JP2010028908A - Rotor of rotating electrical machine - Google Patents

Rotor of rotating electrical machine Download PDF

Info

Publication number
JP2010028908A
JP2010028908A JP2008184396A JP2008184396A JP2010028908A JP 2010028908 A JP2010028908 A JP 2010028908A JP 2008184396 A JP2008184396 A JP 2008184396A JP 2008184396 A JP2008184396 A JP 2008184396A JP 2010028908 A JP2010028908 A JP 2010028908A
Authority
JP
Japan
Prior art keywords
rotor
oil
flange
refrigerant
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008184396A
Other languages
Japanese (ja)
Inventor
Kazutaka Tatematsu
和高 立松
Yasuharu Taketsuna
靖治 竹綱
Noritoshi Tanahashi
文紀 棚橋
Afu Arakawa
亜富 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008184396A priority Critical patent/JP2010028908A/en
Publication of JP2010028908A publication Critical patent/JP2010028908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deterioration in insulation of a stator winding due to a cooling medium. <P>SOLUTION: A rotor 20 of a motor generator 10 includes a rotor core 22 fixed to a shaft 21, and end plates 23 attached on both end surfaces in a center axis direction 12 of the rotor core 22. The rotor 20 has a radius direction oil path 28 formed on each of the end plates 23; oil discharge holes 29, provided on the end plates 23 respectively and communicating to the radius direction oil path 28 to discharge a cooling oil in the direction of the center axis 12 of the rotor; oil receiving plates 24, having an L-shaped cross section and including a first flange 25 protruding, in a direction to the rotor core 22 from surfaces 23a of the end plate 23 and extending in the circumferential direction of the rotor 20 and a second flange 26 connected to the first flange 25 and extending in a direction along the surfaces 23a of the end plate 23; and protruding portions 27, each protruding toward the oil discharging hole 29 from the side surface of the end plate 23 of the second flange 26 of the oil receiving plate 24. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転電気のロータの構造に関する。   The present invention relates to a structure of a rotary electric rotor.

ハイブリッド車両や電気自動車などの電動車両に搭載されるモータや発電機あるいはモータと発電機の双方の機能を備えるモータジェネレータなどの回転電機は、永久磁石が取り付けられたロータと、その周囲に配置されたステータとを備えている。ステータは電磁鋼板を積層して構成されるステータコアのスロットに巻き線を巻きつけたものである。モータまたはモータとして機能する際のモータジェネレータは、ステータの巻き線に通電してロータを回転させる回転力を取り出し、発電機または発電機として機能する際のモータジェネレータは、ロータの回転によってステータ巻き線に流れる電流を取り出す。   Rotating electrical machines such as motors and generators mounted on electric vehicles such as hybrid vehicles and electric vehicles, or motor generators having functions of both motors and generators, are arranged around a rotor with permanent magnets attached to it. And a stator. The stator is obtained by winding a winding around a slot of a stator core formed by laminating electromagnetic steel sheets. The motor generator when functioning as a motor or a motor takes out the rotational force that rotates the rotor by energizing the stator winding, and the motor generator when functioning as a generator or generator functions as a stator winding by rotating the rotor. The current that flows through the

この様な回転電機が回転すると、永久磁石の発熱によってロータの温度が上昇するとともに、ステータの巻き線に電流が流れる際の損失によってステータの巻き線が発熱し、ステータの温度が上昇するので、ロータに冷却油を流して冷却するとともにその冷却油をステータの巻き線に吹き付けてステータの巻き線を冷却する方法が提案されている。   When such a rotating electrical machine rotates, the temperature of the rotor rises due to the heat generated by the permanent magnets, and the stator windings generate heat due to loss when current flows through the stator windings, and the stator temperature rises. There has been proposed a method of cooling the stator winding by flowing cooling oil through the rotor and blowing the cooling oil onto the winding of the stator.

例えば、特許文献1には、回転電機におけるロータ構造として、ロータ回転軸の中を通ってきた冷却油がロータ両側の端面に設けられた傾斜面に沿って遠心力によってステータのコイルエンドに飛沫されることが開示されている。ここでは、傾斜面の回転軸方向先端部がステータコイルエンドの位置であって絶縁紙の位置よりも軸方向に外側となる位置とされているので、傾斜部から飛沫される冷却油が絶縁紙に当たらないと述べられている。   For example, in Patent Document 1, as a rotor structure in a rotating electrical machine, cooling oil that has passed through a rotor rotating shaft is splashed onto a coil end of a stator by centrifugal force along inclined surfaces provided on both end faces of the rotor. Is disclosed. Here, since the tip of the inclined surface in the rotation axis direction is the position of the stator coil end and is located outside the position of the insulating paper in the axial direction, the cooling oil splashed from the inclined portion is insulated paper. It is said that it does not hit.

