JP2010028957A - 誘導機及び誘導機極数切換システム - Google Patents

誘導機及び誘導機極数切換システム Download PDF

Info

Publication number
JP2010028957A
JP2010028957A JP2008186169A JP2008186169A JP2010028957A JP 2010028957 A JP2010028957 A JP 2010028957A JP 2008186169 A JP2008186169 A JP 2008186169A JP 2008186169 A JP2008186169 A JP 2008186169A JP 2010028957 A JP2010028957 A JP 2010028957A
Authority
JP
Japan
Prior art keywords
stator
poles
permanent magnet
phase
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008186169A
Other languages
English (en)
Inventor
Kosuke Aiki
宏介 相木
Hideo Nakai
英雄 中井
Koji Umeno
孝治 梅野
Eiji Yamada
英治 山田
Kazutaka Tatematsu
和高 立松
Toshihiko Yoshida
稔彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2008186169A priority Critical patent/JP2010028957A/ja
Publication of JP2010028957A publication Critical patent/JP2010028957A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Machinery (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】誘導機において、コストの大幅な上昇を招くことなく、低速運転で高トルクを発揮することと、高速運転で良好な性能を発揮することとの両立を図れる構造を実現することである。
【解決手段】誘導機である誘導電動機12は、3相の集中巻巻線である、ステータ巻線28u,28v,28wを有するステータ22と、ステータ22に対向するロータ24とを備える。ステータ22のステータ巻線28u,28v,28wが持っている起磁力調波次数成分に応じてステータ巻線28u,28v,28wに流す電流の駆動周波数を変えることにより、極数を切換可能とする。
【選択図】図3

