JP2010030225A - セルロースアシレートフィルム、位相差膜、偏光板および液晶表示装置 - Google Patents

セルロースアシレートフィルム、位相差膜、偏光板および液晶表示装置 Download PDF

Info

Publication number
JP2010030225A
JP2010030225A JP2008196867A JP2008196867A JP2010030225A JP 2010030225 A JP2010030225 A JP 2010030225A JP 2008196867 A JP2008196867 A JP 2008196867A JP 2008196867 A JP2008196867 A JP 2008196867A JP 2010030225 A JP2010030225 A JP 2010030225A
Authority
JP
Japan
Prior art keywords
group
film
cellulose acylate
liquid crystal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008196867A
Other languages
English (en)
Inventor
Nobutaka Fukagawa
伸隆 深川
Masaki Noro
正樹 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008196867A priority Critical patent/JP2010030225A/ja
Publication of JP2010030225A publication Critical patent/JP2010030225A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】本発明は、ブリードアウト等の面状故障がなく、所望のレターデーションを有し、耐光性に優れ、安価で生産性の高いフィルムを提供することを課題とする。更に広範囲の視野角において高いコントラストの画像を表示可能な液晶表示装置、特にVAモードの液晶表示装置、を提供すること目的とする。
【解決手段】基層と基層に積層された表層を有し、表層に分子量が2000以上の紫外線吸収ポリマーを含有するセルロースアシレートフィルム。
【選択図】なし

