JP2010029830A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2010029830A
JP2010029830A JP2008197515A JP2008197515A JP2010029830A JP 2010029830 A JP2010029830 A JP 2010029830A JP 2008197515 A JP2008197515 A JP 2008197515A JP 2008197515 A JP2008197515 A JP 2008197515A JP 2010029830 A JP2010029830 A JP 2010029830A
Authority
JP
Japan
Prior art keywords
electrode
gap
discharge
processing apparatus
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008197515A
Other languages
Japanese (ja)
Inventor
Keiko Koga
啓子 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Sangyo Gakuen
Original Assignee
Nakamura Sangyo Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Sangyo Gakuen filed Critical Nakamura Sangyo Gakuen
Priority to JP2008197515A priority Critical patent/JP2010029830A/en
Publication of JP2010029830A publication Critical patent/JP2010029830A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device for uniformly subjecting a small to large amount of a powder to glow plasma treatment at atmospheric pressure to impart a useful functional group to the surface of the power. <P>SOLUTION: The plasma treatment device includes a discharge container 1 having a center electrode 2 and a cylindrical peripheral electrode 3 arranged through a predetermined gap 5 with respect to the center electrode 2, a dielectric 4 provided to at least one of the surface of the central electrode 2 and the surface of the peripheral electrode 3, a fluid injection means provided on one end of the discharge container 1 and constituted so as to inject a fluid into the gap 5, a fluid discharge means provided in the other end of the discharge container 1 and constituted so as to discharge the fluid from the gap 5, and a rotary means for rotating the discharge container 1 centering around the central electrode 2 in a state that AC or pulse voltage is applied across the central electrode 2 and the peripheral electrode 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プラズマ処理装置に関する。詳しくは大気圧下でグロー放電プラズマを利用して粉体の表面改質処理を行うプラズマ処理装置に係るものである。   The present invention relates to a plasma processing apparatus. Specifically, the present invention relates to a plasma processing apparatus that performs a surface modification treatment of powder using glow discharge plasma under atmospheric pressure.

プラズマは、薄膜形成、表面処理あるいは表面改質、大気圧汚染物質の分解および無害化などに利用されている。中でも、大気圧下でのプラズマ処理は、低圧プラズマのような真空装置を必要としないため、比較的安価で工業的に有利な技術であり、例えばフィルム表面に大気圧下においてコロナ放電プラズマを照射して、親水性、疎水性を付与し、接着性、印刷特性、帯電性を改善することが一般的に行われている。   Plasma is used for thin film formation, surface treatment or surface modification, decomposition and detoxification of atmospheric pressure contaminants, and the like. Above all, plasma treatment under atmospheric pressure is a relatively inexpensive and industrially advantageous technology because it does not require a vacuum device like low-pressure plasma. For example, the film surface is irradiated with corona discharge plasma under atmospheric pressure. Thus, it is generally performed to impart hydrophilicity and hydrophobicity and to improve adhesiveness, printing characteristics, and chargeability.

一方、粉体の表面を大気圧下で改質することを目的とするプラズマによる粉体表面処理装置が提案されており、例えば特許文献1に記載されている。具体的には図8に示すように、上、下端部をガス通孔として開放するガラス管101の上,下端部近傍に、固体は通過させずガスのみを通過させるフィルター102、103を配置すると共に、このフィルター102の上方に所定の距離をおいて主放電電極104、104を配置し、更にガラス管101をフィルター102を配置する部分105との間の部分106を所要の長さにわたって小径となし、かつ上側の主放電電極104の上方部分107を最大径とした構成とされている。   On the other hand, a powder surface treatment apparatus using plasma for the purpose of modifying the surface of the powder under atmospheric pressure has been proposed. Specifically, as shown in FIG. 8, filters 102 and 103 that allow only gas to pass through without allowing solids to pass therethrough are disposed in the vicinity of the upper and lower ends of the glass tube 101 that opens the upper and lower ends as gas passage holes. At the same time, the main discharge electrodes 104 and 104 are disposed at a predetermined distance above the filter 102, and the portion 106 between the glass tube 101 and the portion 105 where the filter 102 is disposed has a small diameter over a required length. None, and the upper portion 107 of the upper main discharge electrode 104 has a maximum diameter.

特公平7−68382号公報Japanese Examined Patent Publication No. 7-68382

しかしながらガスによる吹き上げ式の装置では、フィルターを通過するガスによって粉体をガラス管内で均一に吹き上げてプラズマ処理を行うものであるが、最大でも1cmほどの内径のガラス管内で粉体をガスのみによって吹き上げて個々の粉体を分離するために、ガラス管内に充填する粉体の処理量が限られている。   However, in the gas blow-up type apparatus, the powder is uniformly blown up in the glass tube by the gas passing through the filter and the plasma treatment is performed. However, the powder is made up of only the gas in the glass tube having an inner diameter of about 1 cm at the maximum. In order to separate individual powders by blowing up, the processing amount of the powder filled in the glass tube is limited.