Description

本発明は、3相の集中巻巻線を有するステータと、ステータに対向するロータと、を備える誘導機、及び、誘導機極数切換システムに関する。
従来から、誘導電動機、同期電動機等の回転電機において、ステータが巻線を有する巻線型回転電機が知られている。例えば、非特許文献1には、ステータを構成するステータ巻線が集中巻巻線であり、ステータのスロット数をZ1とし、ロータの極対数をZ2とし、相数をmとした場合に、毎極毎相のスロット数であるq(q=Z1/(2Z2m))が分数となる集中巻分数スロットの磁石モータであって、スロット数Z1を24スロットとし、ロータの極数を28極とする磁石モータが記載されている。このような磁石モータによれば、低速大トルクモータとして優れた特性を持ち、集中巻のコイルエンドは短いので、コイルエンドを含めたモータ体格を小さくできるとされている。
また、非特許文献2には、相数を六相とし、六相インバータを用い、8極及び4極に極数を切り換え可能で、極数を切り換える周波数は、8極と4極ともに効率が高い周波数、すなわち8極100Hz、4極50Hzとする六相極数切換誘導電動機が記載されている。
なお、本発明に関連する先行技術文献として、非特許文献1、2の他に、特許文献1から特許文献3がある。
知念真太郎,外2名,「分布巻PMバーニアモータと集中巻分数スロットPMモータの比較検討」,平成18年電気学会全国大会5−131,2006年、第5分冊、p.190 谷藤康裕,外3名,「EV用六相極数切換誘導電動機の高効率運転時における極数切換」,平成17年電気学会全国大会5−137,2005年、第5分冊、p.190−191 特開平8−223999号公報 特開平11−18382号公報 特開2002−369468号公報
ただし、非特許文献1に記載された集中巻分数スロットの磁石モータの場合、ロータ側の永久磁石の極数によって、モータの極数が決定され、28極のロータを有する場合には、低速運転時には高トルク化が可能であるが、高速運転時には高周波で、かつ、高電圧が必要になるため、電気的に良好な性能を発揮させることが難しい。
また、非特許文献2に記載された六相極数切換誘導電動機の場合には、誘導電動機の極数切換が可能となるが、電機子巻線及びインバータがいずれも六相分必要になるため、コストが大幅に上昇する原因となる。このため、従来から考えられている一般的な誘導電動機に対して、製造面、及び、実用面の両方で劣ることとなる。また、六相分のインバータを制御する必要もあるため、制御性が複雑化する。
このような事情から、コストの大幅な上昇を招くことなく、極数の切換を可能とすることで、低速運転で高トルクを発揮することと、高速運転で良好な性能を発揮することとの両立を図れる誘導機の実現が望まれている。このような誘導機は、上記の特許文献1から特許文献3のいずれにも開示されていない。
本発明の目的は、誘導機及び誘導機極数切換システムにおいて、コストの大幅な上昇を招くことなく、低速運転で高トルクを発揮することと、高速運転で良好な性能を発揮することとの両立を図れる誘導機を実現することである。
本発明の誘導機は、3相の集中巻巻線を有するステータと、ステータに対向するロータと、を備える誘導機であって、ステータの集中巻巻線が持っている起磁力調波次数成分に応じて各集中巻巻線に流す電流の駆動周波数を変えることにより、極数を切換可能とすることを特徴とする誘導機である。なお、本明細書及び特許請求の範囲の全体で、「駆動周波数」とは、誘導機を駆動するインバータのスイッチング周波数ではなく、ステータに供給される3相交流の周波数を意味する。
上記の誘導機によれば、誘導機の運転状態に応じて極数を変化させることを容易に行える。すなわち、駆動周波数を変えることで、低速運転時に極数を多くしたり、高速運転時に極数を少なくすることができ、低速運転で高トルクを発揮することと、高速運転で良好な性能を発揮することとの両立を図れる誘導機を実現でき、自由度の高い多機能な誘導機を実現できる。また、誘導機を構成するステータの巻線及び誘導機駆動用のインバータのいずれも六相分設ける必要がなくなるため、コストが大幅に上昇することを防止できる。
また、本発明に係る誘導機において、好ましくは、ステータの360度の電気角におけるスロット数は、9、12、15、18,21,24,27,30,33,36のいずれか1である。
また、本発明に係る誘導機において、好ましくは、ステータは、360度の電気角におけるスロット数を12とし、360度の電気角で、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線の配置構成を有する。
上記の誘導機によれば、電機子であるステータの起磁力波形が1次成分を含む多くの空間的な調波次数成分を含むようになる。このうち、調波次数が5次、7次、1次の順に起磁力振幅が大きくなる。このため、ステータ起磁力波の5次成分を利用することにより、10極で駆動する誘導機を実現でき、ステータ起磁力波の7次成分を利用することにより、14極で駆動する誘導機を実現できる。いずれにしても、10極で駆動する誘導機と14極で駆動する誘導機とを、同じステータ配置及び同じステータ巻線の接続で実現でき、ステータに流す電流の駆動周波数と、ステータに流す電流の相の順である通電相順とを変えることにより、10極駆動と14極駆動とを変えることができる。
また、本発明に係る誘導機において、好ましくは、ステータは、360度の電気角におけるスロット数を9とし、360度の電気角で、8極の永久磁石付ロータを有する永久磁石型回転電機と、10極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線の配置構成を有する。
上記の誘導機によれば、電機子であるステータの起磁力波形が1次成分を含む多くの空間的な調波次数成分を含むようになる。このうち、調波次数が4次、5次で起磁力振幅が大きくなる。このため、ステータ起磁力波の4次成分を利用することにより、8極で駆動する誘導機を実現でき、ステータ起磁力波の5次成分を利用することにより、10極で駆動する誘導機を実現できる。いずれにしても、8極で駆動する誘導機と10極で駆動する誘導機とを、同じステータ配置及び同じステータ巻線の接続で実現でき、ステータに流す電流の駆動周波数と、ステータに流す電流の相の順である通電相順とを変えることにより、8極駆動と10極駆動とを変えることができる。
また、本発明に係る誘導機において、好ましくは、ステータは、360度の電気角におけるスロット数を18とし、360度の電気角で、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機と、22極の永久磁石付ロータを有する永久磁石型回転電機とのすべてに使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線の配置構成を有する。
上記の誘導機によれば、電機子であるステータの起磁力波形が1次成分を含む多くの空間的な調波次数成分を含むようになる。このうち、調波次数が5次、7次、11次で起磁力振幅が大きくなる。このため、ステータ起磁力波の5次成分を利用することにより、10極で駆動する誘導機を実現でき、ステータ起磁力波の7次成分を利用することにより、14極で駆動する誘導機を実現でき、ステータ起磁力波の11次成分を利用することにより、22極で駆動する誘導機を実現できる。いずれにしても、10極で駆動する誘導機と14極で駆動する誘導機と22極で駆動する誘導機とを、同じステータ配置及び同じステータ巻線の接続で実現でき、ステータに流す電流の駆動周波数と、ステータに流す電流の相の順である通電相順とを変えることにより、10極駆動と14極駆動と22極駆動とを変えることができる。
また、本発明に係る誘導機において、好ましくは、ロータは、周方向複数個所に軸方向に貫通する孔部を有する板状導電体、または、かご形導電体を有する。
また、本発明に係る誘導機極数切換システムは、上記の本発明に係る誘導機と、各集中巻巻線に流す電流の駆動周波数を、ステータが生成する回転磁束の起磁力調波次数成分に応じた複数の選択周波数のいずれか1に切り替え可能な切り替え制御部と、を備えることを特徴とする誘導機極数切換システムである。
また、本発明に係る誘導機極数切換システムにおいて、好ましくは、切り替え制御部は、各集中巻巻線に流す電流の駆動周波数を、誘導機のロータの回転速度に応じて複数の選択周波数範囲のいずれか1に切り替える。
また、本発明に係る誘導機極数切換システムにおいて、好ましくは、各集中巻巻線に流す電流の電源の相順を切り替え可能な通電相順切り替え部を備える。
上記の誘導機極数切換システムによれば、切り換えることが可能な極数の種類をより有効に多くしやすくできる。
本発明に係る誘導機及び誘導機極数切換システムによれば、コストの大幅な上昇を招くことなく、低速運転で高トルクを発揮することと、高速運転で良好な性能を発揮することとの両立を図れる誘導機を実現できる。
[第1の発明の実施の形態]
以下、本発明の実施形態を、図面を用いて説明する。図1から図10は、本発明の第1の実施の形態を示している。図1は、第1の実施形態の誘導機極数切換システムを示す略構成図である。図2は、図1に示す通電相順切り替え部の構成を詳しく示す図である。図3は、第1の実施の形態の誘導機である、誘導電動機を構成するステータとロータとを取り出して示す半部略断面図である。図4は、図1に示すステータの巻線配置を説明するための、ステータの周方向を横方向に展開して示す略図である。図5は、第1の実施の形態において、ステータの起磁力波形の1状態における電気角と起磁力との関係を示す図である。図6は、第1の実施の形態において、ステータの起磁力振幅を調波次数で分解して示す図である。図7は、第1の実施の形態において、ステータ巻線に流す電流の入力周波数である、駆動周波数に対するトルク特性を示す図である。図8は、第1の実施の形態において、ステータの1次成分の起磁力波形の時間変化を、U相、V相、W相の順に交流電流を流す場合で示す図である。図9は、第1の実施の形態において、ステータの5次成分の起磁力波形の時間変化を、U相、V相、W相の順に交流電流を流す場合で示す図である。図10は、第1の実施の形態において、ステータの7次成分の起磁力波形の時間変化を、U相、V相、W相の順に交流電流を流す場合で示す図である。
