JP2010032450A - Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus - Google Patents

Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus Download PDF

Info

Publication number
JP2010032450A
JP2010032450A JP2008197155A JP2008197155A JP2010032450A JP 2010032450 A JP2010032450 A JP 2010032450A JP 2008197155 A JP2008197155 A JP 2008197155A JP 2008197155 A JP2008197155 A JP 2008197155A JP 2010032450 A JP2010032450 A JP 2010032450A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
partial discharge
absence
discharge electromagnetic
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008197155A
Other languages
Japanese (ja)
Inventor
Yoshinori Nagai
美徳 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008197155A priority Critical patent/JP2010032450A/en
Publication of JP2010032450A publication Critical patent/JP2010032450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine presence or absence of generation of an electromagnetic wave in a short time by an inexpensive system. <P>SOLUTION: Signals received by first and second antennas 11, 21 are amplified by first and second low-noise amplifiers 12, 22, subjected to noise cutting of a broadcast wave or the like through first and second band filters 13, 23, and amplified by first and second amplifiers 14, 24. Each signal amplified by the first and second amplifiers 14, 24 is converted into a digital signal by first and second A/D converters 15, 25, and supplied to first and second electromagnetic wave output signal detectors 16, 26 constituted of oscilloscopes or the like, to thereby detect electromagnetic wave output signals. Electromagnetic wave output signals A, B detected by the first and second electromagnetic wave output signal detectors 16, 26 are transmitted and stored in a storage part 27, and the output signals A, B stored in the storage part 27 are supplied to a processing part 28, and then presence or absence of a partial discharge electromagnetic wave is determined by a determination part 29. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気機器の部分放電電磁波の発生有無について、電磁波を測定後、その電磁波の発生源が対象電気機器からの発生かどうかを判定する方法に関するものである。   The present invention relates to a method for determining whether or not a partial discharge electromagnetic wave is generated in an electric device, after measuring the electromagnetic wave, whether or not the source of the electromagnetic wave is generated from a target electric device.

高圧の電気設備や機器に共通して発生する異常現象としては、製造時の不良や経年劣化の影響による部分放電電磁波の発生が挙げられる。一般的にモールド機器などに使用される絶縁材料内部に微小な空隙状欠陥部(ボイド)や剥離部などがあると、運転時にその部分に電界が集中し、部分放電電磁波と呼ばれる微弱な放電が発生する。また、モールド絶縁体表面の汚損の影響によっても部分放電電磁波が発生することがある。   Examples of abnormal phenomena that occur in common in high-voltage electrical facilities and equipment include the generation of partial discharge electromagnetic waves due to defects during manufacturing and the effects of aging. In general, if there are minute voids (voids) or peeling parts in the insulating material used for molding equipment, the electric field concentrates on the part during operation, and weak discharge called partial discharge electromagnetic wave is generated. appear. Further, partial discharge electromagnetic waves may be generated due to the influence of contamination on the surface of the mold insulator.

特に、後者の場合には、汚損を除去すれば、部分放電電磁波を防止できるけれども、前者の場合の部分放電電磁波は、防止が困難であり、回復性はない。部分放電電磁波が発生した状態で運転を継続すると、ボイドや剥離状態を進展させる恐れがあり、最終的には、絶縁破壊に至る危険性がある。   In particular, in the latter case, partial discharge electromagnetic waves can be prevented by removing the fouling, but the partial discharge electromagnetic waves in the former case are difficult to prevent and are not recoverable. If the operation is continued in a state where the partial discharge electromagnetic wave is generated, there is a risk that a void or a peeled state may be developed, and there is a risk of finally resulting in dielectric breakdown.

このため、電気機器で発生する部分放電電磁波を検出する手段が種々開発されるようになってきた。例えば、電磁波空間位相差法を用いるものがある。この位相差法は、4本のアンテナを使用して同時に1回測定後、得られた測定データから電磁波到達時間差を求め、双曲線法を用いて電気機器等の電磁波発生位置を特定する方法である。   For this reason, various means for detecting partial discharge electromagnetic waves generated in electrical equipment have been developed. For example, there is one using an electromagnetic wave phase difference method. This phase difference method is a method for determining the electromagnetic wave generation position of an electric device or the like by using the hyperbola method after obtaining the electromagnetic wave arrival time difference from the obtained measurement data after measuring once using four antennas simultaneously. .