また、ガスによってガラス管内の上部まで持ち上げられた粉体は、ガラス管の内壁面に沿って降下し、更にガスによって再び巻き込まれて上昇し、これを繰り返すことによって何回も主放電電極間を通過させることによってプラズマによる粉体の表面の処理を行うものであるが、粉体が主放電電極間を通過するときのみにしかプラズマによる照射が行われないために時間のロスが生じ表面処理効率が悪い問題がある。   Also, the powder lifted up to the upper part of the glass tube by the gas descends along the inner wall surface of the glass tube, and is further entrapped and raised by the gas. The surface treatment of the powder by plasma is performed by passing it through, but since the powder is irradiated only when the powder passes between the main discharge electrodes, time loss occurs and the surface treatment efficiency There is a bad problem.

本発明は、以上の点に鑑みて創案されたものであって、少量から大量の粉体を均一に大気圧グロープラズマ処理して、その表面に有用な官能基を付与するプラズマ処理装置を提供することを目的とするものである。   The present invention was devised in view of the above points, and provides a plasma processing apparatus that uniformly treats a small amount to a large amount of powder with atmospheric pressure glow plasma treatment and imparts useful functional groups to the surface. It is intended to do.

上記の目的を達成するために、本発明に係るプラズマ処理装置は、中心電極と、中心電極と所定の空隙部を介して配置された筒状の周辺電極とを有する放電容器と、中心電極表面若しくは周辺電極表面の少なくとも一方に設けられた誘電体と、放電容器の一端側に設けられ、空隙部に流体を注入可能に構成された流体注入手段と、放電容器の他端側に設けられ、空隙部から流体を排出可能に構成された流体排出手段と、中心電極と周辺電極との間に交流またはパルス電圧を印加した状態で、中心電極を回転の中心として放電容器を回転せしめる回転手段とを備える。   In order to achieve the above object, a plasma processing apparatus according to the present invention includes a center electrode, a discharge vessel having a center electrode and a cylindrical peripheral electrode disposed via a predetermined gap, and a surface of the center electrode Alternatively, the dielectric provided on at least one of the peripheral electrode surfaces, the fluid injection means provided on one end side of the discharge vessel and configured to inject fluid into the gap, and provided on the other end side of the discharge vessel, Fluid discharging means configured to discharge fluid from the gap, and rotating means for rotating the discharge vessel around the center electrode as a center of rotation in a state where an alternating current or pulse voltage is applied between the center electrode and the peripheral electrode; Is provided.

ここで、空隙部内に封入された処理粉体は、放電容器を卓上用ポットミル回転台などによって回転させることで試料粉体は攪拌されながら中心電極と周辺電極間に発生するプラズマ放電により大気圧での粉体の表面処理が可能となる。   Here, the treated powder sealed in the gap is rotated at atmospheric pressure by the plasma discharge generated between the center electrode and the peripheral electrode while the sample powder is agitated by rotating the discharge vessel with a desktop pot mill rotary table or the like. The surface treatment of the powder can be performed.

また、中心電極に周辺電極方向に突出する第1の凸部が設けられ、若しくは、周辺電極に中心電極方向に突出する第2の凸部が設けられ、若しくは、中心電極に周辺電極方向に突出する第1の凸部が設けられると共に、周辺電極に前記中心電極方向に突出する第2の凸部が設けられた構成とすることにより空隙部内に封入された試料粉体は第1の凸部、若しくは第2の凸部によって効率良く攪拌されることによりプラズマ放電により均一な表面処理が可能となる。   The center electrode is provided with a first protrusion protruding in the direction of the peripheral electrode, the peripheral electrode is provided with a second protrusion protruding in the direction of the center electrode, or the center electrode protrudes in the direction of the peripheral electrode. The sample powder sealed in the gap is formed by providing the first convex part to be provided and the second convex part protruding in the direction of the central electrode on the peripheral electrode. Alternatively, it is possible to perform uniform surface treatment by plasma discharge by being efficiently stirred by the second convex portion.

また、中心電極及び周辺電極と連設された仕切部が設けられることにより各仕切部との間に形成されるスペースに試料粉体を封入することでプラズマ放電により試料粉体の処理量を増加させることが可能となる。   In addition, by providing a partition connected to the center electrode and the peripheral electrode, the sample powder is enclosed in a space formed between each partition to increase the amount of sample powder processed by plasma discharge. It becomes possible to make it.

