点49a、42、43を頂点に持つ三角形46aと49a、50a、44、43を頂点に持つ台形48aに夫々写像する。ここで該写像が正積写像になるよう点49a及び点50aの位置調整をするとよい。得られた立方体画像は正四面体もしくは正八面体に再び写像して矩形画像を作れる。  FIG. 27 is a conceptual diagram of mapping from a regular dodecahedron to a cube. Here, the side 41 of the cube in contact with the regular pentahedron surface of the regular dodecahedron divides each surface of the regular dodecahedron into a triangle 46 and a trapezoid 48. The region is mapped to a triangle 46a having points 49a, 42 and 43 on the cube as vertices and a trapezoid 48a having 49a, 50a, 44 and 43 as vertices. Here, it is preferable to adjust the positions of the points 49a and 50a so that the map is a product product map. The obtained cubic image can be mapped again to a regular tetrahedron or a regular octahedron to create a rectangular image.

上記のように本発明は正多面体など対称性や幾何学的共通性のあるものを組み合わせて正積写像による多階層写像ができる。ジオデシック球から準正32面体、正十二面体や正二十面体への多階層写像等も正積写像となる。  As described above, according to the present invention, a multi-layered map based on a product map can be formed by combining symmetric and geometrical common objects such as a regular polyhedron. Multi-layer mapping from a geodesic sphere to a quasi-regular thirty-hedron, regular dodecahedron, or regular icosahedron is also an orthogonal product map.

このように例えば多面体を構成しているある面を複数の面に分割したり、複数の面を1つの面に統合する操作を繰り返しながら最終的に矩形平面に落とし込むことができる。  In this way, for example, a certain face constituting the polyhedron can be divided into a plurality of faces, or finally dropped into a rectangular plane while repeating the operation of integrating the plurality of faces into one face.

前述したように、本発明を説明するのに幾何学に基づいた説明が最も理解が得やすい。しかしこれを適用するにあたってはコンピュータ等による実際の操作や実際の製作上の変形や変更は当然伴うものである。従って、これらの変形や変更は本件発明の範疇に含まれるものと理解されたい。上記第8例に限らず他の例でも適用可能だが、上記第8例の内容と同じ効果が得られる範囲内であれば、上記説明中用いた「正多面体」、「中点」、「等分」は、夫々、「多面体」、「中点付近」、「実質的な等分」に置換しても良い。  As described above, the description based on geometry is the easiest to understand to describe the present invention. However, in order to apply this, an actual operation by a computer or the like and an actual production modification or change are naturally accompanied. Therefore, it should be understood that these modifications and changes are included in the scope of the present invention. The present invention is not limited to the eighth example, but can be applied to other examples. However, as long as the same effect as the contents of the eighth example can be obtained, the “regular polyhedron”, “midpoint”, “ “Minute” may be replaced with “polyhedron”, “near the midpoint”, and “substantially equal”, respectively.

第9例
本発明は上記写像の逆過程で平面から立体へ写像したものを含む。コンピュータ・グラフィックス(CG)において立体表面に平面画像を貼付けるマッピング技術がある。立体にマッピングしたテクスチャ画像を、多角的に見て継ぎ目が不自然だと平面で直す試行錯誤を要した。本発明に基づいて矩形平面のテクスチャ画像を作り、該立体の表面に正積写像することで歪みが少ないテクスチャマッピングができる。
Ninth example :
The present invention includes a mapping from a plane to a solid in the reverse process of the above mapping. There is a mapping technique in which a planar image is pasted on a three-dimensional surface in computer graphics (CG). If the texture image mapped to a three-dimensional image is viewed from multiple angles and the seam is unnatural, trial and error was required. According to the present invention, a texture image of a rectangular plane is created, and texture mapping with less distortion can be performed by mapping an equal product onto the surface of the solid.

図34に示す正積グリッドを配した矩形画像領域TM1に立体全表面用の画像を描く。三角形147はTM1の一部であり、第1例に示す分割に基づき分割した図中点線で表す正積グリッドを配した画像領域を示す。他の領域も同様に分割する。該領域に表示する画像を反復してTM1の周囲に配し、TM1の端部同士の継ぎ目を見られるよう、ここでは4πsrよりも大きい画像領域TM2を用いる。例えば領域145の画像は領域145aにも表示する。  An image for the entire three-dimensional surface is drawn in the rectangular image area TM1 in which the equal product grid shown in FIG. 34 is arranged. A triangle 147 is a part of TM1 and shows an image area in which a product grid represented by dotted lines in the figure divided based on the division shown in the first example is arranged. Other areas are similarly divided. The image area TM2 larger than 4πsr is used here so that the image displayed in the area is repeatedly arranged around the TM1 and the joint between the ends of the TM1 can be seen. For example, the image in the area 145 is also displayed in the area 145a.

次に上記第1例に示す矩形平面化の逆過程により矩形画像TM1を折畳んで図35に図示する正四面体画像obj4を作り、それを球状正四面体に正積写像し球面情報obj5を得る。大円159で切った断面が図36であり被写体obj6とobj5の位置関係を示す模式図である。obj5の中心160を光心にし、obj5上の画像がobj6に写像される。被写体の外側又はこれに交差するようobj5を配してよい。  Next, the rectangular image TM1 is folded by the reverse process of the rectangular flattening shown in the first example to create a regular tetrahedron image obj4 shown in FIG. 35, and is mapped onto a spherical regular tetrahedron to obtain spherical information obj5. . FIG. 36 is a cross-sectional view taken along the great circle 159, and is a schematic diagram showing the positional relationship between subjects obj6 and obj5. The center 160 of obj5 is set as the optical center, and the image on obj5 is mapped to obj6. The object obj5 may be arranged outside the subject or crossing the subject.

こうして多方向から被写体を映す動画においてシームレスなマッピングが必要な被写体の実質的な全表面画像を矩形平面で一望のもと操作できる。当然球体や正四面体に多階層写像せず直接被写体となる立体に正積写像して良い。なお同様の方法を他の写像の例に適用して良い。  In this way, a substantially whole surface image of a subject that needs to be seamlessly mapped in a moving image showing the subject from multiple directions can be manipulated with a rectangular plane. Of course, it is possible to map directly to a 3D object as a subject directly without multi-layer mapping to a sphere or tetrahedron. A similar method may be applied to other mapping examples.

第10例
本発明は任意形状の被写体を全方向の視点から内向きに光軸設定して得る球面情報を含む。図37は人の頭の形状をした被写体obj1の断面を示す。複数の撮像機によりこの被写体の全表面を分割して撮像し球面162に全方向から内向きに光軸設定して写像し球面情報を得る。該球面情報を前述の平面化技術同様、矩形平面画像に変換する。もちろんobj1は球を経由せず直接正四面体に写像してよい。
Example 10 :
The present invention includes spherical information obtained by setting an optical axis in an inward direction from an omnidirectional viewpoint to a subject having an arbitrary shape. FIG. 37 shows a cross section of a subject obj1 in the shape of a human head. The entire surface of the object is divided and imaged by a plurality of imaging devices, and the spherical surface information is obtained by mapping the spherical surface 162 by setting the optical axis inward from all directions. The spherical information is converted into a rectangular flat image as in the flattening technique described above. Of course, obj1 may be directly mapped to a regular tetrahedron without passing through a sphere.

第11例
本発明は任意形状の立体の多階層写像を含む。任意形状の実質的な全表面画像を多階層写像により正八面体に写像する例を説明する。図38は被写体(人の頭)obj3である。この全表面積を一点差線155と156で8等分した一領域が斜線部AR1である。AR1の部分拡大図がAR2である。obj3は図中1部のみ表示したが実際はAR2のような多角形により構成される。AR2はobj3上の多角形SR4、SR5、SR6からなる多角錐である。AR2の頂点157、158、171からなる三角形にSR4、SR5、SR6を面積比SR4:SR5:SR6=SR4a:SR5a:SR6aとなるように面統合する正積写像する。
Example 11 :
The present invention includes a multi-layered mapping of an arbitrarily shaped solid. An example in which a substantially whole surface image of an arbitrary shape is mapped to a regular octahedron by multi-layer mapping will be described. FIG. 38 shows a subject (person's head) obj3. One region obtained by dividing the total surface area into eight equal parts by the one-dot difference lines 155 and 156 is the hatched part AR1. A partially enlarged view of AR1 is AR2. Although obj3 is displayed only in one part in the figure, it is actually constituted by a polygon such as AR2. AR2 is a polygonal pyramid composed of polygons SR4, SR5, SR6 on obj3. A square product of SR4, SR5, and SR6 is integrated into a triangle composed of the vertices 157, 158, and 171 of AR2 so that the area ratio is SR4: SR5: SR6 = SR4a: SR5a: SR6a.

この操作をobj3の各箇所で行い、図39の多角形がより少ない立体obj2を得る。このような複数の面を1つの面に正積写像により繰り返し面統合し、例えばAR1の多数の多角形を一つの正三角形に面統合し正八面体画像obj7に統合する。該正八面体画像をさらに面統合して正方形画像が得られる。特に多階層写像により形状を徐々に簡易徐々に簡易化し整えることで1つの光心では死角ができる複雑な形状の面を矩形平面化する場合好適である。なおこれらの図は説明上分かりやすくした概念図である。  This operation is performed at each location of obj3 to obtain a solid obj2 with fewer polygons in FIG. A plurality of such surfaces are repeatedly integrated into one surface by an equimature map, for example, a large number of polygons of AR1 are integrated into one equilateral triangle and integrated into an octahedral image obj7. The regular octahedron image is further plane-integrated to obtain a square image. In particular, it is preferable when a complex planar surface that can form a blind spot with a single optical center is formed into a rectangular flat surface by gradually simplifying and adjusting the shape gradually by multi-layer mapping. These figures are conceptual diagrams that are easy to understand for explanation.

第12例
本発明は出入力する全方位画像を矩形平面で一望しながら画像操作できる表示方法を含む。例えば全方位を撮像した画像素材を球面スクリーンに投影する際、出入力時に複数台の投影機や撮像機を要すが、従来の表示画面では投影領域や撮像領域の立体角が正しくないなど歪んで表示され各区分が把握しづらい。そこで該立体角を維持し矩形平面内に割り当てることで全方位画像を等価に一望しつつ画像の貼合せ作業などの画像操作が行える。
Example 12 :
The present invention includes a display method in which an omnidirectional image to be input / output can be manipulated while looking over a rectangular plane. For example, when projecting image material that captures all directions onto a spherical screen, multiple projectors and imagers are required for input and output, but the conventional display screen is distorted because the projection area and the solid angle of the image area are not correct. It is displayed by and it is difficult to grasp each category. Thus, by maintaining the solid angle and assigning it within the rectangular plane, it is possible to perform image operations such as image pasting work while overlooking the omnidirectional image equivalently.

図40は球体スクリーンの投影画像を一望する矩形表示画面TM3である。この場合正四面体の展開図に基づいている。画面TM3端部の継ぎ目が見取れるよう4πsrより大きな領域を表示する画面TM4を用いる。ここに撮像機六台による立方体画像を正十二面体に基づいて配された十二台の投影機によって球体スクリーンに表示する場合、画面TM3には線分165が区分する6つの四角形に各撮像領域が均等に表示される。斜線部163はその1つである。  FIG. 40 shows a rectangular display screen TM3 overlooking the projected image of the spherical screen. In this case, it is based on the development of a regular tetrahedron. A screen TM4 that displays an area larger than 4πsr is used so that the joint at the end of the screen TM3 can be seen. Here, when a cubic image by six imagers is displayed on a spherical screen by twelve projectors arranged based on a regular dodecahedron, each image is picked up into six rectangles divided by a line segment 165 on the screen TM3. The area is displayed evenly. The hatched portion 163 is one of them.

同様に点線166が区分する12の五角形に各投影領域が均等に表示される。斜線部164はその1つである。なお斜線部167、168、169は夫々正二〇面体、正四面体、正八面体に基づいて光軸設定された出入力画像の区分領域である。こうして出入力画像の不連続な継ぎ目が一望のもと発見でき各撮像領域及び各投影領域の露出の違いや動画の場合の時間的誤差等を修正でき、球形スクリーンに全方位画像を的確に提供できる。なお上記画像操作及び表示方法は他の例による写像方法に適用してよい。以下に記載する技術的事項は、この第12例に限定されずに、他の例にも同様に適用可能であるが、例えば球体スクリーンの表示箇所が分かる仰角や方位角などの目盛を示してよい。現在模索されている三次元立体画像に使用してよい。  Similarly, the projection areas are equally displayed in 12 pentagons divided by the dotted line 166. The hatched portion 164 is one of them. The hatched portions 167, 168, and 169 are segmented regions of the input / output image in which the optical axis is set based on the regular icosahedron, regular tetrahedron, and regular octahedron, respectively. In this way, discontinuous seams in the input and output images can be found with a single view, and differences in the exposure of each imaging area and projection area, temporal errors in the case of moving images, etc. can be corrected, and omnidirectional images can be accurately provided on a spherical screen. it can. The image operation and display method may be applied to a mapping method according to another example. The technical items described below are not limited to the twelfth example, but can be applied to other examples as well. For example, the scales such as the elevation angle and the azimuth angle that show the display location of the spherical screen are shown. Good. It may be used for the currently searched three-dimensional stereoscopic image.

第13例
撮像は本発明が扱う写像の1つである。ここでは立方体を用いて特に均等に全視野を区分して撮像する例を説明する。図31は立方体を基にした撮像方法の説明図を示す。2/3πsrの立体角領域に区分する大円弧170は球状立方体S7の稜線を示す。光心が球状立方体S7の中心05にくるよう撮像機60を設置する。光軸AX1は05からS7と接する立方体の正方形面の一つ、PG1の中心O15に向け設定する。また各撮像機の画角は前記大円弧170により区分される2/3πsrの立体角領域が収まるよう109.4712206度以上に設定する。こうして撮像された画像は球上立方体に撮り込まれた後上記第2例に示す操作に基づき矩形平面化される。
Example 13 :
Imaging is one of the mappings handled by the present invention. Here, an example will be described in which a cube is used to divide the entire field of view in particular evenly. FIG. 31 is an explanatory diagram of an imaging method based on a cube. A large arc 170 divided into a solid angle region of 2 / 3πsr indicates a ridgeline of the spherical cube S7. The imaging device 60 is installed so that the optical center is at the center 05 of the spherical cube S7. The optical axis AX1 is set toward the center O15 of PG1, one of the cubic square surfaces in contact with 05 to S7. In addition, the angle of view of each image pickup device is set to 109.412206 degrees or more so that a 2 / 3πsr solid angle region divided by the large arc 170 is accommodated. The image picked up in this way is taken into a spherical cube and then made into a rectangular plane based on the operation shown in the second example.

S7上の点83、O14、84、V8b、81aを大円弧により結ぶ線は前述の正積グリッドG7の一部を示す。グリッドG7を光心05から光学的に投影したグリッドG8の一部を示す。G8を立体角補正フィルタとしてPG1に着脱し撮像機60により撮像された画像は図15のG6に写像してよい。  A line connecting the points 83, O14, 84, V8b, 81a on S7 with a large arc indicates a part of the above-described equal product grid G7. A part of the grid G8 obtained by optically projecting the grid G7 from the optical center 05 is shown. An image captured by the imaging device 60 with G8 as a solid angle correction filter attached to and removed from PG1 may be mapped to G6 in FIG.

第14例
本発明が扱う写像には写像する面とされる面とが分離している場合、例えば鏡面に写り込む画像が反射され距離を隔てて対向している撮像機の受光面に写像される場合を含む。特にここでは立体角を区分した撮像領域にずれを生じさせないようにすることで全方位画像に統合する操作を容易にする例を説明する。
Example 14 :
In the mapping handled by the present invention, when the surface to be mapped is separated, for example, the case where the image reflected on the mirror surface is reflected and mapped to the light receiving surface of the imaging device that is opposed at a distance. Including. In particular, here, an example will be described in which the operation for integrating the images into the omnidirectional image is facilitated by preventing the imaging region divided by the solid angle from being shifted.