また、特許文献2には、ロータシャフトに第1油路となる中空部を設け、そこから径方向に延びる第2油路、第2油路から軸方向に延びて外周の永久磁石との間で形成される第3油路を設けてロータ表面を冷却し、第3油路の軸方向端面近傍に油留め部を設け、油留め部より狭められた断面形状の吹き出し口をロータ端面に設けて、そこからミスト状に冷却油を噴き出してステータの巻き線を冷却する方法が提案されている。   Further, in Patent Document 2, a hollow portion serving as a first oil passage is provided on the rotor shaft, and a second oil passage extending in the radial direction therefrom, and an axial direction extending from the second oil passage between the outer permanent magnets. The rotor surface is cooled by providing a third oil passage formed by the above, an oil retaining portion is provided in the vicinity of the axial end surface of the third oil passage, and a blowout port having a cross-sectional shape narrowed from the oil retaining portion is provided on the rotor end surface. There has been proposed a method of cooling the stator windings by ejecting cooling oil in a mist form therefrom.

特開2005−6429号公報JP 2005-6429 A 特開2001−16826号公報JP 2001-16826 A

ところで、ステータの巻き線には、エナメル被覆線が用いられ、巻き線間の絶縁を確保するためにステータコアと巻き線との間あるいはコイルエンドの各相の巻き線間に絶縁紙が装着されている。これらの絶縁紙は樹脂などの強度の低い材料で構成されているため、冷却油が当たると損傷して絶縁性が低下する恐れがある。また同様に巻き線のエナメル被覆も冷却油が当たると損傷を受け、絶縁性が低下するおそれがある。   By the way, enamel-coated wires are used for the windings of the stator, and insulating paper is mounted between the stator core and the windings or between the windings of each phase of the coil end in order to ensure insulation between the windings. Yes. Since these insulating papers are made of a low-strength material such as a resin, they may be damaged when the cooling oil hits them, resulting in a decrease in insulating properties. Similarly, the enamel coating of the winding may be damaged when it is exposed to the cooling oil, resulting in a decrease in insulation.

特許文献1に記載された従来技術では、冷却油がステータコアの表面から軸方向に突出した絶縁紙には当たらないようにロータの傾斜面によって絶縁紙よりも外側の位置まで冷却油を導いているが、冷却油は傾斜面の端からコイルエンドに向かって半径方向に飛沫するのでコイルエンドの各相の巻き線の間の絶縁紙あるいは巻き線に速い速度で当たり、これらの絶縁紙やエナメル被覆を損傷させて絶縁性の低下を招く場合があるという問題があった。また、特許文献2に記載された従来技術では、冷却油をミスト状にしてロータの軸方向に噴き出しているが、噴き出された冷却油はすぐに遠心力によって半径方向に流れてコイルエンドに早い速度で当たり、コイルエンドの絶縁紙あるいは巻き線のエナメル被覆を損傷させて絶縁性の低下を招く場合があるという問題があった。   In the prior art described in Patent Document 1, the cooling oil is guided to a position outside the insulating paper by the inclined surface of the rotor so that the cooling oil does not hit the insulating paper protruding in the axial direction from the surface of the stator core. However, since the cooling oil splashes radially from the end of the inclined surface toward the coil end, it hits the insulating paper or winding between the windings of each phase of the coil end at a high speed, and these insulating paper and enamel coating There is a problem that the insulating property may be deteriorated by damaging the structure. In the prior art described in Patent Document 2, the cooling oil is mist-shaped and ejected in the axial direction of the rotor, but the ejected cooling oil immediately flows in the radial direction by centrifugal force and reaches the coil end. There was a problem that hitting at a high speed could damage the insulating paper of the coil end or the enamel coating of the winding, leading to a decrease in insulation.

本発明は、冷媒によるステータ巻き線の絶縁性低下を抑制することを目的とする。   An object of this invention is to suppress the insulation fall of the stator winding by a refrigerant | coolant.

本発明の回転電機のロータは、回転軸に固定されたコアと、コアの軸方向の両端面に取り付けられたエンドプレートと、を含む回転電機のロータであって、エンドプレートに形成される冷媒流路と、エンドプレートに設けられ、冷媒流路に連通してロータの軸方向に冷媒を排出する冷媒排出孔と、冷媒排出孔の半径方向外側でコアと反対側のエンドプレート表面からコアと反対側に突出し、ロータの周方向に延びる第1フランジと、第1フランジに接続し、冷媒排出孔に対向してエンドプレート表面に沿った方向に延びる第2フランジと、を含むL型断面の冷媒受け板を有すること、を特徴とする。   A rotor of a rotating electrical machine according to the present invention is a rotor of a rotating electrical machine including a core fixed to a rotating shaft and end plates attached to both end surfaces in the axial direction of the core, the refrigerant formed on the end plate A flow path, a refrigerant discharge hole provided in the end plate, communicating with the refrigerant flow path to discharge the refrigerant in the axial direction of the rotor, and the core from the end plate surface opposite to the core on the radial outside of the refrigerant discharge hole An L-shaped cross section including a first flange protruding to the opposite side and extending in the circumferential direction of the rotor; and a second flange connected to the first flange and extending in a direction along the end plate surface facing the coolant discharge hole It has a refrigerant receiving plate.