図1に示すように、本実施の形態の誘導機極数切換システム10は、回転電機であり誘導機である誘導電動機12と、電源である二次電池14と、二次電池14から供給される直流電流を、R相、S相、T相の三相交流電流に変換するインバータ16と、インバータ16から供給される3相交流電流の通電相順を切り替え、U相、V相、W相の3相交流電流に変換し、誘導電動機12に出力するための、図2に詳しく構成を示す通電相順切り替え部18と、インバータ16(図1)が備えるスイッチング素子(図示せず)にPWM信号等の制御信号を出力することにより、誘導電動機12の駆動を制御する切り替え制御部である、コントローラ20(図1)とを備える。コントローラ20は、通電相順切り替え部18のスイッチ切り替え状態も制御する。なお、本実施の形態では、図1に示すように、誘導電動機極数切換システム10として、二次電池14、インバータ16を含む構成を説明するが、本発明はこのような構成に加えて、例えば二次電池14以外に燃料電池を含んでもよく、例えば、システムメインリレー、低電圧バッテリ、DC/DCコンバータ、平滑化用コンデンサ等を含むものとすることもできる。通電相順切り替え部18の構成は、後で詳しく説明する。
本実施の形態の場合、誘導電動機12を構成するステータ巻線に流す電流の駆動周波数と、ステータ巻線に流す電流の通電相順とを変えることにより、誘導電動機12の極数を切換可能としている。すなわち、図3に示すように、誘導電動機12は、図示しないケーシングの内側に固定されたステータ22と、ステータ22の内側に径方向に対向するように配置され、ステータ22に対し回転可能なロータ24とを備える。ロータ24は、ケーシングに対し回転可能に支持された図示しない回転軸の外径側に設けられている。すなわち、本実施の形態の誘導電動機12は、ステータ22とロータ24とが径方向に対向するように配置された、ラジアル型の誘導電動機12である。なお、誘導電動機12は、発電機としても使用可能なモータジェネレータとすることもできる。モータジェネレータは、電力が供給されるときは電動機として機能し、制動時には発電機として機能する。
ステータ22は、複数の電磁鋼板を積層する等により構成する鉄心等により構成する、ステータコア26と、複数相である、U相、V相、W相の3相の集中巻巻線である、ステータ巻線28u,28v,28wとを備える。ステータコア26は、径方向内側に突出した複数のティース30を周方向に互いに間隔を置いて設けており、各ティース30の間にスロット32を形成している。すなわち、ステータ22の周方向に関して、360度の電気角で12個所にスロット32を設けることにより、いわゆる12スロットステータとしている。すなわち、ステータ22の全周で、24個のスロット32を設けている。各相のステータ巻線28u,28v,28wは、スロット32を通って、ティース30に集中巻きで巻装している。各相のステータ巻線28u,28v,28wに3相の交流電流を流すことにより、ティース30が磁化し、ステータ22の周方向に回転する回転磁界が生成されるようにしている。また、ステータ22は、180度の機械角、すなわち半部である、半円部分で電気角が360度となるようにしている。
一方、ロータ24は、銅、アルミニウム等により構成するかご形導電体34と、複数の鋼板を積層する等により構成する、鉄心等により構成するロータコア36とを備える。かご形導電体34は、従来から誘導電動機用として使用されているかご形導電体と同様の構成を有し、ロータコア36の周方向複数個所に設けられた孔部に複数本、例えば40本の柱部を挿入し、各柱部の両端を、軸方向両側に設けた一対の短絡環(図示せず)の周方向複数個所に連結している。かご形導電体は、アルミニウムの鋳造により、一体成形することもできる。
また、ステータ巻線28u,28v,28wの巻き方向は、電気角によって異ならせている。図4は、ステータ巻線28u,28v,28wの配置をより詳しく説明するために、ステータ22の周方向を左右方向に展開して示している。図3、図4では、同じ相の2個のステータ巻線28u,28v,28wを周方向に隣り合うように配置して1組のステータ巻線組とし、各組のステータ巻線28u,28v,28wで巻き方向を互いに異ならせている。図3、図4において、各ステータ巻線28u,28v,28wの内側に示した○の中に・または×を示した記号は、ステータ巻線28u,28v,28wを流れる電流の向きを表しており、○の中に・を示したものは、電流が図の表側に流れることを、○の中に×を示したものは電流が図の裏側に流れることを表している(後述する図13から図15で同様とする)。また、図4で、CWは正方向にティース30にステータ巻線28u,28v,28wを巻いていることを、CCWは、逆方向にティース30に巻線28u,28v,28wを巻いていることを表している。
このように構成するため、ステータ22は、360度の電気角におけるスロット数を12とし、360度の電気角で、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じステータ巻線の配置構成を有する。U相、V相、W相の各相のステータ巻線28u,28v,28wには、インバータ16(図1)側から、U相、V相、W相の交流電流がそれぞれ供給される。
このような誘導電動機12は、ステータ22が生成する回転磁束に応じて各ステータ巻線28u,28v,28wに流す電流の駆動周波数を変えることにより、極数が切換可能となる。すなわち、ステータ22が生成する回転磁束の、起磁力調波次数成分のうち、起磁力振幅が1次成分の起磁力振幅よりも大となる起磁力調波次数成分に応じて各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、1次成分に応じた駆動周波数に対して変えることにより、誘導電動機12の極数が切換可能となる。すなわち、ステータ22のステータ巻線28u,28v,28wが持っている起磁力調波次数成分に応じて、各ステータ巻線28u,28v,28wに流す電流の駆動周波数を変えることにより、極数が切換可能となる。この理由について、次に詳しく説明する。なお、以下の説明では、図1から図4に示す要素と同一の要素には同一の符号を付して説明する。本実施の形態では、ステータ22に回転磁界を発生させる起磁力の分布は、基本波、すなわち1次成分のみの正弦波分布とならず、高調波成分を含むものとなる。特に、本実施の形態のステータ巻線28u,28v,28wの配置構成を有する場合には、ステータ22が発生する1状態における電気角に対する起磁力分布は、図5に示すようになる。図5において、p.uは、無次元単位を表している(図6でも同様である)。そして、図6に示すように、起磁力を調波次数で分解すると、5次成分、7次成分、1次成分の順に起磁力振幅が大きくなる。このようなステータ巻線28u,28v,28wの配置に起因して起磁力に生じる高調波成分は、空間高調波と呼ばれる。このため、1次成分の起磁力、すなわちステータ22の起磁力波の1次成分に同期した周波数の電流をステータ巻線28u,28v,28wに供給することにより、ステータ22に回転磁界が発生し、この場合には、ステータ22は、360度の電気角で2極となる。すなわち、ステータ22は全周で4極を有するものとして機能する。
また、5次成分の起磁力、すなわちステータ22の起磁力波の5次成分に同期した周波数の電流をステータ巻線28u,28v,28wに供給することにより、ステータ22に回転磁界が発生し、この場合には、ステータ22は、360度の電気角で10極となる。すなわち、ステータ22は全周で20極を有するものとして機能する。
また、7次成分の起磁力、すなわちステータ22の起磁力波の7次成分に同期した周波数の電流をステータ巻線28u,28v,28wに供給することにより、ステータ22に回転磁界が発生し、この場合には、ステータ22は、360度の電気角で14極となる。すなわち、ステータ22は全周で28極を有するものとして機能する。
いずれにしても、ステータ22の極数が、360度の電気角で2極と10極と14極とのいずれか1になることにより、ロータ24の極数もステータ22と同じ極数に変化し、かご形導電体34に誘導電流が発生し、誘導電動機12が駆動する。この場合、図7に示すように、例えば誘導電動機12を同じ回転速度である、約25回転/秒で回転させる場合に、ステータ巻線28u,28v,28wに50Hzよりも少し高い周波数(例えば60Hz)の電流を流すことにより、誘導電動機12が360度の電気角で2極の極数、全体で4極を有するものとして駆動する。また、ステータ巻線28u,28v,28wに250Hzよりも少し高い周波数の電流を流すことにより、誘導電動機12が360度の電気角で10極の極数、全体で20極を有するものとして駆動する。また、ステータ巻線28u,28v,28wに350Hzよりも少し高い周波数の電源電流を流すことにより、誘導電動機12が360度の電気角で14極の極数、全体で28極を有するものとして駆動する。
