JP2010024502A - Aluminum foil for electrolytic capacitor electrode - Google Patents

Aluminum foil for electrolytic capacitor electrode Download PDF

Info

Publication number
JP2010024502A
JP2010024502A JP2008188143A JP2008188143A JP2010024502A JP 2010024502 A JP2010024502 A JP 2010024502A JP 2008188143 A JP2008188143 A JP 2008188143A JP 2008188143 A JP2008188143 A JP 2008188143A JP 2010024502 A JP2010024502 A JP 2010024502A
Authority
JP
Japan
Prior art keywords
content
aluminum foil
foil
ppm
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188143A
Other languages
Japanese (ja)
Inventor
Nobuo Osawa
伸夫 大澤
Atsushi Hibino
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2008188143A priority Critical patent/JP2010024502A/en
Publication of JP2010024502A publication Critical patent/JP2010024502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide aluminum foil for an electrolytic capacitor electrode in which etch pits uniformly and deeply progress to the inside of aluminum without causing surplus decomposition at the surface and the inside upon AC etching, for obtaining high electrostatic capacitance. <P>SOLUTION: There is disclosed the aluminum foil having a composition comprising 30 to 180 ppm Fe and 30 to 180 ppm Si and having an Al purity of &ge;99.93%, wherein the total of the Fe content in the intermetallic compounds with the major axis of 0.1 to 1 &mu;m, of intermetallic compounds present in the foil, is 13 to 30 ppm, and the content of Fe present as intermetallic compounds is &ge;50% of the Fe content in the foil. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電解コンデンサ電極用アルミニウム箔、特にFeやSiの含有量が多い低廉なアルミニウム箔材であって、交流エッチングにより均一かつ多数のピットを形成し、高い静電容量を得ることができる電解コンデンサ電極用アルミニウム箔に関する。   INDUSTRIAL APPLICABILITY The present invention is an aluminum foil for electrolytic capacitor electrodes, in particular, an inexpensive aluminum foil material having a large content of Fe and Si, and can form a large number of pits uniformly by AC etching to obtain a high capacitance. The present invention relates to an aluminum foil for electrolytic capacitor electrodes.

電子部品の小型化に伴い、当該部品に使用されている電解コンデンサ電極用アルミニウム箔についても、エッチング処理後の表面積の拡大による静電容量の向上が要望されている。電解コンデンサ電極用アルミニウム箔のエッチングは、通常、塩化物イオンを含む溶液中で、電気化学的または化学的な処理を施すことにより行われ、エッチピットと呼ばれる多数の孔を形成して、エッチング面の表面積を拡大させる。   Along with the downsizing of electronic components, there has been a demand for an improvement in capacitance by increasing the surface area after the etching process for the aluminum foil for electrolytic capacitor electrodes used in the components. Etching of aluminum foil for electrolytic capacitor electrodes is usually performed by applying an electrochemical or chemical treatment in a solution containing chloride ions to form a large number of holes called etch pits, and the etching surface. To increase the surface area.

エッチング処理されたエッチド箔は、例えばアジピン酸アンモニウム水溶液やホウ酸水溶液中で化成、すなわち陽極酸化することにより、誘電体の酸化皮膜がコンデンサの使用電圧に応じて形成される。コンデンサの静電容量は、C=εS/d(C:静電容量、ε:化成皮膜の誘電率、S:表面積、d:化成皮膜の厚さ)で与えられる。   The etched etched foil is formed, for example, anodized in an aqueous solution of ammonium adipate or boric acid, so that a dielectric oxide film is formed according to the operating voltage of the capacitor. The capacitance of the capacitor is given by C = εS / d (C: capacitance, ε: dielectric constant of chemical conversion film, S: surface area, d: thickness of chemical conversion film).