本発明の回転電機のロータにおいて、冷媒排出孔と対向し、油受け板の第2フランジのエンドプレート側面から冷媒排出孔に向かって突出する突部を有すること、としても好適であるし、冷媒流路は、回転軸から半径方向外側に延びる第1流路と、第1流路に接続され第1流路との接続部から半径方向内側に延びる第2流路と、を有すること、としても好適である。   In the rotor of the rotating electrical machine of the present invention, it is preferable that the rotor has a protrusion that faces the refrigerant discharge hole and protrudes from the side surface of the end plate of the second flange of the oil receiving plate toward the refrigerant discharge hole. The flow path includes a first flow path that extends radially outward from the rotation axis, and a second flow path that is connected to the first flow path and extends radially inward from a connection portion with the first flow path. Is also suitable.

本発明は、冷媒によるステータ巻き線の絶縁性低下を抑制することができるという効果を奏する。   The present invention has an effect that it is possible to suppress a decrease in insulation of the stator winding due to the refrigerant.

以下、本発明の好適な実施形態について図面を参照しながら説明する。図1に示すように、本実施形態のロータ20が取り付けられている回転電機であるモータジェネレータ10は、中心軸12の周りに回転するロータ20と、ロータ20の外周に配置されたステータ40と、ロータ20を回転自在に支持すると共にステータ40を固定するケーシング11とを備えている。   Preferred embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a motor generator 10 that is a rotating electrical machine to which the rotor 20 of this embodiment is attached includes a rotor 20 that rotates around a central axis 12, and a stator 40 that is disposed on the outer periphery of the rotor 20. And a casing 11 for rotatably supporting the rotor 20 and fixing the stator 40.

ロータ20は回転軸であるシャフト21と、シャフト21に固定された円筒形のロータコア22と、ロータコア22のシャフト21の中心軸12方向の両端面に取り付けられたエンドプレート23と、を備えている。ロータコア22は電磁鋼板を中心軸12の方向に積層して構成され、その内部に永久磁石31が取り付けられている。   The rotor 20 includes a shaft 21 that is a rotating shaft, a cylindrical rotor core 22 fixed to the shaft 21, and end plates 23 attached to both end surfaces of the shaft 21 of the rotor core 22 in the direction of the central axis 12. . The rotor core 22 is configured by laminating electromagnetic steel plates in the direction of the central axis 12, and a permanent magnet 31 is attached therein.

図1に示すように、ステータ40はロータ20の中心軸12の方向に電磁鋼板を積層して構成されたステータコア41とステータコア41に設けられたスロットに巻きつけられた巻き線とを含んでいる。巻き線はステータコア41の中心軸12方向の両端面で各スロット間を渡るコイルエンド42を形成している。スロットに巻き線を巻く際にはスロットとステータコア41との間に絶縁紙43が装着され、その一部はステータコア41の中心軸12の両端面から突出し、ステータコア41の中心軸12方向の両端面とコイルエンド42との間に挟まれている。   As shown in FIG. 1, the stator 40 includes a stator core 41 configured by laminating electromagnetic steel plates in the direction of the central axis 12 of the rotor 20, and windings wound around slots provided in the stator core 41. . The winding forms a coil end 42 across the slots on both end faces of the stator core 41 in the direction of the central axis 12. When winding the winding around the slot, insulating paper 43 is mounted between the slot and the stator core 41, part of which protrudes from both end faces of the central axis 12 of the stator core 41, and both end faces of the stator core 41 in the direction of the central axis 12. And the coil end 42.

ロータ20の中心には中心軸12に沿ってロータ20を冷却する冷媒である冷却油をロータ20に供給する中心油路30が設けられている。中心油路30にはシャフト21の半径方向に延びる半径方向油供給路36が形成され、半径方向油供給路36はエンドプレート23に形成された半径方向油路28に連通している。半径方向油路28は、エンドプレート23の中心軸12の方向に延び、冷却油を中心軸12の方向に排出する油排出孔29に連通している。エンドプレート23に形成された半径方向油路28はエンドプレート23のロータコア22側の裏面23bに設けられた溝とロータコア22の中心軸12の方向の両端面とによって囲まれた流路である。   At the center of the rotor 20, a central oil passage 30 is provided along the central axis 12 for supplying cooling oil, which is a refrigerant for cooling the rotor 20, to the rotor 20. A radial oil supply passage 36 extending in the radial direction of the shaft 21 is formed in the central oil passage 30, and the radial oil supply passage 36 communicates with a radial oil passage 28 formed in the end plate 23. The radial oil passage 28 extends in the direction of the central axis 12 of the end plate 23 and communicates with an oil discharge hole 29 that discharges cooling oil in the direction of the central axis 12. The radial oil passage 28 formed in the end plate 23 is a flow path surrounded by a groove provided on the back surface 23 b of the end plate 23 on the rotor core 22 side and both end faces of the rotor core 22 in the direction of the central axis 12.

