JP2010032108A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010032108A
JP2010032108A JP2008194276A JP2008194276A JP2010032108A JP 2010032108 A JP2010032108 A JP 2010032108A JP 2008194276 A JP2008194276 A JP 2008194276A JP 2008194276 A JP2008194276 A JP 2008194276A JP 2010032108 A JP2010032108 A JP 2010032108A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
flow passage
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008194276A
Other languages
Japanese (ja)
Inventor
Masahito Watanabe
将人 渡辺
Kazuhiko Kezuka
和彦 毛塚
Kisaku Kaneko
喜作 金子
Motoo Morimoto
素生 森本
Misao Fujitsuka
操 藤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008194276A priority Critical patent/JP2010032108A/en
Publication of JP2010032108A publication Critical patent/JP2010032108A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein, although conventional technology enables a refrigerating cycle for performing defrosting operation without switching a refrigerant flow passage conversion device during heating, since the effect decreases with increasing distance from an inflow port of a high temperature refrigerant, frost formation at the approximately vertical center of an outdoor heat exchanger is unavoidable. <P>SOLUTION: In this air conditioner, a compressor, a refrigerant flow passage conversion device, an indoor heat exchanger, a pressure reducing device, high temperature pipes and an outdoor heat exchanger are interconnected by a refrigerant pipe, and defrosting operation can be performed alternately in each flow passage configured by dividing the outdoor heat exchanger into two without switching the refrigerant flow passage conversion device to cooling operation even during heating operation. The outdoor heat exchanger is vertically divided into the two in the flow passage configuration, and the two high temperature pipes are arranged in parallel with the flow passage and immediately below the divided outdoor heat exchangers, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は床置き式空気調和機に関する。   The present invention relates to a floor-standing air conditioner.

一般的な空気調和機として、室内に設置された室内機と、屋外に設置された室外機とを冷媒配管にて接続するものがある。この空気調和機は、圧縮機,冷媒流路変換装置,室内熱交換器,減圧器,室外熱交換器が配管で順次連結されている。冷房運転では圧縮機から吐出された高温高圧の冷媒ガスが室外熱交換器に入り、凝縮することで外気と熱交換を行う。室外熱交換器から吐出した常温高圧の冷媒は、減圧器により低温低圧の液冷媒となり、室内熱交換器に流入する。室内熱交換器内で液冷媒は、蒸発することで室内空気温度を吸熱し冷却空気を室内に吐出する。一方、暖房運転では、圧縮機から吐出した高温高圧の冷媒ガスは、室内熱交換器に流入することによって、室内空気と熱交換し、室内に高温空気を吐出する。室内熱交換器からの冷媒は、減圧器により常温低圧の液冷媒となり室外熱交換器に流入する。室外熱交換器では冷媒が蒸発することで外気と熱交換を行う。このように空気調和器は冷媒流路変換装置を切り替えることで冷媒の循環方向が切り替え可能であり、冷房と暖房の運転がなされる。   As a general air conditioner, there is an air conditioner in which an indoor unit installed indoors and an outdoor unit installed outdoors are connected by refrigerant piping. In this air conditioner, a compressor, a refrigerant flow converter, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are sequentially connected by piping. In the cooling operation, the high-temperature and high-pressure refrigerant gas discharged from the compressor enters the outdoor heat exchanger and condenses to exchange heat with the outside air. The room-temperature and high-pressure refrigerant discharged from the outdoor heat exchanger becomes a low-temperature and low-pressure liquid refrigerant by the decompressor and flows into the indoor heat exchanger. In the indoor heat exchanger, the liquid refrigerant evaporates to absorb the indoor air temperature and discharge the cooling air into the room. On the other hand, in the heating operation, the high-temperature and high-pressure refrigerant gas discharged from the compressor flows into the indoor heat exchanger, exchanges heat with room air, and discharges high-temperature air into the room. The refrigerant from the indoor heat exchanger becomes a liquid refrigerant at room temperature and low pressure by the decompressor and flows into the outdoor heat exchanger. In the outdoor heat exchanger, the refrigerant evaporates to exchange heat with the outside air. As described above, the air conditioner can switch the circulation direction of the refrigerant by switching the refrigerant flow conversion device, and the cooling and heating operations are performed.