従来、交流エッチングされる電解コンデンサ電極用アルミニウム箔の静電容量を高めるために、Fe系金属間化合物の種類やサイズ、あるいは存在比率を制御する多くの試みが検討されてきた。例えば、箔中の金属間化合物を、長径が0.1μm未満、0.1μm〜1.0μm、1.0μmを超えるものに分類し、箔全体のFe含有量に対するそれぞれの大きさの金属間化合物のFe含有量の比率を規定するもの(特許文献1参照)、箔中のAl−Fe系金属間化合物のうち、AlFe/AlFeの比率を0.5以下に規制するもの(特許文献2参照)などが提案されている。 Conventionally, many attempts have been made to control the type, size, or abundance of Fe-based intermetallic compounds in order to increase the capacitance of aluminum foils for electrolytic capacitor electrodes that are AC-etched. For example, the intermetallic compounds in the foil are classified into those whose major axis is less than 0.1 μm, 0.1 μm to 1.0 μm, and more than 1.0 μm, and each size of the intermetallic compound with respect to the Fe content of the entire foil. Which regulates the ratio of the Fe content of the alloy (see Patent Document 1), among the Al-Fe intermetallic compounds in the foil, the ratio of Al 6 Fe / Al 3 Fe is regulated to 0.5 or less (patent Document 2) has been proposed.

しかしながら、AlFe、AlFeの金属間化合物の存在比率や大きさあるいは金属間化合物のFe含有量の比率を規定しただけでは高い静電容量を確実に得られない場合もあり、表面や内部での溶解により静電容量が低下するという難点も生じる。
特開2004−149835号公報 特開2006−144122号公報
However, high capacitance may not be obtained with certainty simply by specifying the abundance ratio and size of the intermetallic compound of Al 3 Fe and Al 6 Fe or the ratio of the Fe content of the intermetallic compound. There is also a problem that the capacitance is lowered due to melting inside.
JP 2004-149835 A JP 2006-144122 A

本発明は、交流エッチングにより確実に高い静電容量を有する電解コンデンサ電極用アルミニウム箔を得るために、上記提案のものをベースとしてさらに試験、検討を重ねた結果としてなされたものであり、その目的は、交流エッチング時に表面や内部における過剰溶解を生じることなくエッチピットがアルミニウム内部まで均一且つ深く進行して、高い静電容量を得ることができる電解コンデンサ電極用アルミニウム箔を提供することにある。   The present invention was made as a result of further testing and examination based on the above-mentioned proposal in order to obtain an aluminum foil for an electrolytic capacitor electrode having a high capacitance surely by AC etching. An object of the present invention is to provide an aluminum foil for an electrolytic capacitor electrode in which etch pits uniformly and deeply progress to the inside of aluminum without causing excessive dissolution on the surface or inside during AC etching, and a high capacitance can be obtained.

上記の目的を達成するための請求項1による電解コンデンサ電極用アルミニウム箔は、Fe:30〜180ppm、Si:30〜180ppmを含有し、Al純度99.93%以上の組成を有するアルミニウム箔であって、該箔中に存在する金属間化合物のうち、長径が0.1〜1μmの金属間化合物のFe含有量の合計が13〜30ppmであり、金属間化合物として存在するFeの含有量が、該箔のFe含有量の50%以上であることを特徴とする。   An aluminum foil for an electrolytic capacitor electrode according to claim 1 for achieving the above object is an aluminum foil containing Fe: 30 to 180 ppm, Si: 30 to 180 ppm and having a composition with an Al purity of 99.93% or more. Of the intermetallic compounds present in the foil, the total Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm is 13 to 30 ppm, and the Fe content present as the intermetallic compound is It is characterized by being 50% or more of the Fe content of the foil.

請求項2による電解コンデンサ電極用アルミニウム箔は、請求項1において、引張り強度が60MPa以上130MPa以下であることを特徴とする。   The aluminum foil for electrolytic capacitor electrodes according to claim 2 is characterized in that, in claim 1, the tensile strength is 60 MPa or more and 130 MPa or less.