また、第1の凸部、前記第2の凸部、あるいは、仕切部の少なくとも1つが、絶縁性素材である耐熱性プラスチック、ガラス、セラミックス、酸化アルミニウムのいずれかにより形成されることにより異常放電を起こさずに処理することができる。   Further, at least one of the first convex portion, the second convex portion, or the partition portion is formed of any one of heat-resistant plastic, glass, ceramics, and aluminum oxide that is an insulating material, thereby causing abnormal discharge. Can be processed without causing

また、第1の凸部および第2の凸部、若しくは第1の凸部、第2の凸部のいずれかの高さは前記空隙部の幅の1/2以上であるとされることにより効率の良い攪拌が可能となる。   In addition, the height of any of the first and second protrusions, or the first and second protrusions is ½ or more of the width of the gap. Efficient stirring is possible.

本発明のプラズマ処理装置では、同軸状に構成された放電容器本体の空隙部内に試料粉体を封入し、軸心円周方向へ回転させることによりガス圧によらないで粉体の攪拌を行うことが可能となる。   In the plasma processing apparatus of the present invention, the sample powder is sealed in the gap of the coaxially configured discharge vessel body, and the powder is stirred without depending on the gas pressure by rotating in the axial direction of the axis. It becomes possible.

また、誘電体間の間隙を保持した状態で同軸円筒型誘電体バリア放電容器の直径を大きくする、あるいは長くすることにより粉体の処理容積を大きくすることができるために、粉体の処理量を上げることが可能となる。   In addition, the processing volume of the powder can be increased by increasing or increasing the diameter of the coaxial cylindrical dielectric barrier discharge vessel while maintaining the gap between the dielectrics. Can be raised.

以下、本発明の実施の形態を、その図面を参酌しながら詳述する。
図1は、本発明を適用したプラズマ処理装置における放電容器の一例を示す正面断面図、図2は、本発明を適用したプラズマ処理装置における放電容器の一例を示す側面断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front sectional view showing an example of a discharge container in a plasma processing apparatus to which the present invention is applied, and FIG. 2 is a side sectional view showing an example of a discharge container in a plasma processing apparatus to which the present invention is applied.

ここで示す放電容器1は、電極より形成される中心電極2と、この中心電極2と同軸状となる周辺電極3と、この中心電極2の外周面と周辺電極3の内周面に密接状に嵌着され誘電体4と、この誘電体4との間に形成される空隙部5とから構成されている。   The discharge vessel 1 shown here is in close contact with a central electrode 2 formed of electrodes, a peripheral electrode 3 coaxial with the central electrode 2, and an outer peripheral surface of the central electrode 2 and an inner peripheral surface of the peripheral electrode 3. It is comprised from the dielectric 4 and the space | gap part 5 formed between this dielectric 4 by this.

誘電体4はガラスなどの絶縁体より形成され、この誘電体4との間に形成される空隙部5はプラズマ放電に必要な一定の距離を保ちながら中心電極2と周辺電極3の直径、あるいは全長を長くすることにより空隙部5の容量を大きくすることができる構成とされている。   The dielectric 4 is formed of an insulator such as glass, and the gap 5 formed between the dielectric 4 and the dielectric 4 is maintained at a certain distance necessary for plasma discharge, while the diameter of the center electrode 2 and the peripheral electrode 3 or It is set as the structure which can enlarge the capacity | capacitance of the space | gap part 5 by lengthening full length.

次に、周辺電極3の誘電体4の内周面に、第2の凸部6が中心電極2方向の空隙部5に向けて突設され、この第2の凸部6は耐熱性プラスチック、ガラス、セラミックス、酸化アルミニウムなどの絶縁性素材より形成されると共に、空隙部5内に充填された粉体が放電容器1を回転させることによって第2の凸部6によって攪拌することができる構成とされている。
更に、第2の凸部6は空隙部5間の2/1以上から1未満とすることにより粉体の攪拌が確実に行われる構成とされている。
Next, on the inner peripheral surface of the dielectric 4 of the peripheral electrode 3, a second convex portion 6 protrudes toward the gap portion 5 in the direction of the center electrode 2, and the second convex portion 6 is formed of a heat resistant plastic, A structure that is formed of an insulating material such as glass, ceramics, and aluminum oxide, and that the powder filled in the gap 5 can be stirred by the second protrusion 6 by rotating the discharge vessel 1. Has been.
Furthermore, the 2nd convex part 6 is set as the structure by which the stirring of a powder is reliably performed by setting it as 2/1 or more between the space | gap parts 5 to less than one.

また、放電容器1の一端側の空隙部5の開放端にはガス注入管7が取り付けられている。このガス注入管7は、シリコンゴムより形成される密閉膜部8に貫通した状態で取り付けられている。   A gas injection tube 7 is attached to the open end of the gap 5 on one end side of the discharge vessel 1. The gas injection pipe 7 is attached in a state of penetrating through a sealing film portion 8 formed of silicon rubber.