Description

本発明は、セルロースアシレートフィルム、位相差膜、偏光板および液晶表示装置に関する。
近年のノートパソコンやデスクトップパソコンの液晶モニターなど、液晶表示装置の普及はめざましいものがあり、オフィスや家庭にあるパソコンのほとんどが液晶化されている。最近は、家庭用のテレビも薄型化が進み、大型液晶テレビの普及も進んでいる。そのため、液晶表示装置の生産量も大幅に増加しており、さらに今後も増加が予想される。
その一方で、地球温暖化など環境に対する関心も高く、液晶表示装置に対してもできるだけ二酸化炭素排出量を削減した方式での製造が求められるようになってきている。
液晶表示装置に使用される偏光板には、セルロースアシレートフィルムが保護フィルムとして使用されることが一般的であった。このセルロースアシレートフィルムについても、できるだけエネルギー負荷の小さい製造方法が求められており、フィルムの薄膜化はこれに対する有力な手段として期待されている。
セルロースアシレートフィルムの薄膜化を進めるにあたっての大きな課題は光学補償フィルムとして使用されているセルロースアシレートフィルムの薄膜化である。すなわち、現在使用量が増加している液晶テレビ、液晶モニター用は、視野角拡大のための光学補償フィルムが使用されており、偏光板保護フィルムとして用いられているセルロースアシレートフィルムにこの機能を持たせることが一般的となってきているが、この光学補償フィルムの薄膜化が困難であった。
光学補償フィルムに必要なレターデーションは膜厚に比例するため、薄膜化するとレターデーションが低下してしまう。レターデーションを増加させるために、レターデーション上昇剤を添加する方法(特許文献1)や総アシル基置換度を低下させる方法(特許文献2)が提案されている。しかし、前者ではレターデーション上昇剤そのもの、後者ではフィルム物性を調節するために添加される低分子化合物(以下フィルム物性調節剤)のブリードアウトが問題となり、十分な性能が得られないという問題があった。さらに、レターデーション上昇剤やフィルム物性調節剤には芳香環を有する化合物を使用することが一般的であるが、これらの化合物は紫外線を吸収して分解しじやすい性質を有する。
一般に芳香環を有する化合物の紫外光による分解を抑制する方法としては、紫外線を吸収しても自身は分解しない化合物、いわゆる紫外線吸収剤を添加し、該芳香環を有する化合物が吸収する紫外線の量を低下せしめることが一般的である。従来紫外線吸収剤としては、ベンゾトリアゾール型化合物、ベンゾフェノン型化合物等紫外光を吸収して励起状態になった後に分子内で失活可能な構造を有する化合物が用いられており、例えば、特許文献3には、ベンゾトリアゾール構造を有する共重合ポリマーを含有するセルロースアシレートフィルムが開示されている。しかし、レターデーション上昇剤やフィルム物性調節剤等の添加剤の中には、上記紫外線吸収剤と共存した場合、励起状態の紫外線吸収剤から、該添加剤へのエネルギー移動を起こり、該添加剤の分解を促進して逆にステインを生じやすくしてしまう場合があった。さらに、ある種のレターデーション発現剤と紫外線吸収剤を共存させた場合、レターデーション発現剤によるレターデーション発現が阻害される問題があり、改良が求められていた。
特表2000−111914号公報 特開2004−170760号公報 特開2007−041280号公報
本発明は前記のような事情に鑑みてなされたもので、ブリードアウト等の面状故障がなく、所望のレターデーションを有し、耐光性に優れ、安価で生産性の高いフィルムを提供することを課題とする。更に広範囲の視野角において高いコントラストの画像を表示可能な液晶表示装置、特にVAモードの液晶表示装置、を提供することを課題とする。
また、本発明は、液晶表示装置、特にVAモードの液晶表示装置、の視野角の拡大及び視野角に依存したカラーシフトの軽減に寄与する光学補償フィルム及び偏光板を提供することを課題とする。
この知見に基づき、紫外線吸収剤を高分子化した紫外線吸収ポリマーを、他の添加剤を添加する層に対して上層に添加することにより、他の添加剤へのエネルギー移動をおこすことなく、励起状態の紫外線吸収剤が効果的に分子内失活反応を起こし、基底状態の化合物を再生できることを見出した。
さらに、他の添加剤がセルロースアシレートに対する相溶性が不十分でブリードアウトを生じやすい化合物の場合、上層に紫外線吸収ポリマーを含有する層を設けることにより、効果的にブリードアウトを抑制できることを見出した。
さらに、高分子化した紫外線吸収剤を、レターデーション発現剤を添加する層の上層に添加することにより、レターデーション発現剤によるレターデーション発現を阻害することなく、効果的に耐光性を向上できることを見出した。
上記課題は、以下の手段によって解決される。
〔1〕
基層と基層に積層された表層を有し、表層に分子量が2000以上の紫外線吸収ポリマーを含有するセルロースアシレートフィルム。
〔2〕
表層における前記紫外線吸収ポリマーの濃度が3質量%以上15質量%以下である〔1〕に記載のセルロースアシレートフィルム。
〔3〕
基層にオクタノール/水分配係数が7.0以上で分子量2000以下の疎水化剤を含有する〔1〕又は〔2〕に記載のセルロースアシレートフィルム。
〔4〕
〔1〕〜〔3〕のいずれかに記載のセルロースアシレートフィルムを含む位相差膜。
〔5〕
〔1〕〜〔3〕のいずれか1項に記載のセルロースアシレートフィルムを有する偏光板。
〔6〕
一対の第1及び第2の偏光子と、該一対の偏光子の間に配置された液晶セルと、前記第1の偏光子と前記液晶セルとの間に、〔1〕〜〔3〕のいずれか1項に記載のセルロースアシレートフィルムと、を有する液晶表示装置。
本発明によれば、面状故障がなく、耐光性に優れ、広範囲の視野角において高いコントラストの画像を表示可能な液晶表示装置、特にVAモードの液晶表示装置、を提供することができる。
また、本発明によれば、液晶表示装置、特にVAモードの液晶表示装置、の視野角の拡大に寄与する位相差膜、光学補償フィルム及び偏光板を提供することができる。
特に本発明によれば上記のような性能を有する光学補償フィルムを安定的かつ高い生産性で提供することができる。
本明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。また実質的に直交もしくは平行とは、厳密な角度±10°の範囲を意味する。
以下本発明について詳しく説明する。
本発明のセルロースアシレートフィルムは、基層と基層に積層された表層を有し、表層に分子量2000以上の紫外線吸収ポリマーを含有する。表層に紫外線吸収ポリマーを含有することにより、紫外光によるフィルムの性能変化を効果的に抑制でき、かつ基層中の添加剤が表層に拡散して発生するブリードアウトを抑制できるものである。
[表層]
まず、本発明のセルロースアシレートフィルムの表層について詳しく説明する。
(紫外線吸収ポリマー)
本発明の表層は分子量2000以上の紫外線吸収ポリマーを含有する。紫外線吸収ポリマーの吸収極大の波長は250nm以上380nm以下であることが好ましい。この範囲に吸収極大を有するポリマーを添加することにより、フィルムが着色することなく効果的に耐光性を付与することができる。
本発明に用いられる紫外線吸収ポリマーの質量平均分子量は2000以上である。200以上30000以下であることが好ましく、より好ましくは5000以上20000以下である。紫外線吸収ポリマーの質量平均分子量が2000以上であれば表層から内層への紫外線吸収ポリマーの拡散が抑制できるため好ましい。
以下に本発明で好ましく使用される紫外線吸収ポリマーについて詳しく説明する。
本発明では下記一般式(1)で表される紫外線吸収モノマーとエチレン性不飽和モノマーから合成される紫外線吸収性共重合ポリマーを好ましく用いることができる。
Figure 2010030225
(一般式(1)中、nは0〜3の整数を表す。R1〜R5は、各々独立に水素原子、ハロゲン原子又は置換基を表す。R6は、水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロ環基を表す。Xは−COO−、−CONR7−、−OCO−又は−NR7CO−を表す。R7は水素原子、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。)
前記一般式(1)において、nは0〜3の整数を表し、nが2以上の時、複数のR5同士は同じであっても異なっていても良く、また互いに連結して5〜7員の環を形成していても良い。
1〜R5は、各々独立に水素原子、ハロゲン原子又は置換基を表す。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、好ましくはフッ素原子、塩素原子である。
置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基など)、アルケニル基(例えば、ビニル基、アリル基、3−ブテン−1−イル基など)、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、p−クロロフェニル基など)、ヘテロ環基(例えば、ピリジル基、ベンズイミダゾリル基、ベンズチアゾリル基、ベンズオキサゾリル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基など)、アリールオキシ基(例えば、フェノキシ基など)、ヘテロ環オキシ基(例えば、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基など)、アシルオキシ基(例えば、アセトキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アシル基(例えば、アセチル基、プロパノイル基、ブチロイル基など)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基など)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基など)、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基など)、アミノ基、アルキルアミノ基(例えば、メチルアミノ基、エチルアミノ基、ジエチルアミノ基など)、アニリノ基(例えば、アニリノ基、N−メチルアニリノ基など)、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基など)、ヒドロキシル基、シアノ基、ニトロ基、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基など)、スルファモイルアミノ基(例えば、ジメチルスルファモイルアミノ基など)、スルホニル基(例えば、メタンスルホニル基、ブタンスルホニル基、フェニルスルホニル基など)、スルファモイル基(例えば、エチルスルファモイル基、ジメチルスルファモイル基など)、スルホニルアミノ基(例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基など)、ウレイド基(例えば、3−メチルウレイド基、3,3−ジメチルウレイド基、1,3−ジメチルウレイド基など)、イミド基(例えば、フタルイミド基など)、シリル基(例えば、トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基など)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、n−ブチルチオ基など)、アリールチオ基(例えば、フェニルチオ基など)等が挙げられるが、好ましくは、アルキル基、アリール基である。
一般式(1)において、R1〜R5で表される各基が、更に置換可能な基である場合、更に置換基を有していてもよく、また、隣接するR1〜R4が互いに連結して5〜7員の環を形成していてもよい。
6は、水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロ環基を表す。
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、アミル基、イソアミル基、ヘキシル基などが挙げられる。また、上記アルキル基は更にハロゲン原子、置換基を有していてもよく、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、置換基としては、例えば、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、p−クロロフェニル基など)、アシル基(例えば、アセチル基、プロパノイル基、ブチロイル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基など)、アリールオキシ基(例えば、フェノキシ基など)、アミノ基、アルキルアミノ基(例えば、メチルアミノ基、エチルアミノ基、ジエチルアミノ基など)、アニリノ基(例えば、アニリノ基、N−メチルアニリノ基など)、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基など)、ヒドロキシル基、シアノ基、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基など)、アシルオキシ基(例えば、アセトキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基など)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基など)が挙げられる。
シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和環式炭化水素を挙げることが出来、これらは無置換でも、置換されていても良い。
アルケニル基としては、例えば、ビニル基、アリル基、1−メチル−2−プロペニル基、3−ブテニル基、2−ブテニル基、3−メチル−2−ブテニル基、オレイル基などが挙げられるが、好ましくはビニル基、1−メチル−2−プロペニル基である。
アルキニル基としては、例えば、エチニル基、ブタジイル基、フェニルエチニル基、プロパルギル基、1−メチル−2−プロピニル基、2−ブチニル基、1,1−ジメチル−2−プロピニル基などが挙げられるが、好ましくは、エチニル基、プロパルギル基である。
アリール基としては、例えば、フェニル基、ナフチル基、アントラニル基などが挙げられるが、上記アリール基は更にハロゲン原子、置換基を有していてもよく、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、沃素原子などが挙げられ、置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基など)、アシル基(例えば、アセチル基、プロパノイル基、ブチロイル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基など)、アリールオキシ基(例えば、フェノキシ基など)、アミノ基、アルキルアミノ基(例えば、メチルアミノ基、エチルアミノ基、ジエチルアミノ基など)、アニリノ基(例えば、アニリノ基、N−メチルアニリノ基など)、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基など)、ヒドロキシル基、シアノ基、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基など)、アシルオキシ基(例えば、アセトキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基など)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基など)が挙げられる。
ヘテロ環基としては、例えば、ピリジル基、ベンズイミダゾリル基、ベンズチアゾリル基、ベンズオキサゾリル基等が挙げられる。R6として、好ましくはアルキル基である。
一般式(1)において、Xは−COO−、−CONR7−、−OCO−又は−NR7CO−を表す。
7は水素原子、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、アミル基、イソアミル基、ヘキシル基などが挙げられる。かかるアルキル基は、更にハロゲン原子、置換基を有していてもよく、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、置換基としては、例えば、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、p−クロロフェニル基など)、アシル基(例えば、アセチル基、プロパノイル基、ブチロイル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基など)、アリールオキシ基(例えば、フェノキシ基など)、アミノ基、アルキルアミノ基(例えば、メチルアミノ基、エチルアミノ基、ジエチルアミノ基など)、アニリノ基(例えば、アニリノ基、N−メチルアニリノ基など)、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基など)、ヒドロキシル基、シアノ基、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基など)、アシルオキシ基(例えば、アセトキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基など)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基など)が挙げられる。
シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和環式炭化水素を挙げることが出来、これらは無置換でも、置換されていても良い。
アリール基としては、例えば、フェニル基、ナフチル基、アントラニル基などが挙げられるが、かかるアリール基は更にハロゲン原子、置換基を有していてもよく、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、沃素原子などが挙げられ、置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基など)、アシル基(例えば、アセチル基、プロパノイル基、ブチロイル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基など)、アリールオキシ基(例えば、フェノキシ基など)、アミノ基、アルキルアミノ基(例えば、メチルアミノ基、エチルアミノ基、ジエチルアミノ基など)、アニリノ基(例えば、アニリノ基、N−メチルアニリノ基など)、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基など)、ヒドロキシル基、シアノ基、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基など)、アシルオキシ基(例えば、アセトキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基など)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基など)が挙げられる。
ヘテロ環基としては、例えば、ピリジル基、ベンズイミダゾリル基、ベンズチアゾリル基、ベンズオキサゾリル基等が挙げられる。
7として、好ましくは水素原子である。
Xとして、好ましくは−COO−である。
本発明でいう重合性基とは、不飽和エチレン系重合性基又は二官能系重縮合性基を意味する。
重合性基として好ましくは不飽和エチレン系重合性基である。
不飽和エチレン系重合性基の具体例としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基、スチリル基、アクリルアミド基、メタクリルアミド基、シアン化ビニル基、2−シアノアクリルオキシ基、1,2−エポキシ基、ビニルベンジル基、ビニルエーテル基などが挙げられるが、好ましくは、ビニル基、アクリロイル基、メタクリロイル基アクリルアミド基、メタクリルアミド基である。また、重合性基を部分構造として有するとは、上記重合性基が直接、若しくは2価以上の連結基によって結合していることを意味し、2価以上の連結基とは、例えば、アルキレン基(例えば、メチレン、1,2−エチレン、1,3−プロピレン、1,4−ブチレン、シクロヘキサン−1,4−ジイルなど)、アルケニレン基(例えば、エテン−1,2−ジイル、ブタジエン−1,4−ジイルなど)、アルキニレン基(例えば、エチン−1,2−ジイル、ブタン−1,3−ジイン−1,4−ジイルなど)、少なくとも一つの芳香族基を含む化合物から誘導される連結基(例えば、置換若しくは無置換のベンゼン、縮合多環炭化水素、芳香族複素環、芳香族炭化水素環集合、芳香族複素環集合など)、ヘテロ原子連結基(酸素、硫黄、窒素、ケイ素、リン原子など)が挙げられるが、好ましくは、アルキレン基、及び、ヘテロ原子で連結する基である。これらの連結基は更に組み合わせて複合基を形成してもよい。
本発明において、紫外線吸収モノマーから誘導される紫外線吸収ポリマーの質量平均分子量は2000以上である。
該紫外線吸収ポリマーの質量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。重合温度は通常室温から130℃、好ましくは50℃から100℃で行われる。
該紫外線吸収ポリマーは、紫外線吸収モノマーのみの単重合体であっても、他の重合性モノマーとの共重合体であってもよい。
共重合可能な他の重合性モノマーとしては、例えば、スチレン誘導体(例えば、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルナフタレンなど)、アクリル酸エステル誘導体(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなど)、メタクリル酸エステル誘導体(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸オクチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等)、アルキルビニルエーテル(例えば、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテルなど)、アルキルビニルエステル(例えば、ギ酸ビニル、酢酸ビニル、酪酸ビニル、カプロン酸ビニル、ステアリン酸ビニルなど)、クロトン酸、マレイン酸、フマル酸、イタコン酸、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミドなどの不飽和化合物が挙げられる。好ましくは、アクリル酸メチル、メタクリル酸メチル、酢酸ビニルである。
紫外線吸収モノマーから誘導されるポリマー中の紫外線吸収モノマー以外の共重合成分が、親水性のエチレン性不飽和モノマーを少なくとも1種含有することも好ましい。
親水性のエチレン性不飽和モノマーとしては、親水性で分子中に重合可能な不飽和二重結合を有するもので有れば特に制限されず、例えば、アクリル酸或いはメタクリル酸等の不飽和カルボン酸、若しくはヒドロキシル基又はエーテル結合を有する、アクリル酸若しくはメタクリル酸エステル(例えば、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸テトラヒドロフルフリル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、2,3−ジヒドロキシ−2−メチルプロピルメタクリレート、アクリル酸テトラヒドロフルフリル、アクリル酸2−エトキシエチル、アクリル酸ジエチレングリコールエトキシレート、アクリル酸3−メトキシブチルなど)、アクリルアミド、N,N−ジメチル(メタ)アクリルアミド等の(N−置換)(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルオキサゾリドン等が挙げられる。
親水性のエチレン性不飽和モノマーとしては、水酸基若しくはカルボキシル基を分子内に有する(メタ)アクリレートが好ましく、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピルが特に好ましい。
これらの重合性モノマーは、1種、または2種以上併用して紫外線吸収モノマーと共重合させることができる。
一般式(I)で表される紫外線吸収性共重合ポリマーの重合方法は、特に問わないが、従来公知の方法を広く採用することが出来、例えば、ラジカル重合、アニオン重合、カチオン重合などが挙げられる。ラジカル重合法の開始剤としては、例えば、アゾ化合物、過酸化物等が挙げられ、アゾビスイソブチロニトリル(AIBN)、アゾビスイソブチル酸ジエステル誘導体、過酸化ベンゾイル、過酸化水素などが挙げられる。重合溶媒は特に問わないが、例えば、トルエン、クロロベンゼン等の芳香族炭化水素系溶媒、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ジメチルホルムアミド等のアミド系溶媒、メタノール等のアルコール系溶媒、酢酸メチル、酢酸エチル等のエステル系溶媒、アセトン、シクロヘキサノン、メチルエチルケトンなどのケトン系溶媒、水溶媒等が挙げられる。溶媒の選択により、均一系で重合する溶液重合、生成したポリマーが沈澱する沈澱重合、ミセル状態で重合する乳化重合、懸濁状態で重合する懸濁重合を行うこともできる。但し、乳化重合によって得られる紫外線吸収性ラテックスは光学フィルム用途として適していない。