また、360度の電気角において、2極で駆動するようにステータ22に低い周波数の電流を入力する場合には、付加する電圧が低くてすみ、高速回転で良好な性能を確保しやすくなる。これに対して、360度の電気角において、10極または14極で駆動するようにステータ22に高い周波数の電流を入力する場合には、図7からも明らかなように、低速回転時において大きいトルクで誘導電動機12を駆動させることができる。なお、本実施の形態では、高速回転時にはステータ22に入力する電圧Vと駆動周波数Fとの比であるV/Fが一定となるように制御するV/F一定制御を行う。これに対して、低速回転では、周波数の変更のみで誘導電動機12の駆動を制御する。なお、図7に示す極数は、ステータ22全体の極数を表している。
一方、360度の電気角において、10極で駆動するようにステータ22に電流を入力する場合には、2極及び4極で駆動するようにステータ22に電流を入力する場合のいずれの場合とも異なり、U相、V相、W相のステータ巻線28u,28v,28wの順に交流電流を流した場合に、誘導電動機12が逆方向に回転する。本実施の形態では、このような事情を考慮して、2極で駆動するようにステータ22に電流を入力する場合と、4極で駆動するようにステータ22に電流を入力する場合と、10極で駆動するようにステータ22に電流を入力する場合とのすべてで誘導電動機12が正方向に回転するようにするため、誘導電動機極数切換システム10に通電相順切り替え部18を設けている。次に、これについて詳しく説明する。
図8は、ステータ22の1次成分の起磁力成分の時間経過を、図9は、ステータ22の5次成分の起磁力成分の時間経過を、図10は、ステータ22の7次成分の起磁力成分の時間経過を、それぞれ示している。また、図8から図10では、いずれも、ステータ22に流す電流をU相、V相、W相の順に入れる場合を表している。なお、一点鎖線は、すべての成分の合成後の実際に生じるステータ22の起磁力波の時間経過を表している。図8から図10に示すように、ステータ22の1次成分及び7次成分の起磁力成分は、U相、V相、W相の順にステータ22に電流を流した場合に、正方向に回転する、すなわち図8、図10の右方向に移行する。これに対して、ステータ22の5次成分の起磁力成分は、U相、V相、W相の順にステータ22に電流を流した場合に、逆方向に回転する、すなわち図9の左方向に移行する。したがって、5次成分の起磁力成分を利用して誘導電動機12を正方向に回転させる、すなわち、360度の電気角で10極を有するものとして正方向に回転させる場合には、U相、W相、V相の順にステータ22に電流を流す必要がある。一方、1次成分の起磁力成分を利用して誘導電動機12を正方向に回転させる、すなわち、360度の電気角で2極を有するものとして正方向に回転させる場合と、7次成分の起磁力成分を利用して誘導電動機12を正方向に回転させる、すなわち、360度の電気角で14極を有するものとして正方向に回転させる場合との両方では、U相、V相、W相の順に電流をステータ22に流せばよい。
このため、図1、図2に戻って示すように、本実施の形態の誘導電動機極数切換システム10では、通電相順切り替え部18を設けて、誘導電動機12のステータ22(図3)に流す電流の周波数、または実現する極数の切り換えに応じて、U相、V相、W相の順に電流を流すか、U相、W相、V相の順に電流を流すかを切り替えている。また、誘導電動機極数切換システム10は、インバータ16と、コントローラ20と、誘導電動機12の回転角度を検出可能なレゾルバ等の角度センサ40とを設けている。コントローラ20は、誘導電動機12のロータ24の回転速度を算出する回転速度算出部を有し、角度センサ40からの検出信号がコントローラ20に入力された場合に、回転速度算出部は、誘導電動機12のロータ24の回転角度から誘導電動機12のロータ24の回転速度を算出する。
また、コントローラ20は、電流周波数切り替え制御部42と、通電相順切り替え制御部44とを有し、電流周波数切り替え制御部42は、誘導電動機12のロータ24の回転速度が予め設定される所定速度v1未満の低い回転速度の場合に、ステータ22に流す電流の周波数が、誘導電動機12が360度の電気角で、10極または14極で駆動する高い高周波数となるようにインバータ16を制御する。すなわち、ステータ22が生成する回転磁束の、起磁力調波次数成分のうち、起磁力振幅が1次成分の起磁力振幅よりも大となる起磁力調波次数成分である、5次成分または7次成分に応じた周波数となるように、各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、インバータ16を制御することにより変える。また、電流周波数切り替え制御部42は、誘導電動機12の回転速度が所定速度v1以上の高い回転速度の場合に、ステータ22に流す電流の周波数が、誘導電動機12が360度の電気角で、2極で駆動する、高周波数よりも低い低周波数となるように、インバータ16を制御する。すなわち、ステータ22が生成する回転磁束の1次成分に応じた周波数となるように、各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、インバータ16を制御することにより変える。また、同じ駆動周波数であっても、ステータ22に流す電流の大きさによって、誘導電動機12の回転速度と、極数との関係が決定される。
このように電流周波数切り替え制御部42は、各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、誘導電動機12のロータ24の回転速度に応じて複数の選択可能な選択周波数範囲のいずれか1に切り替える機能を有する。すなわち、電流周波数切り替え制御部42は、各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、誘導電動機12のロータ24の回転速度が予め設定される所定速度よりも高い場合に、複数の選択周波数範囲のうち、低周波数に切り替え、誘導電動機12のロータ24の回転速度が予め設定される所定速度未満である場合に、複数の選択周波数範囲のうち、低周波数よりも高い高周波数に切り替える機能を有する。すなわち、電流周波数切り替え制御部42は、各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、ステータ22が生成する回転磁束の、起磁力調波次数成分のうち、起磁力振幅が1次成分の起磁力振幅よりも大となる起磁力調波次数成分、及び1次成分に応じた複数の選択周波数のいずれか1に切り替え可能な機能を有する。なお、図7は、全体で4極、20極、28極となる誘導電動機12で同じ速度で回転させる場合を示したもので、誘導電動機12の回転速度に応じて駆動周波数に対するトルク特性は変化する。
また、図2に戻り、通電相順切り替え部18は、各ステータ巻線28u,28v,28w(図3、図4)に流す電流の通電相順を切り替え可能とし、インバータ16(図1)から出力されるR相、S相、T相の3相交流電流が入力され、スイッチS1をオンとし、スイッチS2をオフとすることでR相、S相、T相の3相交流電流が、それぞれU相、V相、W相の3相交流電流となるようにする。このため、R相、S相、T相の順に交流電流が流れることにより、U相、V相、W相の順にステータ22に電流が流れる。これに対して、スイッチS1をオフとし、スイッチS2をオンとすることで、R相、S相、T相の3相交流電流が、それぞれU相、W相、V相の3相交流電流となる。このため、R相、S相、T相の順に交流電流が流れることにより、U相、W相、V相の順にステータ22に電流が流れる。
図1に示す通電相順切り替え制御部44は、誘導電動機12の回転速度が、360度の電気角で2極で駆動させる場合、または、14極で駆動させる場合に対応する速度である場合に、図2に示すスイッチS1をオンとし、スイッチS2をオフとするように、すなわち、ステータ22(図3)にU相、V相、W相の順に電流が流れるように、通電相順切り替え部18を制御する。
また、図1に示す通電相順切り替え制御部44は、誘導電動機12の回転速度が、360度の電気角で10極で駆動させる場合に対応する速度である場合に、図2に示すスイッチS1をオフとし、スイッチS2をオンとするように、すなわち、ステータ22(図3)にU相、W相、V相の順に電流が流れるように、通電相順切り替え部18を制御する。このような構成により、誘導電動機12が2極で駆動するようにステータ22に電流を入力する場合と、誘導電動機12が10極で駆動するようにステータ22に電流を入力する場合と、誘導電動機12が14極で駆動するようにステータ22に電流を入力する場合とのすべてで、誘導電動機12が正方向に回転する。また、誘導電動機12のロータ24の回転速度に応じて極数が切り換えられる。すなわち、ステータ22が生成する回転磁束の、起磁力調波次数成分のうち、起磁力振幅が1次成分の起磁力振幅よりも大となる起磁力調波次数成分に応じて各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、1次成分に応じた駆動周波数に対して変えることにより、誘導電動機12の極数が切換可能となる。