または、他の方法は、2本のアンテナを準備して1回測定後、アンテナ位置を変更し、再度測定を行い、この測定を数回繰り返して、得られたデータから同様に電磁波到達時間差を求め、双曲線法を用いて電気機器等の電磁波発生位置を特定するものである(特許文献1参照。)。
特開2006−250807号公報
Alternatively, another method is to prepare two antennas, measure once, change the antenna position, perform measurement again, repeat this measurement several times, and similarly calculate the electromagnetic wave arrival time difference from the obtained data. The electromagnetic wave generation position of an electric device or the like is determined using a hyperbola method (see Patent Document 1).
JP 2006-250807 A

上述した電磁波空間位相差では、アンテナ4本を一定間隔に配置して電磁波を検出することは可能であるが、アンテナ配置に時間を要したり、電磁波検出測定システムが全体的に大型化する問題がある。   With the above-described electromagnetic wave spatial phase difference, it is possible to detect electromagnetic waves by arranging four antennas at regular intervals, but it takes time to arrange the antennas, and the problem is that the electromagnetic wave detection and measurement system becomes larger overall. There is.

また、アンテナを2本使用して数回(例えば4回)測定を行う方法もあるが、この場合には、電磁波の検出は可能であるが、電磁波発生位置を特定するために、アンテナを正確な位置に設置しなければならず、また、測定を数回繰り返すために、測定時間が多大となる問題がある。   In addition, there is a method of performing measurement several times (for example, four times) using two antennas. In this case, the electromagnetic wave can be detected. However, in order to specify the electromagnetic wave generation position, the antenna is accurately set. In addition, there is a problem that the measurement time is long because the measurement is repeated several times.

さらに、上記電磁波空間位相差では、電磁波発生源が1つの場合には、電磁波発生の有無の判定は容易であるが、ノイズ源が複数存在する場合には、ノイズ源と電磁波発生の区別を判定することが難しくなる。   Furthermore, with the above electromagnetic wave spatial phase difference, it is easy to determine the presence or absence of electromagnetic wave generation when there is one electromagnetic wave generation source, but when there are multiple noise sources, it is determined whether to distinguish between noise sources and electromagnetic wave generation. It becomes difficult to do.

なお、アンテナ1本で移動しながら電磁波発生出力が強い場所を探索する手法が考えられるが、対象電気機器は、通常高電圧が印加されているため、安全面を考慮すると、あまり接近することができない。また、部分放電電磁波は、常時一定の出力ではなく、時間的変化が大きいので、この方法による電磁波発生の有無を判定することも難しい。   In addition, although the method of searching for a place where electromagnetic wave generation output is strong while moving with one antenna can be considered, since a high voltage is normally applied to the target electrical device, it may be too close in consideration of safety. Can not. In addition, since partial discharge electromagnetic waves are not always constant output and change over time, it is difficult to determine whether electromagnetic waves are generated by this method.

本発明の目的は、上記の事情に鑑みてなされたもので、対象電気機器からの部分放電電磁波の発生とノイズ源とを明確に区別して電磁波発生の有無を、短時間で安価なシステムにより判定することができるようにした対象電気機器からの部分放電電磁波有無判定方法を提供することにある。   The object of the present invention has been made in view of the above circumstances, and it is possible to clearly distinguish between generation of a partial discharge electromagnetic wave from a target electric device and a noise source, and to determine whether or not the electromagnetic wave is generated by a low-cost system in a short time. An object of the present invention is to provide a method for determining the presence or absence of a partial discharge electromagnetic wave from a target electric device that can be used.