また、放電容器1の空隙部5の他端側には、シリコンゴムより形成される密閉膜部8が取り付けられると共に、この密閉膜部8にガス排出穴9が開口され、このガス排出穴9に気体のみを通過させるフィルター10が設けられている。   Further, a sealing film portion 8 made of silicon rubber is attached to the other end side of the gap portion 5 of the discharge vessel 1, and a gas discharge hole 9 is opened in the sealing film portion 8. A filter 10 that allows only gas to pass therethrough is provided.

なお、本実施例では、第2の凸部を詳述するものであるが、中心電極に周辺電極方向に突出する第1の凸部(図示せず。)、あるいは第1の凸部および第2の凸部の両者を設ける。若しくは複数の第1の凸部および第2の凸部を設けた構成であっても構わない。
また、図3に示すように、誘電体の内周面に凹凸形状の係留用窪み部15を形成することにより粉体の攪拌が行える構成とされるものであっても構わない。
In the present embodiment, the second convex portion will be described in detail. However, the first convex portion (not shown) protruding in the direction of the peripheral electrode on the center electrode, or the first convex portion and the first convex portion. Provide both of the two convex parts. Alternatively, a configuration in which a plurality of first protrusions and second protrusions are provided may be employed.
Moreover, as shown in FIG. 3, you may be set as the structure which can stir powder by forming the uneven | corrugated hollow part 15 of uneven | corrugated shape in the internal peripheral surface of a dielectric material.

また、図4は、本発明を適用した粉体用大気圧プラズマ処理装置における放電容器の他の例を示す正面断面図である。
図1において詳述した誘電体4との間に形成される空隙部5を仕切るための仕切部16が誘電体4間に渡設されるものであり、この仕切部16はガラス、セラミックス、あるいはナイロンなどの耐熱性を有する絶縁性素材より形成され、例えば2個の仕切部16によって空隙部5を2部屋に分ける(図4(A)参照。)、あるいは3個の仕切部16によって空隙部5を3部屋に分ける(図4(B)参照。)と共に、それぞれの部屋に粉体および混合ガスを導入することができる構成とされている。
FIG. 4 is a front sectional view showing another example of the discharge vessel in the powder atmospheric pressure plasma processing apparatus to which the present invention is applied.
A partitioning portion 16 for partitioning the gap 5 formed between the dielectric 4 described in detail in FIG. 1 is provided between the dielectrics 4, and this partitioning portion 16 is made of glass, ceramics, or It is formed from a heat-resistant insulating material such as nylon, and for example, the gap 5 is divided into two rooms by two partitions 16 (see FIG. 4A), or the gap by three partitions 16. 5 is divided into three rooms (see FIG. 4B), and powder and mixed gas can be introduced into each room.

次に、図5に示すように、放電容器本体1を卓上用ポットミル回転台11によって回転させるものであり、この卓上用ポットミル回転台11は電動モーター(図示せず。)によって同一方向に駆動回転する放電容器本体1の軸線と平行となるように2本の回転体11と間に放電容器1を載置し、1本の回転体14を電動モーターによって駆動回転させることにより放電容器1を回転させる構成とされている。   Next, as shown in FIG. 5, the discharge vessel main body 1 is rotated by a desktop pot mill rotary table 11, and this desktop pot mill rotary table 11 is driven and rotated in the same direction by an electric motor (not shown). The discharge vessel 1 is placed between two rotary bodies 11 so as to be parallel to the axis of the discharge vessel main body 1 to be rotated, and the discharge vessel 1 is rotated by driving and rotating the single rotary body 14 by an electric motor. It is supposed to be configured.

そして放電容器1の中心電極2と周辺電極3にブラシ電極端子12をそれぞれ接触させ、これらの電極端子12間に高周波電源17が接続された構成とされている。   The brush electrode terminal 12 is brought into contact with the center electrode 2 and the peripheral electrode 3 of the discharge vessel 1, respectively, and a high frequency power source 17 is connected between the electrode terminals 12.

また、放電容器1のガス注入管7にヘリウムガスボンベと窒素ガスボンベからの混合気体を注入するガスホース13が連結されている。このガスホース13とガス注入管7との連結にはベアリング等を介して放電容器1が回転した状態での注入が行える構成とされている。   A gas hose 13 for injecting a mixed gas from a helium gas cylinder and a nitrogen gas cylinder is connected to the gas injection tube 7 of the discharge vessel 1. The connection between the gas hose 13 and the gas injection tube 7 is configured such that injection can be performed in a state where the discharge vessel 1 is rotated through a bearing or the like.