上記紫外線吸収モノマー、これと共重合可能な重合性モノマー及び親水性のエチレン性不飽和モノマーの使用割合は、得られる紫外線吸収性共重合ポリマーと他の透明ポリマーとの相溶性、光学フィルムの透明性や機械的強度に対する影響を考慮して適宜選択される。
紫外線吸収モノマーから誘導されるポリマー中の紫外線吸収モノマーの含有量が1〜70質量%であることが好ましく、より好ましくは、5〜60質量%である。紫外線吸収ポリマーにおける紫外線吸収モノマーの含有量が1質量%未満の場合、所望の紫外線吸収性能を満たそうとした場合に多量の紫外線吸収ポリマーを使用しなければならず、ヘイズの上昇或いは析出などにより透明性が低下し、フィルム強度を低下させる要因となる。一方、紫外線吸収ポリマーにおける紫外線吸収モノマーの含有量が70質量%を超えた場合、他のポリマーとの相溶性が低下するため、透明な光学フィルムを得ることが出来ない。また、溶媒に対する溶解度が低くなり、フィルム作製の際の作業性、生産性が劣る。
本発明では、紫外線吸収ポリマーに親水性エチレン性不飽和モノマーが含まれることが好ましい。
親水性エチレン性不飽和モノマーは、上記紫外線吸収性共重合体中に、5〜50質量%含まれることが好ましい。含有量が5質量%以上で相溶性が改良し、50質量%以下でメチレンクロライドなどの溶剤への溶解性が良化するため好ましい。親水性エチレン性不飽和モノマーの更に好ましい含量は10〜25質量%である。
紫外線吸収モノマー及び親水性エチレン性不飽和モノマーの好ましい含有量を満たすために、両者に加え、更に分子中に親水性基を有さないエチレン性不飽和モノマーを共重合させることが好ましい。
紫外線吸収モノマー及び(非)親水性エチレン性不飽和モノマーは、各々2種以上混合して共重合させても良い。
以下、本発明に好ましく用いられる紫外線吸収モノマーの具体例を例示するが、これらに限定されるものではない。
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
該紫外線吸収ポリマー、紫外線吸収モノマー及びその中間体は公知の文献を参照して合成することができる。例えば、米国特許第3,072,585号、同3,159,646号、同3,399,173号、同3,761,272号、同4,028,331号、同5,683,861号、ヨーロッパ特許第86,300,416号、特開昭63−227575号、同63−185969号、Polymer Bulletin.V.20(2)、169−176及びChemical Abstracts V.109、No.191389などを参照して合成することができる。
該紫外線吸収ポリマーの表層への添加方法は、直接添加しても良いが、生産性の優れるインライン添加が好ましい。インライン添加は、予め有機溶媒(例えば、メタノール、エタノール、メチレンクロライドなど)に溶解させた後、インラインミキサー等でドープ組成中に添加する方法である。
紫外線吸収ポリマーの表層における濃度は3質量%以上15質量%以下が好ましく、5質量%以上15質量%以下がさらに好ましい。紫外線吸収ポリマー濃度が高い方が、励起状態からの失活過程がより効果的に働くが、一方、紫外線ポリマー濃度が高すぎると紫外線吸収ポリマーがセルロースアシレートと層分離しフィルムのヘイズが上昇しやすくなる。紫外線吸収ポリマー濃度を上記範囲に調節することにより、フィルムの透明性を保ったまま耐光性を付与することが可能となる。
(メインポリマー)
次に本発明の表層で好ましく用いられるメインポリマーについて詳しく説明する。本発明においてメインポリマーとは、表層全体の50質量%以上を占めるポリマーを指すものとする。
本発明のメインポリマーは、セルロースアシレートが特に好ましく、中でもアシル基の平均炭素数が4以下のセルロースアシレートが最も好ましい。
以下に本発明で好ましく用いられるセルロースアシレートについて詳しく説明する。
原料として用いるセルロースアシレートの置換度は、セルロースの構成単位((β)1,4−グリコシド結合しているグルコース)に存在している、3つの水酸基がアシル化されている割合を意味する。置換度(アシル化度)は、セルロースの構成単位質量当りの結合脂肪酸量を測定して算出することができる。測定方法は、「ASTM D817−91」に準じて実施する。
前記セルロースアシレートは、アシル化度が2.40〜2.97であるセルロースアシレートが好ましい。前記アシル化度は2.60〜2.95がさらに好まく、最も好ましくは2.70〜2.90である。また、アシル基の平均炭素数は2以上4以下が好ましく、2以上3.5以下がさらに好ましい。
前記セルロースアシレートは、300〜800の質量平均重合度を有することが好ましく、300〜600の質量平均重合度を有することがさらに好ましい。前記セルロースアシレートは、70,000〜230,000の数平均分子量を有することが好ましく、75,000〜230,000の数平均分子量を有することがさらに好ましく、78,000〜120,000の数平均分子量を有することが最も好ましい。
前記セルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例えば、酢酸)や塩化メチレンが使用される。触媒としては、硫酸のようなプロトン性触媒が用いられる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物が用いられる。工業的に最も一般的な合成方法では、セルロースをアセチル基及び他のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸)又はそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースアシレートを合成する。この方法において、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖β1→4グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースアシレートの重合度が低下し、製造するセルロースアシレートフィルムの物性が低下する。そのため、反応温度のような反応条件は、得られるセルロースアシレートの重合度や分子量を考慮して決定することが好ましい。
重合度の高い(分子量の大きい)セルロースアシレートを得るためには、エステル化反応工程における最高温度を50℃以下に調節することが重要である。最高温度は、好ましくは35〜50℃、さらに好ましくは37〜47℃に調節する。反応温度を35℃以上にすることにより、エステル化反応をより円滑に進行させることができる。反応温度を50℃以下とすることにより、セルロースアシレートの重合度の低下をより効果的に抑止できる。エステル化反応の後、温度上昇を抑制しながら反応を停止すると、さらに重合度の低下を抑制でき、高い重合度のセルロースアシレートを合成できる。すなわち、反応終了後に反応停止剤(例えば、水、酢酸)を添加すると、エステル化反応に関与しなかった過剰の酸無水物は、加水分解して対応する有機酸を副成する。この加水分解反応は激しい発熱を伴い、反応装置内の温度が上昇する。反応停止剤の添加速度が大きいと、反応装置の冷却能力を超えて急激に発熱する。そのため、セルロース主鎖の加水分解反応が著しく進行し、得られるセルロースアシレートの重合度が低下する。また、エステル化の反応中に触媒の一部はセルロースと結合しており、その大部分は反応停止剤の添加中にセルロースから解離する。しかし、反応停止剤の添加速度が大きいと、触媒が解離するために充分な反応時間がなく、触媒の一部がセルロースに結合した状態で残る。強酸の触媒が一部結合しているセルロースアシレートは安定性が非常に悪く、製品の乾燥時の熱などで容易に分解して重合度が低下する。これらの理由により、エステル化反応の後、好ましくは4分以上、さらに好ましくは4〜30分の時間をかけて反応停止剤を添加して、反応を停止することが望ましい。なお、反応停止剤の添加時間を30分以下とすることが工業的な生産性の観点から好ましい。反応停止剤としては、一般に酸無水物を分解する水やアルコールが用いられている。ただし、本発明では、各種有機溶媒への溶解性が低いトリエステルを析出させないために、水と有機酸との混合物が、反応停止剤として好ましく用いられる。以上のような条件でエステル化反応を実施すると、質量平均重合度が500以上である高分子量セルロースアシレートを容易に合成することができる。
次に本発明のセルロースアシレートフィルムの表層に添加する他の素材について詳しく説明する。
(無機微粒子)
本発明のセルロースアシレートフィルムの表層は、きしみを防止するため、無機微粒子を含有することが好ましい。以下本発明に用いることができる無機微粒子について説明する。
本発明に使用される無機微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることができる。無機微粒子は、珪素を含むものがヘイズが低くなる点で好ましく、特に二酸化珪素が好ましい。
二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、且つ見掛け比重が70g/L以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見掛け比重は90〜200g/L以上が好ましく、100〜200g/L以上がさらに好ましい。見掛け比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
マット剤として二酸化珪素微粒子を用いる場合の、その使用量は、セルロースアシレートを含むポリマー成分100質量部に対して0.0001〜0.3質量部とするのが好ましい。
これらの無機微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成するが、フィルム中では1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次粒子の平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。該平均粒子径が1.5μm以下であればヘイズが高すぎることがなく、また0.2μm以上であればきしみ防止効果が十分に発揮されるので好ましい。
微粒子の1次、2次粒子径は、フィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とする。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とする。
二酸化珪素の微粒子は、例えば、「アエロジル」R972、R972V、R974、R812、200、200V、300、R202、OX50、TT600{以上、日本アエロジル(株)製}などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、「アエロジル」R976及びR811{以上、日本アエロジル(株)製}の商品名で市販されており、使用することができる。
これらの中で「アエロジル200V」、「アエロジルR972V」が、1次平均粒子径が20nm以下であり、且つ見掛け比重が70g/L以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明のセルロースアシレートフィルムはさらに該無機微粒子のフィルム表層中の濃度が、該無機微粒子のフィルム中の平均濃度より大きいことが好ましい。
ここで無機微粒子のフィルム表層中の平均濃度とは、フィルム表面からフィルム厚み方向3μm以内の範囲内における無機微粒子の平均濃度であり、無機微粒子のフィルム中の平均濃度とはフィルム全体における無機微粒子の平均濃度をいう。
本発明においてフィルム表層中の平均濃度は0.05質量%〜1.0質量%であることが好ましく、0.1質量%〜0.3質量%であることが更に好ましい。また、フィルム中の平均濃度は0.0001質量%〜0.3質量%であることが好ましく、0.0001質量%〜0.1質量%であることが更に好ましい。
ここでフィルム表層中における無機微粒子の平均濃度は具体的には以下の方法によって測定することができる。
(フィルム表層中における無機微粒子の濃度の測定方法)
フィルム表層中における無機微粒子の濃度は、フィルム表層中の光電子スペクトルを測定し、これによって得られる無機微粒子由来の原子と炭素原子に由来するシグナルの強度比を基に算出することができる。光電子スペクトルの測定を行うにあたっては島津製作所(株)製ESCA−3400を用いることができる。
さらに具体的な方法を無機微粒子として、二酸化ケイ素微粒子を用いた場合について説明する。各々のフィルムついて前記ESCA−3400に付属のイオンエッチング装置にて表面を削り(条件:イオンガン、電圧2kV、電流20mA)、ケイ素と炭素に帰属できるシグナルの強度比Si2p/C1sを測定する。
前記測定はフィルム表面からフィルム膜厚方向に約1μmの間隔で測定を行い、フィルム表面から3μm以内の範囲内におけるSi2p/C1sの値の平均値から二酸化ケイ素無機微粒子のフィルム表層中の濃度を算出できる。
さらにフィルム表層中における無機微粒子の濃度を測定する他の方法としては、フィルム断面をSEM(走査型電子顕微鏡)で観察する方法によって直接的に無機子数をカウントする方法も挙げることができる。この場合、前記フィルム表層中においてカウントした無機微粒子数の単位領域あたりの値からフィルム表層中における無機微粒子の濃度を算出することができる。いずれの場合においても二酸化ケイ素無機微粒子濃度が既知のサンプルにおいて事前に検量線データを準備しておくことで算出が可能となる。
セルロースアシレートフィルム中に無機微粒子の分布を上記のようにするための具体的な方法としては例えば共流延法によってフィルム作成を行う方法を挙げることができる。
(可塑剤)
本発明のセルロースアシレートフィルムの表層には、機械的物性を改良するため、または乾燥速度を向上するために、可塑剤を添加することができる。可塑剤としては、リン酸エステルまたはカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルフォスフェート(TPP)およびトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステルおよびクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)およびジエチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、O−アセチルクエン酸トリエチル(OACTE)およびO−アセチルクエン酸トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。
単糖あるいは2〜10個の単糖単位を含む炭水化物の誘導体(以下、多糖もしくは炭水化物系可塑剤という)も本発明の可塑剤として好ましく用いることができる。
炭水化物系可塑剤を構成する単糖または多糖は、分子中の置換可能な基(例えば、水酸基、カルボキシル基、アミノ基、メルカプト基など)が置換されていることを特徴とする。置換基の例としては、エーテル基、エステル基、アミド基、イミド基などを挙げることができる。
単糖または2〜10個の単糖単位を含む炭水化物の例としては、例えば、エリトロース、トレオース、リボース、アラビノース、キシロース、リキソース、アロース、アルトロース、グルコース、フルクトース、マンノース、グロース、イドース、ガラクトース、タロース、トレハロース、イソトレハロース、ネオトレハロース、トレハロサミン、コウジビオース、ニゲロース、マルトース、マルチトール、イソマルトース、ソホロース、ラミナリビオース、セロビオース、ゲンチオビオース、ラクトース、ラクトサミン、ラクチトール、ラクツロース、メリビオース、プリメベロース、ルチノース、シラビオース、スクロース、スクラロース、ツラノース、ビシアノース、セロトリオース、カコトリオース、ゲンチアノース、イソマルトトリオース、イソパノース、マルトトリオース、マンニノトリオース、メレジトース、パノース、プランテオース、ラフィノース、ソラトリオース、ウンベリフェロース、リコテトラオース、マルトテトラオース、スタキオース、バルトペンタオース、ベルバルコース、マルトヘキサオース、α−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリン、δ−シクロデキストリン、キシリトール、ソルビトールなどを挙げることができる。
好ましくは、リボース、アラビノース、キシロース、リキソース、グルコース、フルクトース、マンノース、ガラクトース、トレハロース、マルトース、セロビオース、ラクトース、スクロース、スクラロース、α−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリン、δ−シクロデキストリン、キシリトール、ソルビトールであり、さらに好ましくは、アラビノース、キシロース、グルコース、フルクトース、マンノース、ガラクトース、マルトース、セロビオース、スクロース、β−シクロデキストリン、γ−シクロデキストリンであり、特に好ましくは、キシロース、グルコース、フルクトース、マンノース、ガラクトース、マルトース、セロビオース、スクロース、キシリトール、ソルビトールである。
また、炭水化物系可塑剤の置換基の例としては、エーテル基(好ましくは炭素数1〜22、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキルエーテル基、例えば、メチルエーテル基、エチルエーテル基、プロピルエーテル基、ヒドロキシエチルエーテル基、ヒドロキシプロピルエーテル基、2−シアノエチルエーテル基、フェニルエーテル基、ベンジルエーテル基など)、エステル基(好ましくは炭素数1〜22、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアシルエステル基、例えばアセチル基、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基、オクタノイル基、ベンゾイル基、トルイル基、フタリル基など)、アミド基(好ましくは炭素数1〜22、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアミド、例えばホルムアミド基、アセトアミド基など)、イミド基(好ましくは炭素数4〜22、より好ましくは炭素数4〜12、特に好ましくは炭素数4〜8のアミド基、例えば、スクシイミド基、フタルイミド基など)を挙げることができる。
これらの中で、さらに好ましいものはエーテル基またはエステル基であり、特に好ましくはエステル基である。
炭水化物系可塑剤の好ましい例としては、以下のものを挙げることができる。ただし、本発明で用いることができる炭水化物系可塑剤は、これらに限定されるものではない。
すなわち、キシローステトラアセテート、グルコースペンタアセテート、フルクトースペンタアセテート、マンノースペンタアセテート、ガラクトースペンタアセテート、マルトースオクタアセテート、セロビオースオクタアセテート、スクロースオクタアセテート、キシリトールペンタアセテート、ソルビトールヘキサアセテート、キシローステトラプロピオネート、グルコースペンタプロピオネート、フルクトースペンタプロピオネート、マンノースペンタプロピオネート、ガラクトースペンタプロピオネート、マルトースオクタプロピオネート、セロビオースオクタプロピオネート、スクロースオクタプロピオネート、キシリトールペンタプロピオネート、ソルビトールヘキサプロピオネート、キシローステトラブチレート、グルコースペンタブチレート、フルクトースペンタブチレート、マンノースペンタブチレート、ガラクトースペンタブチレート、マルトースオクタブチレート、セロビオースオクタブチレート、スクロースオクタブチレート、キシリトールペンタブチレート、ソルビトールヘキサブチレート、キシローステトラベンゾエート、グルコースペンタベンゾエート、フルクトースペンタベンゾエート、マンノースペンタベンゾエート、ガラクトースペンタベンゾエート、マルトースオクタベンゾエート、セロビオースオクタベンゾエート、スクロースオクタベンゾエート、キシリトールペンタベンゾエート、ソルビトールヘキサベンゾエート、サッカロースオクタアセテート、サッカロースオクタベンゾエートなどが好ましく、キシローステトラアセテート、グルコースペンタアセテート、フルクトースペンタアセテート、マンノースペンタアセテート、ガラクトースペンタアセテート、マルトースオクタアセテート、セロビオースオクタアセテート、スクロースオクタアセテート、キシリトールペンタアセテート、ソルビトールヘキサアセテート、キシローステトラプロピオネート、グルコースペンタプロピオネート、フルクトースペンタプロピオネート、マンノースペンタプロピオネート、ガラクトースペンタプロピオネート、マルトースオクタプロピオネート、セロビオースオクタプロピオネート、スクロースオクタプロピオネート、キシリトールペンタプロピオネート、ソルビトールヘキサプロピオネート、キシローステトラベンゾエート、グルコースペンタベンゾエート、フルクトースペンタベンゾエート、マンノースペンタベンゾエート、ガラクトースペンタベンゾエート、マルトースオクタベンゾエート、セロビオースオクタベンゾエート、スクロースオクタベンゾエート、キシリトールペンタベンゾエート、ソルビトールヘキサベンゾエート、サッカロースオクタアセテート、サッカロースオクタベンゾエートなどがさらに好ましく、マルトースオクタアセテート、セロビオースオクタアセテート、スクロースオクタアセテート、キシローステトラプロピオネート、グルコースペンタプロピオネート、フルクトースペンタプロピオネート、マンノースペンタプロピオネート、ガラクトースペンタプロピオネート、マルトースオクタプロピオネート、セロビオースオクタプロピオネート、スクロースオクタプロピオネート、キシローステトラベンゾエート、グルコースペンタベンゾエート、フルクトースペンタベンゾエート、マンノースペンタベンゾエート、ガラクトースペンタベンゾエート、マルトースオクタベンゾエート、セロビオースオクタベンゾエート、スクロースオクタベンゾエート、キシリトールペンタベンゾエート、ソルビトールヘキサベンゾエート、サッカロースオクタアセテート、サッカロースオクタベンゾエートなどが特に好ましい。
本発明の炭水化物系可塑剤は市販品((株)東京化成製、アルドリッチ製等)を入手可能、もしくは市販の炭水化物を既知のエステル誘導体化法(例えば、特開平8−245678等に記載の方法)により合成可能である。
本発明において、炭水化物系可塑剤は、単独で配合してもよいし、2種以上併用してもよい。また、他の可塑剤と併用してもよい。他の可塑剤としては、アルキルフタリルアルキルグリコレート類、カルボン酸エステル類、多価アルコールの脂肪酸エステル類などが好ましく用いることができる。
これらの可塑剤の添加量は、ポリマー樹脂に対して1〜20質量%であることが好ましい。1質量%以上であれば、液晶性化合物の配向を促進する効果が得られやすく、また20質量%以下であれば、ブリードアウトも発生しにくい。さらに好ましい添加量は2〜15質量%であり、最も好ましくは3〜10質量%である。
これらの可塑剤をセルロースアシレートに添加するタイミングは、製膜される時点で添加されていれば特に限定されない。例えば、セルロースアシレートの合成時点で添加してもよいし、ドープ調製時ポリマー樹脂と混合してもよい。
[基層]
つぎに本発明のセルロースアシレートフィルムの基層について詳しく説明する。
本発明の基層は固有複屈折性が高いことに特徴がある。セルロースアシレート層の固有複屈折性を高める方法としては、セルロースアシレートのアシル置換度を低くする方法、および分極率異方性の大きい化合物を添加する方法の、2つがある。以下にそれぞれの方法について本発明における好ましい形態について詳しく説明する。
(メインポリマー)
本発明の基層に用いるセルロースアシレートのアシル置換度が2.30〜2.95が好ましい。セルロースアシレート自体の固有複屈折を大きくする場合、前記アシル置換度は2.30〜2.80がさらに好まく、最も好ましくは2.40〜2.70である。また、アシル基の平均炭素数は2以上4以下が好ましく、2以上3.5以下がさらに好ましい。
本発明の基層に用いるセルロースアシレートは本発明の表層に用いるセルロースアシレートと同様の方法により調製することができる。
(疎水化剤)
