JP2010025864A - Interference measuring apparatus - Google Patents

Interference measuring apparatus Download PDF

Info

Publication number
JP2010025864A
JP2010025864A JP2008190079A JP2008190079A JP2010025864A JP 2010025864 A JP2010025864 A JP 2010025864A JP 2008190079 A JP2008190079 A JP 2008190079A JP 2008190079 A JP2008190079 A JP 2008190079A JP 2010025864 A JP2010025864 A JP 2010025864A
Authority
JP
Japan
Prior art keywords
light
interference
lens
optical
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190079A
Other languages
Japanese (ja)
Inventor
Toyohiko Yamauchi
豊彦 山内
Hidenao Iwai
秀直 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2008190079A priority Critical patent/JP2010025864A/en
Publication of JP2010025864A publication Critical patent/JP2010025864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference measuring apparatus capable of shortening time required for measurement by reducing mechanical operation and also suppressing a motion artifact. <P>SOLUTION: The interfererence measuring apparatus 1 includes: a light source 11 for outputting a light P including two or more wavelength components; an interferometric optical system for outputting an interference light RI which is generated in such a way that a first reflective light R<SB>1</SB>generated by reflecting a first branch light P<SB>1</SB>to an object to be measured 9 may be made to interfere with a second reflective light R<SB>2</SB>generated by reflecting a second branch light P<SB>2</SB>to a reflective mirror 73; a first lens 21 provided in the optical on the path of a first branch light P<SB>1</SB>; a second lens 22 provided in the optical path of the second branch light P<SB>2</SB>; and an imaging part 51 for imaging an interference pattern of the interference light RI. A focal position of each wavelength component due to the first lens 21 caused by an axial chromatic aberration of the first lens 21, is located in a line in the optical axial direction of the first branch light P<SB>1</SB>, and images an interference pattern in a different optical axial direction position for every wavelength component in the image pick-up part 51. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、干渉光学系を備える干渉測定装置に関するものである。   The present invention relates to an interference measuring apparatus including an interference optical system.

干渉光学系を備える干渉測定装置として非特許文献1および特許文献1に開示されたものがある。これらの文献に開示された装置は、光源から出力された光を2分岐して第1分岐光および第2分岐光を出力し、第1分岐光が被測定物により反射されて生じる第1反射光と、第2分岐光が反射ミラーにより反射されて生じる第2反射光とを干渉させて、これにより生じる干渉光の強度を検出部により検出し、その被測定物の表面形状を測定するものである。そのために、これらの装置では、第1分岐光および第1反射光の光路長L1と第2分岐光および第2反射光の光路長L2との差(光路長差)を複数の目標値に順次に設定し、光路長差が各目標値に設定されているときに生じる干渉パターンを撮像部により撮像して、その撮像した干渉パターンに基づいて被測定物の表面形状を測定する。これらの装置では、光路長差を各目標値に順次に設定するために、反射ミラー(または被測定物)に移動ステージが取り付けられている。
Toyohiko Yamauchiet al., “Surface Topography of Cellular Membrane on Nanometer Scale UsingWhite-Light Quantitative Phase Microscope”, DigitalHolography and Three-Dimensional Imaging (DH) 2008, OpticalSociety of America, Presentation Number: BMD59 (2008) 特開2007−333469号公報
Non-Patent Document 1 and Patent Document 1 disclose an interference measuring apparatus including an interference optical system. The devices disclosed in these documents branch the light output from the light source into two to output the first branched light and the second branched light, and the first reflected light is reflected by the object to be measured. Interfering the light with the second reflected light generated by reflecting the second branched light by the reflection mirror, detecting the intensity of the interference light generated thereby, and measuring the surface shape of the object to be measured It is. Therefore, in these devices, the difference (optical path length difference) between the optical path length L1 of the first branched light and the first reflected light and the optical path length L2 of the second branched light and the second reflected light is sequentially set to a plurality of target values. The interference pattern generated when the optical path length difference is set to each target value is imaged by the imaging unit, and the surface shape of the object to be measured is measured based on the captured interference pattern. In these apparatuses, a moving stage is attached to a reflecting mirror (or an object to be measured) in order to sequentially set the optical path length difference to each target value.
Toyohiko Yamauchi et al., “Surface Topography of Cellular Membrane on Nanometer Scale UsingWhite-Light Quantitative Phase Microscope”, DigitalHolography and Three-Dimensional Imaging (DH) 2008, OpticalSociety of America, Presentation Number: BMD59 (2008) JP 2007-333469 A

上記の非特許文献1や特許文献1に開示された干渉測定装置では、光路長差を各目標値に順次に設定するために移動ステージといった機械的な駆動手段を使用している。しかし、このような機械的駆動手段はその動作に時間を要するので、干渉測定に必要な時間の多くを駆動手段の動作時間が占めることとなる。また、機械的な動作の影響が干渉パターンに表れてしまう、いわゆるモーションアーチファクトが発生するおそれもある。   In the interference measurement apparatus disclosed in Non-Patent Document 1 and Patent Document 1 described above, mechanical drive means such as a moving stage is used to sequentially set the optical path length difference to each target value. However, since such a mechanical drive means requires time for its operation, much of the time required for interference measurement occupies the operation time of the drive means. In addition, there is a possibility that a so-called motion artifact is generated in which the influence of the mechanical operation appears in the interference pattern.

本発明は、上記問題点を解消する為になされたものであり、機械的な動作を低減することによって測定に要する時間を短縮し、且つモーションアーチファクトを抑制できる干渉測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an interference measuring apparatus capable of reducing the time required for measurement by reducing mechanical operation and suppressing motion artifacts. And

上記した課題を解決するために、本発明による干渉測定装置は、互いに波長が異なる複数の波長成分を含む光を出力する光源と光源から出力された光を分岐して第1分岐光および第2分岐光を出力し、第1分岐光が被測定物により反射されて生じる第1反射光を入力するとともに、第2分岐光が反射ミラーにより反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、第1分岐光の光路上に設けられて被測定物内に焦点を結ぶ第1レンズと、第2分岐光の光路上に設けられて反射ミラー上に焦点を結ぶ第2レンズと、干渉光学系から出力される干渉光を結像する結像光学系と、複数の波長成分に感度を有し、結像光学系により結像された干渉光の干渉パターンを撮像する撮像部とを備え、第1レンズの軸上色収差が第2レンズの軸上色収差より大きく、第1レンズによる複数の波長成分それぞれの焦点位置が第1レンズの軸上色収差に起因して第1分岐光の光軸方向に並んでおり、各波長成分の焦点位置における干渉パターンを撮像部において撮像することを特徴とする。   In order to solve the above-described problem, an interference measurement apparatus according to the present invention branches a light source that outputs light including a plurality of wavelength components having different wavelengths from each other, and light that is output from the light source, thereby dividing the first branched light and second light. The branched light is output, and the first reflected light that is generated when the first branched light is reflected by the object to be measured is input, and the second reflected light that is generated when the second branched light is reflected by the reflecting mirror is input. An interference optical system for causing the first reflected light and the second reflected light to interfere with each other and outputting the interference light, a first lens provided on the optical path of the first branched light and focused on the object to be measured; A second lens that is provided on the optical path of the bifurcated light and focuses on the reflection mirror, an imaging optical system that forms the interference light output from the interference optical system, and sensitivity to a plurality of wavelength components Imaging the interference pattern of the interference light imaged by the imaging optical system An axial chromatic aberration of the first lens is larger than the axial chromatic aberration of the second lens, and the focal position of each of the plurality of wavelength components by the first lens is caused by the axial chromatic aberration of the first lens. It is arranged in the optical axis direction of the branched light, and the interference pattern at the focal position of each wavelength component is imaged by the imaging unit.