なお、本実施例では放電容器を卓上用ポットミル回転台によって回転させる機構を詳述するものであるが、必ずしも放電容器の回転は卓上用ポットミル回転台である必要性はなく、例えば放電容器の中心電極を回転自在な状態で枢支し、モーターおよび変速機を介して直接的に駆動回転させる機構など電圧を印加しながら回転させることができる機構であればいかなる機構であっても構わない。   In this embodiment, the mechanism for rotating the discharge vessel by the desktop pot mill rotary table will be described in detail. However, the rotation of the discharge vessel is not necessarily required to be the desktop pot mill rotary table, for example, the center of the discharge vessel. Any mechanism may be used as long as it is capable of rotating while applying a voltage, such as a mechanism in which the electrode is pivotally supported in a rotatable state and directly driven and rotated via a motor and a transmission.

以上の構成よりなる本発明のプラズマ処理装置を用いてポリプロピレン重合粉末の表面処理を行った。
実施例1
ノーメックス(芳香族ナイロンの共重合体からなる厚さ約0.7mmの絶縁紙、デュポン社製)より形成される羽根1枚を備える誘電体間の空隙部内に、ポリプロピレン重合粉末(日本ポリプロ(株)製、NOVATEC P−8000S,平均粒径300マイクロメートル)15gを投入し、卓上用ポットミル回転台(日陶科学(株)製 AZN−51S)に載せて5〜8rpmの回転速度範囲内にて回転させた。
The surface treatment of the polypropylene polymer powder was performed using the plasma processing apparatus of the present invention having the above configuration.
Example 1
Polypropylene polymer powder (Nippon Polypro Co., Ltd.) is formed in the gap between the dielectrics having one blade formed from Nomex (a 0.7 mm thick insulating paper made of an aromatic nylon copolymer, manufactured by DuPont). ), NOVATEC P-8000S, average particle size of 300 micrometers), 15 g, and placed on a tabletop pot mill rotating table (AZN-51S, manufactured by Nissho Science Co., Ltd.) within a rotational speed range of 5-8 rpm. Rotated.

更に、ヘリウム4.5l/min、窒素0.45l/minの混合ガスを放電容器の空隙部内に導入し、1分間流した後、そのまま混合ガスを流しながら高周波電源(春日電機(株)製 AGF−012)にて、36kHzの正弦波電圧を印加し、プラズマ出力0〜200Wで所定の時間プラズマ処理を行った。   Further, a mixed gas of helium 4.5 l / min and nitrogen 0.45 l / min is introduced into the gap of the discharge vessel, and after flowing for 1 minute, a high frequency power source (AGF manufactured by Kasuga Electric Co., Ltd.) −012), a sine wave voltage of 36 kHz was applied, and plasma treatment was performed for a predetermined time with a plasma output of 0 to 200 W.

ここで、前記処理されたポリプロピレン粉末をX線光電子分光装置(XPS)((株)島津クレイトスAXIS−165)にて光電子スペクトルの測定を行い、N1s、C1sピークの面積から求めたN/Cの原子比とプラズマ出力および処理時間の関係を図6および図7に示す。 Here, the treated polypropylene powder was measured for a photoelectron spectrum with an X-ray photoelectron spectrometer (XPS) (Shimadzu Kraitos AXIS-165), and N / s determined from the areas of N 1s and C 1s peaks. The relationship between the C atomic ratio, the plasma output, and the processing time is shown in FIGS.

図6および図7から窒素がプラズマ出力、処理時間とともに増加しており、ポリプロピレン粒子表面に窒素官能基が導入されたことが判明した。   6 and 7, it was found that nitrogen increased with plasma output and treatment time, and nitrogen functional groups were introduced on the surface of the polypropylene particles.

実施例2
次に、放電容器の空隙部を実施例1において詳述したノーメックスより形成される3個の仕切部によって3つのスペースに区分し、それぞれのスペースに各10g、合計30gの処理量とし、実施例1と同じ条件下でプラズマ出力200W、処理時間5分でのプラズマ処理を行った。
Example 2
Next, the gap of the discharge vessel is divided into three spaces by three partitions formed by Nomex detailed in Example 1, and each space has a processing amount of 10 g, a total of 30 g. The plasma treatment was performed under the same conditions as in No. 1 with a plasma output of 200 W and a treatment time of 5 minutes.

実施例3
また、放電容器の空隙部を実施例1において詳述したノーメックスより形成される3個の仕切部によって3つのスペースに区分し、それぞれのスペースに各15g、合計45gの処理量とし、実施例1と同じ条件下でのプラズマ処理を行った。
Example 3
In addition, the gap portion of the discharge vessel is divided into three spaces by three partition portions formed from Nomex detailed in the first embodiment, and each space has a processing amount of 15 g for a total of 45 g. The plasma treatment was performed under the same conditions.