つまり全方位撮像用に複数の撮像機を組み合せるとカメラの筐体が邪魔になり光心を共有できない。特に近距離の被写体は光心のずれによる撮像領域の狭間でうまく撮像できない。図32は以上を鑑み光心を一致させた同時撮像方法を正四面体を例に示す説明図である。撮像機54は光軸56を反射体P12に向け反射体P12に写りこむ画像を撮像する。撮像機54と反射体P12は仮想光心O12を他の3つの撮像機54と共有しつつ全方位をくまなく撮像するよう配置する。反射体P12は撮像機54の画角や仮想光心からの距離に応じて曲率を調整する。図示ように撮像機56が正四面体に基づく配置であれば反射体P12もこれに対応する立体が好ましい。  That is, when a plurality of image pickup devices are combined for omnidirectional imaging, the camera housing becomes an obstacle and the optical center cannot be shared. In particular, a subject at a short distance cannot be imaged well between the imaging regions due to the deviation of the optical center. FIG. 32 is an explanatory diagram showing a regular tetrahedron as an example of a simultaneous imaging method in which optical centers are matched in view of the above. The imaging device 54 captures an image reflected on the reflector P12 with the optical axis 56 facing the reflector P12. The imaging device 54 and the reflector P12 are arranged so as to capture all directions while sharing the virtual optical center O12 with the other three imaging devices 54. The reflector P12 adjusts the curvature according to the angle of view of the imaging device 54 and the distance from the virtual optical center. If the imaging device 56 is an arrangement based on a regular tetrahedron as shown in the figure, the reflector P12 is preferably a solid corresponding to this.

図33は光軸56を含んだ断面図である。このうち断面図143において画角が約141°以上の撮像機54−1を用いれば反射体P12を構成する面REF1は正四面体を形成する。一方断面図144の撮像機54−2は一般的画角の汎用カメラを用いた場合である。反射体P12を構成する面REF2に映る画像が1πsrの撮像領域を撮像機54−2に提供するよう曲率がついている。光軸56を外側に向けた撮像機55を撮像機54と対にし、撮像機54が映り込んだ部分を補完する画角を持つ撮像機55による画像と差し替えてもよい。  FIG. 33 is a cross-sectional view including the optical axis 56. Among these, when the imaging device 54-1 having an angle of view of about 141 ° or more in the cross-sectional view 143 is used, the surface REF1 constituting the reflector P12 forms a regular tetrahedron. On the other hand, the image pickup device 54-2 in the sectional view 144 is a case where a general-purpose camera having a general angle of view is used. The curvature is provided so as to provide the imaging device 54-2 with an imaging region of 1πsr in the image reflected on the surface REF2 constituting the reflector P12. The image pickup device 55 with the optical axis 56 facing outward may be paired with the image pickup device 54 and replaced with an image by the image pickup device 55 having an angle of view that complements a portion reflected by the image pickup device 54.

第15例
本発明は写像の多階層化を含む一方、反射体を介した多階層写像により矩形画像を迅速に得る撮像方法を含む。撮像後の複雑な画像処理を減らし動画をリアルタイムに表示することができる。図52は底面F18が正方形の四角錐の反射体REF3とこれに対向して配される撮像機225の組み合わせを2組有する撮像機PG18を示す。2台の撮像機225は反射体REF3を介して全視野撮像領域を2分して取り込むよう設定してあり、仮想光心O21を共有している。こうして撮像機PG18により得る2つの正方形画像を貼合わすだけで全方位正方形画像が出来る。2つの光心を共有しているためこれに伴う補正も必要ない。
Example 15 :
While the present invention includes multi-hierarchical mapping, it includes an imaging method for quickly obtaining a rectangular image by multi-hierarchical mapping via a reflector. Complex image processing after imaging can be reduced and moving images can be displayed in real time. FIG. 52 shows an image pickup device PG18 having two combinations of a quadrangular pyramid reflector REF3 having a bottom surface F18 and an image pickup device 225 arranged to face the reflector REF3. The two imagers 225 are set so as to capture the entire visual field imaging region in half via the reflector REF3, and share the virtual optical center O21. Thus, an omnidirectional square image can be formed simply by pasting together two square images obtained by the image pickup device PG18. Since the two optical centers are shared, no correction is required.

なお、撮像画像を正八面体に再写像し所望する画像を取得してよい。また底面F18は正方形でなくても良い。例えば縦横比が3:2又は9:8の矩形であれば裏面画像を表面画像と継ぎ合せ縦横比3:4または9:16の汎用モニタに適切な矩形画像を得る。同様に縦横比2:1であれば正方形画像に出来る。四角錐に限らず本発明における反射体形状は任意の立体に適用してよい。ここで言う任意の立体には正多面体や準正多面体を含む多面体、双曲面をはじめとする面が開いている立体、曲面を含む立体、回転体である。例えば撮像画像が立体角補正できる曲面を持つ反射体形状だとなお良い。  Note that the captured image may be re-mapped to a regular octahedron to obtain a desired image. The bottom surface F18 may not be square. For example, if the rectangle has an aspect ratio of 3: 2 or 9: 8, the back image is joined to the front image to obtain a rectangular image suitable for a general-purpose monitor having an aspect ratio of 3: 4 or 9:16. Similarly, if the aspect ratio is 2: 1, a square image can be obtained. The reflector shape in the present invention is not limited to a quadrangular pyramid, and may be applied to any solid. The arbitrary solid mentioned here includes a polyhedron including a regular polyhedron and a quasi-regular polyhedron, a solid including a hyperboloid, a solid including a curved surface, and a rotating body. For example, it is better if the captured image has a reflector shape having a curved surface that can correct the solid angle.

第16例
光心がずれる撮像方法の場合、これを視差に利用し立体視画像を取得出来る。図49は立方体撮像機PG6を上から見た図である。光軸に沿ってレンズ216を配置し各々2πsrの領域215を撮像する。隣り合うレンズ216により重複する撮像領域217は該隣り合う2つのレンズ216の光心のずれ181が視差となり立体視することができる。
Example 16 :
In the case of an imaging method in which the optical center is shifted, this can be used for parallax to obtain a stereoscopic image. FIG. 49 is a top view of the cubic image pickup device PG6. A lens 216 is disposed along the optical axis, and each 2πsr region 215 is imaged. The imaging regions 217 overlapped by the adjacent lenses 216 can be stereoscopically viewed as a parallax due to the optical center shift 181 of the two adjacent lenses 216.

以下に記載する技術的事項は、この第16例に限定されずに、他の例にも同様に適用可能であるが、第16例の説明に用いたレンズはピンホールに置換しても良い。また両眼視差を担う1対のレンズを始め、複数のレンズの受光面を共有させても良い。つまり1つの写像面に複数の光心や光軸から交互に写像してよい。なお1つの受光面とは、複数の面で構成されている立体的な受光面を含む。例えば楕球に写像すれば2つの焦点に光心を設定する際に受光面での乱反射を抑え撮像に好適である。  The technical items described below are not limited to the sixteenth example, but can be similarly applied to other examples. However, the lens used in the description of the sixteenth example may be replaced with a pinhole. . Moreover, you may share the light-receiving surface of several lenses including a pair of lens which bears binocular parallax. In other words, a plurality of optical centers and optical axes may be mapped alternately on one mapping surface. One light receiving surface includes a three-dimensional light receiving surface composed of a plurality of surfaces. For example, mapping onto an ellipse is suitable for imaging by suppressing irregular reflection on the light receiving surface when setting the optical center at two focal points.

第17例
本発明が扱う写像は撮像を含み、撮像機の受光面は入力時の写像面と捉える。複数の受光面により多面体を構成する例で説明する。全方位撮像した画像は画像処理により矩形画像化できるが画像劣化や処理能力により画質が制約される。この処理は受光面を多面体し、所望する多面体画像を直接撮り込むことで簡略化できる。
Example 17 :
The mapping handled by the present invention includes imaging, and the light receiving surface of the imaging device is regarded as a mapping surface at the time of input. An example in which a polyhedron is configured by a plurality of light receiving surfaces will be described. An omnidirectional image can be converted into a rectangular image by image processing, but the image quality is limited by image deterioration and processing capability. This process can be simplified by polyhedral the light-receiving surface and directly capturing a desired polyhedral image.

図42は正四面体撮像機PG9を示す。正四面体の各面にレンズ、この場合ピンホール189を配置する。該正四面体の各面と平行な三角形を受光面とする。受光面F8はその一つである。こうして4方向に光軸を分散して正四面体形状の受光面に撮像することで画像処理をせず直接正四面体画像が得られる。特にピンホールを用いれば幾何学的に純粋な投影であるためレンズ特有の歪みがなく全方位が該多面体受光面に投影できる。なおピンホールの場合、仕組みが単純なため複数の光軸を持つ撮像機を小型化できる。一方で低画質がちなピンホールカメラを全視野を分担することで補える。なお受光面F8に替わり中心O17と正四面体PG9の頂点からなる三角錐の内面を受光面として180度近い画角を得てもよい。  FIG. 42 shows a regular tetrahedral imaging device PG9. A lens, in this case a pinhole 189, is arranged on each surface of the regular tetrahedron. A triangle parallel to each surface of the regular tetrahedron is defined as a light receiving surface. The light receiving surface F8 is one of them. In this way, a regular tetrahedron image can be obtained directly without image processing by dispersing the optical axis in four directions and picking up an image on a regular tetrahedron-shaped light-receiving surface. In particular, if a pinhole is used, since the projection is geometrically pure, all directions can be projected onto the polyhedral light-receiving surface without any distortion peculiar to the lens. In the case of a pinhole, since the mechanism is simple, an imaging device having a plurality of optical axes can be reduced in size. On the other hand, a pinhole camera that tends to have low image quality can be compensated by sharing the entire field of view. Instead of the light receiving surface F8, an angle of view close to 180 degrees may be obtained with the inner surface of the triangular pyramid formed by the center O17 and the apex of the regular tetrahedron PG9 as the light receiving surface.

第18例
イメージサークルと取り合いがよい形状に受光面を整える例を説明する。図42に十四面体の輪郭を持つ撮像機PG10の説明図を示す。正四面体の頂点と稜線を切欠いて該十四面体が得られる為、正四面体に従い配置された受光面F11を六角形にできイメージサークルC3との取合いが良くなる。また稜線や頂点を切欠いた面F10やF9に出入力端子や電源193、三脚等の取付具194、メモリ等のカード195が着脱できる。こうして光軸設定の基となる多面体の稜線及び/又は頂点に沿って撮像に関する要素を配し全方位の同時撮像でこれらが写り込むのを防ぐ。このように多面体撮像機の形状に由来する他の立体を輪郭に用いると撮像上の問題点を解決することができる。
Example 18 :
An example will be described in which the light receiving surface is arranged in a shape that fits well with the image circle. FIG. 42 shows an explanatory diagram of the image pickup device PG10 having a tetrahedral shape. Since the tetrahedron is cut off at the apexes and ridges of the regular tetrahedron, the light-receiving surface F11 arranged according to the regular tetrahedron can be formed into a hexagonal shape and the contact with the image circle C3 is improved. Further, an input / output terminal, a power source 193, a mounting tool 194 such as a tripod, and a card 195 such as a memory can be attached to and detached from the surfaces F10 and F9 where the ridgeline and the vertex are notched. In this way, elements relating to imaging are arranged along the ridgelines and / or vertices of the polyhedron that is the basis for setting the optical axis, and these are prevented from being reflected in simultaneous imaging in all directions. As described above, when another solid derived from the shape of the polyhedron imager is used for the outline, problems in imaging can be solved.

第19例
情報出入力時の例えばCCDやCMOS等の受光素子やディスプレ素子を非常に細分化した写像面として本発明では扱う。これらの形状や配列を示す例を示す。細分化した正積グリッドに沿った受光素子を説明する。従来の受光素子は直交座標状に長方形の受光素子を配した為、垂直転送路等との折合いが悪くRGBのカラーフィルタも均等配列し難い。そこで受光素子を六角形等に多角形化する、及び/又は正積グリッドを用い極力均等に配列できる。
Example 19 :
In the present invention, a light receiving element such as a CCD or a CMOS or a display element at the time of inputting / outputting information is treated as a very finely divided mapping surface. An example showing these shapes and arrangements is shown. The light receiving element along the subdivided equal product grid will be described. Since the conventional light receiving elements are rectangular light receiving elements arranged in rectangular coordinates, it is difficult to arrange the RGB color filters in a uniform manner due to poor compromise with the vertical transfer path and the like. Therefore, the light receiving elements can be polygonalized into hexagons and / or the like and / or arranged as evenly as possible using a positive grid.

図43は受光面領域を拡大し、受光素子の配列規則203を示す。受光素子205を、細分化した正積グリッドG13に従い並べる。配列規則203では受光素子間の隙間領域206に垂直転送路を配置しやすい。受光素子は六角形化することで矩形のものよりマイクロレンズの錯乱円が収まりやすくCCD出力低下を防ぎやすい。また受光素子205に記す参照符号「R」、「G」、「B」は3色のカラーフィルタの配列を示すが、三方向グリッドの配列により均等に配列されている事が分かる。また六角形状の受光素子や三方向グリッドは、矩形受光素子や直交グリッドより正四面体ほか三角形面を持つ立体の面領域に馴染み受光面端部まで無駄なく配列できる。  FIG. 43 is an enlarged view of the light receiving surface area and shows the arrangement rule 203 of the light receiving elements. The light receiving elements 205 are arranged according to the subdivided equal product grid G13. According to the arrangement rule 203, it is easy to arrange the vertical transfer path in the gap area 206 between the light receiving elements. By making the light receiving element hexagonal, the confusion circle of the microlens is more easily settled than the rectangular one, and it is easy to prevent a decrease in CCD output. Reference numerals “R”, “G”, and “B” written on the light receiving element 205 indicate the arrangement of the three color filters, but it can be seen that they are arranged uniformly by the arrangement of the three-way grid. In addition, the hexagonal light receiving elements and the three-way grid can be arranged to the end of the light receiving surface more efficiently than the rectangular light receiving elements or the orthogonal grids.

配列規則204は前記配列における受光素子205を回転させ配列規則203とは異なる配列規則例である。なお受光素子は205aのように円形であってもよい。円形の受光素子の場合隙間領域206に垂直転送路を配置しやすい。もちろん他の多角形やグリッドに基づいた配列であっても良い。例えば正十二面体が受光面の場合、五角形の受光面及び/又は五角形グリッドがよい。受光素子は他の電磁波や音波や温度、ドップラー効果等に感知するセンサに置換してよい。また立体角補正に用いるグリッドとは異なるグリッドを用いて配列してよい。また画像出力時のディスプレ素子に置換してよい。受光素子とディスプレ素子の配列を極力対応させてもよい。  The arrangement rule 204 is an example of an arrangement rule different from the arrangement rule 203 by rotating the light receiving elements 205 in the arrangement. The light receiving element may be circular like 205a. In the case of a circular light receiving element, it is easy to arrange a vertical transfer path in the gap region 206. Of course, an array based on other polygons or grids may be used. For example, when the regular dodecahedron is a light receiving surface, a pentagonal light receiving surface and / or a pentagonal grid is preferable. The light receiving element may be replaced with a sensor that senses other electromagnetic waves, sound waves, temperature, Doppler effect, or the like. Moreover, you may arrange using the grid different from the grid used for solid angle correction. Further, it may be replaced with a display element at the time of image output. The arrangement of the light receiving element and the display element may correspond as much as possible.

第20例
1光軸に立体的受光面を配した例を説明する。従来受光面はフィルムを巻く為に平面形状が好適だったが広角の場合受光面の中央と周縁での露出の差や歪みが増す為複数のレンズを構成した物が多い。そこで1つの光軸に複数の面で構成した立体受光面を配し受光面と焦点間の距離を極力等しくし露出を極力統一する方法を立方体を例に説明する。
Example 20 :
An example in which a three-dimensional light receiving surface is arranged on one optical axis will be described. Conventionally, the light receiving surface has a flat shape suitable for winding a film. However, in the case of a wide angle, since the difference in exposure and distortion at the center and the periphery of the light receiving surface increase, there are many things that constitute a plurality of lenses. Therefore, a method of arranging a three-dimensional light receiving surface composed of a plurality of surfaces on one optical axis, making the distance between the light receiving surface and the focal point as equal as possible, and unifying the exposure as much as possible will be described by taking a cube as an example.

図41は撮像機PG6の説明図であり、AX4は各面に配された光軸の1つである。AX4上の点、例えば立方体の面の交点178にピンホールを配置する。こうして全方位の撮像領域を6分割する。立方体の中心O16と頂点との中点172を結ぶ4つの三角形を受光面F6とする。ハッチ部は該受光面の1つである。  FIG. 41 is an explanatory diagram of the image pickup device PG6, and AX4 is one of the optical axes arranged on each surface. A pinhole is arranged at a point on AX4, for example, an intersection 178 of the cube surface. Thus, the omnidirectional imaging region is divided into six. Four triangles connecting the center O16 of the cube and the midpoint 172 of the apex are defined as a light receiving surface F6. The hatch portion is one of the light receiving surfaces.