この干渉測定装置では第1レンズが有意の大きさの軸上色収差を有しており、光源が複数の波長成分を含む光を出力することで、第1レンズによる各波長成分の焦点位置が第1分岐光の光軸方向に並ぶ。したがって、撮像部において各波長成分の焦点位置における干渉パターンを撮像することにより、光軸方向位置すなわち被測定物における高さ位置が異なる複数の干渉パターンを好適に得ることができる。このように、上記した干渉測定装置によれば、被測定物や反射ミラーを機械的に移動させることなく複数の高さ位置での干渉パターンを得ることができるので、測定時間を短縮し、且つモーションアーチファクトを抑制できる。   In this interference measuring device, the first lens has a significant axial chromatic aberration, and the light source outputs light including a plurality of wavelength components, so that the focal position of each wavelength component by the first lens is the first. Lined up in the direction of the optical axis of one branch light. Therefore, by imaging the interference pattern at the focal position of each wavelength component in the imaging unit, it is possible to suitably obtain a plurality of interference patterns having different positions in the optical axis direction, that is, the height position in the measured object. Thus, according to the above-described interference measuring apparatus, it is possible to obtain interference patterns at a plurality of height positions without mechanically moving the object to be measured and the reflection mirror, thereby reducing the measurement time, and Motion artifacts can be suppressed.

また、干渉測定装置は、第1分岐光、第1反射光、第2分岐光、及び第2反射光のうち少なくとも一つの光路上に設けられた分散媒質からなる光学部材を更に備えることを特徴としてもよい。このような光学部材を通過する光の光路長はその波長に応じて変化するので、光学部材において各波長成分の光路長が調整されることにより、各波長成分の焦点位置それぞれを等光路点(すなわち各波長成分の光路長が互いに等しくなる点)に好適に近づけることができる。   The interference measuring apparatus further includes an optical member made of a dispersion medium provided on at least one of the first branched light, the first reflected light, the second branched light, and the second reflected light. It is good. Since the optical path length of the light passing through such an optical member changes according to the wavelength, the optical path length of each wavelength component is adjusted in the optical member, so that the focal position of each wavelength component is set to an equal optical path point ( In other words, the optical path lengths of the respective wavelength components can be suitably approximated to each other.

また、干渉測定装置は、第1レンズによる各波長成分の焦点位置のうち、第1レンズに最も近い焦点位置と最も離れた焦点位置との距離が5μm以上であることを特徴としてもよい。このように焦点位置の変化幅を比較的長くとることによって、例えば生物細胞といった厚さ5〜10μm程度の被測定物の形状を好適に測定することができる。   The interference measuring apparatus may be characterized in that, of the focal positions of the respective wavelength components by the first lens, the distance between the focal position closest to the first lens and the farthest focal position is 5 μm or more. Thus, by taking the change width of the focal position relatively long, it is possible to suitably measure the shape of an object to be measured such as a biological cell having a thickness of about 5 to 10 μm.

本発明による干渉測定装置によれば、機械的な動作を低減することによって測定に要する時間を短縮し、且つモーションアーチファクトを抑制できる。   According to the interference measuring apparatus of the present invention, it is possible to reduce the time required for measurement by reducing mechanical operation and to suppress motion artifacts.

以下、添付図面を参照しながら本発明による干渉測定装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of an interference measuring apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る干渉測定装置1の構成図である。この図に示される干渉測定装置1は、被測定物9の表面形状を測定するものであって、光源11、第1レンズ21、第2レンズ22、ハーフミラー31、光学部材41,42、撮像部51、解析部52、容器61、ピエゾアクチュエータ71,72および反射ミラー73を備えている。   FIG. 1 is a configuration diagram of an interference measuring apparatus 1 according to the present embodiment. The interference measuring apparatus 1 shown in this figure measures the surface shape of the object 9 to be measured, and includes a light source 11, a first lens 21, a second lens 22, a half mirror 31, optical members 41 and 42, and imaging. A unit 51, an analysis unit 52, a container 61, piezoelectric actuators 71 and 72, and a reflection mirror 73 are provided.

光源11は、コヒーレント長が比較的短い光Pを出力するものであり、光Pは、赤色成分λ(波長590〜720nm)、緑色成分λ(波長480nm〜600nm)、および青色成分λ(400nm〜540nm)といった互いに波長が異なる複数の波長成分を含む光である。光源11は、レンズ23およびアパーチャ24を介してハーフミラー31と光学的に結合されており、光Pはハーフミラー31へ向けて出射される。 The light source 11 outputs light P having a relatively short coherence length. The light P includes a red component λ R (wavelength 590 to 720 nm), a green component λ G (wavelength 480 nm to 600 nm), and a blue component λ B. The light includes a plurality of wavelength components having different wavelengths such as (400 nm to 540 nm). The light source 11 is optically coupled to the half mirror 31 via the lens 23 and the aperture 24, and the light P is emitted toward the half mirror 31.

ハーフミラー31は、光源11から到達した光Pを2分岐して第1分岐光Pおよび第2分岐光Pを生成する。ハーフミラー31の一方の面は光学部材41を介して第1レンズ21と光学的に結合されており、当該面から出射される第1分岐光Pは光学部材41を通って第1レンズ21に達する。また、ハーフミラー31の他方の面は光学部材42およびミラー43を介して第2レンズ22と光学的に結合されており、当該面から出射される第2分岐光Pは光学部材42を通って第2レンズ22に達する。光学部材41,42は、波長によって屈折率が異なる分散媒質からなる板状の部材であり、光学部材41,42を通過する光の光学部材41,42内部での光路長は、その波長に応じて決まる。光学部材41,42に使用される分散媒質としては、長波長ほど屈折率が低くなる正常分散媒質、および長波長ほど屈折率が高くなる異常分散媒質の何れを使用してもよい。 The half mirror 31 bifurcates the light P that has arrived from the light source 11 to generate the first branched light P 1 and the second branched light P 2 . One surface of the half mirror 31 is optically coupled to the first lens 21 via the optical member 41, and the first branched light P 1 emitted from the surface passes through the optical member 41 and the first lens 21. To reach. The other surface of the half mirror 31 is optically coupled to the second lens 22 via the optical member 42 and the mirror 43, and the second branched light P 2 emitted from the surface passes through the optical member 42. And reaches the second lens 22. The optical members 41 and 42 are plate-like members made of a dispersion medium having a refractive index different depending on the wavelength, and the optical path length of the light passing through the optical members 41 and 42 inside the optical members 41 and 42 depends on the wavelength. Determined. As the dispersion medium used for the optical members 41 and 42, any of a normal dispersion medium whose refractive index decreases as the wavelength increases and an anomalous dispersion medium whose refractive index increases as the wavelength increases may be used.