上記の課題を達成するために、請求項1に係る発明は、部分放電検出対象電気機器の近傍に第1アンテナを配置すると共に、この第1アンテナから一定の距離を隔てて第2アンテナを配置し、第1、第2アンテナにより前記電気機器からの部分放電電磁波とノイズを受信し、その受信信号を第1、第2ローノイズアンプ、第1、第2帯域フィルタ、第1、第2アンプ、第1、第2A/D変換器及び第1、第2電磁波出力信号検出部からなる電磁波出力信号検出装置を介して処理した後、部分放電電磁波とノイズとを判別する方法において、
前記第1、第2電磁波出力信号検出部からの両出力信号A,Bを記憶部に記憶した後に、処理部に両出力信号A,Bを供給し、処理部で両出力信号A,BがA/B>k(閾値)の式が成立するときに、部分放電電磁波であると判別し、前記式が不成立のときには、ノイズであるとして削除することを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, the first antenna is disposed in the vicinity of the partial discharge detection target electric device, and the second antenna is disposed at a certain distance from the first antenna. The first and second antennas receive the partial discharge electromagnetic waves and noise from the electrical device, and the received signals are converted into first, second low noise amplifiers, first, second bandpass filters, first, second amplifiers, In a method of discriminating partial discharge electromagnetic waves and noise after processing through an electromagnetic wave output signal detection device comprising a first and second A / D converter and first and second electromagnetic wave output signal detection units,
After storing both output signals A and B from the first and second electromagnetic wave output signal detection units in the storage unit, both output signals A and B are supplied to the processing unit. When the equation of A / B> k (threshold value) is satisfied, it is determined that it is a partial discharge electromagnetic wave, and when the equation is not satisfied, it is deleted as noise.

請求項2に係る発明は、請求項1において、前記処理部は記憶部から供給される出力信号A,Bが、A<BかA=Bのときは、ノイズとして削除することを特徴とする。   The invention according to claim 2 is characterized in that, in claim 1, the processing section deletes as noise when the output signals A and B supplied from the storage section are A <B or A = B. .

請求項3に係る発明は、請求項1において、前記第1、第2アンプの増幅値を、(第2アンプの増幅値)/(第1アンプの増幅値)=kと設定しておき、前記処理部で[(出力信号A)−(出力信号B)]の式を実行した際に、その式が「正」の出力の場合のみ部分放電電磁波であると判別することを特徴とする。   According to a third aspect of the present invention, in the first aspect, the amplification values of the first and second amplifiers are set as (amplification value of the second amplifier) / (amplification value of the first amplifier) = k, When the expression [(output signal A) − (output signal B)] is executed by the processing unit, it is determined that the expression is a partial discharge electromagnetic wave only when the expression is “positive” output.

本発明によれば、アンテナ2本による1回測定で、しかもアンテナを正確な位置に配置する必要がないので、対象電気機器からの部分放電電磁波発生の有無を、安価なシステムにより短時間で測定することができる。また、アンテナ2本の内、1本は対象電気機器の近くに配置するため、目的とする部分放電電磁波信号が大きく測定でき、精度のよい測定が可能となる。さらに、X,Y,Z方向からのノイズを容易にカットできるので、部分放電電磁波発生の有無の判定が容易になる。   According to the present invention, since it is not necessary to place the antenna at an accurate position by one measurement with two antennas, it is possible to measure the presence or absence of partial discharge electromagnetic waves from the target electrical equipment in a short time with an inexpensive system. can do. In addition, since one of the two antennas is disposed near the target electric device, the target partial discharge electromagnetic wave signal can be measured greatly, and accurate measurement is possible. Further, since noise from the X, Y, and Z directions can be easily cut, it is easy to determine whether or not partial discharge electromagnetic waves are generated.