ここで、実施例1、実施例2および実施例3で処理したポリプロピレン重合粉末のXPSスペクトルから算出した窒素と炭素の原子比N/Cとの比較結果を下記表1に示す。   Here, the comparison results of the atomic ratio N / C of nitrogen and carbon calculated from the XPS spectra of the polypropylene polymer powders treated in Example 1, Example 2 and Example 3 are shown in Table 1 below.

Figure 2010029830
プラズマ処理試料の原子比N/C
Figure 2010029830
Atomic ratio N / C of plasma treated sample

以上の結果より仕切部によるスペースを設けてポリプロピレン重合粉末の処理量を実施例1における処理量に対して2倍、あるいは3倍に増加させた場合でも窒素と炭素の原子比N/Cは実施例1の0.19に対して0.26、あるいは0.22となっており付加量は減少しないことから間仕切りをすることによりポリプロピレン重合粉末の処理量を増加させることが可能となる。   From the above results, even when the space for the partitioning portion is provided and the throughput of the polypropylene polymer powder is increased to 2 times or 3 times the throughput in Example 1, the atomic ratio N / C of nitrogen and carbon is maintained. Since the added amount does not decrease with respect to 0.19 in Example 1 and is 0.22, it is possible to increase the throughput of the polypropylene polymer powder by partitioning.

また、ポリエチレン粉体(粒径20マイクロメートル)を、吹き上げ式プラズマ照射装置を用いて、2100W、ヘリウム流量4SLM、アンモニアガス組成0.75%で5回処理したところ、N/Cの値は、最大で0.056であった。
この結果から本発明を適用したプラズマ処理装置と従来の吹き上げ式プラズマ照射装置によるプラズマ処理において窒素と炭素の原子比N/Cに大きな差があることが判明した。
Moreover, when polyethylene powder (particle size 20 micrometers) was processed 5 times with 2100 W, helium flow rate 4 SLM, and ammonia gas composition 0.75% using a blow-up type plasma irradiation apparatus, the value of N / C is The maximum was 0.056.
From this result, it was found that there is a large difference in the atomic ratio N / C of nitrogen and carbon between the plasma processing apparatus to which the present invention is applied and the plasma processing by the conventional blow-up type plasma irradiation apparatus.

本発明のプラズマ処理装置では、粉体を混合ガス圧によって混合攪拌するのではなく円筒形状の放電容器を回転させることによって攪拌させることで粉体の処理量を増加することが可能となる。   In the plasma processing apparatus of the present invention, it is possible to increase the amount of processing powder by stirring the powder by rotating the cylindrical discharge vessel, instead of mixing and stirring the powder by the mixed gas pressure.

本発明を適用したプラズマ処理装置における放電容器の一例を示す正面断面図である。It is front sectional drawing which shows an example of the discharge container in the plasma processing apparatus to which this invention is applied. 本発明を適用したプラズマ処理装置における放電容器の一例を示す側面断面図である。It is side surface sectional drawing which shows an example of the discharge container in the plasma processing apparatus to which this invention is applied. 本発明を適用したプラズマ処理装置における放電容器の誘電体の他の例を示す説明図である。It is explanatory drawing which shows the other example of the dielectric material of the discharge vessel in the plasma processing apparatus to which this invention is applied. 本発明を適用したプラズマ処理装置における放電容器の他の例を示す正面断面図である。It is front sectional drawing which shows the other example of the discharge container in the plasma processing apparatus to which this invention is applied. 本発明を適用したプラズマ処理装置の一例を示す説明図である。It is explanatory drawing which shows an example of the plasma processing apparatus to which this invention is applied. 本発明を適用したプラズマ処理装置による実施例1におけるプラズマ出力と原子比の関係を示すグラフ図である。It is a graph which shows the relationship between the plasma output in Example 1 by the plasma processing apparatus to which this invention is applied, and atomic ratio. 本発明を適用したプラズマ処理装置による実施例1におけるプラズマ処理時間と原子比の関係を示すグラフ図である。It is a graph which shows the relationship between the plasma processing time and atomic ratio in Example 1 by the plasma processing apparatus to which this invention is applied. 従来の吹き上げ式プラズマ照射装置の一例を示す説明図である。It is explanatory drawing which shows an example of the conventional blowing type plasma irradiation apparatus.