第1レンズ21は、第1分岐光Pの光路上に設けられて被測定物9の内部に焦点を結ぶ。第2レンズ22は、第2分岐光Pの光路上に設けられて反射ミラー73上に焦点を結ぶ。第1レンズ21としては、その軸上色収差が一般的な対物レンズの軸上色収差より大きいものが使用され、第2レンズ22としては、一般的な対物レンズと同様に軸上色収差が補正されたものが使用される。すなわち、第1レンズ21の軸上色収差は、第2レンズ22の軸上色収差より大きい。なお、第1レンズ21の色収差特性は、長波長ほど焦点距離が短いもの、または長波長ほど焦点距離が長いもののうち何れであってもよい。 The first lens 21 is provided on the optical path of the first branched light P 1 and focuses on the inside of the measurement object 9. The second lens 22 is provided on the optical path of the second branched light P 2 and focuses on the reflection mirror 73. The first lens 21 has an axial chromatic aberration larger than that of a general objective lens, and the second lens 22 has the axial chromatic aberration corrected in the same manner as a general objective lens. Things are used. That is, the axial chromatic aberration of the first lens 21 is larger than the axial chromatic aberration of the second lens 22. Note that the chromatic aberration characteristic of the first lens 21 may be any of a longer wavelength and a shorter focal length, or a longer wavelength and a longer focal length.

また、ハーフミラー31は、第1分岐光Pが被測定物9により反射されて生じる第1反射光Rを再び第1レンズ21及び光学部材41を経て入力するとともに、第2分岐光Pが反射ミラー73により反射されて生じる第2反射光Rを再び第2レンズ22及び光学部材42を経て入力する。ハーフミラー31は、これら第1反射光Rと第2反射光Rとを干渉させて干渉光RIを生成する。ハーフミラー31は、レンズ25を介して撮像部51の撮像面と光学的に結合されており、この干渉光RIをレンズ25へ出力する。すなわち、ハーフミラー31は、干渉光学系を構成する要素である。 Further, the half mirror 31 inputs the first reflected light R 1 generated by the first branched light P 1 being reflected by the object 9 to be measured again through the first lens 21 and the optical member 41, and the second branched light P 1. The second reflected light R 2 generated by the reflection of 2 by the reflecting mirror 73 is input again through the second lens 22 and the optical member 42. Half mirror 31, to generate an interference light RI by interfering these first reflected light R 1 and the second reflected light R 2. The half mirror 31 is optically coupled to the imaging surface of the imaging unit 51 via the lens 25, and outputs the interference light RI to the lens 25. That is, the half mirror 31 is an element constituting an interference optical system.

レンズ25は、ハーフミラー31から出力された干渉光RIを撮像部51の撮像面上に結像する結像光学系を構成する要素である。撮像部51は、その結像された干渉光RIの干渉パターンを撮像するものであり、例えばRGBカメラである。撮像部51は、光源11から出力される光Pに含まれる複数の波長成分λ、λおよびλの全てに対して十分な感度を有するとともに、各波長成分λ、λおよびλ毎に干渉パターンを撮像可能なように構成されている。 The lens 25 is an element constituting an imaging optical system that forms an image of the interference light RI output from the half mirror 31 on the imaging surface of the imaging unit 51. The imaging unit 51 captures an interference pattern of the formed interference light RI, and is, for example, an RGB camera. The imaging unit 51 has sufficient sensitivity with respect to all of the plurality of wavelength components λ R , λ G, and λ B included in the light P output from the light source 11, and each wavelength component λ R , λ G, and λ An interference pattern can be imaged for each B.

容器61は、第1レンズ21に対向して配置され、被測定物9を収容する。容器61はピエゾアクチュエータ71に支持されており、ピエゾアクチュエータ71が駆動されることによって第1分岐光Pの光軸方向に変位することができる。また、反射ミラー73はピエゾアクチュエータ72に支持されており、ピエゾアクチュエータ72が駆動されることによって第2分岐光Pの光軸方向に変位することができる。 The container 61 is disposed to face the first lens 21 and accommodates the object 9 to be measured. Container 61 is supported on the piezoelectric actuator 71 may be piezoelectric actuators 71 is displaced in a first direction of the optical axis of the branched light P 1 by being driven. The reflection mirror 73 is supported on the piezoelectric actuator 72 can be a piezoelectric actuator 72 is displaced to the second optical axis direction of the branched optical P 2 by being driven.

ここで、ハーフミラー31から反射ミラー73により反射されて再びハーフミラー31に到るまでの光路長と、ハーフミラー31から被測定物9により反射されて再びハーフミラー31に到るまでの光路長との光路長差をΔLとする。前述したように、光源11から出力される光Pのコヒーレント長は比較的短いので、図2に示されるように、撮像部51に到達する干渉光RIの強度は、比較的狭い光路長差ΔLの範囲において周期的に変化し、しかも、光路長差ΔLがゼロに近いほど干渉の振幅は大きい。このことを利用して、解析部52は、光路長差が或る目標値に設定されたときに撮像部51により撮像された干渉光RIの干渉パターン像を取得し、その干渉パターン像に基づいて、像の各位置において干渉の振幅が最大となる光路長差を求め、これにより被測定物9の表面形状(高さ分布)を求める。なお、被測定物9の一例としては、細胞等が挙げられる。   Here, the optical path length from the half mirror 31 reflected by the reflecting mirror 73 to the half mirror 31 again, and the optical path length reflected from the half mirror 31 by the measured object 9 to the half mirror 31 again. The optical path length difference between and is ΔL. As described above, since the coherent length of the light P output from the light source 11 is relatively short, the intensity of the interference light RI reaching the imaging unit 51 is relatively narrow as shown in FIG. In addition, the amplitude of interference increases as the optical path length difference ΔL is closer to zero. Using this, the analysis unit 52 acquires an interference pattern image of the interference light RI captured by the imaging unit 51 when the optical path length difference is set to a certain target value, and based on the interference pattern image. Thus, the optical path length difference that maximizes the amplitude of interference at each position of the image is obtained, and thereby the surface shape (height distribution) of the object 9 to be measured is obtained. An example of the object to be measured 9 is a cell.