なお、立方体の中心O16と頂点V16を結ぶ4つの三角形F7を受光面とするとピンホールの精度によるが1光軸で180度近い画角を得る。つまりより広角画像を取り込める。こうして複数の全方位画像や画角の重複により立体視画像を作成できる。このとき受光面F6を172を頂点とする四角形に置換してよい。179は該立方体撮像機の断面図を示す。受光面を上記のように立体化することで焦点から受光面のある1点までの距離の差に関して受光面が平面F6aの場合と比較して、減少するのが分かる。  If the four triangles F7 connecting the center O16 and the vertex V16 of the cube are the light receiving surfaces, an angle of view close to 180 degrees with one optical axis can be obtained depending on the pinhole accuracy. In other words, a wider angle image can be captured. In this way, a stereoscopic image can be created by overlapping a plurality of omnidirectional images and angles of view. At this time, the light receiving surface F6 may be replaced with a quadrangle having 172 as a vertex. Reference numeral 179 denotes a cross-sectional view of the cubic imager. It can be seen that by making the light receiving surface three-dimensional as described above, the difference in distance from the focal point to one point on the light receiving surface is reduced compared to the case where the light receiving surface is the plane F6a.

得られた画像は受光面形状に従い統合する。図57に示すPG7は受光面F6の形状に従い統合した24面体の全方位画像である。四角錐受光面F6は188を頂点184を底面の頂点とする四角錐F6bに写像される。同様に幾何学的共通性を持つ菱形十二面体画像に写像しても良い。その後立方体、正四面体、正八面体等に再写像し他の例同様の操作により矩形平面画像を作れる。また上記受光面F7により画角180°で撮像した場合、180度反対を向く2つの光軸により撮った画像を八面体PG8に統合したのち点180を頂点とする正方形に面統合を行い矩形平面画像を得る。  The obtained images are integrated according to the shape of the light receiving surface. PG7 shown in FIG. 57 is an omnidirectional image of a 24-hedron integrated according to the shape of the light receiving surface F6. The quadrangular pyramid light-receiving surface F6 is mapped to the quadrangular pyramid F6b with the vertex 184 as the vertex of the bottom surface. Similarly, a rhomboid dodecahedron image having geometric commonality may be mapped. After that, it is re-mapped to a cube, regular tetrahedron, regular octahedron, etc., and a rectangular planar image can be created by the same operation as other examples. Further, when imaging is performed with the light receiving surface F7 at an angle of view of 180 °, an image taken with two optical axes facing opposite by 180 degrees is integrated into the octahedron PG8, and then the surface is integrated into a square with the point 180 as an apex to obtain a rectangular plane Get an image.

このように1つの撮像形式により複数種の多面体画像を取得し多用途に最適化した画像が提供出来る。なお、上記第20例に限らず他の例でも適用可能だが、上記第20例では幾何学的表現で説明したが上記例の内容と同じ効果が得られる範囲内であれば、実施に際しこれら説明用の理論上の数値は許容範囲内であればよい。撮像機の大きさ等で光心がずれる等の誤差は許容内で近似値してよい。  As described above, a plurality of types of polyhedron images can be acquired by one imaging format, and an image optimized for various purposes can be provided. Although not limited to the twentieth example, the present invention can be applied to other examples. However, in the twentieth example, the description is given in terms of geometric expression. The theoretical numerical value for the purpose may be within the allowable range. Errors such as optical misalignment due to the size of the image pickup device may be approximated within a tolerance.

第21例
本発明は全方位画像の矩形平面への写像を扱うが入力時の写像面である受光面を矩形平面化する方法を含む。上記例に示す複数の受光面を光軸に対応させ分散、立体化する撮像機の作りは複雑になる。しかし例えば正八面体を用いて、全ての受光面を矩形平面に統合できる。
Example 21 :
The present invention includes a method of handling a mapping of an omnidirectional image onto a rectangular plane, but converting the light receiving surface, which is a mapping plane at the time of input, into a rectangular plane. Making an image pickup device that disperses and three-dimensionalizes the plurality of light receiving surfaces shown in the above example in correspondence with the optical axis becomes complicated. However, for example, using a regular octahedron, all the light receiving surfaces can be integrated into a rectangular plane.

図44に正八面体撮像機PG11の概念図を示す。各面にピンホールまたは同等のレンズ207が取付く。正八面体PG11の面を底面、中心を頂点とする三角錐PG25内面の部分領域を受光面とし全方位画像が撮像できる。このとき正八面体の各面に設置され三角錐化された受光面は正八面体の各頂点V25を共有する三つの正方形F13に統合されている事が分かる。こうして3つの矩形平面に各受光面を統合しつつ各光軸に各々立体的配置の受光面を提供出来る。なお該受光面の考えを他の多面体等の立体に置換してよい。  FIG. 44 shows a conceptual diagram of a regular octahedron imager PG11. A pinhole or equivalent lens 207 is attached to each surface. An omnidirectional image can be taken with the partial area of the inner surface of the triangular pyramid PG25 having the regular octahedron PG11 as the bottom surface and the center as the vertex. At this time, it can be seen that the light-receiving surfaces installed on each surface of the regular octahedron and formed into a triangular pyramid are integrated into three squares F13 sharing each vertex V25 of the regular octahedron. Thus, it is possible to provide a three-dimensionally arranged light receiving surface on each optical axis while integrating the light receiving surfaces into three rectangular planes. The idea of the light receiving surface may be replaced with a solid such as another polyhedron.

このときレンズ207が1/2πsrの撮像視野を撮像できるよう三角錐面領域F12を受光面にすれば1つの全方位画像が得られる。該撮像視野を1πsrに広げた三角錐面領域F12aであれば8つの光軸を分配し2つの正四面体画像が得られる。同様に正方形F13全面を受光面にし撮像視野を2πsr(全周魚眼)まで広げた場合4つの全方位画像が得られる。隣り合う光軸と撮像領域が重複する場合これを利用して立体視画像を作ることも出来る。  At this time, if the triangular pyramid surface region F12 is used as the light receiving surface so that the lens 207 can capture an image field of view of 1 / 2πsr, one omnidirectional image can be obtained. If the imaging field of view is a triangular pyramid surface region F12a with 1πsr extended, eight optical axes are distributed and two regular tetrahedral images are obtained. Similarly, four omnidirectional images are obtained when the entire surface of the square F13 is the light-receiving surface and the imaging field of view is expanded to 2πsr (all-around fisheye). When adjacent optical axes and imaging regions overlap, a stereoscopic image can be created using this.

他で詳述するがF13を含む面F13aを反射体にした場合3つの面F13a同士が直交するため任意の方向から来る光を光源に返す事ができ(以下全方向反射体と呼ぶ)、この原理を用いて互いの撮像機の位置を迅速に測定できる。ただし1つの光軸で1/2πsr以上の撮像をする場合は写り込みが生じる。また面F13aを三脚に用い撮像機を安定させてもよい。ここでは立体受光面の矩形化に関する例を説明したが、当然受光面は三角錐に替わり正八面体の面と平行な面に配置して正八面体画像を取得できるようにしてよい。  As will be described in detail elsewhere, when the surface F13a including F13 is used as a reflector, the three surfaces F13a are orthogonal to each other so that light coming from an arbitrary direction can be returned to the light source (hereinafter referred to as an omnidirectional reflector). The position of each imager can be measured quickly using the principle. However, when an image of 1 / 2πsr or more is taken with one optical axis, reflection occurs. Further, the imaging device may be stabilized by using the surface F13a as a tripod. Although the example regarding the rectangularization of the three-dimensional light receiving surface has been described here, naturally the light receiving surface may be arranged in a plane parallel to the surface of the regular octahedron instead of the triangular pyramid so that a regular octahedron image can be acquired.

第22例
本発明は複数台の撮像機を用い、特定の空間全域を網羅する方法を含む。全方位撮像機1台による観測は湾曲した空間等の場合、空間の形状により視野が行き届かず、複数台の撮像機が必要となる。このとき互いの撮像機の位置関係を迅速に把握できる例を説明する。
Example 22 :
The present invention includes a method of using a plurality of imagers and covering the entire specific space. Observation with one omnidirectional image pickup device, such as a curved space, does not reach the field of view due to the shape of the space, and requires a plurality of image pickup devices. At this time, an example in which the positional relationship between the imaging devices can be quickly grasped will be described.

図45は準正十四面体撮像機PG12の概念図を示す。該十四面の正方形の各面F25に基づき光軸を配し全方位を6つの撮像領域に分割して撮像する。また全方向反射体となるよう正三角形の面F24に点光源と三角錐状の反射体208を取り付ける。反射体208の各面は互いに面角が90度で交差する。  FIG. 45 shows a conceptual diagram of a quasi-tetradecahedron imager PG12. An optical axis is arranged on the basis of each of the fourteen square faces F25, and the omnidirectional image is divided into six imaging areas and images are taken. A point light source and a triangular pyramid-shaped reflector 208 are attached to the equilateral triangular surface F24 so as to be an omnidirectional reflector. Each surface of the reflector 208 intersects with each other at an angle of 90 degrees.

全方向反射体、光源を付加した撮像機を複数散在させた場合、他の撮像機が反射した自らの光源の光を全方位撮像機で捉えることで観察する空間における各撮像機の相互の位置関係が把握できる。こうして各地点での全方位画像を分析でき観察する空間内の被写体を多角的に観測する事が可能になる。  When multiple imagers with omnidirectional reflectors and light sources are scattered, the mutual position of each imager in the space to be observed by capturing the light of its own light source reflected by other imagers with an omnidirectional imager I can understand the relationship. In this way, it is possible to analyze the omnidirectional image at each point and to observe the subject in the space to be observed from various angles.

以下に記載する技術的事項は、この第22例に限定されずに、他の例にも同様に適用可能であるが、上記22例において特定の被写体を包囲するように複数該撮像機を配し全方位から撮像してよい。また一般的な撮像で扱う可視光を電波、赤外線、紫外線、X線、ガンマ線等の電磁波、ソナーなどの音波、MRIなどの磁場に置換してよい。画像には温度分布や磁力分布、ドップラー効果などを表示してよい。また撮像に際して全ての光軸を固定して同時撮像してよい。また非同時撮像でも良い。台数を減らし光軸を回しつつ撮像してよい。この場合回転軸を調整することで光心を一致できる。動画用撮像機をパンした録画画像を用いても良い。  The technical items described below are not limited to the twenty-second example, but can be applied to other examples as well. However, in the twenty-two examples, a plurality of image pickup devices are arranged so as to surround a specific subject. However, imaging may be performed from all directions. Visible light used in general imaging may be replaced with electromagnetic waves such as radio waves, infrared rays, ultraviolet rays, X-rays and gamma rays, sound waves such as sonar, and magnetic fields such as MRI. The image may display temperature distribution, magnetic force distribution, Doppler effect, and the like. Further, all the optical axes may be fixed at the time of imaging, and simultaneous imaging may be performed. Also, non-simultaneous imaging may be used. You may image, reducing a number and rotating an optical axis. In this case, the optical centers can be matched by adjusting the rotation axis. You may use the recorded image which panned the imaging device for moving images.

なお、光軸、全方向反射体、光源の多面体の面への割当はこれに限らない。例えば全ての面に光軸がある場合、準正14面体の全方位画像が得られる。このとき準正14面体の頂点V26を通る正方形209の表裏に準正14面体画像を写像できる。同様に頂点V26を通る六角形210の表裏に準正14面体画像を写像できる。平面化された全方位画像は平面に配列できる。ただし被写体の連続性を確保する場合、隙間のある平面配列画像になる事がある。一方平面充填した場合は部分的に被写体が不連続になる事がある。  The assignment of the optical axis, the omnidirectional reflector, and the light source to the surface of the polyhedron is not limited to this. For example, when all surfaces have optical axes, an omnidirectional image of a quasi-regular tetrahedron can be obtained. At this time, a quasi-regular tetrahedron image can be mapped on the front and back of the square 209 passing through the vertex V26 of the quasi-regular tetrahedron. Similarly, a quasi-regular tetrahedron image can be mapped on the front and back of the hexagon 210 passing through the vertex V26. The planarized omnidirectional image can be arranged in a plane. However, when ensuring the continuity of the subject, there may be a planar array image with a gap. On the other hand, if the plane is filled, the subject may be partially discontinuous.

第23例
光軸設定等を多様化し、解像度や立体視画像化の有無など様々な用途に対応できる例を説明する。図47に概念図を示す撮像機PG14は立方体にレンズ219が取り付いた撮像モジュールM1がヒンジ249を介して連結している。よってモジュールM1はAX6を軸に回転できる。ヒンジ249は一定の角度毎に回転を固定できると良い。他の面にはシャッタ220、バッテリやアダプタ端子221、モニタ等の表示装置218、接続装置248が取り付き一方の撮像機PG14と連結している。接続装置248は信号や電力の出入力や三脚への固定具を兼ねたものが良い。なおレンズ219はピンホールに置換してよい。受光面222は球面の一部になっている。これは立体受光面とする場合、内部での光の乱反射の制御が難しいが特にピンホールを用い受光面を球面化した場合入射した光251は受光面に垂直に当たるため受光に好適な上、入射した逆方向に反射するため該反射光252が乱反射せずに済む。内部空間223に撮像機に必要な要素を内蔵する。
Example 23 :
An example will be described in which the optical axis setting and the like can be diversified to cope with various uses such as resolution and presence / absence of stereoscopic imaging. The image pickup device PG 14, which is conceptually shown in FIG. 47, is connected to an image pickup module M 1 having a cube attached with a lens 219 via a hinge 249. Therefore, the module M1 can rotate around AX6. It is preferable that the rotation of the hinge 249 can be fixed every certain angle. On the other surface, a shutter 220, a battery and an adapter terminal 221, a display device 218 such as a monitor, and a connection device 248 are connected to one imaging device PG14. The connection device 248 may also serve as a signal or power input / output and a fixture for a tripod. The lens 219 may be replaced with a pinhole. The light receiving surface 222 is a part of a spherical surface. In the case of a three-dimensional light receiving surface, it is difficult to control the irregular reflection of light inside, but in particular when the light receiving surface is made spherical using a pinhole, the incident light 251 strikes the light receiving surface perpendicularly and is suitable for light reception. Therefore, the reflected light 252 does not need to be irregularly reflected. Elements necessary for the imaging device are built in the internal space 223.

図48は、2つの撮像モジュールM1を光軸をそろえ立体視画像撮像機として使用する例253と光軸を互いに逆方向に向け全方位撮像機として使用する例254を示す。  FIG. 48 shows an example 253 using two imaging modules M1 as a stereoscopic image pickup device with the optical axes aligned, and an example 254 using the two imaging modules M1 as an omnidirectional image pickup device with the optical axes directed in opposite directions.

次に、図50は3台を結合した使用例である。撮像機PG14は夫々モジュールM1を90回転させ連結させた状態で他の撮像機と結合している。この場合光軸配置は立方体PG15に基づいており、モジュールM1は全視野を6分割した領域を撮像する。こうして3台のPG14により1台の撮像機よりも高画質の全方位画像を取り込める。立方体PG15の窪んだ部分に光源や雲台など撮像に必要な要素モジュールM2を着脱できるようになっている。また頂点224を切欠いて設置しやすくすると良い。なおレンズ219をより広角にすることで光心のずれが視差になり立体視画像が取得できる。なお撮像機の組み合わせを変え解像度や視差の設定等の仕様を変更してよい。またモジュールM1の各面の要素も自由に設定してよい。例えば接続装置248を増やしたり、ヒンジに置換してよい。モジュールM1を常に対にする必要もない。こうして撮像要素を様々に組み合わせることで多様な目的に対応出来る。  Next, FIG. 50 shows a usage example in which three units are combined. The image pickup device PG14 is coupled to another image pickup device in a state where the modules M1 are connected by rotating 90 times. In this case, the optical axis arrangement is based on the cube PG15, and the module M1 images a region obtained by dividing the entire visual field into six. In this way, three PGs 14 can capture omnidirectional images with higher image quality than a single imager. An element module M2 required for imaging such as a light source and a pan head can be attached to and detached from a recessed portion of the cube PG15. Further, it is preferable that the apex 224 is cut out to facilitate installation. By making the lens 219 wider, the shift of the optical center becomes parallax and a stereoscopic image can be acquired. Note that the combination of the imaging devices may be changed to change specifications such as resolution and parallax settings. Moreover, you may set the element of each surface of the module M1 freely. For example, the connecting device 248 may be increased or replaced with a hinge. It is not always necessary to pair the module M1. In this way, various combinations of imaging elements can be used for various purposes.