このような本実施の形態の誘導電動機12によれば、ステータ22が生成する回転磁束の、起磁力調波次数成分のうち、起磁力振幅が1次成分の起磁力振幅よりも大となる起磁力調波次数成分に応じて各ステータ巻線28u,28v,28wに流す電流の駆動周波数を、1次成分に応じた駆動周波数に対して変えることにより、極数が切換可能となる。このため、電機子であるステータ22の起磁力波形が1次成分を含む多くの空間的な調波次数成分を含むようになる。このため、ステータ22の起磁力波の1次成分以外の次数の起磁力成分を利用することにより、同じステータ22配置及び同じステータ巻線28u,28v,28wの接続で異なる極で駆動する誘導電動機12を実現でき、ステータ22に流す電流の駆動周波数とステータ22に流す電流の通電相順とを変えることにより、誘導電動機12の極数を変えることができる。一方、ステータ22と対向させるロータ24として、かご形導体を備える誘導電動機用のロータ24を用いることにより、ロータ24の極数がステータ22の起磁力波に起因して決定される極数に依存し、ステータ22の起磁力により、ロータ24に誘導電流が発生する。すなわち、ロータ24の磁極は、磁石付ロータの場合と異なり、機械的に1に固定されるのではなく、ステータ22の起磁力により変更される磁気的な柔軟性を持っている。このため、ステータ22に流す電流の駆動周波数及び通電相順を変えることにより極数が変化する可変極数誘導電動機を実現できる。
このように、本実施の形態の誘導電動機12によれば、誘導電動機12の運転状態に応じて極数を変化させることを容易に行える。すなわち、駆動周波数を変えることで、低速運転時に極数を多くしたり、高速運転時に極数を少なくすることができ、低速運転で高トルクを発揮することと、高速運転で良好な性能を発揮することとの両立を図れる誘導電動機12を実現でき、自由度の高い多機能な誘導電動機12を実現できる。また、誘導電動機12を構成するステータ巻線28u,28v,28w及び誘導電動機12駆動用のインバータ16のいずれも六相分設ける必要がなくなるため、コストが大幅に上昇することを防止できる。この結果、コストの大幅な上昇を招くことなく、低速運転で高トルクを発揮することと、高速運転で良好な性能を発揮することとの両立を図れる誘導電動機12を実現できる。
また、ステータ22は、360度の電気角におけるスロット32数を12とし、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線の配置構成を有する。このため、電機子であるステータ22の起磁力波形が1次成分を含む多くの空間的な調波次数成分を含むようになる。このうち、調波次数が5次、7次、1次の順に起磁力振幅が大きくなる。このため、ステータ22の起磁力波の5次成分を利用することにより、10極で駆動する誘導電動機12を実現でき、ステータ22の起磁力波の7次成分を利用することにより、14極で駆動する誘導電動機12を実現できる。いずれにしても、2極で駆動する誘導電動機12と10極で駆動する誘導電動機12と14極で駆動する誘導電動機12とを、同じステータ22配置及び同じステータ巻線28u,28v,28wの接続で実現でき、ステータ22に流す電流の駆動周波数と、ステータ22に流す電流の相の順である通電相順とを変えることにより、2極駆動と10極駆動と14極駆動とを変えることができる。なお、本実施の形態では、ステータ22が生成する回転磁束の起磁力調波次数成分のうち、起磁力振幅が1次成分の起磁力振幅よりも大となる起磁力調波次数成分が、5次と7次との2つ存在する場合を説明した。ただし、本発明では、起磁力振幅が1次成分の起磁力振幅よりも大となる起磁力調波次数成分が1つのみ、または3つ以上存在する場合でも、駆動周波数を変えることにより極数の変換が可能となる。
[第2の発明の実施の形態]
次に、本発明の第2の実施の形態について説明する。まず、本実施の形態の説明に先立って、図11、図12を用いて、本発明に係る誘導機において、ステータのスロット数に対する変換可能な極数の種類を説明する。図11は、ステータのスロット数が9,12,18のいずれか1である場合の誘導機の変換可能な極数を示す図である。図11において、黒で塗りつぶした部分が、電動機駆動が可能である、すなわちトルクの発生可能な電動機を実現できることを表している。また、斜格子で示す部分は、ステータのスロット数が9である場合のステータ巻線の配置を2つ並べた配置とすることで利用可能となることを表している。例えば、上記の図1から図10に示した第1の実施の形態の場合と同様に、ステータ22のスロット数が12である場合には、360度の電気角において、2極と10極と14極とで駆動可能な誘導機を実現できる。この場合には、誘導機は、360度の電気角で、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線28u,28v,28wの配置構成を有する構成とする。
また、ステータのスロット数が9である場合には、360度の電気角において、2極と4極と8極と10極とで駆動可能な誘導機を実現できる。この場合には、誘導機は、360度の電気角で、4極の永久磁石付ロータを有する永久磁石型回転電機と、8極の永久磁石付ロータを有する永久磁石型回転電機と、10極の永久磁石付ロータを有する永久磁石型回転電機とのすべてに使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線の配置構成を有する構成とする。
また、ステータのスロット数が18である場合には、360度の電気角において、2極と10極と14極と22極とで駆動可能な誘導機を実現できる。この場合には、誘導機は、360度の電気角で、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機と、22極の永久磁石付ロータを有する永久磁石型回転電機とのすべてに使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線の配置構成を有する構成とする。
また、図12は、図11と同様の図で、誘導機が駆動可能となる場合の、ロータの回転周波数を1としたときのステータへの通電電流の周波数の倍率と、通電相順とを示す図である。図12において、×1、×2・・・等と記載した部分は、誘導機が駆動可能となる場合の、ロータの回転周波数を1としたときのステータへの通電電流の周波数の倍率を表している。また、図12において、「UVW」は、ロータの回転方向に対して、ステータにU、V、Wの順に電流を流す正方向の通電相順であることを表し、「UWV」は、ロータの回転方向に対して、ステータにU、W、Vの順に電流を流す逆方向の通電相順であることを表している。また、斜線部分は、ステータのスロット数が9である場合のステータ巻線配置を2つ並べた配置とすることで利用可能となることを表している。
本実施の形態では、まず、ステータのスロット数が9である、極数切換が可能な誘導機を説明し、後述する第3の実施の形態及び第4の実施の形態では、ステータのスロット数が18である、極数切換が可能な誘導機の2例を説明する。
図13は、本実施の形態の誘導機である、誘導電動機を構成するステータの巻線配置を説明するための、図4と同様の図である。図13に示すように、本実施の形態では、ステータ22aは、360度の電気角で9個のスロット32を有し、ティース30に集中巻で集中巻巻線であるステータ巻線28u,28v,28wを巻装するとともに、U相、V相、W相のステータ巻線28u,28v,28wを、それぞれの相のステータ巻線28u,28v,28wで、3個ずつ周方向に隣り合うように配置したものを1組とし、各組を周方向に隣り合わせて配置している。また、各組でステータ巻線28u,28v,28wの巻方向を隣り合うもの同士で異ならせている。図13で、CWはステータ巻線28u,28v,28wをティース30に正方向に巻いていることを、CCWはステータ巻線28u,28v,28wをティース30に逆方向に巻いていることを表している(後述する図14、図15で同様とする)。また、隣り合う組で、隣り合うステータ巻線28u,28v,28w同士は、ティース30に同じ正方向に巻いている。
このように構成するため、ステータ22aは、360度の電気角におけるスロット32数を9とし、4極の永久磁石付ロータを有する永久磁石型回転電機と、8極の永久磁石付ロータを有する永久磁石型回転電機と、10極の永久磁石付ロータを有する永久磁石型回転電機とのすべてに使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線の配置構成を有する。
また、図12で示すように、本実施の形態の誘導電動機を2極で駆動する場合と、8極で駆動する場合との両方で、ステータ22aにU相、V相、W相の順に電流を流し、4極で駆動する場合と、10極で駆動する場合との両方で、ステータ22aにU相、W相、V相の順に電流を流す。また、ステータ22aへの通電電流の周波数は、2極で駆動する場合を1とした場合に、4極で駆動する場合、8極で駆動する場合、10極で駆動する場合は、それぞれ2倍、4倍、5倍の周波数とする。インバータ16(図1参照)による通電電流の周波数の切り替え、及び、通電相順切り替え部18(図1参照)による通電相順の切り替えは、コントローラ20(図1参照)で制御する。
このような本実施の形態の誘導電動機によれば、電機子であるステータ22aの起磁力波形が1次成分を含む多くの空間的な調波次数成分を含むようになる。このうち、調波次数が4次、5次で起磁力振幅が大きくなる。このため、ステータ22aの起磁力波の4次成分を利用することにより、8極で駆動する誘導電動機を実現でき、ステータ22aの起磁力波の5次成分を利用することにより、10極で駆動する誘導電動機を実現できる。いずれにしても、2極で駆動する誘導電動機と、8極で駆動する誘導電動機と10極で駆動する誘導電動機とを、同じステータ22aの配置及び同じステータ巻線28u,28v,28wの接続で実現でき、ステータ22aに流す電流の駆動周波数と、ステータ22に流す電流の通電相順とを変えることにより、2極駆動と8極駆動と10極駆動とを変えることができる。その他の構成及び作用については、上記の第1の実施の形態と同様であるため、同等部分には同一符号を付して重複する図示及び説明を省略する。