エンドプレート23のロータコア22と反対側の表面23aには、L字型の断面を有し、油排出孔29から中心軸12に沿った方向に排出された冷却油を受ける冷媒受け板である油受け板24が取り付けられている。油受け板24は、油排出孔29の半径方向外側でエンドプレート23の表面23aから中心軸12方向でロータコア22と反対側に突出した第1フランジ25と、第1フランジ25に接続し、油排出孔29に対向してエンドプレート23の表面23aに沿った方向に延びる第2フランジ26とを備えている。油受け板24の第2フランジ26のエンドプレート23側面には、油排出孔29と対向し、油排出孔29に向かって突出する突部27が設けられている。油受け板24はL型断面であり、油排出孔29の半径方向内側には、半径方向開口33が形成されている。   The surface 23a of the end plate 23 opposite to the rotor core 22 has an L-shaped cross section, and is an oil that is a refrigerant receiving plate that receives cooling oil discharged from the oil discharge holes 29 in the direction along the central axis 12. A receiving plate 24 is attached. The oil receiving plate 24 is connected to the first flange 25 and the first flange 25 projecting from the surface 23a of the end plate 23 in the radial direction outside the oil discharge hole 29 in the direction of the central axis 12 to the opposite side of the rotor core 22. A second flange 26 extending in the direction along the surface 23 a of the end plate 23 is provided to face the discharge hole 29. On the side surface of the end plate 23 of the second flange 26 of the oil receiving plate 24, a protrusion 27 that faces the oil discharge hole 29 and protrudes toward the oil discharge hole 29 is provided. The oil receiving plate 24 has an L-shaped cross section, and a radial opening 33 is formed inside the oil discharge hole 29 in the radial direction.

図2に示すように、ロータ20に設けられた永久磁石31は、それぞれ2つの永久磁石によって構成された永久磁石群がロータ20の周方向に沿って複数設けられている。各永久磁石群は複数の磁極を形成する。そして、共通の中心油路30からそれぞれの磁石群に向かって複数の半径方向油供給路36と半径方向油路28と円形の油排出孔29とが設けられている。そして、各油排出孔29の中心軸12の方向には油受け板24の第2フランジ26が配置され、各油排出孔29の半径方向外側には油受け板24の第1フランジ25が配置されている。第1フランジ25はロータ20の周方向に延びる板で部分円筒形状であり、第2フランジ26はロータ20の周方向に沿って延びる部分円環板形状である。図3(a)、図3(b)に示すように、第1フランジ25と、第2フランジ26と、エンドプレート23の表面23aとによって円周方向に延びる溝型の流路37が形成される。油受け板24はL字型の断面形状でロータ20の周方向の両端側は解放端となっている。このため、流路37のロータ20の回転方向の側には周方向入口開口32が形成され、流路37のロータ20の回転方向と反対側には周方向出口開口34が形成されている。   As shown in FIG. 2, the permanent magnet 31 provided in the rotor 20 is provided with a plurality of permanent magnet groups each formed of two permanent magnets along the circumferential direction of the rotor 20. Each permanent magnet group forms a plurality of magnetic poles. A plurality of radial oil supply passages 36, radial oil passages 28, and circular oil discharge holes 29 are provided from the common central oil passage 30 toward the respective magnet groups. The second flange 26 of the oil receiving plate 24 is disposed in the direction of the central axis 12 of each oil discharge hole 29, and the first flange 25 of the oil receiving plate 24 is disposed radially outward of each oil discharge hole 29. Has been. The first flange 25 is a plate that extends in the circumferential direction of the rotor 20 and has a partial cylindrical shape, and the second flange 26 has a partial annular plate shape that extends along the circumferential direction of the rotor 20. As shown in FIGS. 3A and 3B, a groove-type flow path 37 extending in the circumferential direction is formed by the first flange 25, the second flange 26, and the surface 23 a of the end plate 23. The The oil receiving plate 24 has an L-shaped cross section, and both end sides in the circumferential direction of the rotor 20 are open ends. For this reason, a circumferential inlet opening 32 is formed on the side of the flow path 37 in the rotation direction of the rotor 20, and a circumferential outlet opening 34 is formed on the side of the flow path 37 opposite to the rotation direction of the rotor 20.

図3(a)、図3(b)に示すように、油排出孔29に対向して設けられた突部27は、ロータコア22の方向に向いて突出した円錐台形状となっており、突部27の設けられていない部分のエンドプレート23の表面23aとの間隔よりも突部27のある部分の表面23aとの間隔が狭くなっている。   As shown in FIGS. 3 (a) and 3 (b), the protrusion 27 provided facing the oil discharge hole 29 has a truncated cone shape protruding toward the rotor core 22, The interval between the portion where the protrusion 27 is provided and the surface 23 a where the protrusion 27 is present is narrower than the interval between the portion where the portion 27 is not provided and the surface 23 a of the end plate 23.