第24例
写像される多面体画像に選択肢を与えるため光軸設定に多様性を持たせることが出来る。また多面体撮像機を光軸設定の基となる多面体の幾何学的特性を損う事なく変形させた上でメモリ、電子回路など撮像機に必要な構成要素を内蔵させる例を説明する。
Example 24 :
Since options are given to the polyhedral image to be mapped, the optical axis setting can be varied. An example will be described in which the polyhedron imager is deformed without impairing the geometrical characteristics of the polyhedron that is the basis for setting the optical axis, and the components necessary for the imager such as a memory and an electronic circuit are incorporated.

図46は八面体211の稜線と頂点を切り欠いた26面体撮像機PG13の概念図とその断面図F14aである。26面体撮像機PG13は頂点V27を通る6つの八角形面F14に受光面を集約させた状態で少なくとも8つの三角形面に光軸を配している。例えば八角形面F14の斜線部F15は光軸AX15の撮像面の一部となる。こうして光軸配置の基となる八面体撮像機と同等な全方位画像が得られる。八角形面F14により区切られた内部空間212にRAM、メモリや電源など撮像機に必要な要素を納める。また内部空間213には撮像機など着脱可能な装置214を取り付けられる。  FIG. 46 is a conceptual diagram of a icosahedron imager PG13 in which the ridgeline and vertex of the octahedron 211 are cut out, and a cross-sectional view F14a thereof. In the 26-hedron imaging device PG13, the optical axes are arranged on at least eight triangular surfaces in a state where the light receiving surfaces are concentrated on the six octagonal surfaces F14 passing through the vertex V27. For example, the hatched portion F15 of the octagonal surface F14 becomes a part of the imaging surface of the optical axis AX15. In this way, an omnidirectional image equivalent to the octahedron imager that is the basis of the optical axis arrangement is obtained. Elements necessary for the image pickup device such as RAM, memory, and power supply are stored in the internal space 212 partitioned by the octagonal plane F14. A removable device 214 such as an imager can be attached to the internal space 213.

26面体を用いて光軸を分配することで種々の全方位画像が得られる。例えば全ての面に光軸を配すると26面体画像が得られ、夫々の画角θ5を汎用レンズで担う事ができる。八面体211の稜線を切り欠いて出来た12個の四角形面F17に光軸を配すると菱形十二面体の全方位画像が得られる。また八面体211の頂点を切り欠いて出来た6つの四角形の面F16に光軸を配し、領域F15を反射体に置換して全方向反射体とし、残りの面に光源、三脚、出入力系のプラグ、アンテナ等の着脱装置を組み込んでも良い。また軸AX6の直交方向に並ぶ8つの面に光軸を配することで合計3つの八角柱または円筒画像が得られ汎用のパノラマ画像に還元できる。  Various omnidirectional images can be obtained by distributing the optical axis using the 26-hedron. For example, if the optical axes are arranged on all surfaces, a 26-hedron image can be obtained, and each field angle θ5 can be carried by a general-purpose lens. An omnidirectional image of a rhomboid dodecahedron is obtained by arranging optical axes on twelve rectangular planes F17 formed by cutting out the ridgelines of the octahedron 211. In addition, optical axes are arranged on six rectangular surfaces F16 formed by cutting out the vertices of the octahedron 211, the region F15 is replaced with a reflector to make an omnidirectional reflector, and the remaining surface has a light source, a tripod, and input / output System plugs, antennas, and other attachment / detachment devices may be incorporated. Further, by arranging the optical axes on the eight surfaces arranged in the direction perpendicular to the axis AX6, a total of three octagonal prisms or cylindrical images can be obtained and reduced to a general-purpose panoramic image.

第25例
本発明の扱う写像には縦方向は心射投影、横方向は平行投影のように異なる写像方法を混在したものを含む。また対象となる立体には開いた面や曲面を含む立体や複数の立体を組み合わせたものを含む。ここでは円筒図法を組み合わせて歪みが比較的少ない領域を夫々抽出し一つの面が閉じた立体に統合する例を説明する。
Example 25 :
The mappings handled by the present invention include those in which different mapping methods are mixed, such as a vertical projection in the vertical direction and a parallel projection in the horizontal direction. The target solid includes a solid including an open surface or a curved surface, or a combination of a plurality of solids. Here, an example will be described in which regions with relatively little distortion are extracted by combining cylindrical projections and integrated into a solid with one surface closed.

図53は円筒PG19を2つ交差し正方形画像を得る過程を示した概念図である。左右が開いている円筒PG19には平行投影と心射投影による全方位画像が貼り付いている。これにもう一つの円筒PG19を交差させ重複した領域がF19である。円筒画像のうちハッチ部F19を抽出して用いる。その他の円筒領域PG20aは取り除き領域F19により立体面画像PG20が得られる。立体PG20には説明上、地球の経緯線を表記している。次に立体面画像PG20を軸AX8に沿って上下方向から正方形F20の表裏面に写像する。裏面に写像した画像を回転し表の面に統合して矩形全方位画像を取得する。  FIG. 53 is a conceptual diagram showing a process of obtaining a square image by intersecting two cylinders PG19. An omnidirectional image by parallel projection and cardiac projection is pasted on the cylindrical PG 19 that is open on the left and right. An area overlapped with another cylinder PG19 is F19. The hatched portion F19 is extracted from the cylindrical image and used. The other cylindrical region PG20a is removed, and a three-dimensional image PG20 is obtained by the region F19. For the sake of explanation, the solid PG 20 represents the graticule of the earth. Next, the three-dimensional image PG20 is mapped onto the front and back surfaces of the square F20 from the vertical direction along the axis AX8. The image mapped on the back surface is rotated and integrated with the front surface to obtain a rectangular omnidirectional image.

この写像方法による立体PG20の曲面は円筒の一部で構成される為、汎用のパノラマ画像に類似しつつ全視野を少ない歪みで正方形化出来る利点がある。なおこのように曲面、直線、曲線により規定される立体は上記第25例の説明に制限されるものではない例えば円錐を複数組み合わせた場合ランベルト正距方位図法に類似した画像が得られる。  Since the curved surface of the three-dimensional PG 20 by this mapping method is composed of a part of a cylinder, there is an advantage that the entire field of view can be squared with little distortion while being similar to a general-purpose panoramic image. The solid defined by the curved surface, straight line, and curved line is not limited to the description in the above 25th example. For example, when a plurality of cones are combined, an image similar to the Lambert equirectangular projection can be obtained.

第26例
円筒図法と本発明に従う矩形画像を折衷させる例を説明する。図54は、曲面で構成された菱形12面体PG23である。これは図53に示すPG20に円筒を追加し3つの円筒の交差部により得る。よって立体PG23の面は円筒で構成される。頂点V29を結ぶ円弧238により区分された12の曲面は合同でありこの立体を頂点V29を結ぶ直線239で区分すると24面体が得られる。この立体PG23は菱形十二面体、立方体、正四面体、正八面体と頂点、稜線、面などの配置を共有する部分が多く、容易に該多面体に写像できる。例えばハッチ部領域240は正八面体の1面に写像される。
Example 26 :
An example in which a cylindrical image and a rectangular image according to the present invention are compromised will be described. FIG. 54 shows a rhombus dodecahedron PG23 formed of a curved surface. This is obtained by adding a cylinder to PG 20 shown in FIG. 53 and intersecting three cylinders. Therefore, the surface of the three-dimensional PG 23 is a cylinder. The twelve curved surfaces divided by the arc 238 connecting the vertices V29 are congruent. When this solid is divided by the straight line 239 connecting the vertices V29, a 24-hedron is obtained. The solid PG 23 has many portions sharing the arrangement of the apex, the ridgeline, and the surface with the rhomboid dodecahedron, cube, regular tetrahedron, and regular octahedron, and can be easily mapped to the polyhedron. For example, the hatched area 240 is mapped to one face of a regular octahedron.

ここで「容易に」とは心射投影するだけで上記多面体が得られ各面が立体角補正できるという利点を含む。これらの多面体を用いれば本発明の平面化方法により矩形平面が得られる。こうして汎用の360度画像である円筒図法を折衷することができる。なお上記第26例に限らず他の例でも適用可能だが、上記第26例では幾何学的表現で説明したが上記例の内容と同じ効果が得られる範囲内であれば、上記第26例の説明中用いた「正多面体」を「多面体」、「正多角形」を「多角形」に置換して良い。  Here, “easily” includes the advantage that the polyhedron can be obtained by only projecting in an episodic manner, and each surface can be corrected for a solid angle. If these polyhedrons are used, a rectangular plane can be obtained by the planarization method of the present invention. Thus, the cylindrical projection which is a general-purpose 360 degree image can be compromised. The present invention is not limited to the 26th example, but can be applied to other examples. However, although the 26th example has been described in terms of geometric expression, the 26th example can be used as long as the same effects as the above example can be obtained. The “regular polyhedron” used in the description may be replaced with “polyhedron” and “regular polygon” may be replaced with “polygon”.

第27例
球の経線は円弧である。そこで特定の断面のみが矩形で経線方向の断面は全て円弧である立体を介して被写体が滑らかに表示できる矩形平面を得ることが出来る。図58の概念図に示す立体PG21は経緯線グリッドG15により面が区分されている。経緯線グリッドG15は経線226と緯線231で構成されている。なお図示するグリッドG15は1/2πsrの画像領域、例えば北半球の1/4のみを表示している。円弧226は極点227と正方形F21の稜線228上の点230を通り、曲線231は円弧226を分割した点を結び連鎖する。
Example 27 :
The meridian of the sphere is an arc. Therefore, it is possible to obtain a rectangular plane on which a subject can be smoothly displayed via a solid whose only specific cross section is a rectangle and all cross sections in the meridian direction are arcs. The plane of the solid PG 21 shown in the conceptual diagram of FIG. 58 is divided by a graticule grid G15. The graticule grid G15 includes a meridian 226 and a latitude line 231. The grid G15 shown in the figure displays only an image area of 1 / 2πsr, for example, 1/4 of the northern hemisphere. The arc 226 passes through the pole 227 and the point 230 on the ridge line 228 of the square F21, and the curve 231 connects and links the points dividing the arc 226.

一方グリッドG16は正方形F21a上にあり、経線226a、緯線231aと赤道にあたる正方形の稜線228aで構成されている。なお図示するグリッドG16は半球分つまり2πsrの立体角領域のみを示す。線分226aは正方形上の極点227aと正方形の稜線228a上の点230aを通る線分である。線分231aは線分226aを分割した点を結ぶ連鎖した曲線である。こうしてグリッドG15の区分領域233はグリッドG16上の対応する領域233aに写像され正方形画像が得られる。写像に用いる立体PG21は緯線を曲線により連鎖させ、隣あう面が滑らかに連続する形状である。そのため被写体が不自然に折れ曲がり表示される事が無い。  On the other hand, the grid G16 is on the square F21a, and includes a meridian 226a, a latitude 231a, and a square ridgeline 228a corresponding to the equator. The illustrated grid G16 shows only a hemisphere, that is, a solid angle region of 2πsr. The line segment 226a is a line segment that passes through the pole 227a on the square and the point 230a on the square edge 228a. The line segment 231a is a chained curve connecting points obtained by dividing the line segment 226a. In this way, the divided area 233 of the grid G15 is mapped to the corresponding area 233a on the grid G16 to obtain a square image. The solid PG 21 used for mapping has a shape in which latitude lines are chained by a curve and adjacent surfaces smoothly continue. Therefore, the subject is not unnaturally bent and displayed.

第28例
本発明は2次曲線を含む曲線による分割を含む。ここでは図58に示すグリッドG16の変形例を説明する。図59に概念図を示す正方形グリッドG17は全視野領域つまり4πsrの立体角領域を示す。図58に示す2πsr分のグリッドG16は正方形領域F21bに相当する。グリッドG17は線分226bと線分231b及び正方形の稜線228bで構成されている。線分226bは極点227bと正方形の稜線228b上の点230bを通る連鎖した双曲線である。線分231bは線分226bを分割した点を結ぶ連鎖した放物線である。このとき線分226bと線分231bは交点で直交するよう曲率等が調整され、地図で例えると等角図法となる。グリッドG15上の区分領域233はグリッドG17の対応する領域233bに写像される。こうして稜線228b上で折れ曲がっていた経線を曲線でつなぐことで稜線228bをまたぐ被写体折れ曲がらずに自然に見えるようになる。画像領域233が正積写像されるようグリッド15、16、17は調整する。
Example 28 :
The present invention includes segmentation by curves including quadratic curves. Here, a modification of the grid G16 shown in FIG. 58 will be described. A square grid G17, whose conceptual diagram is shown in FIG. 59, shows the entire visual field region, that is, a solid angle region of 4πsr. A grid G16 for 2πsr shown in FIG. 58 corresponds to the square region F21b. The grid G17 includes a line segment 226b, a line segment 231b, and a square ridge line 228b. The line segment 226b is a chained hyperbola passing through the pole 227b and the point 230b on the square edge 228b. A line segment 231b is a linked parabola connecting points obtained by dividing the line segment 226b. At this time, the curvature or the like is adjusted so that the line segment 226b and the line segment 231b are orthogonal to each other at the intersection point, and an isometric projection is obtained by comparing it with a map. The partitioned area 233 on the grid G15 is mapped to the corresponding area 233b of the grid G17. In this way, by connecting the meridians bent on the ridge line 228b with a curved line, the subject can be seen naturally without being bent over the ridge line 228b. The grids 15, 16, and 17 are adjusted so that the image area 233 is an equal product map.

以下に記載する技術的事項は、この第28例に限定されずに、他の例にも同様に適用可能であるが、上記第28例の分割数を調節する事により立体角補正の精度を調整できる。画処理能力等の制約により分割を四面体や八面体の稜線など単純なものにしてよい。ただし歪みの分散は限定されたものになる。なお線分の分割や交差角θ6の分割は等分するのがよい。地図に例えると局所的に角度や距離を正しく示せる。またグリッドG16、17はグリッドG15を軸AX9上の点から光学的投影により得ても良い。分割線は測地線以外に、円弧、ペジェ、スプライン曲線ほか楕円弧、放物線等の2次曲線、楕円曲線等の3次曲線、Cassinian oval等の4次曲線、クロソイド曲線等の緩和曲線を含む。これらが混在し連鎖してよい。  The technical matters described below are not limited to the 28th example, but can be applied to other examples as well. However, the accuracy of the solid angle correction can be improved by adjusting the number of divisions in the 28th example. Can be adjusted. The division may be simple, such as a tetrahedron or an octahedron ridge, due to restrictions such as image processing capability. However, the strain distribution is limited. It should be noted that the line segment and the intersection angle θ6 should be equally divided. If you compare it to a map, you can correctly show the angle and distance locally. The grids G16 and G17 may be obtained by optical projection of the grid G15 from a point on the axis AX9. In addition to geodesic lines, the dividing lines include arcs, peziers, spline curves, quadratic curves such as elliptical arcs and parabolas, cubic curves such as elliptical curves, quaternary curves such as Cassianian oval, and relaxation curves such as clothoid curves. These may be mixed and chained.

第29例
本発明は均等な正積分割において球体や多面体と矩形平面を折衷する曲面を均等に正積分割したものを含む。図55は正八面体画像を被写体が滑らかに表示されるよう考慮して正方形に多階層写像する過程を示す概念図である。正八面体画像PG22は曲面で構成された立体PG22aに写像され、次いで正方形画像F22に写像される。ここでは正八面体の八面のうち四面のみ図示し説明する。正八面体画像領域PG22はグリッドG18により24等分されている。領域235はその1つである。グリッドG18は頂点V28と稜線の中点234を結ぶ線分236と稜線237により構成されている。
Example 29 :
The present invention includes a product obtained by equally dividing a curved surface that folds a sphere, a polyhedron, and a rectangular plane in equal equal product division. FIG. 55 is a conceptual diagram showing a process of mapping a regular octahedron image into a square in a multi-layered manner so that the subject is displayed smoothly. The regular octahedron image PG22 is mapped to a solid PG 22a composed of curved surfaces, and then mapped to a square image F22. Here, only four of the octahedrons are shown and described. The regular octahedron image region PG22 is divided into 24 equal parts by a grid G18. Region 235 is one of them. The grid G18 includes a line segment 236 and a ridge line 237 that connect the vertex V28 and the midpoint 234 of the ridge line.