セルロースアシレートのアシル置換度を低くすると、フィルムの含水率が大きくなり、環境湿度によるフィルム物性変化、レターデーション変化が大きくなる問題が生じる。この問題を改良する方法として、基層にオクタノール/水分配係数が7.0以上で分子量2000以下の疎水化剤を含有することが好ましい。本発明のセルロースアシレートフィルムにはオクタノール/水分配係数(以下logPと称する)が7.0以上20.0以下の疎水化剤を含有することがより好ましい。さらに好ましくは8.0以上16.0以下である。logPは化合物の親疎水性を示す指標であり、logPが大きい方が化合物の疎水性が高くなる。logPが低すぎると疎水性が不足し、環境湿度によるフィルム物性変化、レターデーション変化に対して十分な低減効果が得られにくい。一方、logPが大きすぎるとセルロースアシレートとの相溶性が不足し、フィルムの内部で相分離をおこしてフィルムの透明度が低下する問題を生じやすい。
疎水化剤の分子量は2000以下であることが好ましく、より好ましくは1500以下である。疎水化剤の分子量を2000以下とすることでセルロースアシレートに対する相溶性が高くなり好ましい。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))、Viswanadhan’s fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989))、Broto’s fragmentation法(Eur.J.Med.Chem.−Chim.Theor.,19,71(1984))などが好ましく用いられるが、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen’s fragmentation法により判断することが好ましい。
本発明の疎水化剤としては、以下に述べるレターデーション発現剤のうちlogPが前記範囲を満たす化合物を疎水化剤としての機能も持たせることも可能である。
例えば、一般式(I)で表されるレターデーション発現剤の場合、例示化合物(1)〜(51)、(53)〜(150)、(163)〜(190)を本発明の疎水化剤として好ましく用いることができる。
また、一般式(a)で表されるレターデーション発現剤の場合は、例示化合物(2)、(3)、(9)、(10)、(29)、(41)等を本発明の疎水化剤として好ましく用いることができる。
また、一般式(III)で表されるレターデーション発現剤の場合は、例示化合物(I)−1〜(I)−8、(I)−10〜(I)−12、(I)−19〜(I)−23、(I)−25〜(I)−28、(I)−30〜(I)−32等を本発明の疎水化剤として好ましく用いることができる。
また、炭水化物をベンゾイル基等の芳香族アシル基で置換した化合物も本発明の疎水化剤として好ましく用いることができる。以下にあげる可塑剤は本発明の疎水化剤の好ましい例である。
キシローステトラベンゾエート、グルコースペンタベンゾエート、フルクトースペンタベンゾエート、マンノースペンタベンゾエート、ガラクトースペンタベンゾエート、マルトースオクタベンゾエート、セロビオースオクタベンゾエート、スクロースオクタベンゾエート、キシリトールペンタベンゾエート、ソルビトールヘキサベンゾエート
本発明の疎水化剤の添加量は、3質量%以上20質量%以下が好ましく、5質量%以上15質量%以下がさらに好ましい。
本発明の疎水化剤は予めセルロースアシレートの混合溶液を調製するときに添加してもよいが、ポリマー溶液(ドープ液)を予め調製し、流延までのいずれかの時点で添加されてもよい。後者の場合、ポリマーを溶剤に溶解させたドープ液と、波長分散制御剤と少量のセルロースアシレートとを溶解させた溶液をインライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。後添加する疎水化剤には、同時にマット剤を混合しても良いし、そのレターデーション発現剤、可塑剤、劣化防止剤、剥離促進剤等の添加物を混合しても良い。インラインミキサーを用いる場合、高圧下で濃縮溶解することが好ましく、加圧容器の種類は特に問うところではなく、所定の圧力に耐えることができ、加圧下で加熱、撹拌ができればよい。加圧容器はそのほか圧力計、温度計などの計器類を適宜配設する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。溶剤を添加しての加熱温度は、使用溶剤の沸点以上で、かつ該溶剤が沸騰しない範囲の温度が好ましく例えば30〜150℃の範囲に設定するのが好適である。又、圧力は設定温度で、溶剤が沸騰しないように調整される。溶解後は冷却しながら容器から取り出すか、または容器からポンプ等で抜き出して熱交換器などで冷却し、これを製膜に供する。このときの冷却温度は常温まで冷却してもよいが、沸点より5〜10℃低い温度まで冷却し、その温度のままキャスティングを行うほうが、ドープ粘度を低減できるためより好ましい。
(レターデーション発現剤)
本発明の基層はレターデーション発現剤を添加することにより、固有複屈折性を高めることもできる。以下に本発明の基層で好ましく用いられるレターデーション発現剤について詳しく説明する。
本発明のセルロースアシレートに添加するレタデーション発現剤としては、一般式(I)で表される化合物が好ましい。
Figure 2010030225
(一般式(I)中、L及びLは各々独立に単結合又は二価の連結基を表し;A及びAは各々独立に、−O−、−NR−(Rは水素原子又は置換基を表す)、−S−及び−CO−からなる群から選ばれる基を表し;R、R、及びRは各々独立に置換基を表し;Xは第14〜16族の非金属原子を表すが、Xには水素原子又は置換基が結合してもよく;nは0〜2の整数を表す。)
本発明においては前記一般式(I)で表される化合物の中でも、下記一般式(II)で表される化合物が好ましい。
Figure 2010030225
(一般式(II)中、L及びLは各々独立に単結合又は二価の連結基を表す。A及びAは各々独立に、−O−、−NR−(Rは水素原子又は置換基を表す。)、−S−及び−CO−からなる群から選ばれる基を表す。R、R、R、R及びRは各々独立に置換基を表す。nは0〜2の整数を表す。)
一般式(I)又は(II)において、L及びLが表す二価の連結基としては、好ましくは下記の例が挙げられる。
Figure 2010030225
さらに好ましくは−O−、−COO−、−OCO−である。
一般式(I)又は(II)において、Rは置換基であり、複数存在する場合は同じでも異なっていてもよく、環を形成してもよい。置換基の例としては下記のものが適用できる。
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数1〜30のアルキル基、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基)、シクロアルキル基(好ましくは、炭素数3〜30の置換又は無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは、炭素数5〜30の置換又は無置換のビシクロアルキル基、つまり、炭素数5〜30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン−2−イル基、ビシクロ[2,2,2]オクタン−3−イル基)、アルケニル基(好ましくは炭素数2〜30の置換又は無置換のアルケニル基、例えば、ビニル基、アリル基)、シクロアルケニル基(好ましくは、炭素数3〜30の置換又は無置換のシクロアルケニル基、つまり、炭素数3〜30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル基)、ビシクロアルケニル基(置換又は無置換のビシクロアルケニル基、好ましくは、炭素数5〜30の置換又は無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2,2,1]ヘプト−2−エン−1−イル基、ビシクロ[2,2,2]オクト−2−エン−4−イル基)、アルキニル基(好ましくは、炭素数2〜30の置換又は無置換のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素数6〜30の置換又は無置換のアリール基、例えばフェニル基、p−トリル基、ナフチル基)、ヘテロ環基(好ましくは5又は6員の置換又は無置換の、芳香族又は非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、さらに好ましくは、炭素数3〜30の5又は6員の芳香族のヘテロ環基である。例えば、2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1〜30の置換又は無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは、炭素数6〜30の置換又は無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、シリルオキシ基(好ましくは、炭素数3〜20のシリルオキシ基、例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基)、ヘテロ環オキシ基(好ましくは、炭素数2〜30の置換又は無置換のヘテロ環オキシ基、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基)、アシルオキシ基(好ましくはホルミルオキシ基、炭素数2〜30の置換又は無置換のアルキルカルボニルオキシ基、炭素数6〜30の置換又は無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基)、カルバモイルオキシ基(好ましくは、炭素数1〜30の置換又は無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基)、アルコキシカルボニルオキシ基(好ましくは、炭素数2〜30の置換又は無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基)、アリールオキシカルボニルオキシ基(好ましくは、炭素数7〜30の置換又は無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基)、アミノ基(好ましくは、アミノ基、炭素数1〜30の置換又は無置換のアルキルアミノ基、炭素数6〜30の置換又は無置換のアニリノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1〜30の置換又は無置換のアルキルカルボニルアミノ基、炭素数6〜30の置換又は無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基)、アミノカルボニルアミノ基(好ましくは、炭素数1〜30の置換又は無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30の置換又は無置換のアルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチルーメトキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは、炭素数7〜30の置換又は無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基)、スルファモイルアミノ基(好ましくは、炭素数0〜30の置換又は無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基)、アルキル及びアリールスルホニルアミノ基(好ましくは炭素数1〜30の置換又は無置換のアルキルスルホニルアミノ基、炭素数6〜30の置換又は無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基)、メルカプト基、アルキルチオ基(好ましくは、炭素数1〜30の置換又は無置換のアルキルチオ基、例えばメチルチオ基、エチルチオ基、n−ヘキサデシルチオ基)、アリールチオ基(好ましくは炭素数6〜30の置換又は無置換のアリールチオ基、例えば、フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基)、ヘテロ環チオ基(好ましくは炭素数2〜30の置換又は無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ基、1−フェニルテトラゾール−5−イルチオ基)、スルファモイル基(好ましくは炭素数0〜30の置換又は無置換のスルファモイル基、例えば、N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N’−フェニルカルバモイル)スルファモイル基)、スルホ基、アルキル及びアリールスルフィニル基(好ましくは、炭素数1〜30の置換又は無置換のアルキルスルフィニル基、炭素数6〜30の置換又は無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p−メチルフェニルスルフィニル基)、アルキル及びアリールスルホニル基(好ましくは、炭素数1〜30の置換又は無置換のアルキルスルホニル基、炭素数6〜30の置換又は無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p−メチルフェニルスルホニル基)、アシル基(好ましくはホルミル基、炭素数2〜30の置換又は無置換のアルキルカルボニル基、炭素数7〜30の置換又は無置換のアリールカルボニル基、例えば、アセチル基、ピバロイルベンゾイル基)、アリールオキシカルボニル基(好ましくは、炭素数7〜30の置換又は無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o−クロロフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、p−tert−ブチルフェノキシカルボニル基)、アルコキシカルボニル基(好ましくは、炭素数2〜30の置換又は無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基、n−オクタデシルオキシカルボニル基)、カルバモイル基(好ましくは、炭素数1〜30の置換又は無置換のカルバモイル基、例えば、カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基)、アリール及びヘテロ環アゾ基(好ましくは炭素数6〜30の置換又は無置換のアリールアゾ基、炭素数3〜30の置換又は無置換のヘテロ環アゾ基、例えば、フェニルアゾ基、p−クロロフェニルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基)、イミド基(好ましくは、N−スクシンイミド基、N−フタルイミド基)、ホスフィノ基(好ましくは、炭素数2〜30の置換又は無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基)、ホスフィニル基(好ましくは、炭素数2〜30の置換は無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基)、ホスフィニルオキシ基(好ましくは、炭素数2〜30の置換又は無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基)、ホスフィニルアミノ基(好ましくは、炭素数2〜30の置換又は無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基)、シリル基(好ましくは、炭素数3〜30の置換又は無置換のシリル基、例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基)を表わす。
上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていてもよい。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p−メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
は好ましくは、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。
、Rは各々独立に置換基を表す。例としては上記Rの例があげられる。好ましくは置換もしくは無置換のベンゼン環、置換もしくは無置換のシクロヘキサン環である。より好ましくは置換基を有するベンゼン環、置換基を有するシクロヘキサン環であり、さらに好ましくは4位に置換基を有するベンゼン環、4位に置換基を有するシクロヘキサン環である。
、Rは各々独立に置換基を表す。例としては上記Rの例があげられる。好ましくは、ハメットの置換基定数σ値が0より大きい電子吸引性の置換基であることが好ましく、σ値が0〜1.5の電子吸引性の置換基であることがさらに好ましい。このような置換基としてはトリフルオロメチル基、シアノ基、カルボニル基、ニトロ基等が挙げられる。また、RとRとが結合して環を形成してもよい。
なお、ハメットの置換基定数のσ、σに関しては、例えば、稲本直樹著「ハメット則−構造と反応性−」(丸善)、日本化学会編「新実験化学講座14 有機化合物の合成と反応V」2605頁(丸善)、仲谷忠雄著「理論有機化学解説」217頁(東京化学同人)、ケミカル レビュー、91巻,165〜195頁(1991年)等の成書に詳しく解説されている。
及びAは各々独立に、−O−、−NR−(Rは水素原子又は置換基)、−S−及び−CO−からなる群から選ばれる基を表す。好ましくは−O−、−NR−(Rは置換基を表し、例としては上記Rの例が挙げられる)又は−S−である。
Xは第14〜16族の非金属原子を表す。ただし、Xには水素原子又は置換基が結合してもよい。Xは=O、=S、=NR、=C(R)Rが好ましい(ここでRは置換基を表し、例としては上記Rの例が挙げられる)。
nは0〜2の整数を表し、好ましくは0、1である。
以下に、一般式(I)又は(II)で表される化合物の具体例を示すが、前記Re発現剤の例は以下の具体例に限定されるものではない。下記化合物に関しては、指定のない限り括弧( )内の数字にて例示化合物(X)と示す。
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
一般式(II)又は(III)で表される化合物の合成は、既知の方法を参照して行うことができる。例えば、例示化合物(1)は、下記スキームに従って合成することができる。
Figure 2010030225
前記スキーム中、化合物(1−A)から化合物(1−D)までの合成は、“Journal of Chemical Crystallography"(1997);27(9);p.515-526.に記載の方法を参照して行うことができる。
さらに、前記スキームに示したように、化合物(1−E)のテトラヒドロフラン溶液に、メタンスルホン酸クロライドを加え、N,N−ジイソプロピルエチルアミンを滴下し攪拌した後、N,N−ジイソプロピルエチルアミンを加え、化合物(1−D)のテトラヒドロフラン溶液を滴下し、その後、N,N−ジメチルアミノピリジン(DMAP)のテトラヒドロフラン溶液を滴下することで、例示化合物(1)を得ることができる。
本発明のセルロースアシレートフィルムは、一般式(I)で表される化合物を少なくとも1種含有してもよく、複数を組み合わせて用いてもよい。
一般式(I)で表される化合物の含有量は、フィルムを形成するセルロースアシレートに対して0.1〜30質量部であることが好ましく、0.5〜20質量部であることがより好ましく、1〜12質量部であることがさらに好ましく、1〜7質量部であることが最も好ましい。
本発明のセルロースアシレートフィルムのレターデーション発現剤として、前記一般式(I)で表される化合物とともに、下記一般式(a)で表される化合物を用いることが好ましい。
一般式(a):Ar−L−X−L−Ar
上記一般式(a)において、Ar1およびAr2は、それぞれ独立に、芳香族基であり、L2およびL3は、それぞれ独立に、−O−CO−または−CO−O−基より選ばれる二価の連結基であり、Xは、1,4−シクロへキシレン基、ビニレン基またはエチニレン基である。
本明細書において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基を含む。
アリール基および置換アリール基の方が、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基よりも好ましい。芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性へテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子または硫黄原子がさらに好ましい。
芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環およびピラジン環が好ましく、ベンゼン環が特に好ましい。
置換アリール基および置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、アルキルアミノ基(例、メチルアミノ基、エチルアミノ基、ブチルアミノ基、ジメチルアミノ基)、ニトロ基、スルホ基、カルバモイル基、アルキルカルバモイル基(例、N−メチルカルバモイル基、N−エチルカルバモイル基、N,N−ジメチルカルバモイル基)、スルファモイル基、アルキルスルファモイル基(例、N−メチルスルファモイル基、N−エチルスルファモイル基、N,N−ジメチルスルファモイル基)、ウレイド基、アルキルウレイド基(例、N−メチルウレイド基、N,N−ジメチルウレイド基、N,N,N’−トリメチルウレイド基)、アルキル基(例、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基、オクチル基、イソプロピル基、s−ブチル基、t−アミル基、シクロヘキシル基、シクロペンチル基)、アルケニル基(例、ビニル基、アリル基、ヘキセニル基)、アルキニル基(例、エチニル基、ブチニル基)、アシル基(例、ホルミル基、アセチル基、ブチリル基、ヘキサノイル基、ラウリル基)、アシルオキシ基(例、アセトキシ基、ブチリルオキシ基、ヘキサノイルオキシ基、ラウリルオキシ基)、アルコキシ基(例、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘプチルオキシ基、オクチルオキシ基)、アリールオキシ基(例、フェノキシ基)、アルコキシカルボニル基(例、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘプチルオキシカルボニル基)、アリールオキシカルボニル基(例、フェノキシカルボニル基)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基)、アルキルチオ基(例、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘプチルチオ基、オクチルチオ基)、アリールチオ基(例、フェニルチオ基)、アルキルスルホニル基(例、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘプチルスルホニル基、オクチルスルホニル基)、アミド基(例、アセトアミド基、ブチルアミド基、ヘキシルアミド基、ラウリルアミド基)および非芳香族性複素環基(例、モルホリル基、ピラジニル基)が含まれる。
置換アリール基および置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ基、カルボキシル基、ヒドロキシル基、アミノ基、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基およびアルキル基が好ましい。
アルキルアミノ基、アルコキシカルボニル基、アルコキシ基およびアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分およびアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基および非芳香族性複素環基が含まれる。アルキル部分およびアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基およびアルコキシ基が好ましい。
一般式(a)において、LおよびLは、それぞれ独立に、−O−CO−または−CO−O−およびそれらの組合せからなる基より選ばれる二価の連結基である。
一般式(a)において、Xは、1,4−シクロへキシレン基、ビニレン基またはエチニレン基である。
以下に、一般式(a)で表される化合物の具体例を示す。
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
具体例(1)〜(34)、(41)、(42)は、シクロヘキサン環の1位と4位とに二つの不斉炭素原子を有する。ただし、具体例(1)、(4)〜(34)、(41)、(42)は、対称なメソ型の分子構造を有するため光学異性体(光学活性)はなく、幾何異性体(トランス型とシス型)のみ存在する。具体例(1)のトランス型(1−trans)とシス型(1−cis)とを、以下に示す。
Figure 2010030225
前述したように、棒状化合物は直線的な分子構造を有することが好ましい。そのため、トランス型の方がシス型よりも好ましい。