以上のように構成されたモータジェネレータ10が回転する際の冷却油の流れについて説明する。図1から図3において、矢印は冷却油の流れを示し、実線の矢印は液状の冷却油を示し点線の矢印は後で説明する霧状飛沫となった冷却油の流れを示す。図1及び図2に実線の矢印で示すように、中心油路30に中心軸12の軸方向から供給された冷却油は、ロータ20の回転による遠心力によって半径方向油供給路36から半径方向油路28に向かってロータ20の半径方向外側に流れていく。そして、半径方向油路28に流れ込んだ冷却油は加圧されて油排出孔29を通ってエンドプレート23から中心軸12の方向にエンドプレート23の表面23aに向かって流れていく。一方、図2、図3(b)に示す様に、ロータ20が回転すると、油受け板24の周方向入口開口32からはモータジェネレータ10の内部にある空気が油受け板24の第2フランジ26とエンドプレート23の表面23aとの間に流れ込んでくる。流れ込んだ空気は溝型の流路37に沿って周方向に流れていく。そして、エンドプレート23の表面23aとの間隔が狭くなっている突部27が設けられている領域に入ると、流路幅が狭くなるため空気の流速が突部27のない部分よりも早くなる。このため突部27の設けられている領域の空気の圧力が低下し、半径方向油路28に連通している油排出孔29の冷却油は中心軸12の方向に流路37に向かって吸引される。   The flow of the cooling oil when the motor generator 10 configured as described above rotates will be described. 1 to 3, arrows indicate the flow of cooling oil, solid-line arrows indicate liquid cooling oil, and dotted-line arrows indicate the flow of cooling oil that becomes mist-like droplets, which will be described later. As shown by solid line arrows in FIGS. 1 and 2, the cooling oil supplied to the central oil passage 30 from the axial direction of the central shaft 12 is radial from the radial oil supply passage 36 by centrifugal force due to the rotation of the rotor 20. It flows toward the oil passage 28 outward in the radial direction of the rotor 20. The cooling oil flowing into the radial oil passage 28 is pressurized and flows from the end plate 23 toward the center axis 12 toward the surface 23 a of the end plate 23 through the oil discharge hole 29. On the other hand, as shown in FIGS. 2 and 3 (b), when the rotor 20 rotates, the air inside the motor generator 10 from the circumferential inlet opening 32 of the oil receiving plate 24 is moved to the second flange of the oil receiving plate 24. 26 and the surface 23 a of the end plate 23. The air that has flowed flows in the circumferential direction along the groove-shaped flow path 37. And if it enters into the field in which projection 27 where the space with surface 23a of end plate 23 is narrow is provided, the flow velocity of air will become faster than the part without projection 27 because the channel width becomes narrow. . For this reason, the pressure of the air in the region where the protrusion 27 is provided decreases, and the cooling oil in the oil discharge hole 29 communicating with the radial oil passage 28 is sucked toward the flow passage 37 in the direction of the central axis 12. Is done.

図3(a)、図3(b)に示す様に、冷却油はロータ20の回転による遠心力で加圧されるとともに、突部27の設けられた領域の吸引力によって油排出孔29からエンドプレート23の中心軸12の方向に噴出する。図3(a)、図3(b)の点線の矢印に示す様に、噴出した冷却油は突部27に衝突して飛沫となると共に、圧力の低い領域に噴出されることによって液滴の大きさが非常に小さくなり、霧状飛沫となって流路37に沿って周方向出口開口34に向かってロータ20の回転方向と逆の周方向に流れていく。また、一部の霧状飛沫は突部27のある領域から空気とともに油受け板24の半径方向開口33から半径方向内側に流れていく。このように冷却油は油受け板24によって霧状飛沫となるとともに、周方向あるいは半径方向内側に流れの方向が変化させられ、半径方向の流れの勢いが弱められる。   As shown in FIGS. 3A and 3B, the cooling oil is pressurized by a centrifugal force generated by the rotation of the rotor 20, and from the oil discharge hole 29 by the suction force in the region where the protrusion 27 is provided. It ejects in the direction of the central axis 12 of the end plate 23. As shown by the dotted arrows in FIGS. 3 (a) and 3 (b), the ejected cooling oil collides with the protrusion 27 and becomes droplets. The size becomes very small, and it becomes a mist-like droplet and flows in the circumferential direction opposite to the rotational direction of the rotor 20 toward the circumferential outlet opening 34 along the flow path 37. Further, some of the mist-like droplets flow radially inward from the radial opening 33 of the oil receiving plate 24 together with air from a region where the protrusion 27 is present. In this way, the cooling oil becomes mist-like droplets by the oil receiving plate 24, and the flow direction is changed in the circumferential direction or radially inward, so that the momentum of the radial flow is weakened.