立体PG22aは頂点V28aを除く頂点V28と中心O22を正八面体PG22と共有する。各面はグリッドG18aにより24等分され、領域235aはその1つである。グリッドG18aは頂点V28aとV28を結ぶ線分237aとV28同士を結ぶ線分の中点234と頂点V28aを結ぶ線分、及び2つの頂点V28と線分237a上の点を結ぶ線分236aにより構成される。線分236aは連鎖する円弧などの曲線である。線分236aの曲率は、V28を頂点とする正方形へ写像する際、該正方形の輪郭からはみ出ないよう調整されていると良い。正方形F22は頂点V28と中心O22を正八面体PG22と共有する。該正方形はグリッドG18bにより24等分され、領域235bはその1つである。グリッドG18bは点O22と頂点V28を結ぶ線分237bと点O22と稜線の中点234を結ぶ線分、及び2つの頂点V28と線分237b上の点を結ぶ線分236bにより構成される。  The solid PG 22a shares the vertex V28 except the vertex V28a and the center O22 with the regular octahedron PG22. Each surface is divided into 24 equal parts by the grid G18a, and the region 235a is one of them. The grid G18a is composed of a line segment 237a connecting the vertices V28a and V28 and a line segment connecting the middle point 234 of the line connecting V28 and the vertex V28a, and a line segment 236a connecting the two vertices V28 and a point on the line segment 237a. Is done. The line segment 236a is a curved line such as a chained arc. The curvature of the line segment 236a may be adjusted so that it does not protrude from the outline of the square when mapping to a square having V28 as a vertex. The square F22 shares the vertex V28 and the center O22 with the regular octahedron PG22. The square is divided into 24 equal parts by the grid G18b, and the region 235b is one of them. The grid G18b includes a line segment 237b connecting the point O22 and the vertex V28, a line segment connecting the point O22 and the midpoint 234 of the ridge line, and a line segment 236b connecting the two vertexes V28 and the points on the line segment 237b.

こうして正八面体画像PG22は立体PG22aを経由し正方形F22に正積写像される。なお同等の効果が得られるのであれば正八面体から直接正方形に写像を行っても良い。  In this way, the regular octahedron image PG22 is mapped to the square F22 via the solid PG 22a. If an equivalent effect can be obtained, mapping from a regular octahedron to a square may be performed.

第30例
本発明は多様な空間において全視野を確保するために例えば狭小空間に対応した小型化を加味した撮像機を含む。図56は筒型の撮像機PG24の概念図である。筒の軸AX11方向に撮像ユニット241が対になり向かい合う。撮像ユニット241はレンズ242、反射体244で構成されている。レンズ242の周りには軸AX11の回転体形状である反射体244が配置される。レンズ242に仮想光心246から見て水平360度、垂直θ8の視野を反射して送り込む。よってレンズ242は反射体244に写り込む画像を取り込める画角θ6さえあればよい。レンズ242の画角がより大きな場合(θ7)これを他方のレンズ242の画角に付与する事ができる。2つの撮像ユニット241は透明シリンダー245等により適正な距離L5を保つ。距離L5はレンズ242の画角と反射体244の角度θ9による為、シリンダー245をスライドすることでズームしたり、挿入時の小型化PG24aが可能となる。
30th example :
The present invention includes an image pickup device that takes into account a reduction in size corresponding to, for example, a narrow space in order to ensure the entire field of view in various spaces. FIG. 56 is a conceptual diagram of a cylindrical image pickup device PG24. The imaging units 241 are paired and face each other in the direction of the axis AX11 of the cylinder. The imaging unit 241 includes a lens 242 and a reflector 244. Around the lens 242, a reflector 244 having a rotating body shape of the axis AX11 is disposed. The field of view of 360 ° horizontal and vertical θ8 viewed from the virtual optical center 246 is reflected and sent to the lens 242. Therefore, the lens 242 only needs to have an angle of view θ6 that can capture an image reflected on the reflector 244. When the angle of view of the lens 242 is larger (θ7), this can be given to the angle of view of the other lens 242. The two imaging units 241 maintain an appropriate distance L5 by the transparent cylinder 245 or the like. Since the distance L5 depends on the angle of view of the lens 242 and the angle θ9 of the reflector 244, zooming can be performed by sliding the cylinder 245, and miniaturization PG 24a at the time of insertion can be achieved.

こうして2つの撮像機により撮られた全方位画像は本発明の平面化方法により矩形化することができる。一方ポリープ等注意深くある被写体を観測したい場合、対になった撮像ユニット241の2つの光心246が立体視画像を提供して、くまなく立体的に観察できる。また他方の反射体の回転体内に撮像ユニットを組込めるため空間を省ける。狭小空間での使用に際しては、反射体を経由し結像に必要な距離が得られ、またレンズが空間の内壁に近づき過ぎ撮像できなくなる事がない等の利点がある。  Thus, the omnidirectional images taken by the two imagers can be made rectangular by the planarization method of the present invention. On the other hand, when a careful subject such as a polyp is to be observed, the two optical centers 246 of the paired imaging units 241 provide a stereoscopic image and can be observed stereoscopically. Further, since the imaging unit can be incorporated in the rotating body of the other reflector, space can be saved. When used in a narrow space, there are advantages that a distance necessary for image formation can be obtained via a reflector, and that the lens is too close to the inner wall of the space to prevent imaging.

また回転体の反射体を用いるため小腸等を撮像する場合内壁の展開図を容易にパノラマで作成出来る。なお斜線部247にメモリや送受信系を内蔵したり撮像ユニット241aを付加しレンズ242に撮像機本体が写り込む画角θ60を補ったり適切な撮影角度が得られない場合撮像ユニット242が所望する被写体の撮像を代替できる。この時四台の撮像ユニットが撮像機PG24に組込まれるが、軸AX11方向に並置される為、筒の直径D1は増大せず観察する管状空間の最小径が制約される影響は少ない。  In addition, since a rotating reflector is used, a developed view of the inner wall can be easily created in a panorama when the small intestine is imaged. If the hatched portion 247 has a built-in memory or transmission / reception system, or an imaging unit 241a is added to compensate for the angle of view θ60 in which the imaging device body is reflected on the lens 242 or an appropriate shooting angle cannot be obtained, the imaging unit 242 can provide a desired subject. Can be substituted. At this time, four image pickup units are incorporated in the image pickup device PG24. However, since the four image pickup units are juxtaposed in the direction of the axis AX11, the diameter D1 of the cylinder does not increase, and the influence of the minimum diameter of the tubular space to be observed is limited.

上述した本発明の基本となる処理に従って面積を重視して第1の面情報を次の第2の面情報に写像したときに、面積の歪みは低減できる。しかし第2の面上の情報、例えば島の外形輪郭に歪みが出る。つまり地球で説明すれば、地球上の各位置の位置ズレが部分部分で発生する。この歪みを低減するのに第1の面から第2の面に面情報を落とし込むときに以下の何れかの考え方を導入することで、上記の例で言えば島の外形輪郭の歪みを低減できる。  The area distortion can be reduced when the first surface information is mapped to the next second surface information with emphasis on the area according to the above-described basic processing of the present invention. However, the information on the second surface, for example, the outline of the island is distorted. In other words, if it is explained on the earth, a positional deviation of each position on the earth occurs in a partial portion. In order to reduce this distortion, when the surface information is dropped from the first surface to the second surface, by introducing any of the following ideas, distortion of the outline of the island can be reduced in the above example. .

処理1:仮想的な立体への投影による幾何学的処理;
処理2:処理1と同等の効果が得られる写像による数学的処理。
Process 1: Geometric processing by projection onto a virtual solid;
Process 2: Mathematical process by mapping that can obtain the same effect as Process 1.

上記処理1つまり幾何学的処理は、補正という概念に通ずる。基本となる面積比による情報処理によって決定される位置情報を、例えば球から多面体、多面体から矩形平面へ落とし込む際に、その都度その都度、第1の幾何学処理行うことで、上記の例で言えば島の外形輪郭を規定する線分情報を各所で補正でき、ひいては球面領域全体の歪みを補正できる。  The above process 1, that is, the geometric process, leads to the concept of correction. When the position information determined by the information processing based on the basic area ratio is dropped from, for example, a sphere to a polyhedron and from a polyhedron to a rectangular plane, the first geometric processing is performed each time, so that it can be said in the above example. For example, the line segment information defining the outline of the island can be corrected in various places, and the distortion of the entire spherical area can be corrected.

上記処理1の考えを図面に基づいて説明する。例えば図78に示す球面情報12を多面体13に写像するとき、球12の円弧10−1及び球12の中心6を通る断面を図79に示す。多面体13上の線分9はこの断面により切断される線分である。円弧10−1を11−A、B、C、D、Eに等分する。各区分領域は球の中心6に向け内向きに線分9上の11−1A、B、C、D、Eの区間に心射投影される。このとき各区分の長さは著しく異なる。島の輪郭を正しく表示するには線分の長さを忠実に再現できるようこれらを区分する点の写像を補正すると良い。処理1の考えは立体1への投影を中間処理として行うことで点の写像を補正するものである。つまり円弧10−1の等区間11−A、B、C、D、Eを立体1の線分10−2へ心射投影をし、さらに立体1から多面体13の線分9へ平行投影を行うことで写像後の区分区間11−2A、B、C、D、Eは、一層、等間隔に近づくように補正されることが分かる。例えば11−1Cの区間は矢印11−Cdに図示する分量が補正される。処理1は具体的な幾何学をもつ立体や光学的な投影を用いることで画像処理として実施する際にプログラミングを行いやすい利点がある。球面の例えば11−Aの線分に含まれる各点の位置が、平面上の11−Aの線分の対応する位置に歪みを低減した状態で落とし込まれる。  The idea of the process 1 will be described with reference to the drawings. For example, when the spherical information 12 shown in FIG. 78 is mapped onto the polyhedron 13, a cross section passing through the arc 10-1 of the sphere 12 and the center 6 of the sphere 12 is shown in FIG. A line segment 9 on the polyhedron 13 is a line segment cut by this cross section. The arc 10-1 is equally divided into 11-A, B, C, D, and E. Each segmented region is projected onto the section 11-1A, B, C, D, E on the line segment 9 inwardly toward the center 6 of the sphere. At this time, the length of each section is remarkably different. In order to display the outline of the island correctly, it is better to correct the mapping of the points separating these lines so that the lengths of the line segments can be faithfully reproduced. The idea of the process 1 is to correct the point mapping by performing the projection onto the solid 1 as an intermediate process. In other words, the equal sections 11 -A, B, C, D, and E of the arc 10-1 are projected onto the line segment 10-2 of the solid 1 and projected onto the line segment 9 of the polyhedron 13 from the solid 1. Thus, it can be seen that the segmented sections 11-2A, B, C, D, and E after the mapping are further corrected so as to approach the equal interval. For example, in the section 11-1C, the amount shown in the arrow 11-Cd is corrected. The process 1 has an advantage that it is easy to perform programming when implemented as image processing by using a solid having a specific geometry or optical projection. The position of each point included in, for example, the 11-A line segment of the spherical surface is dropped into the position corresponding to the 11-A line segment on the plane with reduced distortion.

第2の処理の考えは上述した面積比による写像を行う行程に組み込むことで補正という概念を無しに直接的に処理できる。具体的には図79において上記2回の投影7−1と投影7−2による処理を一括する写像7として行うものである。勿論、これによれば具体的な立体を設定せず自由に写像を規定できる。そのため、例えば上記写像後の区間区分を完全に等間隔に設定することが容易である。第2の処理の変形例として、図80において矢印7−3に規定される写像に従い円弧10−1を等分する点を線分9に写像することにより、区分された線分11−A、B、C、D、Eとこれらの点による区分された線分11−3A、B、C、D、Eの比は次式を満たす。  The idea of the second processing can be directly processed without the concept of correction by being incorporated in the process of performing mapping based on the area ratio described above. Specifically, in FIG. 79, the above-described two projections 7-1 and 7-2 are performed as a mapping 7 collectively. Of course, according to this, mapping can be freely defined without setting a specific solid. Therefore, for example, it is easy to set the section sections after the mapping completely at equal intervals. As a modified example of the second processing, by dividing a point that equally divides the arc 10-1 into a line segment 9 according to the map defined by the arrow 7-3 in FIG. The ratio of line segments 11-3A, B, C, D, E divided by B, C, D, E and these points satisfies the following equation.

11−A/11−3A=11−B/11−3B=11−C/11−3C=11−D/11−3D=11−E/11−3E11-A / 11-3A = 11-B / 11-3B = 11-C / 11-3C = 11-D / 11-3D = 11-E / 11-3E

当然のことであるが、上記式を満たしていれば区分領域11−A、B、C、D、Eは等間隔であってもよいし、等間隔でなくても良い。  As a matter of course, the divided regions 11-A, B, C, D, and E may be equally spaced or may not be equally spaced as long as the above equation is satisfied.

第1実施例
上述の第1の処理について図69を用いて説明する。球12上の画像を中間の仮想の円錐面を介在させて正四面体13に落とし込むことで矩形平面画像化する。球12の円弧17は球正四面体の稜線であり球12の表面積を4等分している。また該球上正四面体の頂点8と円弧17の中点8−1を端点にもつ円弧17−1と円弧17により球12の表面積を24等分している。そのうちの1つが斜線部2である。すなわち斜線部2の面積と球12全体との面積比Rsは1/24である。
First embodiment :
The first process described above will be described with reference to FIG. An image on the sphere 12 is dropped into a regular tetrahedron 13 with an intermediate virtual conical surface interposed, thereby forming a rectangular planar image. An arc 17 of the sphere 12 is a ridge line of the sphere tetrahedron, and divides the surface area of the sphere 12 into four equal parts. Further, the surface area of the sphere 12 is divided into 24 equal parts by the arc 17-1 and the arc 17 whose end points are the vertex 8 of the regular tetrahedron on the sphere and the midpoint 8-1 of the arc 17. One of them is the hatched portion 2. That is, the area ratio Rs between the area of the shaded portion 2 and the entire sphere 12 is 1/24.

立体1は点8を頂点とし、これらの頂点を結ぶ線分4により表面積を4等分している。線分4の中点を8−2とする。線分4により規定される正三角形の重心を点6−1とする。球12の中心6を中心とし8−2を通る円弧10と中心6と点6−1を通る直線の交点を点6−2とする。点6−2と頂点8を線分9により結ぶ。線分9、円弧10、線分4により立体1の表面積を24等分している。そのうちの1つが斜線部2−1である。つまり斜線部2−1の面積と立体1全体との面積比Rs1は1/24である。なお、斜線2−1は円錐の一部である。点8を円錐の頂点、円弧10は該円錐の底面の一部である。立体1は円錐の一部が立体的に連続して構成されている。  The solid 1 has a point 8 as a vertex, and a surface area is divided into four equal parts by a line segment 4 connecting these vertexes. The midpoint of line 4 is 8-2. The center of gravity of the equilateral triangle defined by the line segment 4 is defined as a point 6-1. A point 6-2 is defined as an intersection of the arc 10 passing through the center 6 of the sphere 12 and the straight line passing through the center 6 and the point 6-1. The point 6-2 and the vertex 8 are connected by a line segment 9. The surface area of the solid 1 is divided into 24 equal parts by the line segment 9, the arc 10, and the line segment 4. One of them is a shaded area 2-1. That is, the area ratio Rs1 between the area of the shaded portion 2-1 and the entire solid 1 is 1/24. The hatched line 2-1 is a part of a cone. Point 8 is the apex of the cone and arc 10 is part of the bottom of the cone. The solid 1 is configured such that a part of the cone is three-dimensionally continuous.

正四面体13は点8を頂点とし、これらの頂点を結ぶ線分4により表面積2を4等分している。線分4の中点は点8−2である。頂点と中点8−2を結ぶ線分9−1と線分4により正四面体13の表面積を24等分している。そのうちの1つが斜線部2−2である。球面領域2を正四面体上の領域2−2に心射投影することで面積比を維持することができる。  The regular tetrahedron 13 has a point 8 as a vertex, and a surface area 2 is equally divided into four by a line segment 4 connecting these vertices. The midpoint of line segment 4 is point 8-2. The surface area of the regular tetrahedron 13 is divided into 24 equal parts by the line segment 9-1 and the line segment 4 connecting the vertex and the midpoint 8-2. One of them is a hatched portion 2-2. The area ratio can be maintained by projecting the spherical region 2 onto the region 2-2 on the regular tetrahedron.