具体例(2)および(3)は、幾何異性体に加えて光学異性体(合計4種の異性体)を有する。幾何異性体については、同様にトランス型の方がシス型よりも好ましい。光学異性体については、特に優劣はなく、D、Lあるいはラセミ体のいずれでもよい。 具体例(43)〜(45)では、中心のビニレン結合にトランス型とシス型とがある。上記と同様の理由で、トランス型の方がシス型よりも好ましい。
本発明のレターデーション発現剤としては下記一般式(III)で表される化合物も好ましく用いることができる。
Figure 2010030225
一般式(III)中、Xは、単結合、−NR−、−O−又は−S−であり;Xは、単結合、−NR−、−O−又は−S−であり;Xは、単結合、−NR−、−O−又は−S−である。また、R、R、及びRは、それぞれ独立に、アルキル基、アルケニル基、芳香族環基又は複素環基であり;R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基又は複素環基である。
上記一般式(III)で表される化合物の好ましい例(I−(1)〜IV−(10))を以下に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
Figure 2010030225
本発明のレターデーション発現剤は本発明の疎水化剤と同様の方法により添加することができる。
[セルロースアシレートの製造方法]
次に本発明のセルロースアシレートフィルムの製造方法について説明する。
本発明のセルロースアシレートフィルムはソルベントキャスト法により製造されるのが好ましい。ソルベントキャスト法を利用したセルロースアシレートフィルムの製造例については、米国特許第2,336,310号、同2,367,603号、同2,492,078号、同2,492,977号、同2,492,978号、同2,607,704号、同2,739,069号及び同2,739,070号の各明細書、英国特許第640731号及び同736892号の各明細書、並びに特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号及び同62−115035号等の公報を参考にすることができる。また、前記セルロースアシレートフィルムは、延伸処理を施されていてもよい。延伸処理の方法及び条件については、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号等の公報を参考にすることができる。
本発明のセルロースアシレートフィルムは共流延法あるいは逐次流延法によって製造することができる。
共流延法により製造する場合には、先ず、各層用のセルロースアセテート・ドープを調製する。共流延法(重層同時流延)は、流延用支持体(バンドまたはドラム)の上に、各層(3層あるいはそれ以上でも良い)各々の流延用ドープを別のスリットなどから同時に押出す流延用ギーサからドープを押出して、各層同時に流延し、適当な時期に支持体から剥ぎ取って、乾燥しフイルムを成形する流延法である。図1に、共流延ギーサ3を用い、流延用支持体4の上に表層用ドープ1とコア層用ドープ2を3層同時に押出して流延する状態を断面図で示した。
(流延方法)
溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるが、いずれも好ましく用いることができる。またここで挙げた方法以外にも、従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施することができ、用いる溶媒の沸点等の違いを考慮して各条件を設定することにより、それぞれの公報に記載の内容と同様の効果が得られる。
本発明のセルロースアシレートフィルムは、有機溶媒、ポリマー、および前記式(I)で表される化合物を少なくとも1種含むドープ組成物をフィルムコア層、有機溶媒、ポリマー、および無機微粒子を含むドープ組成物をフィルム表層になるように支持体上に形成する工程、および得られたフィルムを延伸する工程を含むプロセスで製造される。
本発明に好ましく用いられるセルロースアシレートフィルムを製造するのに使用される、エンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたステンレスベルト(バンドといってもよい)が用いられる。使用される加圧ダイは、金属支持体の上方に1基又は2基以上の設置でもよい。好ましくは1基又は2基である。2基以上設置する場合には、流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるセルロースアシレート溶液の温度は−10〜55℃が好ましく、より好ましくは25〜50℃である。その場合、工程のすべての溶液温度が同一でもよく、又は工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温度であればよい。
(延伸処理)
本発明のセルロースアシレートフィルムの製造方法において、セルロースアシレートフィルムは延伸処理される。延伸処理によってさらにセルロースアシレートフィルムに所望のレターデーションを付与することが可能である。セルロースアシレートフィルムの延伸方向は幅方向、長手方向のいずれでも好ましいが、幅方向が特に好ましい。
幅方向に延伸する方法は、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号などの各公報に記載されている。長手方向の延伸の場合、例えば、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くするとフィルムは延伸される。幅方向の延伸の場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に広げることによってもフィルムを延伸できる。フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。
本発明のセルロースアシレートフィルムの延伸倍率は、5%以上200%以下が好ましく、10%以上100%以下がさらに好ましい。
セルロースアシレートフィルムを偏光子の保護膜として使用する場合には、偏光板を斜めから見たときの光漏れを抑制するため、偏光子の透過軸とセルロースアシレートフィルムの面内の遅相軸を平行に配置する必要がある。連続的に製造されるロールフィルム状の偏光子の透過軸は、一般的に、ロールフィルムの幅方向に平行であるので、前記ロールフィルム状の偏光子とロールフィルム状のセルロースアシレートフィルムからなる保護膜を連続的に貼り合せるためには、ロールフィルム状の保護膜の面内遅相軸は、フィルムの幅方向に平行であることが必要となる。従って幅方向により多く延伸することが好ましい。また延伸処理は、製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理してもよい。前者の場合には残留溶媒を含んだ状態で延伸を行ってもよく、残留溶媒量が2〜30質量%で好ましく延伸することができる。
(乾燥)
セルロースアシレートフィルムの製造に係わる、金属支持体上におけるドープの乾燥は、一般的には、金属支持体(ドラム又はベルト)の表面側、つまり金属支持体上にあるウェブの表面から熱風を当てる方法、ドラム又はベルトの裏面から熱風を当てる方法、温度コントロールした液体をベルトやドラムのドープ流延面の反対側である裏面から接触させて、伝熱によりドラム又はベルトを加熱し表面温度をコントロールする裏面液体伝熱方法などがあるが、裏面液体伝熱方式が好ましい。流延される前の金属支持体の表面温度は、ドープに用いられている溶媒の沸点以下であれば何度でもよい。しかし乾燥を促進するためには、また金属支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の低い溶媒の沸点より1〜10℃低い温度に設定することが好ましい。なお流延ドープを冷却して乾燥することなく剥ぎ取る場合はこの限りではない。
乾燥後得られる、本発明に好ましく用いられるセルロースアシレートフィルムの膜厚は、使用目的によって異なり、通常、5〜500μmの範囲であることが好ましく、更に20〜300μmの範囲が好ましく、特に30〜150μmの範囲が好ましい。また、光学用、特にVA液晶表示装置用としては、40〜110μmであることが好ましい。
また、フィルム全層に対する表層の比率は、1〜20%の範囲であることが好ましく、更に1〜15%の範囲が好ましく、特に1〜10%の範囲が好ましい。フィルム表層はフィルムの片側のみにあってもよいがフィルムの両側にあったほうがより好ましい。
フィルム厚さの調整は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。
以上のようにして得られた、セルロースアシレートフィルムの幅は0.5〜3mが好ましく、より好ましくは0.6〜2.5m、さらに好ましくは0.8〜2.2mである。長さは、1ロール当たり100〜10000mで巻き取るのが好ましく、より好ましくは500〜7000mであり、さらに好ましくは1000〜6000mである。巻き取る際、少なくとも片端にナーリングを付与するのが好ましく、ナーリングの幅は3mm〜50mmが好ましく、より好ましくは5mm〜30mm、高さは0.5〜500μmが好ましく、より好ましくは1〜200μmである。これは片押しであっても両押しであってもよい。
[本発明のセルロースアシレートフイルムの光学性能]
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の数式(21)及び数式(22)よりRthを算出することもできる。
Figure 2010030225
上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。
数式(21)におけるnxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。dはフィルムの膜厚を表す。
Figure 2010030225
測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
また、本明細書では、Re(446)、Re(548)、Re(628)、Rth(446)、Rth(548)、Rth(628)の値は以下のようにして求めた。測定装置により3以上の異なる波長(例としてλ=446.0、547.6、628.8、748.7nm)を用いて測定し、それぞれの波長からRe、Rthを算出するものとする。これらの値をコーシーの式(第3項まで、Re=A+B/λ+C/λ)にて近似して値A、B、Cを求める。以上より波長λにおけるRe、Rthをプロットし直し、そこから波長446、548、628nmでのReおよびRth値であるRe(446)、Re(548)、Re(628)、Rth(446)、Rth(548)、Rth(628)を求めることができる。
本発明のセルロースアシレートにおいて好ましいレターデーション範囲は使用される液晶モードによって異なるが、VAモードの液晶表示装置に位相差フィルムとして使用する場合、下記式(a1)及び(a2)を満足していることが好ましく、下記式(a1)’及び(a2)’を満足していることがより好ましい。
式(a1) 20nm≦Re(548)≦200nm
式(a2) 80nm≦Rth(548)≦400nm
式(a1)’ 40nm≦Re(548)≦150nm
式(a2)’ 20nm≦Re(548)≦300nm
[偏光板]
また、本発明は、本発明のセルロースアシレートフィルムを有する偏光板にも関する。
偏光板は、偏光子およびその両側に配置された二枚の透明保護膜からなる。一方の保護膜として、本発明のセルロースアシレートフィルムを用いることができる。他方の保護膜は、通常のセルロースアセテートフィルムを用いてもよい。偏光子には、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリエン系偏光子がある。ヨウ素系偏光子および染料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造する。本発明のセルロースアシレートフィルムを偏光板保護膜として用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。得られたセルロースアシレートフィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施してもよい。保護膜処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。偏光板は偏光子及びその両面を保護する保護膜で構成されており、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成される。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。また、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。
本発明のセルロースアシレートフィルムの偏光子への貼り合せ方は、偏光子の透過軸と本発明のセルロースアシレートフィルムの遅相軸が実質的に平行または垂直となるように貼り合せることが好ましい。ここで、実質的に平行であるとは、本発明のセルロースアシレートフィルムの主屈折率nxの方向と偏光板の透過軸の方向とは、そのずれが5°以内であることをいい、1°以内、好ましくは0.5°以内であることが好ましい。ずれが1°より大きいと、偏光板クロスニコル下での偏光度性能が低下して光抜けが生じて好ましくない。
同じく、実質的に垂直であるとは、本発明のセルロースアシレートフィルムの主屈折率nxの方向と偏光板の透過軸の方向とは、そのずれが90±5°以内であることをいい、90±1°以内、好ましくは90±0.5°以内であることが好ましい。ずれが1°より大きいと、偏光板クロスニコル下での偏光度性能が低下して光抜けが生じて好ましくない。
偏光板の単板透過率TT、平行透過率PT、直交透過率CTはUV3100PC(島津製作所社製)を用いた。測定では、380nm〜780nmの範囲で測定し、単板、平行、直交透過率ともに、10回測定の平均値を用いた。偏光板耐久性試験は(1)偏光板のみと(2)偏光板をガラスに粘着剤を介して貼り付けた、2種類の形態で次のように行った。偏光板のみの測定は、2つの偏光子の間に光学補償膜が挟まれるように組み合わせて直交、同じものを2つ用意し測定した。ガラス貼り付け状態のものはガラスの上に偏光板を光学補償膜がガラス側にくるように貼り付けたサンプル(約5cm×5cm)を2つ作成する。単板透過率測定ではこのサンプルのフィルムの側を光源に向けてセットして測定する。2つのサンプルをそれぞれ測定し、その平均値を単板の透過率とする。偏光性能の好ましい範囲としては単板透過率TT、平行透過率PT、直交透過率CTの順でそれぞれ、40.0≦TT≦45.0、30.0≦PT≦40.0、CT≦2.0であり、より好ましい範囲としては41.0≦TT≦44.5、34≦PT≦39.0、CT≦1.3(単位はいずれも%)である。また偏光板耐久性試験ではその変化量はより小さいほうが好ましい。
また、本発明の偏光板は、60℃95%RHに500時間静置させたときの直交単板透過率の変化量ΔCT(%)、偏光度変化量ΔPが下記式(j)、(k)の少なくとも1つ以上を満たしている。
(j)−6.0≦ΔCT≦6.0
(k)−10.0≦ΔP≦0.0
ここで、変化量とは試験後測定値から試験前測定値を差し引いた値である。
この要件を満たすことによって偏光板の使用中あるいは保管中の安定性が確保される。
<偏光板の機能化>
本発明における偏光板は、ディスプレイの視認性向上のための反射防止フィルム、輝度向上フィルムや、ハードコート層、前方散乱層、アンチグレア(防眩)層等の機能層を有する光学フィルムと複合した機能化偏光板として好ましく使用される。
(反射防止フィルム)
本発明における偏光板は反射防止フィルムと組み合わせて使用することができる。反射防止フィルムは、フッ素系ポリマー等の低屈折率素材を単層付与しただけの反射率1.5%程度のフィルム、または薄膜の多層干渉を利用した反射率1%以下のフィルムのいずれも使用できる。本発明では、透明支持体上に低屈折率層、および低屈折率層より高い屈折率を有する少なくとも一層の層(即ち、高屈折率層、中屈折率層)を積層した構成が好ましく使用される。また、日東技報,vol.38,No.1,May,2000,26頁〜28頁や特開2002−301783号公報などに記載された反射防止フィルムも好ましく使用できる。
各層の屈折率は以下の関係を満足する。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
反射防止フィルムに用いる透明支持体は、前述の偏光子の保護フィルムに使用する透明ポリマーフィルムを好ましく使用することができる。
低屈折率層の屈折率は1.20〜1.55であることが好ましく、さらに好ましくは1.30〜1.50である。低屈折率層は、耐擦傷性、防汚性を有する最外層として使用することが好ましい。耐擦傷性向上のため、シリコーン基を含有する含シリコーン化合物や、フッ素を含有する含フッ素化合物等の素材を用い表面への滑り性を付与することも好ましく行われる。
前記含フッ素化合物としては、例えば、特開平9−222503号公報[0018]〜[0026]、同11−38202号公報[0019]〜[0030]、特開2001−40284号公報[0027]〜[0028]、特開2000−284102号公報等に記載の化合物を好ましく使用することができる。
前記含シリコーン化合物はポリシロキサン構造を有する化合物が好ましいが、反応性シリコーン(例えば、サイラプレーン(チッソ(株)製)や両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報)等を使用することもできる。シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化させてもよい(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報、特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)。
低屈折率層には、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820号公報の[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有させることも好ましく行うことができる。
前記低屈折率層は、気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良いが、安価に製造できる点で、塗布法で形成することが好ましい。塗布法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビア法を好ましく使用することができる。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
中屈折率層および高屈折率層は、平均粒子サイズ100nm以下の高屈折率の無機化合物超微粒子をマトリックス用材料に分散した構成とすることが好ましい。高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物、例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等を好ましく使用できる。
このような超微粒子は、粒子表面を表面処理剤で処理したり(シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908号公報、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造としたり(特開2001−166104号公報等)、特定の分散剤を併用する(例えば、特開平11−153703号公報、米国特許第6,210,858B1明細書、特開2002−2776069号公報等)等の態様で使用することができる。
前記マトリックス用材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等を使用できるが、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の多官能性材料や、特開2001−293818号公報等に記載の金属アルコキシド組成物から得られる硬化性膜を使用することもできる。
前記高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
前記中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。
前記反射防止フィルムのヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また、膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
(輝度向上フィルム)
本発明における偏光板は、輝度向上フィルムと組み合わせて使用することができる。輝度向上フィルムは、円偏光もしくは直線偏光の分離機能を有しており、偏光板とバックライトとの間に配置され、一方の円偏光もしくは直線偏光をバックライト側に後方反射もしくは後方散乱する。バックライト部からの再反射光は、部分的に偏光状態を変化させ、輝度向上フィルムおよび偏光板に再入射する際、部分的に透過するため、この過程を繰り返すことにより光利用率が向上し、正面輝度が1.4倍程度に向上する。輝度向上フィルムとしては異方性反射方式および異方性散乱方式が知られており、いずれも本発明における偏光板と組み合わせることができる。
異方性反射方式では、一軸延伸フィルムと未延伸フィルムとを多重に積層して、延伸方向の屈折率差を大きくすることにより反射率ならびに透過率の異方性を有する輝度向上フィルムが知られており、誘電体ミラーの原理を用いた多層膜方式(国際公開第95/17691号パンフレット、国際公開第95/17692号パンフレット、国際公開第95/17699号パンフレットの各明細書記載)やコレステリック液晶方式(欧州特許606940A2号明細書、特開平8−271731号公報記載)が知られている。誘電体ミラーの原理を用いた多層方式の輝度向上フィルムとしてはDBEF―E、DBEF−D、DBEF−M(いずれも3M社製)、コレステリック液晶方式の輝度向上フィルムとしてはNIPOCS(日東電工(株)製)が本発明で好ましく使用される。NIPOCSについては、日東技報,vol.38,No.1,May,2000,19頁〜21頁などを参考にすることができる。
また、本発明では国際公開第97/32223号パンフレット、国際公開第97/32224号パンフレット、国際公開第97/32225号パンフレット、国際公開第97/32226号パンフレットの各明細書および特開平9−274108号、同11−174231号の各公報に記載された正の固有複屈折性ポリマーと負の固有複屈折性ポリマーとをブレンドして一軸延伸した異方性散乱方式の輝度向上フィルムと組み合わせて使用することも好ましい。異方性散乱方式輝度向上フィルムとしては、DRPF−H(3M社製)が好ましい。
(他の機能性光学フィルム)
本発明における偏光板は、さらに、ハードコート層、前方散乱層、アンチグレア(防眩)層、ガスバリア層、滑り層、帯電防止層、下塗り層や保護層等を設けた機能性光学フィルムと組み合わせて使用することも好ましい。また、これらの機能層は、前述の反射防止フィルムにおける反射防止層、あるいは光学異方性層等と同一層内で相互に複合して使用することも好ましい。これらの機能層は、偏光子側および偏光子と反対面(より空気側の面)のどちらか片面、または両面に設けて使用できる。
〔ハードコート層〕
本発明における偏光板は耐擦傷性等の力学的強度を付与するため、ハードコート層を透明支持体の表面に設けた機能性光学フィルムと組み合わせることが好ましく行われる。ハードコート層を、前述の反射防止フィルムに適用して用いる場合は、特に、透明支持体と高屈折率層の間に設けることが好ましい。
前記ハードコート層は、光および/または熱による硬化性化合物の架橋反応、または、重合反応により形成されることが好ましい。ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、国際公開第00/46617号パンフレット等記載のものを好ましく使用することができる。
ハードコート層の膜厚は、0.2μm〜100μmであることが好ましい。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
ハードコート層を形成する材料は、エチレン性不飽和基を含む化合物、開環重合性基を含む化合物を用いることができ、これらの化合物は単独あるいは組み合わせて用いることができる。エチレン性不飽和基を含む化合物の好ましい例としては、エチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等のポリオールのポリアクリレート類;ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類;ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を好ましい化合物として挙げることができる。また、市販化合物としては、EB−600、EB−40、EB−140、EB−1150、EB−1290K、IRR214、EB−2220、TMPTA、TMPTMA(以上、ダイセル・ユーシービー(株)製)、UV−6300、UV−1700B(以上、日本合成化学工業(株)製)等が挙げられる。