符号の説明Explanation of symbols

1 放電容器
2 中心電極
3 周辺電極
4 誘電体
5 空隙部
6 第1の凸部
7 ガス注入管
8 密閉膜部
9 ガス排出穴
10 フィルター
11 卓上用ポットミル回転台
12 ブラシ電極端子
13 ガスホース
14 回転体
15 係留用窪み部
16 仕切部
17 高周波電源
DESCRIPTION OF SYMBOLS 1 Discharge vessel 2 Center electrode 3 Peripheral electrode 4 Dielectric 5 Gap part 6 1st convex part 7 Gas injection pipe 8 Sealed film part 9 Gas discharge hole 10 Filter 11 Desktop pot mill turntable 12 Brush electrode terminal 13 Gas hose 14 Rotating body 15 Mooring recess 16 Partition 17 High-frequency power supply

Claims (6)

中心電極と、該中心電極と所定の空隙部を介して配置された筒状の周辺電極とを有する放電容器と、
前記中心電極表面若しくは前記周辺電極表面の少なくとも一方に設けられた誘電体と、
前記放電容器の一端側に設けられ、前記空隙部に流体を注入可能に構成された流体注入手段と、
前記放電容器の他端側に設けられ、前記空隙部から流体を排出可能に構成された流体排出手段と、
前記中心電極と前記周辺電極との間に交流またはパルス電圧を印加した状態で、前記中心電極を回転の中心として前記放電容器を回転せしめる回転手段とを備える
プラズマ処理装置。
A discharge vessel having a center electrode, and a cylindrical peripheral electrode disposed via the center electrode and a predetermined gap portion;
A dielectric provided on at least one of the center electrode surface or the peripheral electrode surface;
Fluid injection means provided on one end side of the discharge vessel and configured to inject fluid into the gap;
Fluid discharge means provided on the other end side of the discharge vessel and configured to be able to discharge fluid from the gap;
A plasma processing apparatus, comprising: rotating means for rotating the discharge vessel around the center electrode as a center of rotation in a state where an alternating current or pulse voltage is applied between the center electrode and the peripheral electrode.
前記中心電極に前記周辺電極方向に突出する第1の凸部が設けられ、
若しくは、
前記周辺電極に前記中心電極方向に突出する第2の凸部が設けられ、
若しくは、
前記中心電極に前記周辺電極方向に突出する第1の凸部が設けられると共に、前記周辺電極に前記中心電極方向に突出する第2の凸部が設けられた
請求項1に記載のプラズマ処理装置。
The central electrode is provided with a first convex portion protruding in the direction of the peripheral electrode,
Or
The peripheral electrode is provided with a second convex portion protruding in the direction of the central electrode,
Or
The plasma processing apparatus according to claim 1, wherein the central electrode is provided with a first convex portion that protrudes in the direction of the peripheral electrode, and the peripheral electrode is provided with a second convex portion that protrudes in the direction of the central electrode. .
前記中心電極及び前記周辺電極と連設された仕切部が設けられた
請求項1に記載のプラズマ処理装置。
The plasma processing apparatus of Claim 1. The partition part connected with the said center electrode and the said peripheral electrode was provided.
前記第1の凸部、前記第2の凸部、あるいは、前記仕切部の少なくとも1つが、絶縁性素材である耐熱性プラスチック、ガラス、セラミックス、酸化アルミニウムのいずれかにより形成された
請求項2または請求項3に記載のプラズマ処理装置。
The at least one of the first convex portion, the second convex portion, or the partition portion is formed of any one of heat-resistant plastic, glass, ceramics, and aluminum oxide, which is an insulating material. The plasma processing apparatus according to claim 3.
前記第1の凸部の高さは前記空隙部の幅の1/2以上である
請求項2に記載のプラズマ処理装置。
The plasma processing apparatus according to claim 2, wherein a height of the first protrusion is not less than ½ of a width of the gap.
前記第2の凸部の高さは前記空隙部の幅の1/2以上である
請求項2に記載のプラズマ処理装置。
The plasma processing apparatus according to claim 2, wherein a height of the second protrusion is not less than ½ of a width of the gap.
JP2008197515A 2008-07-31 2008-07-31 Plasma treatment device Pending JP2010029830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197515A JP2010029830A (en) 2008-07-31 2008-07-31 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197515A JP2010029830A (en) 2008-07-31 2008-07-31 Plasma treatment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012102391A Division JP5080701B2 (en) 2012-04-27 2012-04-27 Plasma processing equipment

Publications (1)

Publication Number Publication Date
JP2010029830A true JP2010029830A (en) 2010-02-12

Family

ID=41734971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197515A Pending JP2010029830A (en) 2008-07-31 2008-07-31 Plasma treatment device

Country Status (1)