[第3の発明の実施の形態]
図14は、本発明の第3の実施の形態の誘導機である、誘導電動機を構成するステータの巻線配置を説明するための、図4と同様の図である。図14に示すように、本実施の形態では、ステータ22bは、360度の電気角で18個のスロット32を有し、ティース30に集中巻で集中巻巻線であるステータ巻線28u,28v,28wを巻装するとともに、U相、W相、V相のステータ巻線28u,28w,28vを、それぞれの相のステータ巻線28u,28w,28vで、3個ずつ周方向に隣り合うように配置したものを1組とし、各組を周方向に隣り合わせて配置している。また、各組の隣り合うステータ巻線28u,28w,28v同士で巻方向を互いに異ならせている。また、隣り合う組の隣り合うステータ巻線28u,28w,28v同士も、巻方向を互いに異ならせている。
このように構成するため、ステータ22bは、360度の電気角におけるスロット32数を18とし、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機と、22極の永久磁石付ロータを有する永久磁石型回転電機とのすべてに使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線の配置構成を有する。
また、上記の図12で示すように、本実施の形態の誘導電動機を2極で駆動する場合と、14極で駆動する場合との両方で、ステータ22bにU相、V相、W相の順に電流を流し、10極で駆動する場合と、22極で駆動する場合との両方で、ステータ22bにU相、W相、V相の順に電流を流す。また、ステータ22bへの通電電流の周波数は、2極で駆動する場合を1とした場合に、10極で駆動する場合、14極で駆動する場合、22極で駆動する場合は、それぞれ5倍、7倍、11倍の周波数とする。インバータ16(図1参照)による通電電流の周波数の切り替え、及び、通電相順切り替え部18(図1参照)による通電相順の切り替えは、コントローラ20(図1参照)で制御する。
このような本実施の形態の誘導電動機によれば、電機子であるステータ22bの起磁力波形が1次成分を含む多くの空間的な調波次数成分を含むようになる。このうち、調波次数が5次、7次、11次で起磁力振幅が大きくなる。このため、ステータ22bの起磁力波の5次成分を利用することにより、10極で駆動する誘導電動機を実現でき、ステータ22bの起磁力波の7次成分を利用することにより、14極で駆動する誘導電動機を実現でき、ステータ22bの起磁力波の11次成分を利用することにより、22極で駆動する誘導電動機を実現できる。いずれにしても、2極で駆動する誘導電動機と10極で駆動する誘導電動機と14極で駆動する誘導電動機と22極で駆動する誘導電動機とを、同じステータ22bの配置及び同じステータ巻線28u,28v,28wの接続で実現でき、ステータ22bに流す電流の駆動周波数と、ステータ22bに流す電流の通電相順とを変えることにより、2極駆動と10極駆動と14極駆動と22極駆動とを変えることができる。その他の構成及び作用については、上記の図1から図10に示した第1の実施の形態と同様であるため、同等部分には同一符号を付して重複する図示及び説明を省略する。
[第4の発明の実施の形態]
図15は、本発明の第4の実施の形態の誘導機である、誘導電動機を構成するステータの巻線配置を説明するための、図4と同様の図である。図15に示すように、本実施の形態では、ステータ22cは、360度の電気角で18個のスロット32を有し、ティース30に集中巻で集中巻巻線であるステータ巻線28u,28v,28wを巻装するとともに、U相、W相、V相のステータ巻線28u,28v,28wを、それぞれの相のステータ巻線28u,28v,28wで、2個ずつ周方向に隣り合うように配置したものを1組とし、各組を周方向に隣り合わせて配置したもので、隣り合う組同士の間に、隣り合う組の両方とは異なる相のステータ巻線28u,28v,28wを1個ずつ配置している。また、各組のステータ巻線28u,28v,28w同士で巻方向を互いに異ならせている。また、隣り合うように配置した全部相が異なる3個のステータ巻線28u,28v,28w同士で、すべての巻線の巻き方向を一致させている。
このように構成するため、ステータ22cは、360度の電気角におけるスロット32数を18とし、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機と、22極の永久磁石付ロータを有する永久磁石型回転電機とのすべてに使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線の配置構成を有する。
その他の構成及び作用は、上記の図14に示した第3の実施の形態と同様である。なお、本実施の形態では、上記の第3の実施の形態の場合に対して、ステータ22cに生成される起磁力波の振幅が高い、高振幅調波次数は同じとなるが、それぞれの高振幅調波次数の起磁力成分の振幅及び位相は異なる。
また、図16は、上記の各実施の形態の場合を含む、ステータのスロット数に対応する、誘導機の変換可能な極数を示す図である。図16において、黒で塗りつぶした部分が、電動機駆動が可能である、すなわちトルクの発生可能な電動機を実現できることを表している。また、斜線で示す部分は、電動機駆動が可能であるが、トルクの発生効率は高くないことを表している。例えば、ステータのスロット数が15である場合には、360度の電気角において、14極と16極とで駆動可能な誘導機を実現できる。この場合には、誘導機は、360度の電気角で、14極の永久磁石付ロータを有する永久磁石型回転電機と、16極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線の配置構成を有する構成とする。ステータにおいて、360度の電気角におけるスロット数が21,24,27,30,33,36のいずれか1である場合も同様に、誘導機を構成するステータは、異なる極数の永久磁石付ロータを有する異なる永久磁石型回転電機に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線である、ステータ巻線の配置構成を有する構成とし、ステータに誘導機用のロータを対向させる。すなわち、本発明からは外れる構成である、永久磁石を利用した電動機では、図16に示す極数を有する永久磁石付きロータと、図16に示すスロット数を有するステータとを組み合わせることにより構成するが、本発明に係る誘導機は、このようなステータを、誘導機用のロータと組み合わせることにより構成する。
なお、上記の各実施の形態において、誘導電動機12を構成するロータ24は、かご形導電体34を有するものに限定するものではない。例えば、ロータ24として、周方向複数個所に軸方向に貫通する孔部を有する板状導電体や、板状導電体を複数枚積層したものや、これらの板状導電体の孔部内に磁性材製のコア部を配置した構成を使用することもできる。なお、本発明に係る誘導機は、上記の各実施の形態のような誘導電動機12として使用するものに限定するものではなく、発電機として使用するものでも実施できる。
本発明の第1の実施形態の誘導機極数切換システムを示す略構成図である。 図1に示す通電相順切り替え部の構成を詳しく示す図である。 第1の実施の形態の誘導機を構成するステータとロータとを取り出して示す半部略断面図である。 図1に示すステータの巻線配置を説明するための、ステータの周方向を横方向に展開して示す略図である。 第1の実施の形態において、ステータの起磁力波形の1状態における電気角と起磁力との関係を示す図である。 第1の実施の形態において、ステータの起磁力振幅を調波次数で分解して示す図である。 第1の実施の形態において、ステータ巻線に流す電流の入力周波数である、駆動周波数に対するトルク特性を示す図である。 第1の実施の形態において、ステータの1次成分の起磁力波形の時間変化を、U相、V相、W相の順に交流電流を流す場合で示す図である。 第1の実施の形態において、ステータの5次成分の起磁力波形の時間変化を、U相、V相、W相の順に交流電流を流す場合で示す図である。 第1の実施の形態において、ステータの7次成分の起磁力波形の時間変化を、U相、V相、W相の順に交流電流を流す場合で示す図である。 ステータのスロット数が9,12,18のいずれか1である場合の誘導機の変換可能な極数を示す図である。 図11と同様の図で、誘導機が駆動可能となる場合の、ロータの回転周波数を1としたときのステータへの通電電流の周波数の倍率と、通電相順とを示す図である。 本発明の第2の実施の形態の誘導機を構成するステータの巻線配置を説明するための、図4と同様の図である。 本発明の第3の実施の形態の誘導機を構成するステータの巻線配置を説明するための、図4と同様の図である。 本発明の第4の実施の形態の誘導機を構成するステータの巻線配置を説明するための、図4と同様の図である。 ステータのスロット数に対応する、誘導機の変換可能な極数を示す図である。
符号の説明
10 誘導機極数切換システム、12 誘導電動機、14 二次電池、16 インバータ、18 通電相順切り替え部、20 コントローラ、22,22a,22b,22c ステータ、24 ロータ、26 ステータコア、28 ステータ巻線、30 ティース、32 スロット、34 かご形導電体、36 ロータコア、38 柱部、40 角度センサ、42 電流周波数切り替え制御部、44 通電相順切り替え制御部。