図2に示すように、周方向出口開口34及び半径方向開口33から油受け板24の外に流れだした霧状飛沫の冷却油は、各油受け板24の間からロータ20の回転による遠心力によって半径方向外側に向かって流れていく。この霧状飛沫の冷却油は、油受け板24によって一旦半径方向の流れの勢いが弱められているので、ゆっくりとステータ40のコイルエンド42に当たる。また、霧状飛沫となっているので各飛沫がコイルエンド42に当たる際の衝撃力は非常に小さくなっている。そして、コイルエンド42を冷却した冷却油はモータジェネレータ下部に設けられた図示しない油溜めに戻り、再び中心油路30に供給されていく。   As shown in FIG. 2, the mist-like cooling oil that has flowed out of the oil receiving plate 24 from the circumferential outlet opening 34 and the radial opening 33 is centrifuged by rotation of the rotor 20 from between each oil receiving plate 24. It flows radially outward by force. Since the momentum of the flow in the radial direction is once weakened by the oil receiving plate 24, the mist-like cooling oil slowly hits the coil end 42 of the stator 40. Moreover, since it becomes a mist-like droplet, the impact force when each droplet hits the coil end 42 is very small. Then, the cooling oil that has cooled the coil end 42 returns to an oil sump (not shown) provided in the lower part of the motor generator and is supplied to the central oil passage 30 again.

以上述べたように、本実施形態のモータジェネレータ10のロータ20は、油受け板24によって冷却油を霧状飛沫とするとともに、一旦周方向あるいは半径方向内側にその流れの方向を変化させて半径方向の流れの勢いを弱めることができるので、冷却油をゆっくりとステータ40のコイルエンド42に当て、各飛沫がコイルエンド42に当たる際の衝撃力を非常に小さくすることができる。このため、冷却油が当たることによってコイルエンド42に設けられた絶縁紙43や巻き線のエナメル被覆などを損傷させることが少なくなり、ステータ40の巻き線の絶縁性が低下することを抑制することができる。   As described above, the rotor 20 of the motor generator 10 of the present embodiment makes the cooling oil mist-like droplets by the oil receiving plate 24 and changes the flow direction once in the circumferential direction or radially inward to change the radius. Since the momentum of the flow in the direction can be reduced, the cooling oil is slowly applied to the coil end 42 of the stator 40, and the impact force when each splash hits the coil end 42 can be made extremely small. For this reason, it is less likely that the insulating paper 43 provided on the coil end 42 or the enamel coating of the winding is damaged by the contact with the cooling oil, and the insulation of the winding of the stator 40 is prevented from being deteriorated. Can do.

図4を参照しながら本発明の他の実施形態について説明する。先に図1から図3を参照して説明した実施形態と同様の部位には同様の符号を付して説明は省略する。   Another embodiment of the present invention will be described with reference to FIG. Parts similar to those of the embodiment described above with reference to FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.

図4に示すように、本実施形態のロータ20は、半径方向油供給路36に連通して半径方向外側に延びる第1流路である半径方向油路28が永久磁石31の半径方向外側まで延び、半径方向油路28に接続されて半径方向油路28との接続部28aから半径方向内側に向かって延びる折り返し油路28bとを備え、油排出孔29は折り返し油路28bに接続されている。   As shown in FIG. 4, the rotor 20 of the present embodiment is configured such that the radial oil passage 28, which is a first flow path that communicates with the radial oil supply passage 36 and extends radially outward, extends radially outward of the permanent magnet 31. And a return oil passage 28b connected to the radial oil passage 28 and extending radially inward from a connection portion 28a with the radial oil passage 28, and the oil discharge hole 29 is connected to the return oil passage 28b. Yes.

本実施形態は、折り返し油路28bによって冷却油を半径方向の内側に流してその半径方向外側に向かう勢いを弱めた上で、油排出孔29から油受け板24に向かって冷却油を噴出させるので、先に説明した実施形態よりもゆっくりとステータ40のコイルエンド42に冷却油を当てることができ、冷却油が当たることによってコイルエンド42に設けられた絶縁紙43や巻き線のエナメル被覆などを損傷させることがより少なくなり、ステータ40の巻き線の絶縁性が低下することをより抑制することができる。   In the present embodiment, the cooling oil is flowed inward in the radial direction by the folded oil passage 28b to weaken the momentum toward the outside in the radial direction, and then the cooling oil is ejected from the oil discharge hole 29 toward the oil receiving plate 24. Therefore, the cooling oil can be applied to the coil end 42 of the stator 40 more slowly than in the embodiment described above, and the insulating paper 43 provided on the coil end 42 and the enamel coating of the winding, etc. when the cooling oil hits. It is possible to further prevent the insulation of the winding of the stator 40 from being lowered.

以上説明した各実施形態は、永久磁石31を用いたモータジェネレータ10に本発明を適用した場合について説明したが、モータジェネレータ10以外のモータ、または発電機にも適用することができるし、永久磁石31を用いないロータあるいは巻き線を有するロータにも適用することができる。   In each of the embodiments described above, the case where the present invention is applied to the motor generator 10 using the permanent magnet 31 has been described. However, the present invention can be applied to a motor other than the motor generator 10 or a generator. The present invention can also be applied to a rotor not using 31 or a rotor having windings.