ここで、図3は、被測定物9の付近における干渉測定装置1の構成を拡大して示す図である。前述したように、第1レンズ21の軸上色収差は一般的な対物レンズの軸上色収差より大きく、且つ第2レンズ22の軸上色収差より大きい。したがって、第1レンズ21による複数の波長成分λ、λおよびλそれぞれの焦点位置F、FおよびFは、第1レンズ21の軸上色収差に起因して、第1分岐光Pの光軸方向すなわち被測定物9の高さ方向に並ぶこととなる。図3では、第1レンズ21の焦点距離が長波長ほど長くなる場合を例示しており、焦点位置Fが第1レンズ21に最も近くなっており、焦点位置Fが第1レンズ21に最も遠くなっている。 Here, FIG. 3 is an enlarged view showing the configuration of the interference measuring apparatus 1 in the vicinity of the DUT 9. As described above, the axial chromatic aberration of the first lens 21 is larger than the axial chromatic aberration of a general objective lens and larger than the axial chromatic aberration of the second lens 22. Accordingly, the focal positions F R , F G, and F B of the plurality of wavelength components λ R , λ G, and λ B by the first lens 21 are caused by the longitudinal chromatic aberration of the first lens 21 and thus the first branched light. It will be arranged in the optical axis direction of P 1 , that is, in the height direction of the DUT 9. In Figure 3 exemplifies the case where the focal length of the first lens 21 becomes longer longer wavelength, the focal position F B has become closest to the first lens 21, the focal position F R to the first lens 21 The farthest.

そして、ハーフミラー31から焦点位置Fを経て再びハーフミラー31に到る波長成分λの光路長と、ハーフミラー31から反射ミラー73により反射されて再びハーフミラー31に到るまでの波長成分λの光路長との差、すなわち波長成分λに関する光路長差ΔLがゼロに近づくと、波長成分λにおける干渉の振幅が大きくなる。したがって、撮像部51は、干渉光RIに含まれる波長成分λを撮像することで、焦点位置Fに相当する光軸方向位置での干渉パターンを撮像することができる。同様に、撮像部51は、干渉光RIに含まれる波長成分λ,λをそれぞれ撮像することで、焦点位置F,Fに相当する光軸方向位置での干渉パターンを撮像することができる。すなわち、撮像部51は、各波長成分λ,λ,λ毎に異なる光軸方向位置(すなわち被測定物9の高さ位置)における干渉パターンを撮像することができる。 Then, the wavelength component from the half mirror 31 and the optical path length of the wavelength component lambda R leading to the half mirror 31 again passes through the focal position F R, up to the half mirror 31 again and is reflected by the reflecting mirror 73 from the half mirror 31 the difference between the optical path length of the lambda R, that is, the optical path length difference [Delta] L R a wavelength component lambda R approaches zero, the amplitude of the interference at the wavelength component lambda R increases. Accordingly, the imaging unit 51, by imaging the wavelength component lambda R contained in the interference light RI, can be imaged interference pattern at the optical axis direction position corresponding to the focal position F R. Similarly, the imaging unit 51 captures the interference pattern at the position in the optical axis direction corresponding to the focal positions F G and F B by capturing the wavelength components λ G and λ B included in the interference light RI, respectively. Can do. That is, the imaging unit 51 can capture an interference pattern at a position in the optical axis direction that is different for each wavelength component λ R , λ G , and λ B (that is, the height position of the DUT 9).

なお、波長成分λ,λおよびλによる干渉パターンの一例を、図4に示す。図4(a)は波長成分λによる干渉パターンを示しており、被測定物9の頂部付近の表面形状を示している。また、図4(b)は波長成分λによる干渉パターンを示しており、被測定物9の中腹付近の表面形状を示している。図4(c)は波長成分λによる干渉パターンを示しており、被測定物9の裾部付近の表面形状を示している。なお、図4(a)〜(c)において、縦軸および横軸の単位はピクセル(pixel)である。 An example of an interference pattern due to the wavelength components λ R , λ G and λ B is shown in FIG. FIG. 4A shows an interference pattern due to the wavelength component λ B and shows the surface shape near the top of the DUT 9. FIG. 4 (b) shows the interference pattern by the wavelength component lambda G, it shows a surface shape in the vicinity of the middle of the object 9. FIG. 4 (c) shows an interference pattern by the wavelength component lambda R, shows the surface shape in the vicinity of the skirt portion of the object 9. 4A to 4C, the unit of the vertical axis and the horizontal axis is a pixel.

ここで、上記構成では焦点位置F、FおよびFが互いに異なるので、反射ミラー73を移動させることなく光路長差ΔL,ΔL,ΔLをゼロに近づけるために、本実施形態では、第1分岐光Pおよび第1反射光Rの光路上に分散媒質からなる光学部材41を設け、第2分岐光Pおよび第2反射光Rの光路上に分散媒質からなる光学部材42を設けている。これにより、光学部材41,42を通過する際の光路長を各波長成分λ,λおよびλで異ならせることができるので、光路長差ΔL,ΔL,ΔLが同時にゼロとなるように、すなわち焦点位置F、FおよびFが互いに等光路点となるように各成分の光路長を調整できる。なお、第1レンズ21の焦点距離が長波長ほど長くなる場合には、光学部材41として長波長ほど屈折率が低くなる正常分散媒質を使用し、光学部材42として長波長ほど屈折率が高くなる異常分散媒質を使用することが好ましい。逆に、第1レンズ21の焦点距離が長波長ほど短くなる場合には、光学部材41として異常分散媒質を使用し、光学部材42として正常分散媒質を使用することが好ましい。 Here, since the focal positions F R , F G, and F B are different from each other in the above configuration, the present embodiment is used to bring the optical path length differences ΔL R , ΔL G , ΔL B close to zero without moving the reflecting mirror 73. Then, an optical member 41 made of a dispersion medium is provided on the optical paths of the first branched light P 1 and the first reflected light R 1 , and made of a dispersion medium on the optical paths of the second branched light P 2 and the second reflected light R 2. An optical member 42 is provided. This makes it possible to vary at each wavelength component of the optical path length lambda R, lambda G and lambda B when passing through the optical members 41 and 42, the optical path length difference [Delta] L R, [Delta] L G, is [Delta] L B and simultaneously zero In other words, the optical path lengths of the respective components can be adjusted so that the focal positions F R , F G and F B are mutually equal optical path points. When the focal length of the first lens 21 is longer as the wavelength is longer, a normal dispersion medium whose refractive index is lower as the wavelength is longer is used as the optical member 41, and the refractive index is higher as the wavelength is longer as the optical member 42. It is preferable to use an anomalous dispersion medium. Conversely, when the focal length of the first lens 21 becomes shorter as the wavelength increases, it is preferable to use an anomalous dispersion medium as the optical member 41 and a normal dispersion medium as the optical member 42.