しかし、上述の如く、暖房運転時には室外熱交換器は蒸発器として作用することとなり、外気中の湿気が室外熱交換器に霜となって付着する。従って、暖房運転においては定期的に除霜運転を行わないと、霜が成長し、結果的に、外気との熱交換ができなくなってしまう。   However, as described above, the outdoor heat exchanger acts as an evaporator during heating operation, and moisture in the outside air adheres to the outdoor heat exchanger as frost. Therefore, if the defrosting operation is not performed periodically in the heating operation, frost grows, and as a result, heat exchange with the outside air becomes impossible.

このため、一般的な空気調和機は除霜運転として、一時的に冷房運転を行い、高温高圧の冷媒ガスを用いて室外熱交換器の霜を溶かすものである。このとき、暖房運転中に一時的とはいえ冷房運転を行うことから室内が冷えてしまうおそれがある。また、近年の寒冷地や豪雪地帯における空気調和機の普及を考えると、着霜量が増加することから、除霜運転の頻度が多くなり、暖房効果が低減されることが明らかである。   For this reason, a general air conditioner performs a cooling operation temporarily as a defrosting operation, and melts the frost of the outdoor heat exchanger using a high-temperature and high-pressure refrigerant gas. At this time, since the cooling operation is performed temporarily during the heating operation, the room may be cooled. Moreover, considering the recent widespread use of air conditioners in cold regions and heavy snow regions, it is clear that the amount of frost formation increases, so that the frequency of defrosting operations increases and the heating effect is reduced.

これに対して、バイパス回路を用いて、暖房運転中でも冷媒流路変換装置を冷房運転に切り替えることなく高温高圧冷媒を室外熱交換器に流入させることが可能である(例えば、特許文献1参照)。さらに、圧縮機から吐出される高温高圧の冷媒ガスを、室内機に流入させる前に室外熱交換器の下部に高温パイプとして配置することで室外熱交換器の下部からの着霜と氷結を防ぐ技術や、同様に室内熱交換器から吐出される冷媒を減圧器よりも前に室外熱交換器の下部に高温パイプとして配置してほぼ同等の効果を得る技術が知られている。   On the other hand, by using the bypass circuit, it is possible to allow the high-temperature and high-pressure refrigerant to flow into the outdoor heat exchanger without switching the refrigerant flow path conversion device to the cooling operation even during the heating operation (see, for example, Patent Document 1). . Furthermore, the high-temperature and high-pressure refrigerant gas discharged from the compressor is arranged as a high-temperature pipe at the lower part of the outdoor heat exchanger before flowing into the indoor unit, thereby preventing frost and freezing from the lower part of the outdoor heat exchanger. There is a known technique and a technique for obtaining substantially the same effect by arranging the refrigerant discharged from the indoor heat exchanger as a high-temperature pipe below the outdoor heat exchanger before the decompressor.

特開2001−330347号公報JP 2001-330347 A

上記従来技術は、圧縮機から吐出される高温高圧の冷媒ガスを、室外熱交換器にバイパスすることによって除霜運転の効果を持たせたものである。しかし、使用環境によっては、室外熱交換器の冷媒容量に対してバイパスだけでは熱量不足であり、除霜効果を向上することができないという問題がある。特に室外熱交換器に流入するバイパスからの距離が遠くなるにつれ除霜効果は低くなり、結果、着霜してしまう。このことは寒冷地や豪雪地帯においては室外熱交換器の霜の成長という形で体現し、室外プロペラファンの破損や熱交換効率の低下という深刻な問題となる。   In the above-described conventional technology, the high-temperature and high-pressure refrigerant gas discharged from the compressor is bypassed to the outdoor heat exchanger, thereby providing the effect of the defrosting operation. However, depending on the usage environment, there is a problem that the defrosting effect cannot be improved because the amount of heat is insufficient with only the bypass for the refrigerant capacity of the outdoor heat exchanger. In particular, as the distance from the bypass flowing into the outdoor heat exchanger becomes longer, the defrosting effect becomes lower, resulting in frost formation. This manifests itself in the form of frost growth in outdoor heat exchangers in cold and heavy snowy areas, and becomes a serious problem of damage to the outdoor propeller fan and a decrease in heat exchange efficiency.

本発明の目的は、暖房運転を継続しながら除霜運転の可能な空気調和機において、着霜量を低減することにある。   The objective of this invention is reducing the amount of frost formation in the air conditioner in which defrost operation is possible, continuing heating operation.