以下本発明の実施の形態を図面に基づいて説明する。
[実施の形態1]
図1、図2は、本発明の実施の形態1を示す概略構成図及びブロック構成図で、図1において、10は部分放電電磁波信号が発生しているかを判定する対象電気機器であり、この対象電気機器10から約0.5メートル離れた位置に第1アンテナ11を配置し、また、その機器10から約2メートル離れた位置に第2アンテナ21を配置する。なお、第1アンテナ11を対象電気機器10から0.5メートル離れた位置としたのは、通常、電気機器は高電圧が印加されているために、安全面を考慮したためである。
Embodiments of the present invention will be described below with reference to the drawings.
[Embodiment 1]
1 and 2 are a schematic configuration diagram and a block configuration diagram showing Embodiment 1 of the present invention. In FIG. 1, reference numeral 10 denotes a target electric device for determining whether a partial discharge electromagnetic wave signal is generated. The first antenna 11 is disposed at a position approximately 0.5 meters away from the target electrical device 10, and the second antenna 21 is disposed at a position approximately 2 meters away from the device 10. The reason why the first antenna 11 is positioned 0.5 meters away from the target electrical device 10 is that the electrical device is usually applied with a high voltage, and therefore, safety is taken into consideration.

図2は第1、第2アンテナ11,21で受信された電磁波信号を処理判定する装置で、図2において、第1、第2アンテナ11,21で受信された信号は、第1、第2ローノイズアンプ12,22で増幅されて、第1、第2帯域フィルタ(BPF)13,23を介して放送波などのノイズがカットされて第1、第2アンプ14,24で増幅される。   FIG. 2 shows an apparatus for processing and determining electromagnetic wave signals received by the first and second antennas 11 and 21. In FIG. 2, the signals received by the first and second antennas 11 and 21 are the first and second antennas. Amplified by the low noise amplifiers 12 and 22, noise such as broadcast waves is cut through the first and second band-pass filters (BPF) 13 and 23, and amplified by the first and second amplifiers 14 and 24.

なお、第1、第2帯域フィルタ13,23は、予め放送波などの常時発生している周波数帯(ノイズ源)を避けて、部分放電電磁波の発生する周波数帯の全部又は一部の周波数帯域を通過させるように設定しておく。   The first and second band filters 13 and 23 avoid a frequency band (noise source) that is always generated in advance, such as a broadcast wave, and all or part of a frequency band in which a partial discharge electromagnetic wave is generated. Set to pass.

第1、第2アンプ14,24で増幅された信号は、第1、第2アナログ・デジタル信号変換器(A/D変換器)15,25によりデジタル信号に変換されて、オシロスコープなどで構成される第1、第2電磁波出力信号検出部16,26に供給されて、電磁波出力信号が検出される。この第1、第2電磁波出力信号検出部16,26で検出された電磁波出力信号A,B(図4に示す)は、記憶部27に送られて記憶され、記憶部27に記憶された出力信号A,Bは処理部28に供給される。   The signals amplified by the first and second amplifiers 14 and 24 are converted into digital signals by the first and second analog / digital signal converters (A / D converters) 15 and 25 and configured by an oscilloscope or the like. The first and second electromagnetic wave output signal detection units 16 and 26 are supplied to detect the electromagnetic wave output signal. The electromagnetic wave output signals A and B (shown in FIG. 4) detected by the first and second electromagnetic wave output signal detection units 16 and 26 are sent to and stored in the storage unit 27, and the output stored in the storage unit 27. The signals A and B are supplied to the processing unit 28.

処理部28に供給された出力信号は以下のように処理される。図3は部分放電発生源から第1アンテナ11と第2アンテナ21間の距離の違いによる電磁波出力信号の実測例を示す特性図で、この図3では、電磁波出力信号(Vp−p)を波形最大値と最小値の差として表している。   The output signal supplied to the processing unit 28 is processed as follows. FIG. 3 is a characteristic diagram showing an actual measurement example of the electromagnetic wave output signal due to the difference in distance between the first antenna 11 and the second antenna 21 from the partial discharge generation source. In FIG. 3, the electromagnetic wave output signal (Vp-p) is a waveform. Expressed as the difference between the maximum and minimum values.