Claims (9)

  1. 3相の集中巻巻線を有するステータと、
    ステータに対向するロータと、を備える誘導機であって、
    ステータの集中巻巻線が持っている起磁力調波次数成分に応じて各集中巻巻線に流す電流の駆動周波数を変えることにより、極数を切換可能とすることを特徴とする誘導機。
  2. 請求項1に記載の誘導機において、
    ステータの360度の電気角におけるスロット数は、9、12、15、18,21,24,27,30,33,36のいずれか1であることを特徴とする誘導機。
  3. 請求項1に記載の誘導機において、
    ステータは、360度の電気角におけるスロット数を12とし、360度の電気角で、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線の配置構成を有することを特徴とする誘導機。
  4. 請求項1に記載の誘導機において、
    ステータは、360度の電気角におけるスロット数を9とし、360度の電気角で、8極の永久磁石付ロータを有する永久磁石型回転電機と、10極の永久磁石付ロータを有する永久磁石型回転電機との両方に使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線の配置構成を有することを特徴とする誘導機。
  5. 請求項1に記載の誘導機において、
    ステータは、360度の電気角におけるスロット数を18とし、360度の電気角で、10極の永久磁石付ロータを有する永久磁石型回転電機と、14極の永久磁石付ロータを有する永久磁石型回転電機と、22極の永久磁石付ロータを有する永久磁石型回転電機とのすべてに使用可能な永久磁石型回転電機用ステータと同じ集中巻巻線の配置構成を有することを特徴とする誘導機。
  6. 請求項1から請求項5のいずれか1に記載の誘導機において、
    ロータは、周方向複数個所に軸方向に貫通する孔部を有する板状導電体、または、かご形導電体を有することを特徴とする誘導機。
  7. 請求項1から請求項6のいずれか1に記載の誘導機と、
    各集中巻巻線に流す電流の駆動周波数を、ステータが生成する回転磁束の起磁力調波次数成分に応じた複数の選択周波数のいずれか1に切り替え可能な切り替え制御部と、を備えることを特徴とする誘導機極数切換システム。
  8. 請求項7に記載の誘導機極数切換システムにおいて、
    切り替え制御部は、各集中巻巻線に流す電流の駆動周波数を、誘導機のロータの回転速度に応じて複数の選択周波数範囲のいずれか1に切り替えることを特徴とする誘導機極数切換システム。
  9. 請求項7または請求項8に記載の誘導機極数切換システムにおいて、
    各集中巻巻線に流す電流の電源の相順を切り替え可能な通電相順切り替え部を備えることを特徴とする誘導機極数切換システム。
JP2008186169A 2008-07-17 2008-07-17 誘導機及び誘導機極数切換システム Pending JP2010028957A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186169A JP2010028957A (ja) 2008-07-17 2008-07-17 誘導機及び誘導機極数切換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186169A JP2010028957A (ja) 2008-07-17 2008-07-17 誘導機及び誘導機極数切換システム