上記課題は、室外熱交換器を概上下中心で物理的に分割し、室内熱交換器と減圧器との間に2つの高温パイプを設け、その各々を前述分割された室外熱交換器の各々直下に配置することで解決することができる。   The above-described problem is that the outdoor heat exchanger is physically divided substantially at the center in the vertical direction, two high-temperature pipes are provided between the indoor heat exchanger and the decompressor, and each of the divided outdoor heat exchangers is provided. It can be solved by placing it directly below.

本発明によれば、暖房運転時の室外熱交換器の着霜量を低減することができる。これにより暖房運転時に冷媒流路変換装置を切り替えることなく行われる除霜運転についても除霜時間の短縮と除霜運転回数の頻度の低減が可能となり、使用者の快適性が向上する。   ADVANTAGE OF THE INVENTION According to this invention, the amount of frost formation of the outdoor heat exchanger at the time of heating operation can be reduced. Accordingly, it is possible to reduce the defrosting time and the frequency of the number of defrosting operations for the defrosting operation that is performed without switching the refrigerant flow path conversion device during the heating operation, and the user's comfort is improved.

以下、図1および図2を用いて説明する。1は空気調和器の室内機,室外機を含めた冷凍サイクルである。2は圧縮機であり、スクロール形、若しくはロータリ形圧縮機である。3は冷媒流路変換装置であり、四方弁として使用者が要求する冷房運転または暖房運転の指令に応じて冷媒の循環方向を切り替えるためのものである。4は室内熱交換器である。5は二方弁である。6は減圧器であり、電動膨張弁を制御することで絞り量を変化可能である。7は室外熱交換器であり、暖房運転時には蒸発器として作用する。当該室外熱交換器7は通常の室外熱交換器を概上下中心で物理的に2分割されたものである。また、冷媒流路もそれぞれ独立したパイプ構成である。8は減圧器6と室内熱交換器4との間に設けられたパイプであり2本並列に流路に配置される。当該パイプは暖房運転においては室内熱交換器4から吐出される冷媒が流入するため、比較的高温となり、高温パイプ8として熱源となる。15は当該高温パイプ8の配置位置を示し、分割された室外熱交換器7の各々下部直下に配置される。これは室外熱交換器に熱源を与えるものである。16は太径バルブである。17は細径バルブである。   Hereinafter, description will be made with reference to FIGS. 1 and 2. Reference numeral 1 denotes a refrigeration cycle including an indoor unit and an outdoor unit of an air conditioner. Reference numeral 2 denotes a compressor, which is a scroll type or rotary type compressor. Reference numeral 3 denotes a refrigerant flow path conversion device for switching the circulation direction of the refrigerant according to a cooling operation or heating operation command requested by the user as a four-way valve. 4 is an indoor heat exchanger. 5 is a two-way valve. Reference numeral 6 denotes a decompressor, which can change the throttle amount by controlling the electric expansion valve. 7 is an outdoor heat exchanger which acts as an evaporator during heating operation. The outdoor heat exchanger 7 is a normal outdoor heat exchanger that is physically divided into two at the upper and lower centers. Moreover, the refrigerant flow paths also have independent pipe configurations. Reference numeral 8 denotes a pipe provided between the decompressor 6 and the indoor heat exchanger 4, and two pipes are arranged in parallel in the flow path. Since the refrigerant discharged from the indoor heat exchanger 4 flows in the heating operation, the pipe becomes a relatively high temperature and becomes a heat source as the high-temperature pipe 8. Reference numeral 15 denotes an arrangement position of the high-temperature pipe 8, which is arranged immediately below each of the divided outdoor heat exchangers 7. This provides a heat source for the outdoor heat exchanger. Reference numeral 16 denotes a large-diameter valve. Reference numeral 17 denotes a small diameter valve.

暖房運転時の運転動作としては、圧縮機2から吐出される高温高圧のガス冷媒は冷媒流路変更装置3を通過する前に室外機にバイパスされる構造を持つ。バイパスされた冷媒流路には二方弁5があり冷媒流路変更装置3を切り替えることなく必要に応じて高温高圧のガス冷媒を室外熱交換器に送ることが可能である。上述は公開公報によるものであり、本発明はさらに室外熱交換器を物理的に分割し、高温パイプ8を各々直下に配置することで暖房時の蒸発機に予熱を与えることが可能となり、着霜量の大幅低減が期待できる。当該高温パイプ8はサイクル構造上、二方弁5の開閉動作によらずほぼ一定温度の熱量を分割した室外熱交換器7に与えることが可能である。   As the operation during the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 has a structure that is bypassed to the outdoor unit before passing through the refrigerant flow path changing device 3. There is a two-way valve 5 in the bypassed refrigerant flow path, and a high-temperature and high-pressure gas refrigerant can be sent to the outdoor heat exchanger as needed without switching the refrigerant flow changing device 3. The above is based on the publication, and in the present invention, the outdoor heat exchanger is further physically divided, and the high-temperature pipes 8 are arranged directly below, respectively, so that it is possible to preheat the evaporator during heating. A significant reduction in the amount of frost can be expected. Due to the cycle structure, the high-temperature pipe 8 can supply heat to a substantially constant temperature to the outdoor heat exchanger 7 regardless of the opening / closing operation of the two-way valve 5.