本発明の実施形態における回転電機のロータが取り付けられたモータジェネレータを示す軸方向の断面図である。It is sectional drawing of the axial direction which shows the motor generator with which the rotor of the rotary electric machine in embodiment of this invention was attached. 本発明の実施形態におけるモータジェネレータのロータを軸方向から見た図である。It is the figure which looked at the rotor of the motor generator in embodiment of this invention from the axial direction. 本発明の実施形態におけるモータジェネレータのロータに設けられた油受け板と油路とを示す説明図である。It is explanatory drawing which shows the oil receiving plate and oil path which were provided in the rotor of the motor generator in embodiment of this invention. 本発明の他の実施形態におけるモータジェネレータのロータに設けられた油受け板と油路とを示す説明図である。It is explanatory drawing which shows the oil receiving plate and oil path which were provided in the rotor of the motor generator in other embodiment of this invention.

符号の説明Explanation of symbols

10 モータジェネレータ、11 ケーシング、12 中心軸、20 ロータ、21 シャフト、22 ロータコア、23 エンドプレート、23a 表面、23b 裏面、24 油受け板、25 第1フランジ、26 第2フランジ、27 突部、28 半径方向油路、28a 接続部、28b 折り返し油路、29 油排出孔、30 中心油路、31 永久磁石、32 周方向入口開口、33 半径方向開口、34 周方向出口開口、36 半径方向油供給路、37 流路、40 ステータ、41 ステータコア、42 コイルエンド、43 絶縁紙。   DESCRIPTION OF SYMBOLS 10 Motor generator, 11 Casing, 12 Center axis | shaft, 20 Rotor, 21 Shaft, 22 Rotor core, 23 End plate, 23a Front surface, 23b Back surface, 24 Oil receiving plate, 25 1st flange, 26 2nd flange, 27 Protrusion, 28 Radial oil passage, 28a Connection, 28b Folding oil passage, 29 Oil discharge hole, 30 Center oil passage, 31 Permanent magnet, 32 Circumferential inlet opening, 33 Radial opening, 34 Circumferential outlet opening, 36 Radial oil supply Path, 37 flow path, 40 stator, 41 stator core, 42 coil end, 43 insulating paper.

Claims (3)

回転軸に固定されたコアと、コアの軸方向の両端面に取り付けられたエンドプレートと、を含む回転電機のロータであって、
エンドプレートに形成される冷媒流路と、
エンドプレートに設けられ、冷媒流路に連通してロータの軸方向に冷媒を排出する冷媒排出孔と、
冷媒排出孔の半径方向外側でコアと反対側のエンドプレート表面からコアと反対側に突出し、ロータの周方向に延びる第1フランジと、第1フランジに接続し、冷媒排出孔に対向してエンドプレート表面に沿った方向に延びる第2フランジと、を含むL型断面の冷媒受け板を有すること、
を特徴とする回転電機のロータ。
A rotor of a rotating electrical machine including a core fixed to a rotating shaft, and end plates attached to both end surfaces in the axial direction of the core,
A coolant channel formed in the end plate;
A refrigerant discharge hole provided in the end plate and communicating with the refrigerant flow path to discharge the refrigerant in the axial direction of the rotor;
A first flange that protrudes from the end plate surface opposite to the core on the radial outer side of the refrigerant discharge hole to the opposite side of the core, extends in the circumferential direction of the rotor, is connected to the first flange, and is opposed to the refrigerant discharge hole. A refrigerant receiving plate having an L-shaped cross section including a second flange extending in a direction along the plate surface;
A rotor of a rotating electric machine characterized by the above.
請求項1に記載の回転電機のロータであって、
冷媒排出孔と対向し、冷媒受け板の第2フランジのエンドプレート側面から冷媒排出孔に向かって突出する突部を有すること、
を特徴とする回転電機のロータ。
The rotor of the rotating electrical machine according to claim 1,
A protrusion that faces the refrigerant discharge hole and protrudes from the side surface of the end plate of the second flange of the refrigerant receiving plate toward the refrigerant discharge hole;
A rotor of a rotating electric machine characterized by the above.
請求項1または2に記載の回転電機のロータであって、
冷媒流路は、回転軸から半径方向外側に延びる第1流路と、第1流路に接続され第1流路との接続部から半径方向内側に延びる第2流路と、を有すること、
を特徴とする回転電機のロータ。
A rotor for a rotating electrical machine according to claim 1 or 2,
The refrigerant flow path includes a first flow path that extends radially outward from the rotation axis, and a second flow path that is connected to the first flow path and extends radially inward from a connection portion with the first flow path.
A rotor of a rotating electric machine characterized by the above.
JP2008184396A 2008-07-16 2008-07-16 Rotor of rotating electrical machine Pending JP2010028908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184396A JP2010028908A (en) 2008-07-16 2008-07-16 Rotor of rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184396A JP2010028908A (en) 2008-07-16 2008-07-16 Rotor of rotating electrical machine