しかし、投影された領域2−2を詳しく見てみると領域2−2の外形輪郭線を規定する点情報がずれて落とし込まれる為に輪郭線の長さに誤差が出てしまう。図70に分かりやすく示したものが円弧17−1と中心6を通る面で切った断面図3である。  However, when the projected area 2-2 is examined in detail, the point information defining the outline outline of the area 2-2 is shifted and dropped, so that an error occurs in the length of the outline. 70 is a sectional view 3 cut along a plane passing through the arc 17-1 and the center 6.

球面12上の円弧17−1を光心6に向け内向きに正四面体13上の線分9−1に心射投影する。円弧17−1を6等分する点8−a、b、c、d、eは点8−A、B、C、D、Eに落とし込まれる。投影後の区分間隔11−1は不均等であることが分かる。  The arc 17-1 on the spherical surface 12 is projected inward on the line segment 9-1 on the regular tetrahedron 13 inwardly toward the optical center 6. Points 8-a, b, c, d, and e that divide arc 17-1 into six equal parts are dropped into points 8-A, B, C, D, and E. It can be seen that the segment intervals 11-1 after projection are unequal.

これを立体1上の線分9及び円弧10に心射投影後正四面体上の線分9−1に正射投影することで例えば矢印11−Adに示す分量の補正がなされる。補正後の区分間隔11−2は補正前の区分間隔11−1に比べて等間隔に近づく改善が実行されることが分かる。中心6に対して放射状に投影7−1を行う点情報の操作と所望する面に対する垂線7−2にそって投影を行う点情報の操作を二段階で行うことで線分比の誤差を低減することができる。投影線7−2は夫々平行である。この操作を矢印7に示す一括した写像により上述した面積比による写像を行う行程に組み込んでもよい。これが第2の処理である。  By projecting this onto the line segment 9 and the arc 10 on the solid 1 and projecting it onto the line segment 9-1 on the regular tetrahedron, the amount shown by, for example, the arrow 11-Ad is corrected. It can be seen that an improvement is made such that the corrected segment interval 11-2 approaches an equal interval compared to the segment interval 11-1 before correction. The error of the line segment ratio is reduced by performing the operation of the point information for performing the projection 7-1 radially on the center 6 and the operation of the point information for performing the projection along the perpendicular line 7-2 with respect to the desired surface. can do. The projection lines 7-2 are parallel to each other. This operation may be incorporated into the process of performing the mapping with the area ratio described above by the batch mapping indicated by the arrow 7. This is the second process.

上記実施例は位置ずれを修正するものである。しかも写像前の面積比Rsと写像後の面積比Rs1は変わらない。つまり、
Rs=Rs1=1/24
の式が成立しているからである。
The above embodiment corrects misalignment. Moreover, the area ratio Rs before mapping and the area ratio Rs1 after mapping do not change. That means
Rs = Rs1 = 1/24
This is because the following equation holds.

また、図示する正四面体の線分9−1と9−2は稜線上の点8−2において折れている。これに起因して球面情報を直接正四面体に投影し矩形平面化すると上記稜線に沿って不自然に画像情報が折れ曲がる。投影を仲介する線分10と10−1が正四面体の稜線上の点8−2において曲率を連続させて滑らかにすることで、輪郭の歪みを低減できる。  Also, the regular tetrahedron segments 9-1 and 9-2 shown in the figure are broken at a point 8-2 on the ridgeline. Due to this, when the spherical information is projected directly onto a regular tetrahedron to form a rectangular plane, the image information is unnaturally bent along the ridgeline. The line segments 10 and 10-1 that mediate the projection are made smooth by making the curvature continuous at the point 8-2 on the ridge line of the regular tetrahedron, whereby the distortion of the contour can be reduced.

図71に上記正四面体画像を展開して矩形平面化した画像2を示す。この場合世界地図である。正四面体13の頂点8の配置および正四面体を平面に展開する際の切り開く線分の位置を調整することで六大陸が途切れない世界地図を作成できる。正四面体の稜線が線分4に相当するが、陸地形状が不自然に折れていないことが分かる。また図69における領域2−1は図71における矩形画像領域を24等分した領域2−1に示される。この世界地図の縦横比は4:√3である。  FIG. 71 shows an image 2 obtained by expanding the regular tetrahedron image into a rectangular plane. In this case, it is a world map. By adjusting the arrangement of the vertices 8 of the regular tetrahedron 13 and the position of the line segment to be opened when the regular tetrahedron is developed on a plane, a world map in which the six continents are not interrupted can be created. It can be seen that the ridge line of the regular tetrahedron corresponds to the line segment 4, but the land shape is not bent unnaturally. An area 2-1 in FIG. 69 is shown as an area 2-1 obtained by dividing the rectangular image area in FIG. 71 into 24 equal parts. The world map has an aspect ratio of 4: √3.

図72は正角図法により輪郭の正しい南極大陸14−a(点線)と、図71に表示される南極大陸14−bとを比較した図である。円筒図法ではうまく表示できない南極大陸も本発明による投影方法により、面積比、輪郭ともに略正確に平面に落とし込めることが分かる。  FIG. 72 is a diagram comparing Antarctica 14-a (dotted line) with a correct outline by an orthographic projection and Antarctica 14-b displayed in FIG. It can be seen that even in Antarctica, which cannot be displayed well by cylindrical projection, both the area ratio and the outline can be dropped onto a flat surface by the projection method of the present invention.

線分比の維持は例えば南極大陸のような具体的な形状を規定する点8により区分される線分において処理してもよい。例えば南極大陸全体においては面積比および線分比に基づく点情報の補正を行ってもよい。大陸内の比較的小さな領域2−A、B、C、D、Eの外形線を規定する点8−1は面積比のみを維持する写像などして特定の目的に最適化してもよい。つまり「少なくとも一部を構成する線分」とは、このことを意味している。  The maintenance of the line segment ratio may be processed in the line segment separated by the points 8 defining a specific shape, such as Antarctica. For example, the point information may be corrected based on the area ratio and the line segment ratio in the whole Antarctica. The point 8-1 that defines the outline of the relatively small areas 2-A, B, C, D, and E in the continent may be optimized for a specific purpose, such as a mapping that maintains only the area ratio. In other words, “at least a part of a line segment” means this.

図71の矩形画像2を複数並べた画像2−1を図73に示す。このとき矩形画像2の配列は図示するように平面充填でも隙間のある配列でも良い。領域2−2aは図71に図示の矩形画像領域を縁取るが、矢印方向16−aに連続移動しても余過分無く世界を表示できる。また60度ずつ回転した矩形領域2−2bも2−2cも同様に夫々16−b、16−c方向に連続移動できる。こうして1度の投影で得られる矩形画像から平面充填を作成し全球領域を視野におさめたビューアを連続移動することで多様な世界地図を生成できる。例えば、中国及びアフリカを中心とした六大陸が途切れない矩形世界地図2−3及び2−4を生成できる。またロシアを中心とした六大陸が途切れない縦横比1:√3の矩形世界地図2−5も取り出せる。参照符号2−6は日本を中心とした六大陸が途切れない正三角形の世界地図である。  FIG. 73 shows an image 2-1 in which a plurality of rectangular images 2 in FIG. 71 are arranged. At this time, the arrangement of the rectangular images 2 may be flat filling or an arrangement with a gap as shown in the figure. The area 2-2a borders the rectangular image area shown in FIG. 71, but the world can be displayed without a surplus even if the area 2-2a continuously moves in the arrow direction 16-a. Similarly, the rectangular areas 2-2b and 2-2c rotated by 60 degrees can continuously move in the 16-b and 16-c directions, respectively. A variety of world maps can be generated by creating a plane filling from a rectangular image obtained by one projection in this manner and continuously moving the viewer with the entire global area in view. For example, it is possible to generate rectangular world maps 2-3 and 2-4 in which six continents centering on China and Africa are uninterrupted. In addition, a rectangular world map 2-5 with an aspect ratio of 1: √3, which is uninterrupted on the six continents centered on Russia, can be taken out. Reference numeral 2-6 is an equilateral triangular world map in which the six continents centering on Japan are not interrupted.

以下に記載する技術的事項は、この第1実施例に限定されずに他の例にも同様に適応可能であるがこの第2実施例の分割を細分化して投影の精度を上げても良い。部分的に分割を不均等にしても良い。なお球や正四面体を挙げたが、本発明における投影は任意の立体を対象とする。ここで言う任意の立体とは正多面体や準正多面体を含む多面体、双曲面等の面が開いている立体、曲面を含む立体、回転体等である。天空率の測定等の場合、半球等上記立体を部分的に用いても良い。またこの画像処理において球から直接面数の少ない正四面体等の立体に投影する場合を含むが監視カメラ等のアプリケーションでは正四面体を含まない立体を使うのが良いことは言うまでもない。また、世界地図を例に説明しているが、全方位写真等も全球画像として取り込み矩形平面化しても良い。本発明が扱う情報には可視光を撮り込んだ画像の他、電波、赤外線、紫外線、X線、ガンマ線等の電磁波、ソナー等の音波、MRI等の磁波等により取得する情報を含む。  The technical matters described below are not limited to the first embodiment, but can be applied to other examples as well, but the division of the second embodiment may be subdivided to increase the projection accuracy. . Partial division may be made uneven. In addition, although the sphere and the regular tetrahedron are mentioned, the projection in the present invention targets an arbitrary solid. The arbitrary solid referred to here is a polyhedron including a regular polyhedron or a quasi-regular polyhedron, a solid having a surface such as a hyperboloid, a solid including a curved surface, a rotating body, or the like. In the case of measuring the sky factor, the solid such as a hemisphere may be partially used. In addition, this image processing includes the case of projecting directly from a sphere onto a solid such as a regular tetrahedron with a small number of surfaces, but it is needless to say that an application such as a surveillance camera may use a solid that does not include a regular tetrahedron. Further, although a world map has been described as an example, an omnidirectional photograph or the like may be taken in as a global image and made into a rectangular plane. Information handled by the present invention includes information acquired by radio waves, infrared rays, ultraviolet rays, electromagnetic waves such as X-rays and gamma rays, acoustic waves such as sonar, magnetic waves such as MRI, and the like in addition to images captured with visible light.

第2実施例
全球画像を中間の仮想の多面体を経由して矩形平面画像化する例を図74を用いて説明する。球面情報12は第1実施例で取り上げた点線で示す立体1に内接する多面体1−aに心射投影される。ここでは説明用に多面体1−aを構成する面の一部を抜粋し図示する。多面体1−aの頂点8−aは立体1を規定する線分9及び曲線10に接する。多面体1−aは点8を共有しこれに内接する正四面体13の稜線4、線分9、線分9−1により64の三角形により構成される。その1つが斜線領域2である。多面体1−aは正四面体13の各面に正射投影され、例えば領域2は正四面体13の表面を64分割した斜線領域2−1に投影される。
Second embodiment :
An example of converting a global image into a rectangular planar image via an intermediate virtual polyhedron will be described with reference to FIG. The spherical information 12 is projected onto the polyhedron 1-a inscribed in the solid 1 indicated by the dotted line taken up in the first embodiment. Here, for the purpose of explanation, a part of the surface constituting the polyhedron 1-a is extracted and illustrated. The vertex 8-a of the polyhedron 1-a touches the line segment 9 and the curve 10 that define the solid 1. The polyhedron 1-a is composed of 64 triangles by the ridgeline 4, the line segment 9, and the line segment 9-1 of the regular tetrahedron 13 that shares the point 8 and is inscribed therein. One of them is a hatched area 2. The polyhedron 1-a is orthographically projected on each surface of the regular tetrahedron 13. For example, the region 2 is projected onto a hatched region 2-1 obtained by dividing the surface of the regular tetrahedron 13 into 64 parts.

このとき頂点8、曲線10、線分9を通る断面3を図75に示す。球面12上の円弧10−2は光心6に向け内向きに順次、立体1の線分9−1及び曲線10−1、次に多面体1−a上の線分9−0に心射投影される。更に正四面体上の線分9に正射投影し画像は正四面体化される。このとき球面12上で円弧10−2を間隔11−0に6等分し、正四面体上の線分9に心射投影した6つの線分の間隔が11−1である。一方多面体1−aへの心射投影を経由し正四面体に正射投影した線分の間隔が11−2である。間隔11−1と比較し間隔11−2では誤差が低減している。こうして球面12上の画像情報の外形輪郭を規定する線分比の誤差による歪みを低減できる。上記操作を全球の各箇所で繰り返し行うことで球全域の歪みをくまなく分散できる。こうして投影を多階層に行う、及び/又は複数種の投影を組合せることで球面画像情報の輪郭が歪むのを低減できる。  At this time, a cross section 3 passing through the vertex 8, the curve 10, and the line segment 9 is shown in FIG. The circular arc 10-2 on the spherical surface 12 is inwardly directed toward the optical center 6 and projected onto the line segment 9-1 and the curve 10-1 of the solid 1, and then onto the line segment 9-0 on the polyhedron 1-a. Is done. Further, the image is orthorectified on the line segment 9 on the regular tetrahedron, and the image is formed into a regular tetrahedron. At this time, the arc 10-2 is divided into six equal intervals 11-0 on the spherical surface 12, and the interval of the six line segments projected onto the line segment 9 on the regular tetrahedron is 11-1. On the other hand, the interval of the line segment orthographically projected onto the regular tetrahedron via the cardiac projection onto the polyhedron 1-a is 11-2. Compared with the interval 11-1, the error is reduced at the interval 11-2. In this way, distortion due to an error in the line segment ratio that defines the outer contour of the image information on the spherical surface 12 can be reduced. By repeating the above operation at each location of the whole sphere, the distortion of the entire sphere can be dispersed. In this way, it is possible to reduce the distortion of the contour of the spherical image information by performing projection in multiple layers and / or combining a plurality of types of projections.

断面3において正四面体上の線分9同士は稜線上の点8において鋭く折れている。球面情報12を直接正四面体に投影すると平面化した際に画像情報が折れて見えるのはこの稜線部分である。そこで投影を複数回にわけ仲介する多面体の面数を段階的に減らす第1の処理により稜線上で折れ曲がる輪郭の歪みを分散させる事ができる。またその際に各々の面角15を極力均一にすることでも角度の歪みを低減できる。  In the cross section 3, line segments 9 on the regular tetrahedron are sharply bent at a point 8 on the ridge line. When the spherical information 12 is directly projected onto a regular tetrahedron, it is this ridge line portion that the image information appears to be broken when flattened. Therefore, the distortion of the contour that bends on the ridgeline can be dispersed by the first process that reduces the number of faces of the polyhedron that mediates the projection in multiple steps. In this case, the angle distortion can be reduced by making each surface angle 15 as uniform as possible.

図76に上記正四面体画像を展開して矩形平面化した画像2を示す。正四面体の頂点8の配置、平面に展開する際の切り開く線分9−Cの位置を調整することで画像2のように六大陸を含む全ての島々が何れも途切れない世界地図ができる。正四面体の稜線が線分4にあたるが、陸地形状が不自然に折れて見えることは無い。  FIG. 76 shows an image 2 obtained by expanding the regular tetrahedron image into a rectangular plane. By adjusting the position of the apex 8 of the regular tetrahedron and the position of the line segment 9-C to be opened when it is expanded into a plane, a world map in which all the islands including the six continents are not interrupted as in the image 2 can be formed. The ridgeline of the regular tetrahedron corresponds to line segment 4, but the land shape does not appear to be unnaturally broken.

この第1の処理の場合、画像情報の輪郭がより自然に見えるよう、面積の歪みと線分の歪みの双方を低減する投影を行ったため、多面体の面領域2−1、2−2、2−3、2−4の面積比の歪みはそれぞれ98%、98%、98%、114%となる。ただし、これは全体の面積比を補正するという本発明の基本的な考え方の枠組みの中での局所的な面積比の誤差であり許容範囲内の誤差であると考える。  In the case of the first processing, since the projection for reducing both the distortion of the area and the distortion of the line segment is performed so that the contour of the image information looks more natural, the plane regions 2-1, 2-2, 2 of the polyhedron are performed. −3, 2-4, the area ratio distortion is 98%, 98%, 98%, and 114%, respectively. However, this is an error in the local area ratio within the framework of the basic idea of the present invention of correcting the entire area ratio, and is considered to be within an allowable range.