また、図3に示すように、電磁波出力信号の距離による減衰は、部分放電の大きさによらず距離2メートルまでは急激に減衰し、距離が2メートル以上離れると若干減衰するかほとんど変わらない。   Further, as shown in FIG. 3, the attenuation due to the distance of the electromagnetic wave output signal attenuates rapidly up to a distance of 2 meters regardless of the size of the partial discharge, and slightly attenuates or hardly changes when the distance is 2 meters or more. .

そこで,閾値kを定めて,観測された電磁波出力信号1波形ごとに(電磁波出力信号A)/(電磁波出力信号B)>kの式が成り立つときは、信号を残し、式が成り立たないときは信号を削除する。閾値kは、アンテナ配置距離により適正な値とするが、例えば1.5以上の値とする。これにより、第1アンテナ11の近傍で発生している電磁波のみが抽出できる。   Therefore, when the threshold value k is determined and the equation of (electromagnetic wave output signal A) / (electromagnetic wave output signal B)> k holds for each waveform of the observed electromagnetic wave output signal, the signal is left and when the equation does not hold Delete the signal. The threshold value k is an appropriate value depending on the antenna arrangement distance, but is set to a value of 1.5 or more, for example. Thereby, only the electromagnetic waves generated in the vicinity of the first antenna 11 can be extracted.

次に、処理部28における図1に示すX,Y,Z方向からの電磁波ノイズの処理について述べる。   Next, processing of electromagnetic wave noise from the X, Y, and Z directions shown in FIG.

X方向から来たノイズは、第1電磁波出力信号検出部16の電磁波出力信号Aと第2電磁波出力信号検出部26の電磁波出力信号Bが、A≦Bとなり、上記式が成り立たないので、信号は削除される。   The noise coming from the X direction is such that the electromagnetic wave output signal A of the first electromagnetic wave output signal detector 16 and the electromagnetic wave output signal B of the second electromagnetic wave output signal detector 26 satisfy A ≦ B, and the above equation does not hold. Is deleted.

また、Y方向から来たノイズは、A=Bとなり、上記式が成り立たないので、信号は削除される。   Further, the noise coming from the Y direction is A = B, and the above expression does not hold, so the signal is deleted.

さらに、Z方向から来たノイズは、A=BまたはAがBより若干大きくなるが、閾値を超えるほどの差がないため、上記式が成り立たないので、信号は削除される。   Further, the noise coming from the Z direction has A = B or A slightly larger than B, but since there is no difference that exceeds the threshold value, the above expression does not hold, so the signal is deleted.

図5は上述した処理部28の処理動作を示した波形図で、A信号は第1電磁波出力検出部16の出力信号、B信号は第2電磁波出力検出部26の出力信号である。この結果、処理部28の出力には、第1アンテナ11の近傍で発生している部分放電電磁波信号のみ、すなわち、対象電気機器から発生している部分放電電磁波信号のみが抽出できる。この処理部28の出力信号は判定部29に供給され、ここで、対象電気機器での部分放電電磁波の有無が判定される。
[実施の形態2]
上記実施の形態1において、第1、第2アンプ14,24の増幅出力を、予め閾値に合わせて、(アンプ24の増幅値)/(アンプ14の増幅値)=kと設定しておくことにより、処理部28において、[(電磁波出力信号A)−(電磁波出力信号B)]の式を実行し、「正」の場合のみ出力するようにすると、処理が簡単になる。
[実施の形態3]
図6に示すように、対象電気機器10が収納された配電盤内に第1アンテナ11を配置し、配電盤外に第2アンテナ21を配置したとき、配電盤による電磁遮蔽効果がより期待できるため、第1アンテナ11による部分放電電磁波信号が第2アンテナのそれとの差が大きくなるために、検出精度が高められる。
FIG. 5 is a waveform diagram showing the processing operation of the processing unit 28 described above. The A signal is an output signal of the first electromagnetic wave output detection unit 16, and the B signal is an output signal of the second electromagnetic wave output detection unit 26. As a result, only the partial discharge electromagnetic wave signal generated in the vicinity of the first antenna 11, that is, only the partial discharge electromagnetic wave signal generated from the target electric device can be extracted from the output of the processing unit 28. The output signal of the processing unit 28 is supplied to the determination unit 29, where it is determined whether or not there is a partial discharge electromagnetic wave in the target electrical device.
[Embodiment 2]
In the first embodiment, the amplified outputs of the first and second amplifiers 14 and 24 are set to (amplified value of the amplifier 24) / (amplified value of the amplifier 14) = k according to the threshold value in advance. Thus, if the processing unit 28 executes the equation [(electromagnetic wave output signal A) − (electromagnetic wave output signal B)] and outputs only in the case of “positive”, the processing becomes simple.
[Embodiment 3]
As shown in FIG. 6, when the first antenna 11 is arranged in the switchboard in which the target electrical device 10 is housed and the second antenna 21 is arranged outside the switchboard, the electromagnetic shielding effect by the switchboard can be expected more. Since the difference between the partial discharge electromagnetic wave signal by the first antenna 11 and that of the second antenna becomes large, the detection accuracy is improved.