Publications (1)

Publication Number Publication Date
JP2010028957A true JP2010028957A (ja) 2010-02-04

Family

ID=41734229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186169A Pending JP2010028957A (ja) 2008-07-17 2008-07-17 誘導機及び誘導機極数切換システム

Country Status (1)

Country Link
JP (1) JP2010028957A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168320A (ja) * 2013-02-28 2014-09-11 Toyo Univ 極数変換永久磁石式回転電機及びそのドライブシステム
JP2015163028A (ja) * 2014-02-28 2015-09-07 学校法人 東洋大学 極数変換回転電機
JPWO2016114353A1 (ja) * 2015-01-16 2017-04-27 三菱電機株式会社 極数切替型回転電機および極数切替型回転電機の駆動方法
DE102017118411A1 (de) 2016-08-19 2018-02-22 Fanuc Corporation Synchronmotor mit identischer komponente zu derjenigen einer anderen art von synchronmotor und verfahren zur herstellung von synchronmotoren
JP2020141493A (ja) * 2019-02-28 2020-09-03 株式会社明電舎 巻線界磁型同期電動機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168320A (ja) * 2013-02-28 2014-09-11 Toyo Univ 極数変換永久磁石式回転電機及びそのドライブシステム
JP2015163028A (ja) * 2014-02-28 2015-09-07 学校法人 東洋大学 極数変換回転電機
JPWO2016114353A1 (ja) * 2015-01-16 2017-04-27 三菱電機株式会社 極数切替型回転電機および極数切替型回転電機の駆動方法
DE102017118411A1 (de) 2016-08-19 2018-02-22 Fanuc Corporation Synchronmotor mit identischer komponente zu derjenigen einer anderen art von synchronmotor und verfahren zur herstellung von synchronmotoren
US10374540B2 (en) 2016-08-19 2019-08-06 Fanuc Corporation Synchronous motor having component identical to that of another kind of synchronous motor and method of manufacturing synchronous motors
JP2020141493A (ja) * 2019-02-28 2020-09-03 株式会社明電舎 巻線界磁型同期電動機
JP7251212B2 (ja) 2019-02-28 2023-04-04 株式会社明電舎 巻線界磁型同期電動機

Similar Documents

Publication Publication Date Title
JP4926107B2 (ja) 回転電機
EP2412091B1 (en) Electric motor system
US7911107B2 (en) AC electric motor
JP4880804B2 (ja) 同期電動機駆動システム
WO2014109218A1 (ja) ダブルステータ型スイッチトリラクタンス回転機
WO2018190114A1 (ja) 回転電機及び回転電機システム
JP2012222941A (ja) 回転電機
JP6388611B2 (ja) ハイブリッド界磁式ダブルギャップ同期機
JP2015509697A (ja) 同期式の電気機械
Dajaku et al. An improved fractional slot concentrated winding for low-poles induction machines
US20110248582A1 (en) Switched reluctance machine
JP2010028957A (ja) 誘導機及び誘導機極数切換システム
JP6432579B2 (ja) 多相巻線および回転電機
JP6083307B2 (ja) 回転機
JP5885423B2 (ja) 永久磁石式回転電機
JP5301905B2 (ja) 複数相回転電機駆動装置、複数相発電機用コンバータ、複数相回転電機、及び回転電機駆動システム
JP2011036060A (ja) 電動機
JP6451990B2 (ja) 回転電機
JP4476585B2 (ja) 2yモータの固定子構造
JP5261871B2 (ja) 同期電動機
JP2007189818A (ja) 同期電動機の電流制御方法
JP6775909B2 (ja) 回転電機
EP3051670B1 (en) Winding design for a stator of an electric machine
JP6335523B2 (ja) 回転電機
JP3719121B2 (ja) 回転電機