Country Link
JP (1) JP2010029830A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209032B1 (en) 2011-04-26 2012-12-10 에이치케이엠엔에스(주) Plasma fuel reformer
CN105817124A (en) * 2016-04-01 2016-08-03 赵凤明 High-yield low-temperature plasma generator for waste gas treatment
JP6194455B1 (en) * 2016-12-15 2017-09-13 春日電機株式会社 Powder surface modification equipment
JP2018160353A (en) * 2017-03-22 2018-10-11 学校法人 名城大学 Plasma processing device and plasma processing method
CN109302790A (en) * 2018-06-01 2019-02-01 苏州海唐智能装备有限公司 A kind of novel plasma powder modifying device
US10703953B2 (en) 2017-07-18 2020-07-07 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148044U (en) * 1984-09-04 1986-03-31 関西ペイント株式会社 High frequency plasma powder processing equipment
JPH06365A (en) * 1992-06-22 1994-01-11 Ii C Kagaku Kk Plasma treatment of powder
JPH0747223A (en) * 1993-08-06 1995-02-21 Mitsubishi Heavy Ind Ltd Electric field apparatus for gas oxidation
JPH07265687A (en) * 1994-03-30 1995-10-17 Mitsubishi Heavy Ind Ltd Apparatus for throwing liquid carbon dioxide into depth of sea
JPH09327502A (en) * 1996-06-13 1997-12-22 Santen Pharmaceut Co Ltd Pasteurization processor for granular particles
JP2001310124A (en) * 2000-04-28 2001-11-06 Isao Yanagida Ion powder activating device
JP2004089753A (en) * 2002-08-29 2004-03-25 Aisin Seiki Co Ltd Gas decomposing apparatus
JP2008036620A (en) * 2006-07-11 2008-02-21 Jbc Service Kk Organic substance treating apparatus and organic substance treating system for removing by decomposing fiber-like organic substance in atmospheric gas containing asbestos

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148044U (en) * 1984-09-04 1986-03-31 関西ペイント株式会社 High frequency plasma powder processing equipment
JPH06365A (en) * 1992-06-22 1994-01-11 Ii C Kagaku Kk Plasma treatment of powder
JPH0747223A (en) * 1993-08-06 1995-02-21 Mitsubishi Heavy Ind Ltd Electric field apparatus for gas oxidation
JPH07265687A (en) * 1994-03-30 1995-10-17 Mitsubishi Heavy Ind Ltd Apparatus for throwing liquid carbon dioxide into depth of sea
JPH09327502A (en) * 1996-06-13 1997-12-22 Santen Pharmaceut Co Ltd Pasteurization processor for granular particles
JP2001310124A (en) * 2000-04-28 2001-11-06 Isao Yanagida Ion powder activating device
JP2004089753A (en) * 2002-08-29 2004-03-25 Aisin Seiki Co Ltd Gas decomposing apparatus
JP2008036620A (en) * 2006-07-11 2008-02-21 Jbc Service Kk Organic substance treating apparatus and organic substance treating system for removing by decomposing fiber-like organic substance in atmospheric gas containing asbestos

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209032B1 (en) 2011-04-26 2012-12-10 에이치케이엠엔에스(주) Plasma fuel reformer
CN105817124A (en) * 2016-04-01 2016-08-03 赵凤明 High-yield low-temperature plasma generator for waste gas treatment
JP6194455B1 (en) * 2016-12-15 2017-09-13 春日電機株式会社 Powder surface modification equipment
JP2018160353A (en) * 2017-03-22 2018-10-11 学校法人 名城大学 Plasma processing device and plasma processing method
US10703953B2 (en) 2017-07-18 2020-07-07 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition
CN109302790A (en) * 2018-06-01 2019-02-01 苏州海唐智能装备有限公司 A kind of novel plasma powder modifying device

Similar Documents

Publication Publication Date Title
JP2010029830A (en) Plasma treatment device
JP6505523B2 (en) Plasma powder processing apparatus and plasma powder processing method
JP6628639B2 (en) Plasma processing equipment
JP4658506B2 (en) Power supply circuit for generating pulsed arc plasma and pulsed arc plasma processing apparatus
JP5080701B2 (en) Plasma processing equipment
JP6871556B2 (en) Plasma processing equipment and plasma torch
TW200308187A (en) An atmospheric pressure plasma assembly
TW201114333A (en) Substrate processing apparatus
CN110235528B (en) Plasma device in liquid
BR112021007620A2 (en) method to reduce electrical field coupling of air dedusting
EP3445484B1 (en) Barrel reactor with electrodes
Fang et al. Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air
WO2012147911A1 (en) Plasma generating method and generating device
JP6006393B1 (en) Plasma processing equipment
CN105101603B (en) A kind of dielectric barrier discharge plasma fluidic device
WO2014136063A2 (en) Systems and methods for generating and collecting reactive species
JP2010050004A (en) Plasma generating electrode
JP5089521B2 (en) Powder plasma processing method
JP5677328B2 (en) Plasma processing apparatus and plasma processing method
JP2022054748A (en) Atmospheric pressure low-temperature plasma bubble liquid
KR20170075391A (en) Plasma processing apparatus for processing contaminated subject using rotating electrode
TWI288005B (en) Mail decontaminator
JP2018192381A (en) Plasma treatment device and plasma treatment method
KR101371521B1 (en) Plasma powder treating apparatus having rotating cylinder structure comprising tubular plasma structure
WO2018179344A1 (en) Plasma surface treatment method and plasma surface treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710