本発明の実施の形態1を示す概略構成図。1 is a schematic configuration diagram showing a first embodiment of the present invention. 実施の形態1を説明するためのブロック構成図。FIG. 2 is a block configuration diagram for illustrating Embodiment 1; 部分放電発生源からアンテナ間の距離の違いによる電磁波出力信号の実測例を示す特性図。The characteristic view which shows the measurement example of the electromagnetic wave output signal by the difference in the distance between a partial discharge generation source and an antenna. 第1、第2電磁波出力信号検出部の出力信号の波形図。The wave form diagram of the output signal of a 1st, 2nd electromagnetic wave output signal detection part. 処理部の出力特性図。The output characteristic figure of a process part. 配電盤内外にアンテナを配置したとき電磁波出力測定例を示す説明図。Explanatory drawing which shows an example of electromagnetic wave output measurement when an antenna is arrange | positioned inside and outside a switchboard.

符号の説明Explanation of symbols

10…対象電気機器
11、21…第1、第2アンテナ
12、22…第1、第2ローノイズアンプ
13,23…第1、第2BPF
14,24…第1、第2アンプ
15,25…A/D変換器
16、26…電磁波出力信号検出部
27…記憶部
28…処理部
29…判定部
DESCRIPTION OF SYMBOLS 10 ... Target electric equipment 11, 21 ... 1st, 2nd antenna 12, 22 ... 1st, 2nd low noise amplifier 13, 23 ... 1st, 2nd BPF
DESCRIPTION OF SYMBOLS 14, 24 ... 1st, 2nd amplifier 15, 25 ... A / D converter 16, 26 ... Electromagnetic wave output signal detection part 27 ... Memory | storage part 28 ... Processing part 29 ... Determination part

Claims (3)