また、開環重合性基を含む化合物の好ましい例としては、グリシジルエーテル類としてエチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、トリグリシジルトリスヒドロキシエチルイソシアヌレート、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールテトラグリシルエーテル、クレゾールノボラック樹脂のポリグリシジルエーテル、フェノールノボラック樹脂のポリグリシジルエーテルなど、脂環式エポキシ類としてセロキサイド2021P、セロキサイド2081、エポリードGT−301、エポリードGT−401、EHPE3150CE(以上、ダイセル化学工業(株)製)、フェノールノボラック樹脂のポリシクロヘキシルエポキシメチルエーテルなど、オキセタン類としてOXT−121、OXT−221、OX−SQ、PNOX−1009(以上、東亞合成(株)製)などが挙げられる。その他にグリシジル(メタ)アクリレートの重合体、或いはグリシジル(メタ)アクリレートと共重合できるモノマーとの共重合体をハードコート層に使用することもできる。
ハードコート層には、ハードコート層の硬化収縮の低減、基材との密着性の向上、本発明においてハードコート処理物品のカールを低減するため、ケイ素、チタン、ジルコニウム、アルミニウム等の酸化物微粒子やポリエチレン、ポリスチレン、ポリ(メタ)アクリル酸エステル類、ポリジメチルシロキサン等の架橋粒子、SBR、NBRなどの架橋ゴム微粒子等の有機微粒子等の架橋微粒子を添加することも好ましく行われる。これらの架橋微粒子の平均粒子サイズは、1nm〜20000nmであることが好ましい。また、架橋微粒子の形状は、球状、棒状、針状、板状など特に制限無く使用できる。微粒子の添加量は硬化後のハードコート層の60体積%以下であることが好ましく、40体積%以下がより好ましい。
上記で記載した無機微粒子を添加する場合、一般にバインダーポリマーとの親和性が悪いため、ケイ素、アルミニウム、チタニウム等の金属を含有し、かつアルコキシド基、カルボン酸基、スルホン酸基、ホスホン酸基等の官能基を有する表面処理剤を用いて表面処理を行うことも好ましく行われる。
ハードコート層は、熱または活性エネルギー線を用いて硬化することが好ましく、その中でも放射線、ガンマー線、アルファー線、電子線、紫外線等の活性エネルギー線を用いることがより好ましく、安全性、生産性を考えると電子線、紫外線を用いることが特に好ましい。熱で硬化させる場合は、プラスチック自身の耐熱性を考えて、加熱温度は140℃以下が好ましく、より好ましくは100℃以下である。
〔前方散乱層〕
前方散乱層は、本発明における偏光板を液晶表示装置に適用した際の、上下左右方向の視野角特性(色相と輝度分布)改良するために使用される。本発明では、前方散乱層は屈折率の異なる微粒子をバインダー分散した構成が好ましく、例えば、前方散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子との相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等の構成を使用することができる。また、本発明における偏光板をヘイズの視野角特性を制御するため、住友化学(株)の技術レポート「光機能性フィルム」31頁〜39頁に記載された「ルミスティ」と組み合わせて使用することも好ましく行うことができる。
〔アンチグレア層〕
アンチグレア(防眩)層は、反射光を散乱させ映り込みを防止するために使用される。アンチグレア機能は、液晶表示装置の最表面(表示側)に凹凸を形成することにより得られる。アンチグレア機能を有する光学フィルムのヘイズは、3〜30%であることが好ましく、5〜20%であることがさらに好ましく、7〜20%であることが最も好ましい。
フィルム表面に凹凸を形成する方法は、例えば、微粒子を添加して膜表面に凹凸を形成する方法(例えば、特開2000−271878号公報等)、比較的大きな粒子(粒子サイズ0.05〜2μm)を少量(0.1〜50質量%)添加して表面凹凸膜を形成する方法(例えば、特開2000−281410号公報、同2000−95893号公報、同2001−100004号公報、同2001−281407号公報等)、フィルム表面に物理的に凹凸形状を転写する方法(例えば、エンボス加工方法として、特開昭63−278839号公報、特開平11−183710号公報、特開2000−275401号公報等記載)等を好ましく使用することができる。
[液晶表示装置]
本発明のセルロースアシレートフィルム、該フィルムを用いた偏光板は、様々な表示モードの液晶セル、液晶表示装置に用いることができる。
図2は、本発明の偏光板が使用された液晶表示装置の一例を説明するための図である。図2において、液晶表示装置は、上偏光板6と下偏光板17との間に、液晶分子12を含有する液晶セルを有する構造である。液晶セルには、液晶セル上電極基板10と、液晶セル下電極基板13とがそれぞれ設けられている。また、上偏光板6と液晶セルとの間には、上光学異方性層8が設けられ、下偏光板17と液晶セルとの間には、下光学異方性層15が設けられている。上偏光板吸収軸7、上基板配向制御方向11および上光学異方性層配向制御方向9はそれぞれ平行であり、これらの方向に対し、下偏光板吸収軸18、下基板配向制御方向14および下光学異方性層配向制御方向16は直交している。
液晶セルの表示モードとしては、TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置である。OCBモードの液晶セルは、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(シャープ技報第80号11頁)および(4)SURVAIVALモードの液晶セル(月刊ディスプレイ5月号14頁(1999年))が含まれる。
図3は、本発明の偏光板が使用されたVAモード液晶表示装置の一例を説明するための断面図である。VAモードの液晶表示装置は、VAモード液晶セル31およびその両側に配置された二枚の偏光板30,32からなる。VAモード液晶セル31は、二枚の電極基板の間に液晶を担持している。観察者側に配置される偏光板30は、偏光子34がセルロースアシレートフィルム33に挟持された形態である。バックライト側に配置される偏光板32は、偏光子34がセルロースアシレートフィルム33に挟持された形態である。液晶セル側の2枚のセルロースアシレートフィルムのうち少なくとも1枚は本発明のセルロースアシレートフィルムである。
本発明の液晶表示装置の別の態様では、液晶セルと偏光子との間に配置される偏光板の透明保護膜として、本発明のセルロースアシレートフィルムからなる位相差フィルムが用いられる。一方の偏光板の(液晶セルと偏光子との間の)透明保護膜のみに上記の位相差フィルムを用いてもよいし、あるいは双方の偏光板の(液晶セルと偏光子との間の)二枚の透明保護膜に、上記の位相差フィルムを用いてもよい。一方の偏光板のみに上記位相差フィルムを使用する場合は、液晶セルのバックライト側偏光板の液晶セル側保護膜として使用するのが特に好ましい。液晶セルへの貼り合わせは、本発明のセルロースアシレートフィルムはVAセル側にすることが好ましい。液晶セル側と反対側の保護膜は通常のセルロースアシレートフィルムでもよい。たとえば、40〜80μmが好ましく、市販のKC4UX2M(コニカオプト株式会社製40μm)、KC5UX(コニカオプト株式会社製60μm)、TD80(富士写真フイルム製80μm)等が挙げられるが、これらに限定されない。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
[参考例1]
紫外線吸収ポリマーP1〜P3の合成
特開2007−41280号公報の段落170から段落177の方法により下記の繰り返し単位を含む紫外線吸収ポリマーP1〜P3(モノマー:例示化合物MUV−19)、を合成した。
Figure 2010030225
Figure 2010030225
Figure 2010030225
[実施例1]
(セルロースアシレート溶液Aの調製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
・セルロースアセテート(置換度2.84) 100.0質量部
・可塑剤A:D-(+)サッカロースオクタアセテート 4.0質量部
(東京化成製)
・メチレンクロライド 366.5質量部
・メタノール 54.8質量部
(レターデーション発現剤溶液Aの調製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、添加剤溶液を調製した。
・レターデーション発現剤(104) 11.0質量部
・棒状化合物(8) 9.0質量部
・メチレンクロライド 58.5質量部
・メタノール 8.7質量部
・セルロースアシレート溶液A 12.8質量部
(基層用ドープ101の調製)
レターデーション発現剤溶液Aを8.0質量部とをそれぞれ濾過後にインラインミキサーを用いて混合し、さらにセルロースアシレート溶液Aを92.0質量部加えて、インラインミキサーを用いて混合し、基層用ドープを作製した。
(セルロースアシレート溶液Bの調製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアシレート溶液を調製した。
・セルロースアシレート(置換度2.84) 100.0質量部
・可塑剤A:D-(+)サッカロースオクタアセテート 4.0質量部
(東京化成製)
・紫外線吸収ポリマー P1 6.0質量部
・メチレンクロライド 366.5質量部
・メタノール 54.8質量部
(マット剤溶液Bの調製)
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液Bを調製した。
・平均粒子サイズ20nmのシリカ粒子 2.0質量部
“AEROSIL R972”日本アエロジル(株)製
・メチレンクロリド 76.3質量部
・メタノール 11.4質量部
・セルロースアシレート溶液B 10.3質量部
(表層用ドープ101の調製)
上記マット剤溶液Bを1.3質量部とセルロースアシレート溶液Bを98.7質量部加えて、インラインミキサーを用いて混合し、表層用ドープを作製した。
(流延)
上述の表層用ドープ101および基層用ト゛ーフ゜101をバンド流延機を用いて、共流延法で流延した。得られたウェブをバンドから剥離し、150℃の条件でテンターを用いて延伸倍率30%で横延伸した後にクリップを外して135℃で20分間乾燥させ、延伸後の膜厚が基層が50μm、支持体面側の表層(以下表層1)および空気側の表層(以下表層2)がそれぞれ2.5μmになるように、セルロースアシレートフィルム101を作製した。それぞれの組成は表1に示した。
[実施例2]
(セルロースアシレートフィルム試料102の作製)
(基層用ドープ102の調製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
・セルロースアセテート(置換度2.78) 100.0質量部
・トリフェニルフォスフェート 8.0質量部
・レターデーション発現剤(I−2) 10.0質量部
・メチレンクロライド 366.5質量部
・メタノール 54.8質量部
(セルロースアシレート溶液Cの調製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアシレート溶液を調製した。
・セルロースアシレート(置換度2.78) 100.0質量部
・トリフェニルフォスフェート 8.0質量部
・紫外線吸収ポリマーP1 7.0質量部
・メチレンクロライド 366.5質量部
・メタノール 54.8質量部
(マット剤溶液Cの調製)
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液Bを調製した。
・平均粒子サイズ20nmのシリカ粒子 2.0質量部
“AEROSIL R972”日本アエロジル(株)製
・メチレンクロリド 76.3質量部
・メタノール 11.4質量部
・セルロースアシレート溶液C 10.3質量部
(表層用ドープ102の調製)
上記マット剤溶液Cを1.3質量部とセルロースアシレート溶液Cを98.7質量部加えて、インラインミキサーを用いて混合し、表層用ドープ102を作製した。
(流延)
上述の表層用ドープ102および基層用ドープ102をバンド流延機を用いて、共流延法で流延した。得られたウェブをバンドから剥離し、140℃の条件でテンターを用いて延伸倍率25%で横延伸した後にクリップを外して135℃で20分間乾燥させ、延伸後の膜厚が基層が60μm、支持体面側の表層(以下表層1)および空気側の表層(以下表層2)がそれぞれ3μmになるように、セルロースアシレートフィルム102を作製した。それぞれの組成は表1に示した。
[実施例3]
(セルロースアシレートフィルム試料103の作製)
(基層用ドープ103の調製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
・セルロースアセテートプロピオネート
(アセチル置換度1.50、プロピル置換度0.90) 100.0質量部
・可塑剤C 9.0質量部
・メチレンクロライド 366.5質量部
・メタノール 54.8質量部
(セルロースアシレート溶液Dの調製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアシレート溶液を調製した。
・セルロースアセテートプロピオネート
(アセチル置換度1.50、プロピル置換度0.90) 100.0質量部
・可塑剤C:D-(+)−サッカロースオクタベンゾエート 9.0質量部
・紫外線吸収ポリマー P1 8.0質量部
・メチレンクロライド 366.5質量部
・メタノール 54.8質量部
(マット剤溶液Dの調製)
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液Dを調製した。
・平均粒子サイズ20nmのシリカ粒子 2.0質量部
“AEROSIL R972”日本アエロジル(株)製
・メチレンクロリド 76.3質量部
・メタノール 11.4質量部
・セルロースアシレート溶液D 10.3質量部
(表層用ドープ103の調製)
上記マット剤溶液Dを1.3質量部とセルロースアシレート溶液Dを98.7質量部加えて、インラインミキサーを用いて混合し、表層用ドープを作製した。
(流延)
上述の表層用ドープ103および基層用ドープ103をバンド流延機を用いて、共流延法で流延した。得られたウェブをバンドから剥離し、140℃の条件でテンターを用いて延伸倍率37%で横延伸した後にクリップを外して125℃で20分間乾燥させ、延伸後の基層の膜厚が45μm、支持体面側の表層(以下表層1)および空気側の表層(以下表層2)の膜厚がそれぞれ3μmになるように、セルロースアシレートフィルム103を作製した。それぞれの組成は表1に示した。
[実施例4〜8]
(セルロースアシレートフィルム試料104〜105の作製)
実施例1において表層に添加する紫外線吸収ポリマーの種類および添加量を表1の量に変更した以外は実施例1と同様にして、本発明のセルロースアシレートフィルム104〜105を作製した。
[実施例9〜10]
セルロースアシレートフィルム103において、表層および基層に添加する紫外線吸収ポリマーの添加量を表1の量に変更した以外は実施例1と同様にして、実施例のセルロースアシレートフィルム108及び109を作製した。
[比較例1〜2]
セルロースアシレートフィルム101において、表層および基層に添加する紫外線吸収ポリマーの添加量を表1の量に変更した以外は実施例1と同様にして、比較例のセルロースアシレートフィルム201および202を作製した。
[比較例3〜5]
セルロースアシレートフィルム102において、表層および基層に添加する紫外線吸収ポリマーの添加量およびレターデーション発現剤の種類および添加量を表1の量に変更した以外は実施例2と同様にして、比較例のセルロースアシレートフィルム203〜205を作製した。
Figure 2010030225
可塑剤A:D-(+)−サッカロースオクタアセテート
可塑剤B:トリフェニルフォスフェート
可塑剤C:D-(+)−サッカロースオクタベンゾエート
Figure 2010030225
<フィルムのレターデーション>
前述の方法により自動複屈折計KOBRA−WR(王子計測器(株)製)を用いて波長446nm、548nm、628nmにおいて3次元複屈折測定を行い、面内のレターデーションReおよび傾斜角を変えてReを測定することで得られる膜厚方向のレターデーションRthを求めた。表2に、各波長におけるRe及びRthをそれぞれ示す。
<ブリードアウト評価>
1m×1mにセルロースアシレートフィルムを切り出し、セルロースアシレート表面のブリードアウトを目視で以下の基準により評価した。
○:ブリードアウトなし
△:ブリードアウトの発生した面積が20%未満
×:ブリードアウトの発生した面積が20%以上
<耐光性試験後のステイン>
(株)スガ試験機社製スーパーキセノンウェザーメーターSX75で、60℃50%RHの環境下に200時間光を照射した後のフィルムのステインを目視で以下の基準により評価した。
○:着色なし
×:黄色に着色
結果を表2に示す。
Figure 2010030225
表2の結果から本発明のセルロースアシレートフィルム101〜109は、ブリードアウトがなく、かつ紫外光を照射してもステインが発生しにくく好ましいことがわかる。
特に実施例101と比較例202の比較においては、紫外線吸収ポリマーを表層に添加した方が内層に添加した場合に比べ、高レターデーションが発現し好ましいことがわかる。
[参考例2]
〔セルロースアシレートフィルム301の作製〕
(セルロースアシレート溶液Dの調製)
下記の組成物をミキシングタンクに投入し、撹拌して各成分を溶解し、セルロースアシレート溶液51を調製した。
――――――――――――――――――――――――――――――――
セルロースアシレート溶液51組成
――――――――――――――――――――――――――――――――
アセチル置換度2.81、平均重合度360のセルロースアセテート
100.0質量部
トリフェニルフォスフェート 7.0質量部
ビフェニルフォスフェート 4.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
――――――――――――――――――――――――――――――――
(マット剤溶液52の調製)
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液52を調製した。
――――――――――――――――――――――――――――――――
マット剤溶液52組成
――――――――――――――――――――――――――――――――
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)
2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
メタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液51 10.3質量部
――――――――――――――――――――――――――――――――
(レターデーション発現剤溶液53の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら撹拌して、各成分を溶解し、波長分散制御剤溶液を調製した。
―――――――――――――――――――――――――――――――
レターデーション発現剤溶液53組成
―――――――――――――――――――――――――――――――
レターデーション発現剤(I−2) 20.0質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液51 12.8質量部
―――――――――――――――――――――――――――――――
上記セルロースアシレート溶液51を93.2質量部、マット剤溶液52を1.3質量部、レターデーション発現剤溶液53を5.5質量部を濾過後に混合し、バンド流延機を用いて流延した。残留溶剤含量50質量%でフィルムをバンドから剥離し、100℃の条件でフィルムをテンタークリップで把持して2%の延伸倍率で横延伸し、残留溶剤含量が5質量%になるまで乾燥した(乾燥1)。さらにフィルム延伸後の幅のまま100℃で30秒間保持した。テンタークリップからフィルムを解放し、フィルムの幅方向を両端から各5%ずつを切り落とした後、さらに幅方向が自由(保持されていない)状態で135℃の乾燥ゾーンを20分間かけて通過させた後(乾燥2)、フィルムをロールに巻き取った。得られたセルロースアシレートフィルムの残留溶剤量は0.1質量%であり、膜厚は45μmであった。また、Rth(446)が110nm、Rth(548)が106nm、Rth(629)が104nmであった。
[偏光板試料101の作製]
上記で作製した各セルロースアシレートフィルム試料101の表面をアルカリ鹸化処理した。1.5規定の水酸化ナトリウム水溶液に55℃で2分間浸漬し、室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して厚さ20μmの偏光膜を得た。ポリビニルアルコール(クラレ製PVA−117H)3%水溶液を接着剤として、前記のアルカリ鹸化処理した各ポリマーフィルムと、同様のアルカリ鹸化処理したフジタックTD80UL(富士写真フイルム社製)を用意し、これらの鹸化した面が偏光膜側となるようにして偏光膜を間に挟んで貼り合わせ、各セルロースアシレートフィルム試料101とTD80ULが偏光膜の保護フィルムとなっている偏光板101を得た。この際、セルロースアシレートフィルム試料101のMD方向およびTD80ULの遅相軸が、偏光膜の吸収軸と平行になるように貼り付けた。
[偏光板102〜109、201〜205、および301の作製]
偏光板101の作製において、セルロースアシレートフィルム試料101をセルロースアシレートフィルム試料102〜109、201〜205、301に変えた以外は偏光板101の作製と同様にして、偏光板102〜109、偏光板201〜205、および偏光板301を作製した。
[偏光板401の作製]
偏光板101の作製において、セルロースアシレートフィルム試料101をフジタックTD80UL(富士写真フイルム社製)に変えた以外は偏光板101の作製と同様にして、偏光板401を作製した。
[液晶表示装置のA〜Hの作製]
図3の構成において、32(バックライト側偏光板)および30(視認者側偏光板)を表3に示す組み合わせとして、液晶表示装置A〜Nをそれぞれ作製した。VA液晶セルはVAモードの液晶TV(Bravia J5000、SONY(株)製)の表裏の偏光板および位相差板を剥して用いた。
[液晶表示装置の評価]
(パネルの色味視野角評価)
上記作製方法のようにして作製したVAモードの液晶表示装置AからNについて、図3中の偏光板32側にバックライトを設置し、各々について測定機(EZ−Contrast XL88、ELDIM社製)を用いて、暗室内で黒表示および白表示の輝度を測定し、黒表示におけるコントラスト比を算出した。
(正面コントラスト)
白表示の輝度/黒表示の輝度から正面コントラストを算出し、以下の基準で評価した。
○:正面コントラストが2000以上
△:正面コントラストが1000以上2000未満
×:正面コントラストが1000未満
(斜めコントラスト)
黒表示において、液晶セルの法線方向から一対の偏光板の透過軸の中心線方向(方位角45度)に極角60度における白表示の輝度/黒表示の輝度から斜めコントラストを算出し、以下の基準で評価した。
結果を以下の基準で評価した。
○:斜めコントラストが85以上
△:斜めコントラストが70以上85未満
×:斜めコントラストが70未満
Figure 2010030225
表3より本発明のセルロースアシレートフィルム101〜109を用いた液晶表示装置A〜G、M及びNは比較試料201〜205を用いた液晶表示装置H〜Lよりも正面コントラストおよび斜めコントラストが大幅に改良され、表示特性が明らかに改善されていることが分かる。
本発明の光学補償フィルムの製造方法の一例を説明するための断面図である。 本発明の偏光板が使用された液晶表示装置の一例を説明するための図である。 本発明の偏光板が使用されたVAモード液晶表示装置の一例を説明するための断面図である。
符号の説明
1: 表層用ドープ
2: コア層用ドープ
3: 共流延ギーサ
4: 流延用支持体
6: 上偏光板
7: 上偏光板吸収軸
8: 上光学異方性層
9: 上光学異方性層配向制御方向
10:液晶セル上電極基板
11:上基板配向制御方向
12:液晶分子
13:液晶セル下電極基板
14:下基板配向制御方向
15:下光学異方性層
16:下光学異方性層配向制御方向
17:下偏光板
18:下偏光板吸収軸
30:上側偏光板
31:VAモード液晶セル
32:下側偏光板
33:セルロースアシレートフィルム
34:偏光子