Publications (1)

Publication Number Publication Date
JP2010028908A true JP2010028908A (en) 2010-02-04

Family

ID=41734184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184396A Pending JP2010028908A (en) 2008-07-16 2008-07-16 Rotor of rotating electrical machine

Country Status (1)

Country Link
JP (1) JP2010028908A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120013206A1 (en) * 2010-07-19 2012-01-19 Andrew Meyer Cooling System and Method for an Electric Machine Module
US8395287B2 (en) 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
US8446056B2 (en) 2010-09-29 2013-05-21 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8497608B2 (en) 2011-01-28 2013-07-30 Remy Technologies, Llc Electric machine cooling system and method
US8508085B2 (en) 2010-10-04 2013-08-13 Remy Technologies, Llc Internal cooling of stator assembly in an electric machine
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8546982B2 (en) 2011-07-12 2013-10-01 Remy Technologies, Llc Electric machine module cooling system and method
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US8624452B2 (en) 2011-04-18 2014-01-07 Remy Technologies, Llc Electric machine module cooling system and method
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803381B2 (en) 2011-07-11 2014-08-12 Remy Technologies, Llc Electric machine with cooling pipe coiled around stator assembly
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
JP2017200395A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Switched reluctance motor
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method
CN109792180A (en) * 2016-09-29 2019-05-21 三菱电机株式会社 Rotor, rotating electric machine and compressor
CN114069969A (en) * 2020-08-03 2022-02-18 安徽威灵汽车部件有限公司 Motor and vehicle

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
WO2012012464A2 (en) * 2010-07-19 2012-01-26 Remy Technologies, Llc Cooling system and method for an electric machine module
WO2012012464A3 (en) * 2010-07-19 2012-04-12 Remy Technologies, Llc Cooling system and method for an electric machine module
US20120013206A1 (en) * 2010-07-19 2012-01-19 Andrew Meyer Cooling System and Method for an Electric Machine Module
US8446056B2 (en) 2010-09-29 2013-05-21 Remy Technologies, Llc Electric machine cooling system and method
US8395287B2 (en) 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
US8508085B2 (en) 2010-10-04 2013-08-13 Remy Technologies, Llc Internal cooling of stator assembly in an electric machine
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8497608B2 (en) 2011-01-28 2013-07-30 Remy Technologies, Llc Electric machine cooling system and method
US8624452B2 (en) 2011-04-18 2014-01-07 Remy Technologies, Llc Electric machine module cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US8803381B2 (en) 2011-07-11 2014-08-12 Remy Technologies, Llc Electric machine with cooling pipe coiled around stator assembly
US8546982B2 (en) 2011-07-12 2013-10-01 Remy Technologies, Llc Electric machine module cooling system and method
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method
JP2017200395A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Switched reluctance motor
CN109792180A (en) * 2016-09-29 2019-05-21 三菱电机株式会社 Rotor, rotating electric machine and compressor
US20190190337A1 (en) * 2016-09-29 2019-06-20 Mitsubishi Electric Corporation Rotor, rotary electric machine, and compressor
US10931158B2 (en) * 2016-09-29 2021-02-23 Mitsubishi Electric Corporation Rotor, rotary electric machine, and compressor
CN114069969A (en) * 2020-08-03 2022-02-18 安徽威灵汽车部件有限公司 Motor and vehicle

Similar Documents

Publication Publication Date Title
JP2010028908A (en) Rotor of rotating electrical machine
JP4560067B2 (en) Rotating electric machine
CN103620918B (en) The cooling structure of electric rotating machine
JP5943333B1 (en) Iron-free rotating electric machine including a stator having a cylindrical coil and its cooling method
JP4424385B2 (en) Rotating electric machine
EP3032709B1 (en) Permanent magnet embedded type rotating electric machine
JP5772544B2 (en) Cooling structure of rotating electric machine
US9225208B2 (en) Internal cooling of magnetic core for electric machine
JP2006353086A (en) Cooling system for electrical machine equipped with center rotor cooling duct
JP2013132151A (en) Rotary electric machine and rotary electric machine cooling system
US20130076169A1 (en) Electrical machine with reduced windage loss
WO2020105467A1 (en) Motor oil cooling structure
JP2007259674A (en) Rotor for rotary electric machine
JP6196940B2 (en) Rotor for rotating electrical machines
JP5013751B2 (en) Electric motor
KR20190096408A (en) Stator supports for stators of wind turbine generators, stators including such stator supports, generators, and wind turbines
JP2009081953A (en) Rotating electric machine
JP5812047B2 (en) Rotating electric machine
WO2019187021A1 (en) Cooling structure for rotating electrical device
JP2011142787A (en) Cooling structure for electric motor
JP5375647B2 (en) Electric motor
CN111384798B (en) Rotating electrical machine
CN116134703A (en) Cooled rotor for an electric machine
CN108667198B (en) Cooling aid and coreless brushless motor
JP7487644B2 (en) Cooling structure for rotating electrical machines