部分放電検出対象電気機器の近傍に第1アンテナを配置すると共に、この第1アンテナから一定の距離を隔てて第2アンテナを配置し、第1、第2アンテナにより前記電気機器からの部分放電電磁波とノイズを受信し、その受信信号を第1、第2ローノイズアンプ、第1、第2帯域フィルタ、第1、第2アンプ、第1、第2A/D変換器及び第1、第2電磁波出力信号検出部からなる電磁波出力信号検出装置を介して処理した後、部分放電電磁波とノイズとを判別する方法において、
前記第1、第2電磁波出力信号検出部からの両出力信号A,Bを記憶部に記憶した後に、処理部に両出力信号A,Bを供給し、処理部で両出力信号A,BがA/B>k(閾値)の式が成立するときに、部分放電電磁波であると判別し、前記式が不成立のときには、ノイズであるとして削除することを特徴とする対象電気機器からの部分放電電磁波有無判定方法。
A first antenna is arranged in the vicinity of the partial discharge detection target electric device, a second antenna is arranged at a certain distance from the first antenna, and the first and second antennas cause partial discharge electromagnetic waves from the electric device. And the received signal as first and second low noise amplifiers, first and second bandpass filters, first and second amplifiers, first and second A / D converters, and first and second electromagnetic wave outputs. In a method for discriminating between partial discharge electromagnetic waves and noise after processing through an electromagnetic wave output signal detection device comprising a signal detection unit,
After storing both output signals A and B from the first and second electromagnetic wave output signal detection units in the storage unit, both output signals A and B are supplied to the processing unit. The partial discharge from the target electric device is characterized in that it is determined as a partial discharge electromagnetic wave when the equation of A / B> k (threshold value) is satisfied, and is deleted as noise when the equation is not satisfied. Electromagnetic wave presence / absence determination method.
請求項1に記載の対象電気機器からの部分放電電磁波有無判定方法において、
前記処理部は、記憶部から供給される出力信号A,Bが、A<BかA=Bのときは、ノイズとして削除することを特徴とする対象電気機器からの部分放電電磁波有無判定方法。
In the method for determining the presence or absence of a partial discharge electromagnetic wave from the target electrical device according to claim 1,
The said process part is deleted as noise, when the output signals A and B supplied from a memory | storage part are A <B or A = B, The partial discharge electromagnetic wave presence determination method from the target electric equipment characterized by the above-mentioned.
請求項1に記載の対象電気機器からの部分放電電磁波有無判定方法において、
前記第1、第2アンプの増幅値を、(第2アンプの増幅値)/(第1アンプの増幅値)=kと設定しておき、前記処理部で[(出力信号A)−(出力信号B)]の式を実行した際に、その式が「正」の出力の場合のみ部分放電電磁波であると判別することを特徴とする対象電気機器からの部分放電電磁波有無判定方法。
In the method for determining the presence or absence of a partial discharge electromagnetic wave from the target electrical device according to claim 1,
The amplification values of the first and second amplifiers are set as (amplification value of the second amplifier) / (amplification value of the first amplifier) = k, and [(output signal A) − (output A method for determining the presence or absence of a partial discharge electromagnetic wave from a target electric device, wherein when the expression of the signal B)] is executed, the partial discharge electromagnetic wave is determined only when the expression is a “positive” output.
JP2008197155A 2008-07-31 2008-07-31 Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus Pending JP2010032450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197155A JP2010032450A (en) 2008-07-31 2008-07-31 Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197155A JP2010032450A (en) 2008-07-31 2008-07-31 Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus

Publications (1)

Publication Number Publication Date
JP2010032450A true JP2010032450A (en) 2010-02-12

Family

ID=41737087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197155A Pending JP2010032450A (en) 2008-07-31 2008-07-31 Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus

Country Status (1)