Claims (6)

  1. 基層と基層に積層された表層を有し、表層に分子量が2000以上の紫外線吸収ポリマーを含有するセルロースアシレートフィルム。
  2. 表層における前記紫外線吸収ポリマーの濃度が3質量%以上15質量%以下である請求項1に記載のセルロースアシレートフィルム。
  3. 基層にオクタノール/水分配係数が7.0以上で分子量2000以下の疎水化剤を含有する請求項1又は2に記載のセルロースアシレートフィルム。
  4. 請求項1〜3のいずれかに記載のセルロースアシレートフィルムを含む位相差膜。
  5. 請求項1〜3のいずれか1項に記載のセルロースアシレートフィルムを有する偏光板。
  6. 一対の第1及び第2の偏光子と、該一対の偏光子の間に配置された液晶セルと、前記第1の偏光子と前記液晶セルとの間に、請求項1〜3のいずれか1項に記載のセルロースアシレートフィルムと、を有する液晶表示装置。
JP2008196867A 2008-07-30 2008-07-30 セルロースアシレートフィルム、位相差膜、偏光板および液晶表示装置 Abandoned JP2010030225A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196867A JP2010030225A (ja) 2008-07-30 2008-07-30 セルロースアシレートフィルム、位相差膜、偏光板および液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196867A JP2010030225A (ja) 2008-07-30 2008-07-30 セルロースアシレートフィルム、位相差膜、偏光板および液晶表示装置