面積のずれを補正するのであれば上記の第1、2の処理の原則に基づき適宜調整してよい。図77を用いて説明する。面2−0は上記正四面体の1つの面である。点線9−1による区分領域は図76に示すものと同じである。ここで点8−aから面2−0の中心8−cまでの間隔11−1を約94%に短縮するよう点8−aを点8−bに変位させることで線分9による多面体の分割面領域の各面積比を維持した面領域2−5、2−6、2−7、2−8ができ実質的に正積図法とすることもできる。  If the deviation of the area is corrected, it may be appropriately adjusted based on the above first and second processing principles. This will be described with reference to FIG. A surface 2-0 is one surface of the regular tetrahedron. The segmented area indicated by the dotted line 9-1 is the same as that shown in FIG. Here, by shifting the point 8-a to the point 8-b so as to shorten the distance 11-1 from the point 8-a to the center 8-c of the surface 2-0 to about 94%, Surface areas 2-5, 2-6, 2-7, and 2-8 that maintain the respective area ratios of the divided surface areas can be formed, and substantially equal product projection can be used.

以下に記載する技術的事項は、この第2実施例に限定されずに、他の実施例にも同様に適用可能であるが上記第3実施例では、地球を64面体、正四面体を経由した例で多階層な写像を説明したが、同等の効果が得られるよう1度の写像で矩形平面に画像処理してよい。また地球を例に説明をしたが、もちろん4πsrの全方位画像などを全球画像として扱ってもよい。  The technical items described below are not limited to the second embodiment, but can be applied to other embodiments as well. However, in the third embodiment, the earth passes through a hexahedron and a regular tetrahedron. In the example described above, the multi-level mapping has been described, but image processing may be performed on a rectangular plane with a single mapping so as to obtain the same effect. Although the explanation has been given by taking the earth as an example, of course, an omnidirectional image of 4πsr or the like may be treated as a global image.

本発明を理解するにあたっては幾何学に基づいた説明が必要である。しかし、これを適用するにあたってはコンピュータ等による実際の操作や製作上の変形は当然伴うものである。従って本件発明の理解にあたってはこれらの変形は本件発明の範疇に含まれるものと理解されたい。上記第2実施例の画像処理を実施するにあたって生じる誤差は上記第2実施例の内容と同じ効果が得られる範囲内であれば近似値でよいものとする。また写像の対象となる立体や平面の形状が、多少歪んでいたり、欠けてもよい。  In order to understand the present invention, explanation based on geometry is necessary. However, when this is applied, an actual operation by a computer or the like and a deformation in production are naturally accompanied. Therefore, in understanding the present invention, it should be understood that these modifications are included in the scope of the present invention. The error that occurs when performing the image processing of the second embodiment may be an approximate value as long as it is within the range where the same effect as the contents of the second embodiment can be obtained. In addition, the shape of the solid or plane to be mapped may be slightly distorted or missing.

また、球や立体が内接している例で説明したが写像対象となる立体は互いに離れていても交差していても良い。矩形にこだわらなければ正三角形等の多角形や円等の曲線を含む形状に展開してよい。湾曲した面など任意の立体面でもよい。また正四面体の展開図が好適だが、矩形にこだわらなければ他の多面体の展開図を用いてもよい。  In addition, although an example in which a sphere or a solid is inscribed has been described, solids to be mapped may be separated from each other or may intersect. If not sticking to a rectangle, it may be developed into a shape including a polygon such as a regular triangle or a curve such as a circle. Any solid surface such as a curved surface may be used. Further, a development view of a regular tetrahedron is preferable, but a development view of another polyhedron may be used as long as it does not stick to a rectangle.

第3実施例
図65において球面情報12、例えば地球表面を中間に介在する錐体2つを組み合わせた立体1への投影を介して正方形2−5に落とし込む第1の処理の例を説明する。球面情報は極点8と赤道10−1上の点8−1、2を端点にもつ経線10−3と赤道10−1により8つの中規模領域に面積が等分されている。その1つが領域2−2である。該中規模領域はさらに経線10−2と赤道10−1により24の小規模な曲面領域に等分される。そのうちの3領域が斜線領域2−2A、B、Cである。経線10−2と赤道10−1との交点が8−A、B、Cである。
Third embodiment :
In FIG. 65, an example of a first process of dropping into the square 2-5 through projection onto the solid 3 by combining spherical information 12, for example, two cones with the earth surface in between will be described. In the spherical information, the area is equally divided into eight medium-scale regions by the meridian 10-3 and the equator 10-1 having the pole 8 and the points 8-1 and 2 on the equator 10-1 as end points. One of them is the area 2-2. The medium-scale area is further equally divided into 24 small curved areas by meridian 10-2 and equator 10-1. Three of them are hatched areas 2-2A, B, and C. The intersections of the meridian 10-2 and the equator 10-1 are 8-A, B, and C.

球面情報12は頂点8を共有しこれに内接する立体1に心射投影される。立体1は曲線10を底面にした錐体2つにより構成される。曲線10上に上記の点8−A、B、Cを投影した点と頂点8を端点に結ぶ線分9−2と曲線10により24の小規模な曲面領域に区分される。その1つが斜線領域2−1である。  The spherical information 12 is projected onto the solid 1 which shares the vertex 8 and is inscribed in it. The solid 1 is composed of two cones with the curve 10 as the bottom. The curved line 10 is divided into 24 small curved surface areas by a line segment 9-2 connecting the point 8-A, B, and C projected on the curve 10 and the vertex 8 to the end point and the curve 10. One of them is a hatched area 2-1.

次に立体1は線分9により囲まれる正方形領域の表裏に正射投影される。南北アメリカ大陸他が図示された半球領域2を上記正方形領域に正射投影したものを図66の領域2に示す。上記8分割された中規模領域2−2は面積比を維持しながら領域2−4に投影される。  Next, the solid 1 is orthogonally projected on the front and back of the square area surrounded by the line segment 9. FIG. 66 shows an orthographic projection of the hemispherical area 2 on which the Americas and the like are shown on the square area. The eight-divided medium-scale region 2-2 is projected onto the region 2-4 while maintaining the area ratio.

一方、図65における曲線10を通る断面を図68の断面3に示す。球面12上の円弧10−1は矢印7−1に示すように光心6に向け内向きに立体1の曲線10に心射投影される。これを矢印7−2に示すように前記正四面体上の線分9に正射投影することで画像は矩形平面化される。このとき球面12上で円弧10−1を間隔11−0に6等分し、矢印7−3に示すように線分9に正射投影した各線分の間隔が11−1である。  On the other hand, a cross section passing through the curve 10 in FIG. 65 is shown in a cross section 3 in FIG. The arc 10-1 on the spherical surface 12 is projected onto the curve 10 of the solid 1 inwardly toward the optical center 6 as indicated by an arrow 7-1. By projecting this onto the line segment 9 on the regular tetrahedron as indicated by an arrow 7-2, the image is formed into a rectangular plane. At this time, the arc 10-1 is divided into six equal intervals 11-0 on the spherical surface 12, and the interval of each line segment orthogonally projected onto the line segment 9 is 11-1, as indicated by an arrow 7-3.

一方、立体1に心射投影し、次に前記矩形面上の線分9に正射投影した線分の間隔が11−2である。間隔11−1は不均等で誤差が目立つ一方、間隔11−2は均等である。なぜなら曲線10は間隔11−2が等間隔となり、中心角、つまり球面上の線分比を等価に投影できるよう設定された曲線だからである。この操作を球面12上の各箇所で繰り返すことで球面12上の画像情報の外形輪郭が線分比の誤差により歪んでしまうのを抑制することができる。  On the other hand, the interval between the line segments projected onto the solid 1 and then orthogonally projected onto the line segment 9 on the rectangular surface is 11-2. The interval 11-1 is unequal and errors are conspicuous, while the interval 11-2 is equal. This is because the curve 10 is a curve set so that the intervals 11-2 are equally spaced and the center angle, that is, the line segment ratio on the spherical surface, can be projected equivalently. By repeating this operation at each location on the spherical surface 12, it is possible to suppress the outer contour of the image information on the spherical surface 12 from being distorted due to an error in the line segment ratio.

上記第1の処理に基づく補正を本発明の面積比による歪み低減の情報処理方法に組み込み矢印7に示す写像により一括して写像するのが第2の処理方法である。例では線分比による誤差を重視した処理方法であったため投影前の小規模領域2−2A、B、Cの面積比は投影後の局所的な小規模領域2−3A、B、Cの面積比において誤差が生じてしまう。ただしこれら小規模領域が集合して形成される投影前の中規模領域2−2は、投影後の中規模領域2−4に面積比が維持された状態で落とし込まれている。つまり線分比を補正する際の点情報の写像による区分領域における面積比の誤差は中規模な領域内でお互いに相殺されるように設定されているからである。  The correction based on the first processing is incorporated into the information processing method for distortion reduction by the area ratio of the present invention, and the second processing method collectively maps by the mapping indicated by the arrow 7. In the example, since the processing method emphasizes the error due to the line segment ratio, the area ratio of the small-scale areas 2-2A, B, and C before projection is the area of the local small-scale areas 2-3A, B, and C after projection. An error occurs in the ratio. However, the medium-scale area 2-2 before projection, which is formed by aggregating these small-scale areas, is dropped in a state where the area ratio is maintained in the medium-scale area 2-4 after projection. That is, the area ratio error in the segmented region due to the mapping of the point information when correcting the line segment ratio is set so as to cancel each other out in the medium-scale region.

また、図68において立体1の断面を10−2と10が矩形平面の辺の上の点8において曲率を滑らかに連続させることで平面化した際の輪郭が折れ曲がる事を極力抑えることができる。  In FIG. 68, it is possible to suppress the bending of the contour when the cross section of the solid 1 is flattened by smoothly continuing the curvature at points 8 on the sides of the rectangular plane 10-2 and 10 as much as possible.

図65において線分9により囲まれる矩形平面の表と裏に投影される夫々半球分の画像を統合すると図67に示す正方形の世界地図2が得られる。  In FIG. 65, by integrating the images of the respective hemispheres projected on the front and back of the rectangular plane surrounded by the line segment 9, a square world map 2 shown in FIG. 67 is obtained.

以下に記載する技術的事項は、この第3実施例に限定されずに他の実施例にも同様に適応可能であるが第1実施例の説明で取り上げた、心射投影や、正射投影に限らず平射、外斜、***投影や非投影図法、擬図法等に用いられる写像方法を組合せてもよい。また第1実施例では正方形領域に投影できる立体を扱ったが投影される面が長方形や略正方形となる立体を用いて情報処理を行っても良い。  The technical items described below are not limited to the third embodiment, but can be applied to other embodiments as well, but are described in the description of the first embodiment. The mapping methods used for not only normal projection, external oblique, in-projection projection, non-projection projection, pseudo projection, etc. may be combined. In the first embodiment, a solid that can be projected onto a square area is handled, but information processing may be performed using a solid whose projected surface is a rectangle or a substantially square.