Country Link
JP (1) JP2010032450A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091926A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Vacuum deterioration monitoring apparatus
KR101467171B1 (en) * 2013-06-24 2014-12-01 주식회사 이레테크 Electromagnetic measurement system and signal processing apparatus
CN104380125A (en) * 2012-06-14 2015-02-25 普睿司曼股份公司 Partial discharge detection apparatus and method
WO2017014607A1 (en) * 2015-07-23 2017-01-26 (주) 에코투모로우코리아 Big data iot partial discharge detecting sensor having hardware-based noise removal function
JP2020134231A (en) * 2019-02-15 2020-08-31 日東工業株式会社 Discharge detection unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221880A (en) * 1990-01-27 1991-09-30 Hitachi Ltd Detector of insulation deterioration for electric apparatus
JPH0448276A (en) * 1990-06-15 1992-02-18 Hitachi Ltd Diagnostic device for insulation deterioration
JPH0457774U (en) * 1990-09-25 1992-05-18
JPH04212076A (en) * 1990-03-08 1992-08-03 Sumitomo Metal Ind Ltd Method and device for abnormal diagnostic method of electrical equipment
JPH0968556A (en) * 1995-08-31 1997-03-11 Nissin Electric Co Ltd Insulation diagnostic device for electrical equipment
JPH09318698A (en) * 1996-05-31 1997-12-12 Hokuriku Electric Power Co Inc:The Partial discharge detecting method and partial discharge detecting device
JP2001349157A (en) * 2000-06-05 2001-12-21 Tostem Corp Rolling door shutter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221880A (en) * 1990-01-27 1991-09-30 Hitachi Ltd Detector of insulation deterioration for electric apparatus
JPH04212076A (en) * 1990-03-08 1992-08-03 Sumitomo Metal Ind Ltd Method and device for abnormal diagnostic method of electrical equipment
JPH0448276A (en) * 1990-06-15 1992-02-18 Hitachi Ltd Diagnostic device for insulation deterioration
JPH0457774U (en) * 1990-09-25 1992-05-18
JPH0968556A (en) * 1995-08-31 1997-03-11 Nissin Electric Co Ltd Insulation diagnostic device for electrical equipment
JPH09318698A (en) * 1996-05-31 1997-12-12 Hokuriku Electric Power Co Inc:The Partial discharge detecting method and partial discharge detecting device
JP2001349157A (en) * 2000-06-05 2001-12-21 Tostem Corp Rolling door shutter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380125A (en) * 2012-06-14 2015-02-25 普睿司曼股份公司 Partial discharge detection apparatus and method
US9933474B2 (en) 2012-06-14 2018-04-03 Prysmian S.P.A. Partial discharge detection apparatus and method
WO2014091926A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Vacuum deterioration monitoring apparatus
CN104854676A (en) * 2012-12-12 2015-08-19 三菱电机株式会社 Vacuum deterioration monitoring apparatus
JP5819012B2 (en) * 2012-12-12 2015-11-18 三菱電機株式会社 Vacuum deterioration monitoring device
KR101467171B1 (en) * 2013-06-24 2014-12-01 주식회사 이레테크 Electromagnetic measurement system and signal processing apparatus
WO2017014607A1 (en) * 2015-07-23 2017-01-26 (주) 에코투모로우코리아 Big data iot partial discharge detecting sensor having hardware-based noise removal function
KR101801082B1 (en) * 2015-07-23 2017-11-27 (주) 에코투모로우코리아 Active partial discharge signal detection sensor with noise removal function
JP2020134231A (en) * 2019-02-15 2020-08-31 日東工業株式会社 Discharge detection unit
JP7337441B2 (en) 2019-02-15 2023-09-04 日東工業株式会社 Discharge detection unit

Similar Documents

Publication Publication Date Title
JP6514332B2 (en) Partial discharge detection system
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
KR101385318B1 (en) Apparatus for diagnosing partial discharge and method therefor
JP2010032450A (en) Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus
KR20180047135A (en) Apparatus for processing reflected wave
JP2009300289A (en) Partial discharge detection method by electromagnetic wave measurement
JP2009222537A (en) Partial discharge detecting method by electromagnetic wave measurement
JP5120133B2 (en) Partial discharge detection method by magnetic field measurement
JP2018112452A (en) Device and method for partial discharge monitoring
KR20070094680A (en) Method for measuring partial discharge occurring under the operation of a generator, introducing an external noise cancellation manner using differential technique
JP2019135455A (en) Partial discharge detector using multi-sensor
JP5872106B1 (en) Partial discharge signal processor
JP2006266820A (en) Method and apparatus for determining partial discharge
JP2005147890A (en) Insulation abnormality diagnostic device
KR100665879B1 (en) Apparatus for finding and processing partial discharge in power equipments
KR20170111040A (en) Apparatus for partial discharge of power cable on live state
JP6605992B2 (en) Insulation diagnostic apparatus and insulation diagnostic method for power equipment
JP2010230497A (en) Insulation deterioration diagnostic device of high voltage power receiving facility
US11391768B2 (en) Localizing breakdown in a high power RF network
JP2007292700A (en) Partial discharge position specifying method of stationary induction apparatus
JP5245623B2 (en) Partial discharge detection method and magnetic field detection sensor by magnetic field measurement
US11372040B2 (en) Method and arrangement for detecting partial discharges in an electric operating means
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JP2008216141A (en) Method of locating occurrence of partial discharge in electric power cable, and its device
KR101515231B1 (en) A method of partial discharge diagnosis for gas insulated switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925