また、室外熱交換器を物理的に分割した効果として、当該高温パイプ8を挟み込む空間を確保できることと、高温高圧の冷媒ガスの分割された室外熱交換器7における経路が概半分と短くなることで効果的に除霜作用が働くものである。   Further, as an effect of physically dividing the outdoor heat exchanger, a space for sandwiching the high-temperature pipe 8 can be secured, and a path in the outdoor heat exchanger 7 where the high-temperature and high-pressure refrigerant gas is divided is shortened to approximately half. The defrosting action works effectively.

高温パイプ8を分割された室外熱交換器7に挟み込むことで室外熱交換器の概中心に高温パイプ8を配置でき、概中心配置の高温パイプからの熱量は当該上側室外熱交換器に熱量を与えるだけでなく、当然に下側室外熱交換器上部にその熱量を与え、霜を溶解した後に発生する中温度の水を下部の熱交換器に落とすことでさらに除霜を促進することとなる。   The high temperature pipe 8 can be arranged at the approximate center of the outdoor heat exchanger by sandwiching the high temperature pipe 8 between the divided outdoor heat exchangers 7, and the amount of heat from the approximate center arrangement of the high temperature pipe is transferred to the upper outdoor heat exchanger. Naturally, the amount of heat is given to the upper part of the lower outdoor heat exchanger, and defrosting is further promoted by dropping the medium temperature water generated after melting the frost to the lower heat exchanger. .

図2は請求項2の構成を示し、図1の請求項1の構成に対して室内熱交換器4と当該高温パイプ8の片方との間に逆止弁9を追加したものである。当該逆止弁9は冷房運転時に全閉とすることで減圧器6を経て低温低圧となった液冷媒を室外熱交換器7に循環させる量を半分に低減でき、冷房能力の低下を減衰させることが可能となる。   FIG. 2 shows the configuration of claim 2, wherein a check valve 9 is added between the indoor heat exchanger 4 and one of the hot pipes 8 in the configuration of claim 1 of FIG. 1. When the check valve 9 is fully closed during the cooling operation, the amount of liquid refrigerant that has become low-temperature and low-pressure through the pressure reducer 6 can be halved to circulate to the outdoor heat exchanger 7, and the decrease in cooling capacity is attenuated. It becomes possible.

図3の如く構成することで効果的に着霜量を低減できる。10は室外ファンである。11は室内ファンである。12は集合管であり、効率よく室外熱交換器7から冷媒を集合させる。13は消音器および冷媒タンクである。14は除塵管であり、金属網を用いてストレーナとして機能する。   By configuring as shown in FIG. 3, the amount of frost formation can be effectively reduced. Reference numeral 10 denotes an outdoor fan. 11 is an indoor fan. A collecting pipe 12 efficiently collects refrigerant from the outdoor heat exchanger 7. Reference numeral 13 denotes a silencer and a refrigerant tank. Reference numeral 14 denotes a dust removal pipe, which functions as a strainer using a metal net.

本発明に係る空気調和機の構成図。The block diagram of the air conditioner which concerns on this invention. 本発明に係る空気調和機の構成図。The block diagram of the air conditioner which concerns on this invention. 本発明に係る空気調和機の構成図。The block diagram of the air conditioner which concerns on this invention.