また、被測定物9の表面形状が波長未満の微小な凹凸を持つ場合には、干渉の振幅が最大となる光路長差付近において、波長成分λ,λ,λそれぞれの中心波長をλR0,λG0,λB0とおいて、それぞれλR0/4,λG0/4,λB0/4ずつ光路長差を4回シフトさせると共に干渉パターン像を取得するとよい。そして、各波長成分毎に4つの干渉パターン像に基づいて、像の各位置において干渉波形の位相オフセット値を求めることにより被測定物9の詳細な表面形状(高さ分布)を求め、各波長成分による表面形状を合成することにより、広い高さ範囲での表面形状を、波長未満の精度で得ることができる。このようなλR0/4,λG0/4,λB0/4ずつの光路長差のシフトは、ピエゾアクチュエータ72を駆動することにより反射ミラー73を第2分岐光Pの光軸方向に微小動作させることで容易に実現できる。なお、本実施形態では、ピエゾアクチュエータ71は測定開始時の光学調整のみに使用され、測定中は動作しない。 Further, when the surface shape of the object to be measured 9 has minute irregularities less than the wavelength, the center wavelengths of the wavelength components λ R , λ G , and λ B are set in the vicinity of the optical path length difference at which the interference amplitude becomes maximum. For λ R0 , λ G0 , and λ B0 , the optical path length difference is shifted four times by λ R0 / 4, λ G0 / 4, and λ B0 / 4, respectively, and an interference pattern image is acquired. Then, based on the four interference pattern images for each wavelength component, the detailed surface shape (height distribution) of the DUT 9 is obtained by obtaining the phase offset value of the interference waveform at each position of the image, and each wavelength. By synthesizing the surface shape of the components, the surface shape in a wide height range can be obtained with an accuracy less than the wavelength. Such a shift of the optical path length difference of λ R0 / 4, λ G0 / 4, and λ B0 / 4 causes the reflection mirror 73 to move slightly in the optical axis direction of the second branched light P 2 by driving the piezo actuator 72. It can be easily realized by operating. In this embodiment, the piezo actuator 71 is used only for optical adjustment at the start of measurement, and does not operate during measurement.

また、本実施形態において、焦点位置F、FおよびFのうち第1レンズ21に最も近い焦点位置(図3ではF)と、最も離れた焦点位置(図3ではF)との差は5μm以上であることが望ましい。このように焦点位置の変化幅を比較的長くとることによって、例えば生物細胞といった厚さ5〜10μm程度の被測定物の形状を好適に測定することができる。一般的な対物レンズの軸上色収差は赤色光と青色光とを比べても±1μm程度に抑えられているので、このように大きな軸上色収差を有するレンズとしては、例えば単色レーザ用のレンズ等が好適に用いられる。 In the present embodiment, among the focal positions F R , F G and F B , the focal position closest to the first lens 21 (F B in FIG. 3) and the farthest focal position (F R in FIG. 3) The difference is desirably 5 μm or more. Thus, by taking the change width of the focal position relatively long, it is possible to suitably measure the shape of an object to be measured such as a biological cell having a thickness of about 5 to 10 μm. Since the axial chromatic aberration of a general objective lens is suppressed to about ± 1 μm even when comparing red light and blue light, as a lens having such a large axial chromatic aberration, for example, a lens for a monochromatic laser, etc. Are preferably used.

以上の説明においては光Pが3つの波長成分λ,λ,λを含む場合について説明したが、光Pが一定の波長帯域にわたって略平坦なスペクトルを有する場合であっても、撮像部51が複数の波長成分のそれぞれを個別に撮像することで、同様の作用を得ることができる。いま、撮像部51のスペクトルチャネル数(すなわち、光Pに含まれる波長成分の数)をN(Nは2以上の整数)とし、各チャネルの中心波長をλ,λ…λとおく。そして、図5に示すように、各チャネルの中心波長同士の間隔をλとし、各チャネルの受光スペクトル帯域幅をΔλとおく。このとき、各チャネルにおいて検出される各波長成分のコヒーレンス長Δlは、次式(1)によって表される。

例えばλ=500nm、Δλ=60nm、n(屈折率)=1.33(水中)を代入すると、この値はΔl=3.1μmとなる。
In the above description, the case where the light P includes three wavelength components λ R , λ G , and λ B has been described. However, even if the light P has a substantially flat spectrum over a certain wavelength band, the imaging unit The same action can be obtained by 51 individually imaging each of the plurality of wavelength components. Now, the number of spectral channels of the imaging unit 51 (that is, the number of wavelength components included in the light P) is N (N is an integer equal to or greater than 2), and the center wavelengths of the channels are λ 1 , λ 2 ... Λ N. . Then, as shown in FIG. 5, the interval between the center wavelengths of the channels is λ d, and the received spectrum bandwidth of each channel is Δλ. At this time, the coherence length Δl of each wavelength component detected in each channel is expressed by the following equation (1).

For example, if λ = 500 nm, Δλ = 60 nm, and n (refractive index) = 1.33 (underwater) are substituted, this value is Δl = 3.1 μm.

ここで、光の波長がλ長くなる毎に焦点距離がおおよそΔlずつ長くなるように第1レンズ21の軸上色収差を設定する。このとき、撮像部51の各チャネルに入射する光は、それぞれ異なる焦点位置からの反射光を反映したものとなる。さらに、光学部材41及び42の屈折率特性を、波長がλ長くなる毎におおよそn×Δlずつ光路長差が短くなるように調整する。これにより、物体光路(第1分岐光Pおよび第1反射光Rが通過する光路)の光路長と、参照光路(第2分岐光Pおよび第2反射光Rが通過する光路)の光路長とが互いに等しくなる等光路点は、波長がλ長くなる毎に、第1レンズ21からΔlずつ遠方にシフトする。 Here, to set the axial chromatic aberration of the first lens 21 as the focal length for each wavelength of light lambda d becomes longer becomes roughly by Δl long. At this time, the light incident on each channel of the imaging unit 51 reflects the reflected light from different focal positions. Further, the refractive index profile of the optical member 41 and 42, the optical path length difference approximately by n × .DELTA.l whenever the wavelength lambda d becomes longer be adjusted to be shorter. Thereby, the optical path length of the object optical path (the optical path through which the first branched light P 1 and the first reflected light R 1 pass) and the reference optical path (the optical path through which the second branched light P 2 and the second reflected light R 2 pass) equal optical path points and the optical path length are equal to each other in, every time the wavelength lambda d becomes longer, shifted to far from the first lens 21 by .DELTA.l.