図1は、立体角の考えを示す図である。  FIG. 1 is a diagram showing the idea of a solid angle. 図2は、本発明の前提となる処理に従う正積グリッドを正四面体と球状正四面体を例に示す説明図である。  FIG. 2 is an explanatory diagram showing a regular product grid and a spherical regular tetrahedron as an example of a regular product grid according to the process which is a premise of the present invention. 図3は、図2の2つのグリッドの斜視図である。  FIG. 3 is a perspective view of the two grids of FIG. 図4は、図2に示す球状グリッドを正四面体に光学的投影したグリッドを示す説明図である。  FIG. 4 is an explanatory diagram showing a grid obtained by optically projecting the spherical grid shown in FIG. 2 onto a regular tetrahedron. 図5は、図4の2つのグリッドの斜視図である。  FIG. 5 is a perspective view of the two grids of FIG. 図6は、図2の2つのグリッドを細分割したグリッドを示す説明図である。  FIG. 6 is an explanatory diagram showing a grid obtained by subdividing the two grids of FIG. 図7は、本発明の前提となる処理に従い正四面体に正積写像した地球を示す説明図である。  FIG. 7 is an explanatory diagram showing the earth mapped by regular product onto a regular tetrahedron according to the process which is the premise of the present invention. 図8は、本発明の前提となる処理に従い正積写像した世界地図と正積写像を省いた世界地図を示す説明図である。  FIG. 8 is an explanatory diagram showing a world map obtained by performing positive product mapping in accordance with the processing that is the premise of the present invention and a world map excluding the product mapping. 図9は、ビューアを示した本発明に従う平面充填画像を示す説明図である。  FIG. 9 is an explanatory view showing a plane filling image according to the present invention showing a viewer. 図10は、図9の平面充填画像から得た4つの世界地図である。  FIG. 10 is four world maps obtained from the planar filling image of FIG. 図11は、図9の平面充填画像から得たその他の4つの世界地図である。  FIG. 11 is the other four world maps obtained from the planar filling image of FIG. 図12は、図9と異なる全方位画像単位を示す平面充填画像を示す説明図である。  FIG. 12 is an explanatory view showing a plane filling image showing an omnidirectional image unit different from FIG. 図13は、Dymaxion Mapにより示す世界の一月の海流図である。  FIG. 13 is a world ocean current map of the world shown by Dymaxion Map. 図14は、本発明の前提となる処理に従う世界地図により示す世界の一月の海流図である。  FIG. 14 is a world ocean current map of the world shown by a world map according to the processing which is the premise of the present invention. 図15は、本発明の前提となる処理に従う正積グリッドを立方体と球状立方体を例に示す説明図である。  FIG. 15 is an explanatory diagram showing a cubic product and a spherical cube as an example of an equal product grid according to the process which is the premise of the present invention. 図16は、全方位球面情報上の経緯線正積グリッドを示す説明図である。  FIG. 16 is an explanatory diagram showing a graticule equal product grid on omnidirectional spherical information. 図17は、図16の全方位球面情報を上から見た説明図である。  FIG. 17 is an explanatory diagram of the omnidirectional spherical information of FIG. 16 viewed from above. 図18は、正八面体上の経緯線正積グリッドを示す説明図である。  FIG. 18 is an explanatory diagram showing a graticule equal product grid on a regular octahedron. 図19は、図16と18に示すグリッドを平面に展開した説明図である。  FIG. 19 is an explanatory diagram in which the grid shown in FIGS. 16 and 18 is developed on a plane. 図20は、正八面体画像を表裏2つの正方形面に写像したグリッドを示す図である。  FIG. 20 is a diagram showing a grid in which a regular octahedron image is mapped to two front and back square surfaces. 図21は、正方形の表裏に写像した全方位画像を1つの正方形に統合する過程を示す説明図である。  FIG. 21 is an explanatory diagram showing a process of integrating omnidirectional images mapped on the front and back of a square into one square. 図22は、1つの正八面体画像から作成した3つの正方形世界地図を示す説明図である。  FIG. 22 is an explanatory diagram showing three square world maps created from one regular octahedron image. 図23は、図22の世界地図の平面充填画像を示す説明図である。  FIG. 23 is an explanatory view showing a plane filling image of the world map of FIG. 図24は、図22の他の世界地図の平面充填画像を示す説明図である。  FIG. 24 is an explanatory view showing a plane-filled image of another world map of FIG. 図25は、図22の他の世界地図の平面充填画像を示す説明図である。  FIG. 25 is an explanatory view showing a plane filling image of another world map of FIG. 図26は、正二十面体から正十二面体への正積写像を示す図である。  FIG. 26 is a diagram illustrating a positive product map from a regular icosahedron to a regular dodecahedron. 図27は、正十二面体から立方体への正積写像を示す説明図である。  FIG. 27 is an explanatory diagram showing a positive product map from a regular dodecahedron to a cube. 図28は、本発明の前提となる処理に従う全経緯画像を示す模式図である。  FIG. 28 is a schematic diagram showing an entire background image according to the processing that is the premise of the present invention. 図29は、ネガ反転したテンプレート画像の平面充填画像を示す模式図である。  FIG. 29 is a schematic diagram showing a planar filling image of a template image with negative inversion. 図30は、図28と図29の平面充填画像を合成した検索用画像を示す模式図である。  FIG. 30 is a schematic diagram showing a search image obtained by synthesizing the plane filling images of FIGS. 28 and 29. 図31は、全方位立方体撮像機を示す模式図である。  FIG. 31 is a schematic diagram showing an omnidirectional cubic image pickup device. 図32は、光心を共有する撮像機を示す模式図である。  FIG. 32 is a schematic diagram illustrating an imaging device sharing an optical center. 図33は、図32の光心を共有する撮像機の詳細を説明する模式図である。  FIG. 33 is a schematic diagram for explaining the details of the image pickup device sharing the optical center of FIG. 図34は、マッピング用の矩形表示操作画面の模式図である。  FIG. 34 is a schematic diagram of a rectangular display operation screen for mapping. 図35は、平面画像を正四面体及び球へ写像する過程を示す模式図である。  FIG. 35 is a schematic diagram illustrating a process of mapping a planar image to a regular tetrahedron and a sphere. 図36は、球上の画像を被写体へ写像する過程を示す断面模式図である。  FIG. 36 is a schematic cross-sectional view showing a process of mapping an image on a sphere onto a subject. 図37は、任意形状の被写体を球へ写像する過程を示す断面模式図である。  FIG. 37 is a schematic cross-sectional view showing a process of mapping an arbitrarily shaped subject onto a sphere. 図38は、任意形状を正八面体へ多階層写像する前半過程を示す模式図である。  FIG. 38 is a schematic diagram showing a first half process of multi-layer mapping of an arbitrary shape to a regular octahedron. 図39は、任意形状を正八面体へ多階層写像する後半過程を示す模式図である。  FIG. 39 is a schematic diagram showing the latter half of the process of multi-layer mapping an arbitrary shape to a regular octahedron. 図40は、球体スクリーン用の矩形操作画面を示す模式図である。  FIG. 40 is a schematic diagram showing a rectangular operation screen for a spherical screen. 図41は、各光軸に立体的受光面を配した撮像方法を立方体を例に示す模式図である。  FIG. 41 is a schematic diagram illustrating a cube as an example of an imaging method in which a three-dimensional light receiving surface is arranged on each optical axis. 図42は、受光面を多面体化した撮像方法を正四面体を例に示す模式図である。  FIG. 42 is a schematic diagram illustrating an imaging method in which the light receiving surface is polyhedral, taking a regular tetrahedron as an example. 図43は、細分化した正積グリッドに沿った受光素子の形状と配置を示す概念図である。  FIG. 43 is a conceptual diagram showing the shape and arrangement of the light receiving elements along the subdivided equal product grid. 図44は、立体受光面を平面に集約した撮像方法を正八面体を例に示す模式図である。  FIG. 44 is a schematic diagram illustrating a regular octahedron as an example of an imaging method in which a three-dimensional light receiving surface is integrated into a plane. 図45は、複数台による撮像を加味した撮像方法を14面体を例に示す模式図である。  FIG. 45 is a schematic diagram illustrating an imaging method taking into account imaging by a plurality of units, taking a 14-hedron as an example. 図46は、光軸設定に多様性を持たせる撮像方法を26面体を例に示す模式図である。  FIG. 46 is a schematic diagram showing an example of a 26-hedron imaging method for providing diversity in optical axis setting. 図47は、解像度や立体視画像化に対応できる撮像機を示す模式図である。  FIG. 47 is a schematic diagram showing an imaging device that can cope with resolution and stereoscopic imaging. 図48は、図47の撮像機による立体視撮像と全方位撮像方法を示す模式図である。  FIG. 48 is a schematic diagram showing a stereoscopic imaging method and an omnidirectional imaging method by the imaging device of FIG. 図49は、全方位立体視撮像方法を立方体撮像機を例に説明する模式図である。  FIG. 49 is a schematic diagram illustrating an omnidirectional stereoscopic imaging method taking a cubic imaging device as an example. 図50は、図47の撮像機の組み合わせを3台の使用を例に示す模式図である。  FIG. 50 is a schematic diagram illustrating the use of three combinations of the image pickup device of FIG. 47 as an example. 図51は、多面体画像を矩形平面に写像する方法を正四面体を例に示す模式図である。  FIG. 51 is a schematic diagram illustrating a method of mapping a polyhedron image to a rectangular plane using a regular tetrahedron as an example. 図52は、矩形画像を速やかに得る撮像方法を2台の撮像機を例に示す模式図である。  FIG. 52 is a schematic diagram illustrating an example of two imaging devices as an imaging method for quickly obtaining a rectangular image. 図53は、複数種の写像方法を混在させる過程を開いた面を持つ立体を例に示す模式図である。  FIG. 53 is a schematic diagram illustrating, as an example, a three-dimensional object having an open surface in the process of mixing a plurality of types of mapping methods. 図54は、円筒図法と矩形画像を折衷する方法を菱形12面体を例に示す模式図である。  FIG. 54 is a schematic diagram showing an example of a rhomboid dodecahedron as a method of combining a cylindrical projection and a rectangular image. 図55は、多面体と平面を折衷する曲面を正積分割する方法を正八面体で例示した模式図である。  FIG. 55 is a schematic diagram exemplifying a regular octahedron method of dividing a polyhedron and a curved surface that compromises a plane into equal areas. 図56は、小型化を加味した撮像機を示す模式図である。  FIG. 56 is a schematic diagram showing an image pickup device with consideration for miniaturization. 図57は、図41の撮像機で得る菱形12面体画像と八面体画像を示す概念図である。  FIG. 57 is a conceptual diagram showing a rhombus dodecahedron image and an octahedron image obtained by the imaging device of FIG. 図58は、曲線による分割方法を経線が円弧の立体を例に示す模式図である。  FIG. 58 is a schematic diagram illustrating an example of a solid with a circular meridian as a method of dividing by a curve. 図59は、曲線による分割方法を2次曲線を例に示す模式図である。  FIG. 59 is a schematic diagram showing a quadratic curve as an example of a dividing method using a curve. 図60は、本発明に従う写像を魚眼レンズによる円形画像を例に示す概念図である。  FIG. 60 is a conceptual diagram showing a map according to the present invention as an example of a circular image by a fisheye lens. 図61は、本発明の前提となる処理に従う写像を多面体の展開画像を例に示す概念図である。  FIG. 61 is a conceptual diagram illustrating an example of a polyhedron developed image that is mapped according to the processing that is the premise of the present invention. 図62は、分散された受光面による画像を1つの立体に統合する過程を示す模式図である。  FIG. 62 is a schematic diagram showing a process of integrating images from dispersed light receiving surfaces into one solid. 図63は、本発明の前提となる処理に従う写像を円形画像を例に示す模式図である。  FIG. 63 is a schematic diagram showing, as an example of a circular image, mapping according to the processing that is the premise of the present invention. 図64は、本発明の前提となる処理に従う写像を円筒図法の画像を例に示す模式図である。  FIG. 64 is a schematic diagram illustrating a mapping according to the processing which is the premise of the present invention as an example of a cylindrical projection image. 地球を2つの錐体に投影した説明図である。  It is explanatory drawing which projected the earth on two cones. 図65の錐体を矩形平面に投影した説明図である。  FIG. 66 is an explanatory diagram in which the cone of FIG. 65 is projected onto a rectangular plane. 本発明に従う画像処理方法により得られる矩形世界地図を示す説明図である。  It is explanatory drawing which shows the rectangular world map obtained by the image processing method according to this invention. 図65に示す錐体の断面の説明図である。  It is explanatory drawing of the cross section of the cone shown in FIG. 地球を曲面により構成される立体に投影した説明図である。  It is explanatory drawing which projected the earth on the solid comprised by a curved surface. 図69に示す立体の断面の説明図である。  It is explanatory drawing of the cross section of the solid shown in FIG. 本発明に従う情報処理方法により得られる矩形世界地図を示す説明図である。  It is explanatory drawing which shows the rectangular world map obtained by the information processing method according to this invention. 地球儀で見る南極大陸と本発明により投影した南極大陸の輪郭の比較図である。  It is a comparison figure of the outline of Antarctica seen with a globe and Antarctica projected by the present invention. 図71に示す図の平面充填画像を示す説明図である。  FIG. 72 is an explanatory diagram showing a plane filling image of the diagram shown in FIG. 71. 地球を多面体に投影した説明図である。  It is explanatory drawing which projected the earth on the polyhedron. 図74に示す多面体の断面の説明図である。  FIG. 75 is an explanatory diagram of a cross section of the polyhedron shown in FIG. 74. 本発明に従う情報処理方法により得られる矩形世界地図を示す説明図である。  It is explanatory drawing which shows the rectangular world map obtained by the information processing method according to this invention. 図74に示す多面体の一部を平面に投影した説明図である。  FIG. 75 is an explanatory diagram in which a part of the polyhedron shown in FIG. 74 is projected onto a plane. 本発明に従う情報処理方法の基本的な考え方を球面と多面体を用いて説明する図である。  It is a figure explaining the basic idea of the information processing method according to this invention using a spherical surface and a polyhedron. 図78に示す情報処理方法の考え方の1つを説明する球面と多面体の断面図である。  FIG. 79 is a cross-sectional view of a spherical surface and a polyhedron, explaining one of the concepts of the information processing method shown in FIG. 78. 図79に示す情報処理方法の考え方と異なる考え方を説明する球面と多面体の断面図である。  FIG. 80 is a cross-sectional view of a spherical surface and a polyhedron for explaining a different concept from the concept of the information processing method shown in FIG. 79.

1 立体;
4 稜線;
5 投影線;
6 中心;
7 光軸;
8 点;
9 線分;
10 曲線;
11 間隔;
12 球;
13 多面体;
14 画像情報;
15 角度;
16 方向;
17 円弧;
1 solid;
4 ridgelines;
5 projection lines;
6 center;
7 optical axis;
8 points;
9 line segments;
10 curves;
11 intervals;
12 balls;
13 polyhedra;
14 Image information;
15 angles;
16 directions;
17 arcs;

Claims (1)

線と点で規定される面が連続している複数のスタート面における各面の相対的な位置関係を維持し且つ各面の線を線として維持し又各面の点を点として維持しながら各面を変形させて矩形平面に隙間無く埋める又はその逆の操作により、前記スタート面の情報と前記矩形平面を隙間無く埋める複数のエンド面の情報とを一対一で対応させる情報処理方法であって、
前記スタート面の全面積と該スタート面の少なくとも一部の面積との第1の面積比と、前記矩形平面の面積と該矩形平面上のエンド面の少なくとも一部の面積との第2の面積比とが実質的に等しく、また、前記スタート面の少なくとも一部を構成する各線分の長さの第1の線分比と、前記矩形平面上のエンド面の少なくとも一部を構成する各線分の長さの第2の線分比とが実質的に等しいことを特徴とする情報処理方法。
While maintaining the relative positional relationship of each surface on a plurality of start surfaces where the surface defined by the line and the point is continuous, maintaining the line of each surface as a line, and maintaining the point of each surface as a point This is an information processing method in which each surface is deformed and filled in the rectangular plane without gaps, or vice versa, and the information on the start surface and the information on the plurality of end faces that fill the rectangular plane without gaps are made to correspond one-to-one. And
A first area ratio between the total area of the start surface and the area of at least a part of the start surface, and a second area of the area of the rectangular plane and the area of at least a part of the end surface on the rectangular plane The first line segment ratio of the length of each line segment constituting at least part of the start surface and each line segment constituting at least part of the end surface on the rectangular plane. An information processing method characterized in that the length of the second line segment ratio is substantially equal.
JP2009172548A 2008-07-01 2009-07-01 Information processing method Pending JP2010033573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172548A JP2010033573A (en) 2008-07-01 2009-07-01 Information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008195480 2008-07-01
JP2009172548A JP2010033573A (en) 2008-07-01 2009-07-01 Information processing method

Publications (1)

Publication Number Publication Date
JP2010033573A true JP2010033573A (en) 2010-02-12

Family

ID=41737891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172548A Pending JP2010033573A (en) 2008-07-01 2009-07-01 Information processing method

Country Status (1)

Country Link
JP (1) JP2010033573A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210232A (en) * 2010-03-11 2011-10-20 Tottori Univ Image conversion device, image generation system, image conversion method, and image generation method
WO2017029885A1 (en) * 2015-08-18 2017-02-23 株式会社ソニー・インタラクティブエンタテインメント Image generating device and image display control device
KR20190137273A (en) * 2018-06-01 2019-12-11 엘지전자 주식회사 Refrigerator and Controlling method for the same
JP2020135162A (en) * 2019-02-15 2020-08-31 日本電気株式会社 Mapping device, mapping method, and computer program
JP2021124565A (en) * 2020-02-04 2021-08-30 聖吾 猿渡 Tetrahedral globe
JP2022128369A (en) * 2021-02-22 2022-09-01 宣雄 川合 World map and cylindrical globe by bipolar projection
CN116663336A (en) * 2023-07-28 2023-08-29 东莘电磁科技(成都)有限公司 Electromagnetic modeling method based on cylindrical side surface conformal grid generation

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210232A (en) * 2010-03-11 2011-10-20 Tottori Univ Image conversion device, image generation system, image conversion method, and image generation method
KR102072639B1 (en) * 2015-08-18 2020-02-03 주식회사 소니 인터랙티브 엔터테인먼트 Image generating device and image display control device
RU2686591C1 (en) * 2015-08-18 2019-04-29 Сони Интерактив Энтертейнмент Инк. Image generation device and image display control device
KR20180042346A (en) * 2015-08-18 2018-04-25 주식회사 소니 인터랙티브 엔터테인먼트 Image generation device and image display control device
JPWO2017029885A1 (en) * 2015-08-18 2018-04-26 株式会社ソニー・インタラクティブエンタテインメント Image generation apparatus and image display control apparatus
US10659742B2 (en) 2015-08-18 2020-05-19 Sony Interactive Entertainment, Inc. Image generating apparatus and image display control apparatus
JP2019160330A (en) * 2015-08-18 2019-09-19 株式会社ソニー・インタラクティブエンタテインメント Image generating device, and image display control device
CN107924556A (en) * 2015-08-18 2018-04-17 索尼互动娱乐股份有限公司 Video generation device and image display control apparatus
WO2017029885A1 (en) * 2015-08-18 2017-02-23 株式会社ソニー・インタラクティブエンタテインメント Image generating device and image display control device
KR20190137273A (en) * 2018-06-01 2019-12-11 엘지전자 주식회사 Refrigerator and Controlling method for the same
KR102150066B1 (en) 2018-06-01 2020-09-01 엘지전자 주식회사 Refrigerator and Controlling method for the same
JP2020135162A (en) * 2019-02-15 2020-08-31 日本電気株式会社 Mapping device, mapping method, and computer program
JP2021124565A (en) * 2020-02-04 2021-08-30 聖吾 猿渡 Tetrahedral globe
JP2022128369A (en) * 2021-02-22 2022-09-01 宣雄 川合 World map and cylindrical globe by bipolar projection
JP7157201B2 (en) 2021-02-22 2022-10-19 宣雄 川合 Bipolar projection world map and cylindrical globe
CN116663336A (en) * 2023-07-28 2023-08-29 东莘电磁科技(成都)有限公司 Electromagnetic modeling method based on cylindrical side surface conformal grid generation
CN116663336B (en) * 2023-07-28 2023-10-27 东莘电磁科技(成都)有限公司 Electromagnetic modeling method based on cylindrical side surface conformal grid generation

Similar Documents

Publication Publication Date Title
JP4945578B2 (en) Information processing method
JP2010033573A (en) Information processing method
US7837330B2 (en) Panoramic three-dimensional adapter for an optical instrument and a combination of such an adapter and such an optical instrument
TWI356186B (en) Panoramic video system with real-time distortion-f
US9609210B2 (en) Technique for view synthesis
CN101000461B (en) Method for generating stereoscopic panorama by fish eye image
US8890940B2 (en) Stereo image capture and processing
JP5676092B2 (en) Panorama image generation method and panorama image generation program
CN105245838A (en) Panoramic video playing method and player
JP2022116089A (en) Imaging system, method, and application
TW200425737A (en) Method for creating brightness filter and virtual space creation system
CN101938599A (en) Method for generating interactive dynamic panoramic image
KR20090012290A (en) Methods of optaining panoramic images using rotationally symmetric wide-angle lenses and devices thereof
US10057487B1 (en) Panoramic imaging systems based on normal-lens cameras
CN108200360A (en) A kind of real-time video joining method of more fish eye lens panoramic cameras
CN106921824A (en) Circulating type mixes light field imaging device and method
CN110211028B (en) Fisheye image display method based on spherical panoramic display
CN103235478B (en) System, device, image processing method and apparatus for circular-screen stereographic image capturing
CN106710000B (en) A kind of image projecting method constructing continuous scene based on discrete panorama sketch
CN109461116B (en) 720 panorama unfolding monitoring method based on opengl
CN110958444A (en) 720-degree view field environment situation sensing method and situation sensing system
CN116739885A (en) Data storage method of panoramic image
TWI457692B (en) Stereo panoramic imaging technology
JP3600422B2 (en) Stereo image display method and apparatus
CN111583117A (en) Rapid panoramic stitching method and device suitable for space complex environment