Publications (1)

Publication Number Publication Date
JP2010030225A true JP2010030225A (ja) 2010-02-12

Family

ID=41735299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196867A Abandoned JP2010030225A (ja) 2008-07-30 2008-07-30 セルロースアシレートフィルム、位相差膜、偏光板および液晶表示装置

Country Status (1)

Country Link
JP (1) JP2010030225A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020114A (ja) * 2011-07-12 2013-01-31 Konica Minolta Advanced Layers Inc ハードコートフィルム、およびそれを用いた偏光板、メディカル用液晶表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054936A (ja) * 1999-08-19 2001-02-27 Fuji Photo Film Co Ltd セルロースエステルフィルム及びその製造方法
JP2004268281A (ja) * 2003-03-05 2004-09-30 Fuji Photo Film Co Ltd セルロースアシレートフィルム及び溶液製膜方法、偏光板、光学補償フィルム、液晶表示装置、写真感光材料
JP2004277581A (ja) * 2003-03-17 2004-10-07 Konica Minolta Holdings Inc セルロースエステルフィルム、偏光板、液晶表示装置、セルロースエステルフィルムの製造方法、偏光板の製造方法
JP2006251043A (ja) * 2005-03-08 2006-09-21 Fuji Photo Film Co Ltd 光学機能フィルム、その製造方法、並びにそれを用いた偏光板及び画像表示装置
JP2007001238A (ja) * 2005-06-27 2007-01-11 Fujifilm Holdings Corp セルロースエステルフィルム積層体、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP2007041280A (ja) * 2005-08-03 2007-02-15 Konica Minolta Opto Inc 位相差フィルム、偏光板およびこれらを用いた液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054936A (ja) * 1999-08-19 2001-02-27 Fuji Photo Film Co Ltd セルロースエステルフィルム及びその製造方法
JP2004268281A (ja) * 2003-03-05 2004-09-30 Fuji Photo Film Co Ltd セルロースアシレートフィルム及び溶液製膜方法、偏光板、光学補償フィルム、液晶表示装置、写真感光材料
JP2004277581A (ja) * 2003-03-17 2004-10-07 Konica Minolta Holdings Inc セルロースエステルフィルム、偏光板、液晶表示装置、セルロースエステルフィルムの製造方法、偏光板の製造方法
JP2006251043A (ja) * 2005-03-08 2006-09-21 Fuji Photo Film Co Ltd 光学機能フィルム、その製造方法、並びにそれを用いた偏光板及び画像表示装置
JP2007001238A (ja) * 2005-06-27 2007-01-11 Fujifilm Holdings Corp セルロースエステルフィルム積層体、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP2007041280A (ja) * 2005-08-03 2007-02-15 Konica Minolta Opto Inc 位相差フィルム、偏光板およびこれらを用いた液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020114A (ja) * 2011-07-12 2013-01-31 Konica Minolta Advanced Layers Inc ハードコートフィルム、およびそれを用いた偏光板、メディカル用液晶表示装置

Similar Documents

Publication Publication Date Title
JP4825988B2 (ja) 光学補償フィルムの製造方法
JP4810674B2 (ja) 光学フィルムの製造方法、光学補償フィルムの製造方法
KR101247843B1 (ko) 액정 표시장치
JP5061066B2 (ja) ポリマーフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
JP5039005B2 (ja) セルロースエステルフィルム、それを含む偏光板及び液晶表示装置
JP2007298648A (ja) セルロースエステル光学フィルム、その製造方法、それを用いた偏光板及び液晶表示装置
JP4759365B2 (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、偏光板及び液晶表示装置
WO2007102340A1 (ja) 偏光子保護フィルム、偏光板及び垂直配向方式液晶表示装置
JPWO2007108347A1 (ja) セルロースアシレート光学フィルム、その製造方法、それを用いる偏光板及び液晶表示装置
KR20080069547A (ko) 광학 보상 필름, 광학 보상 필름의 제조 방법, 편광판 및액정 표시 장치
JP2007249180A (ja) 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置
JP2007297469A (ja) セルロースエステル光学フィルム、その製造方法、それを用いた偏光板及び液晶表示装置
JP4972797B2 (ja) 光学フィルム、その製造方法、偏光板及び液晶表示装置
JP4383435B2 (ja) 液晶表示装置
JP2010015142A (ja) 光学補償フィルム、光学補償フィルムの製造方法、偏光板および液晶表示装置
JP2007304287A (ja) 光学フィルム、これを用いた偏光板および液晶表示装置
JP2007256494A (ja) 光学フィルム、これを用いた偏光板および液晶表示装置
JP2009217256A (ja) 樹脂フィルム、その製造方法、偏光板および液晶表示装置
JP2010020269A (ja) 液晶表示装置
JP2009098618A (ja) 位相差膜及び偏光板
JP2006265301A (ja) セルロース体組成物、セルロース体フィルム、セルロース体フィルム用改質剤、偏光板保護膜および液晶表示装置
JP2007321108A (ja) 高分子組成物、位相差板、偏光板、液晶表示装置
JP5185039B2 (ja) 光学フィルム、その製造方法、並びにそれを用いた偏光板及び液晶表示装置
JP2006117714A (ja) 光学フィルム、偏光板及び表示装置
JP2007293266A (ja) ポリマーフィルム、偏光板保護フィルム、偏光板および液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120521

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120706