図6に示すグラフは、光学ガラスとして一般的なBK7の屈折率特性を示している。いま、第1分岐光Pおよび第1反射光Rの光路上に設けられた光学部材41のみを用いて光路長差を調整することを考える。この光学部材41にBK7を用いた場合、BK7の色分散は波長550nm付近で5×10−5/nmである(図6参照)。例えばλ=100nmとした場合、隣接する波長間で5×10−3の屈折率差が生じる。この屈折率差によって生じる光学部材41内での光路長差がn×Δlに等しくなればよいので、光学部材41に必要な厚さDは、
D=n×Δl/(CD×λ)=825[μm]
となる。なお、現実には、第1レンズ21、光学部材41、第2レンズ22の三箇所において光路長の波長依存性が生ずるので、その全てで発生する光路長の波長依存性が次の条件
n×Δl=(CD×λ)×D+ΔODobj1−ΔODobj2(ただし、ΔODobj1およびΔODobj2は第1レンズ21および第2レンズ22のそれぞれで発生する光路長の波長依存性)
を満たすように、光学部材41の厚さを調整する必要がある。
The graph shown in FIG. 6 shows the refractive index characteristics of BK7, which is common as optical glass. Now, consider that the optical path length difference is adjusted using only the optical member 41 provided on the optical paths of the first branched light P 1 and the first reflected light R 1 . When BK7 is used for the optical member 41, the chromatic dispersion of BK7 is 5 × 10 −5 / nm near the wavelength of 550 nm (see FIG. 6). For example, when λ d = 100 nm, a refractive index difference of 5 × 10 −3 occurs between adjacent wavelengths. Since the optical path length difference in the optical member 41 caused by this difference in refractive index should be equal to n × Δl, the thickness D required for the optical member 41 is
D = n × Δl / (CD × λ d ) = 825 [μm]
It becomes. In reality, since the wavelength dependence of the optical path length occurs at the three locations of the first lens 21, the optical member 41, and the second lens 22, the wavelength dependence of the optical path length generated in all of them is the following condition nx. Δl = (CD × λ d ) × D + ΔOD obj1 −ΔOD obj2 (where ΔOD obj1 and ΔOD obj2 are the wavelength dependences of the optical path lengths generated in the first lens 21 and the second lens 22, respectively)
It is necessary to adjust the thickness of the optical member 41 so as to satisfy the above.

図7は、各チャネルの干渉信号と第1分岐光Pの光軸方向位置との関係を示す図である。上記した条件を満たすことにより、図7に示されるように、各チャネルの干渉信号を第1分岐光Pの光軸方向に広範囲にわたって連続して得ることができる。 Figure 7 is a diagram showing the relationship between the interference signal and the optical axis direction position of the first branched light P 1 of each channel. By satisfying the above conditions, as shown in FIG. 7, interference signals of the respective channels can be continuously obtained over a wide range in the optical axis direction of the first branched light P 1 .

そして、このような条件下で、ピエゾアクチュエータ72によって反射ミラー73を光軸方向に変位させることにより、各チャネル毎に例えば波長の1/4ずつの位相シフトを行いながら4枚の干渉像を撮像すれば、各チャネルの干渉像は各焦点位置での細胞形状を反映した位相像となる。図8(a)〜(h)は、一例としてN=8の場合における干渉像を示す画像であり、互いにΔlずつシフトした光軸方向位置における干渉像を示している。そして、これらの干渉像を、チャネル1からチャネルNにわたって合成すると、被測定物9全体の表面(界面)形状の全焦点画像が得られる(図9参照)。なお、このときの被測定深度はN×Δlである。例えば前述Δl=3.1μmの条件でN=3とした場合、被測定深度は9μm程度となり、厚さ5〜10μmの細胞の殆どを測定することが可能となる。   Under such conditions, the reflection mirror 73 is displaced in the direction of the optical axis by the piezo actuator 72, so that four interference images are picked up while performing a phase shift of, for example, 1/4 wavelength for each channel. Then, the interference image of each channel becomes a phase image reflecting the cell shape at each focal position. FIGS. 8A to 8H are images showing interference images when N = 8 as an example, and show interference images at positions in the optical axis direction shifted by Δl. Then, when these interference images are synthesized from channel 1 to channel N, an omnifocal image of the surface (interface) shape of the entire object to be measured 9 is obtained (see FIG. 9). The depth to be measured at this time is N × Δl. For example, when N = 3 under the condition of Δl = 3.1 μm, the depth to be measured is about 9 μm, and most of cells having a thickness of 5 to 10 μm can be measured.

以上説明したように、本実施形態による干渉測定装置1では、一般的な対物レンズとは顕著に異なる有意の大きさの軸上色収差を第1レンズ21が有するので、光源11が複数の波長成分(例えばλ,λ,λ)を含む光Pを出力することにより、第1レンズ21による各波長成分の焦点位置(F,F,F)が第1分岐光Pの光軸方向に並ぶ。したがって、撮像部51において各波長成分λ,λ,λの焦点位置F,F,Fにおける干渉パターンを撮像することにより、光軸方向位置すなわち被測定物9における高さ位置が異なる複数の干渉パターンを好適に得ることができる。このように、干渉測定装置1によれば、被測定物9や反射ミラー73を移動ステージ等を用いて機械的に移動させることなく複数の高さ位置(深さ位置)での干渉パターンを得ることができるので、機械的な動作を低減して測定時間を短縮し、且つモーションアーチファクトを抑制できる。 As described above, in the interference measuring apparatus 1 according to the present embodiment, since the first lens 21 has a significant magnitude of axial chromatic aberration that is significantly different from that of a general objective lens, the light source 11 has a plurality of wavelength components. By outputting the light P including (for example, λ R , λ G , λ B ), the focal position (F R , F G , F B ) of each wavelength component by the first lens 21 is the first branched light P 1 . Lined up in the direction of the optical axis. Therefore, the wavelength components lambda R in the imaging unit 51, lambda G, lambda focal position F R of B, F G, by imaging the interference pattern in the F B, the height position in the optical axis direction position or the object to be measured 9 A plurality of interference patterns having different values can be suitably obtained. As described above, according to the interference measuring apparatus 1, interference patterns at a plurality of height positions (depth positions) are obtained without mechanically moving the DUT 9 or the reflection mirror 73 using a moving stage or the like. Therefore, the mechanical operation can be reduced, the measurement time can be shortened, and the motion artifact can be suppressed.