符号の説明Explanation of symbols

1 冷凍サイクル
2 圧縮機
3 冷媒流路変換装置
4 室内熱交換器
5 二方弁
6 減圧器
7 分割された室外熱交換器
8 高温パイプ
9 逆止弁
10 室外ファン
11 室内ファン
12 集合管
13 消音器および冷媒タンク
14 除塵管
15 高温パイプ配置位置
16 太径バルブ
17 細径バルブ
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Refrigerant flow path converter 4 Indoor heat exchanger 5 Two-way valve 6 Decompressor 7 Divided outdoor heat exchanger 8 Hot pipe 9 Check valve 10 Outdoor fan 11 Indoor fan 12 Collecting pipe 13 Silencer And refrigerant tank 14 Dust removal pipe 15 Hot pipe arrangement position 16 Large diameter valve 17 Small diameter valve

Claims (2)

圧縮機,冷媒流路変換装置,室内熱交換器,減圧器,高温パイプ,室外熱交換器を冷媒管で接続し、暖房運転時でも前記冷媒流路変換装置を冷房運転に切り替えることなく室外熱交換器を2分割する流路構成の各々において交互に除霜運転が可能な空気調和機において、
前記室外熱交換器を前記流路構成で上下に2分割し、かつ、前記高温パイプが流路に対して並列に2つ配置され、前記高温パイプが前記分割された室外熱交換器の各々直下に配置される空気調和機。
A compressor, a refrigerant flow converter, an indoor heat exchanger, a decompressor, a high-temperature pipe, and an outdoor heat exchanger are connected by a refrigerant pipe, and the outdoor heat is not switched without switching the refrigerant flow converter to the cooling operation even during heating operation. In the air conditioner capable of alternately defrosting operation in each of the flow path configurations dividing the exchanger into two parts,
The outdoor heat exchanger is vertically divided into two in the flow path configuration, and the two high temperature pipes are arranged in parallel to the flow path, and the high temperature pipes are directly below the divided outdoor heat exchangers. Air conditioner placed in the.
請求項1において、並列に配置された前記高温パイプの片方と前記室内熱交換器との間に逆止弁を備えた空気調和機。   2. The air conditioner according to claim 1, wherein a check valve is provided between one of the hot pipes arranged in parallel and the indoor heat exchanger.
JP2008194276A 2008-07-29 2008-07-29 Air conditioner Pending JP2010032108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194276A JP2010032108A (en) 2008-07-29 2008-07-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194276A JP2010032108A (en) 2008-07-29 2008-07-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2010032108A true JP2010032108A (en) 2010-02-12

Family

ID=41736794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194276A Pending JP2010032108A (en) 2008-07-29 2008-07-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2010032108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534755A (en) * 2014-12-02 2015-04-22 青岛澳柯玛超低温冷冻设备有限公司 Refrigerating system with automatic defrosting function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290369A (en) * 1987-05-22 1988-11-28 株式会社東芝 Air conditioner
JPS6441781A (en) * 1987-08-07 1989-02-14 Toshiba Corp Air conditioner
JP2001330347A (en) * 2000-05-22 2001-11-30 Hitachi Ltd Air-conditioner
JP2008064381A (en) * 2006-09-07 2008-03-21 Hitachi Appliances Inc Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290369A (en) * 1987-05-22 1988-11-28 株式会社東芝 Air conditioner
JPS6441781A (en) * 1987-08-07 1989-02-14 Toshiba Corp Air conditioner
JP2001330347A (en) * 2000-05-22 2001-11-30 Hitachi Ltd Air-conditioner
JP2008064381A (en) * 2006-09-07 2008-03-21 Hitachi Appliances Inc Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534755A (en) * 2014-12-02 2015-04-22 青岛澳柯玛超低温冷冻设备有限公司 Refrigerating system with automatic defrosting function

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP6768073B2 (en) Air conditioner
JP2021509945A (en) Air conditioner system
CN204923448U (en) Air-conditioning hot water system
JP2006258343A (en) Air conditioning system
JPWO2018002983A1 (en) Refrigeration cycle equipment
US20130219943A1 (en) Outdoor heat exchanger and air conditioner comprising the same
CN103673138B (en) Air-conditioner and control method thereof
CN106288564A (en) Air conditioning system
JP2012077921A (en) Refrigeration apparatus
CN104515322A (en) Air conditioning system capable of realizing continuous heating
JP2007010288A (en) Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
WO2019091240A1 (en) Heating circulation system for air conditioning, and air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
CN104236155A (en) Air conditioning system with coolant supercooling, defrosting and heating functions and control method thereof
JP5882152B2 (en) Air conditioner
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
JP7034251B2 (en) Heat source equipment and refrigeration cycle equipment
JP5404471B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD
JP2017194201A (en) Air conditioner
JP2012117708A (en) Air conditioner
JP2018080899A (en) Refrigeration unit
CN109539620B (en) Air conditioning system
JP2018036002A (en) Air Conditioning Hot Water Supply System

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20101203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Effective date: 20120615

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218