また、本実施形態のように、第1分岐光Pおよび第1反射光Rの光路上、並びに第2分岐光Pおよび第2反射光Rの光路上には、分散媒質からなる光学部材41,42を設けることが好ましい。これらの光学部材41,42を通過する光の光路長はその波長に応じて変化するので、この光学部材41,42において各波長成分の光路長が調整されることにより、各波長成分の焦点位置F,F,Fそれぞれを等光路点(すなわち各波長成分λ,λ,λの光路長が互いに等しくなる点)に好適に近づけることができる。なお、本実施形態では第1分岐光Pおよび第1反射光Rの光路上、ならびに第2分岐光Pおよび第2反射光Rの光路上の双方に光学部材を配置しているが、いずれか一方の光路上にのみ光学部材を配置してもよい。また、光学部材41は、第1分岐光Pおよび第1反射光Rの光路が互いに一致していない場合には、少なくともいずれか一方の光路上に設けられるとよい。光学部材42に関しても、第2分岐光Pおよび第2反射光Rの光路が互いに一致していない場合には、少なくともいずれか一方の光路上に設けられるとよい。 Further, as in the present embodiment, a dispersion medium is formed on the optical paths of the first branched light P 1 and the first reflected light R 1 and on the optical paths of the second branched light P 2 and the second reflected light R 2. Optical members 41 and 42 are preferably provided. Since the optical path length of the light passing through these optical members 41 and 42 changes according to the wavelength, the focal position of each wavelength component is adjusted by adjusting the optical path length of each wavelength component in this optical member 41 and 42. Each of F R , F G , and F B can be suitably brought close to an equal optical path point (that is, a point where the optical path lengths of the wavelength components λ R , λ G , and λ B are equal to each other). In the present embodiment, optical members are disposed both on the optical paths of the first branched light P 1 and the first reflected light R 1 and on the optical paths of the second branched light P 2 and the second reflected light R 2 . However, the optical member may be disposed only on one of the optical paths. Further, the optical member 41 may be provided on at least one of the optical paths when the optical paths of the first branched light P 1 and the first reflected light R 1 do not coincide with each other. Also with respect to the optical member 42, when the optical path of the second branch light P 2 and the second reflected light R 2 do not coincide with each other, it may be provided on at least one of the optical path.

本発明による干渉測定装置は、上記した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では各波長成分の光路長を整合させるために分散媒質からなる光学部材を設けたが、第1レンズや第2レンズ自体も波長分散を有することができるので、第1レンズや第2レンズの分散特性を利用して各波長成分の光路長を整合させてもよい。したがって、光学部材を設けるか否かは任意となる。   The interference measuring apparatus according to the present invention is not limited to the above-described embodiment, and various other modifications are possible. For example, in the above embodiment, an optical member made of a dispersion medium is provided to match the optical path length of each wavelength component. However, since the first lens and the second lens themselves can also have wavelength dispersion, The optical path length of each wavelength component may be matched using the dispersion characteristic of the second lens. Therefore, whether or not to provide an optical member is arbitrary.

本実施形態に係る干渉測定装置1の構成図である。It is a lineblock diagram of interference measuring device 1 concerning this embodiment. 撮像部51に到達する干渉光RIの強度と光路長差ΔLとの関係を示す図である。It is a figure which shows the relationship between the intensity | strength of the interference light RI which reaches | attains the imaging part 51, and optical path length difference (DELTA) L. 被測定物9の付近における干渉測定装置1の構成を拡大して示す図である。It is a figure which expands and shows the structure of the interference measuring device 1 in the vicinity of the to-be-measured object 9. FIG. (a)波長成分λによる干渉パターンを示しており、被測定物9の頂部付近の表面形状を示している。(b)波長成分λによる干渉パターンを示しており、被測定物9の中腹付近の表面形状を示している。(c)波長成分λによる干渉パターンを示しており、被測定物9の裾部付近の表面形状を示している。(A) shows an interference pattern by the wavelength component lambda B, it shows the surface shape of the vicinity of the apex of the object 9. (B) The interference pattern by wavelength component (lambda) G is shown, and the surface shape of the to-be-measured object 9 vicinity is shown. (C) The interference pattern by wavelength component (lambda) R is shown, and the surface shape of the to-be-measured object 9 vicinity is shown. 各チャネルの受光スペクトルを示す図である。It is a figure which shows the light reception spectrum of each channel. 光学ガラスとして一般的なBK7の屈折率特性を示すグラフである。It is a graph which shows the refractive index characteristic of BK7 common as optical glass. 各チャネルの干渉信号と光軸上の位置との関係を示す図である。It is a figure which shows the relationship between the interference signal of each channel, and the position on an optical axis. (a)〜(h)干渉像の一例を示す画像である。(A)-(h) It is an image which shows an example of an interference image. 被測定物9全体の表面(界面)形状の全焦点画像の一例である。It is an example of the omnifocal image of the surface (interface) shape of the whole to-be-measured object.

符号の説明Explanation of symbols

1…干渉測定装置、9…被測定物、11…光源、21…第1レンズ、22…第2レンズ、23,25…レンズ、24…アパーチャ、31…ハーフミラー、41,42…光学部材、51…撮像部、52…解析部、61…容器、71,72…ピエゾアクチュエータ、73…反射ミラー、F,F,F…焦点位置、P…第1分岐光、P…第2分岐光、R…第1反射光、R…第2反射光、RI…干渉光。 DESCRIPTION OF SYMBOLS 1 ... Interference measuring device, 9 ... Measured object, 11 ... Light source, 21 ... 1st lens, 22 ... 2nd lens, 23, 25 ... Lens, 24 ... Aperture, 31 ... Half mirror, 41, 42 ... Optical member, 51 ... imaging unit, 52 ... analyzer, 61 ... container, 71 ... piezoelectric actuator, 73 ... reflecting mirror, F R, F G, F B ... focal position, P 1 ... first branched light, P 2 ... first Bifurcated light, R 1 ... first reflected light, R 2 ... second reflected light, RI ... interference light.

Claims (3)

互いに波長が異なる複数の波長成分を含む光を出力する光源と、
前記光源から出力された光を分岐して第1分岐光および第2分岐光を出力し、前記第1分岐光が被測定物により反射されて生じる第1反射光を入力するとともに、前記第2分岐光が反射ミラーにより反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、
前記第1分岐光の光路上に設けられて前記被測定物内に焦点を結ぶ第1レンズと、
前記第2分岐光の光路上に設けられて前記反射ミラー上に焦点を結ぶ第2レンズと、
前記干渉光学系から出力される干渉光を結像する結像光学系と、
前記複数の波長成分に感度を有し、前記結像光学系により結像された干渉光の干渉パターンを撮像する撮像部と
を備え、
前記第1レンズの軸上色収差が前記第2レンズの軸上色収差より大きく、前記第1レンズによる前記複数の波長成分それぞれの焦点位置が前記第1レンズの軸上色収差に起因して前記第1分岐光の光軸方向に並んでおり、各波長成分の焦点位置における干渉パターンを前記撮像部において撮像することを特徴とする、干渉測定装置。
A light source that outputs light including a plurality of wavelength components having different wavelengths from each other;
The light output from the light source is branched to output first branched light and second branched light, and the first reflected light generated by reflecting the first branched light by the object to be measured is input, and the second An interference optical system that receives the second reflected light that is generated when the branched light is reflected by the reflecting mirror, causes the first reflected light and the second reflected light to interfere with each other, and outputs the interference light;
A first lens provided on the optical path of the first branched light to focus on the object to be measured;
A second lens provided on the optical path of the second branched light and focused on the reflecting mirror;
An imaging optical system for imaging the interference light output from the interference optical system;
An imaging unit having sensitivity to the plurality of wavelength components and imaging an interference pattern of interference light imaged by the imaging optical system;
The axial chromatic aberration of the first lens is larger than the axial chromatic aberration of the second lens, and the focal position of each of the plurality of wavelength components by the first lens is caused by the axial chromatic aberration of the first lens. An interference measurement apparatus, wherein the interference pattern is arranged in the optical axis direction of the branched light and the interference pattern at the focal position of each wavelength component is imaged by the imaging unit.
前記第1分岐光、前記第1反射光、前記第2分岐光、及び前記第2反射光のうち少なくとも一つの光路上に設けられた分散媒質からなる光学部材を更に備えることを特徴とする、請求項1に記載の干渉測定装置。   An optical member made of a dispersion medium provided on at least one of the first branched light, the first reflected light, the second branched light, and the second reflected light is further provided. The interference measurement apparatus according to claim 1. 前記第1レンズによる各波長成分の焦点位置のうち、前記第1レンズに最も近い焦点位置と最も離れた焦点位置との距離が5μm以上であることを特徴とする、請求項1または2に記載の干渉測定装置。   The distance between the focal position closest to the first lens and the focal position farthest among the focal positions of the respective wavelength components by the first lens is 5 μm or more. Interference measurement device.
JP2008190079A 2008-07-23 2008-07-23 Interference measuring apparatus Pending JP2010025864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190079A JP2010025864A (en) 2008-07-23 2008-07-23 Interference measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190079A JP2010025864A (en) 2008-07-23 2008-07-23 Interference measuring apparatus

Publications (1)

Publication Number Publication Date
JP2010025864A true JP2010025864A (en) 2010-02-04

Family

ID=41731829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190079A Pending JP2010025864A (en) 2008-07-23 2008-07-23 Interference measuring apparatus

Country Status (1)

Country Link
JP (1) JP2010025864A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096198A1 (en) 2010-02-08 2011-08-11 Canon Kabushiki Kaisha Photoacoustic imaging apparatus and photoacoustic imaging method
JP2012002537A (en) * 2010-06-14 2012-01-05 Omron Corp Measuring device
US9496436B2 (en) 2012-06-07 2016-11-15 Monarch Power Corp. Foldable solar power receiver
KR101920349B1 (en) * 2017-01-18 2018-11-20 유준호 Apparatus for monitoring three-dimensional shape of target object

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599613A (en) * 1991-10-08 1993-04-23 Olympus Optical Co Ltd Interferometer for measuring transmitted wave front
JPH0914911A (en) * 1995-06-26 1997-01-17 Fuji Photo Optical Co Ltd Interferometer
JP2002082045A (en) * 2000-09-08 2002-03-22 Japan Science & Technology Corp Photometric system
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JP2002539494A (en) * 1999-03-18 2002-11-19 ゼテティック・インスティチュート Multi-layer confocal interference microscope using wave number domain reflectometer and background amplitude reduction and compensation method
JP2004138441A (en) * 2002-10-16 2004-05-13 Verno Giken:Kk Interference type contactless measuring unit
JP2004528586A (en) * 2000-11-17 2004-09-16 サーントル ナスィヨナル ドゥ ラ ルシェルシュ スイヤンティフィック Method and apparatus for high-speed image formation of an object using an interference microscope
JP2007151631A (en) * 2005-11-30 2007-06-21 Kyocera Corp Optical tomographic imaging apparatus
JP2009505051A (en) * 2005-08-08 2009-02-05 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Tomographic imaging with immersion interference microscope

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599613A (en) * 1991-10-08 1993-04-23 Olympus Optical Co Ltd Interferometer for measuring transmitted wave front
JPH0914911A (en) * 1995-06-26 1997-01-17 Fuji Photo Optical Co Ltd Interferometer
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JP2002539494A (en) * 1999-03-18 2002-11-19 ゼテティック・インスティチュート Multi-layer confocal interference microscope using wave number domain reflectometer and background amplitude reduction and compensation method
JP2002082045A (en) * 2000-09-08 2002-03-22 Japan Science & Technology Corp Photometric system
JP2004528586A (en) * 2000-11-17 2004-09-16 サーントル ナスィヨナル ドゥ ラ ルシェルシュ スイヤンティフィック Method and apparatus for high-speed image formation of an object using an interference microscope
JP2004138441A (en) * 2002-10-16 2004-05-13 Verno Giken:Kk Interference type contactless measuring unit
JP2009505051A (en) * 2005-08-08 2009-02-05 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Tomographic imaging with immersion interference microscope
JP2007151631A (en) * 2005-11-30 2007-06-21 Kyocera Corp Optical tomographic imaging apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096198A1 (en) 2010-02-08 2011-08-11 Canon Kabushiki Kaisha Photoacoustic imaging apparatus and photoacoustic imaging method
JP2012002537A (en) * 2010-06-14 2012-01-05 Omron Corp Measuring device
US9496436B2 (en) 2012-06-07 2016-11-15 Monarch Power Corp. Foldable solar power receiver
KR101920349B1 (en) * 2017-01-18 2018-11-20 유준호 Apparatus for monitoring three-dimensional shape of target object

Similar Documents

Publication Publication Date Title
JP5394317B2 (en) Rotationally symmetric aspherical shape measuring device
US8427653B2 (en) Optical coherence tomography methods and systems
KR101281580B1 (en) Optical tomographic imaging apparatus
TWI728562B (en) Optical measuring device
TWI636231B (en) Optical system and method of surface and internal surface profilometry using the same
JP2008268387A (en) Confocal microscope
TWI452335B (en) Method and system for obtaining object image using confocal microscope
JP2009162539A (en) Light wave interferometer apparatus
US20100097693A1 (en) Confocal microscope
CN107710046B (en) Method for determining spatially resolved height information of a sample using a wide-field microscope and wide-field microscope
JP4572898B2 (en) Prism unit evaluation method and prism unit manufacturing method
JPH07229720A (en) Device for measuring three-dimensional shape
JP2011252774A (en) Measuring apparatus for inspection target surface
JP2010025864A (en) Interference measuring apparatus
JPWO2016151633A1 (en) Scanning trajectory measuring method, scanning trajectory measuring apparatus, and image calibration method for optical scanning device
JP2013113650A (en) Trench depth measuring apparatus and trench depth measuring method and confocal microscope
JP2008215833A (en) Apparatus and method for measuring optical characteristics
JP2012245223A (en) Electronic endoscope apparatus and spectral image optimization method
JP6887350B2 (en) Optical image measuring device
JP2006301541A (en) Scanning type fluorescence observation apparatus
JP5827507B2 (en) Ellipsometry system
KR101078190B1 (en) Wavelength detector and optical coherence topography having the same
JP2009293925A (en) Error correction apparatus of optical inspection apparatus
TWI439725B (en) Method for obtaining object image using confocal microscope
JP2007093288A (en) Light measuring instrument and light measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618