本発明によれば、交流エッチング時に表面や内部における過剰溶解を生じることなくエッチピットがアルミニウム内部まで均一且つ深く進行して、高い静電容量を得ることができる電解コンデンサ電極用アルミニウム箔が提供される。   According to the present invention, there is provided an aluminum foil for an electrolytic capacitor electrode that can obtain a high electrostatic capacity by allowing etch pits to travel uniformly and deeply into the aluminum without causing excessive dissolution on the surface or inside during AC etching. The

アルミニウム箔の交流エッチングにおいて、ピットは箔中の金属間化合物を起点に発生する。本発明者らは、交流エッチング挙動に及ぼす種々の金属間化合物の存在形態、金属間化合物を構成する元素や当該元素の金属間化合物中における量などの影響について多くの試験、検討を行い、例えば熱間圧延や最終焼鈍により析出する特定サイズの金属間化合物のFe含有量が静電容量に大きく影響することを見出した。   In AC etching of aluminum foil, pits are generated starting from intermetallic compounds in the foil. The inventors have conducted many tests and studies on the influence of various intermetallic compounds on the AC etching behavior, the effects of the elements constituting the intermetallic compounds and the amounts of the elements in the intermetallic compounds, for example, It has been found that the Fe content of a specific size intermetallic compound precipitated by hot rolling or final annealing greatly affects the capacitance.

すなわち、熱間圧延や最終焼鈍時に析出する微細なFe系の金属間化合物は、ピットサイズに比べ比較的微細であるため、交流エッチング時のピット開始点ならびにピット内部におけるカソード皮膜の欠陥部を形成するのに最も有効な作用を有すること、一方、晶出した比較的サイズの大きな金属間化合物はFe含有の有無によらず交流エッチングで発生するピットのサイズよりも大きいため、ピットの回り込みを生じ、箔表層では表面の欠落部、内部ではエッチング層の空洞部を形成したりするものの、エッチングへの影響は全体として見ると小さく、静電容量への影響は殆どないことを知見した。   That is, the fine Fe-based intermetallic compound that precipitates during hot rolling and final annealing is relatively fine compared to the pit size, so it forms a pit start point during AC etching and a defect in the cathode coating inside the pit. On the other hand, the relatively large intermetallic compound crystallized is larger than the size of the pit generated by AC etching regardless of the presence or absence of Fe, thus causing pit wraparound. It was found that although the surface portion of the foil was missing on the surface of the foil and the cavity portion of the etching layer was formed inside, the effect on etching was small as a whole and there was almost no effect on the capacitance.

本発明は、このような知見に基づいて、ピット開始点ならびにピット内部におけるカソード皮膜の欠陥部の付与を確実なものとするため、熱間圧延や最終焼鈍で析出する金属間化合物のFe含有量を適性範囲に制御することにより、FeやSiの含有量が多い低廉なアルミニウム箔材であっても、交流エッチングにより均一且つ多数のピットを形成して、高い静電容量を得るものである。   Based on such knowledge, the present invention ensures the provision of defects at the pit start point and inside the pit, so that the Fe content of the intermetallic compound precipitated by hot rolling and final annealing. By controlling the thickness within a suitable range, even an inexpensive aluminum foil material with a large content of Fe or Si can form a large number of uniform pits by alternating current etching to obtain a high capacitance.

本発明のアルミニウム箔の成分組成について説明する。
Fe:好ましい含有量は30〜180ppmの範囲である。30ppm未満ではピット開始点の減少に伴い、高い静電容量が得られない。また、従来から使用されている箔材と純度が変らず、コスト高となる。50ppm以上とするのがさらに好ましい。Fe含有量が180ppmを超えると、本発明のように組織を制御しても高い静電容量を得ることができない。120ppm以下とするのがさらに好ましい。
The component composition of the aluminum foil of the present invention will be described.
Fe: A preferable content is in the range of 30 to 180 ppm. If it is less than 30 ppm, a high electrostatic capacity cannot be obtained as the pit start point decreases. In addition, the purity does not change from the foil material conventionally used, and the cost is increased. More preferably, it is 50 ppm or more. If the Fe content exceeds 180 ppm, a high capacitance cannot be obtained even if the structure is controlled as in the present invention. More preferably, it is 120 ppm or less.

Si:好ましい含有量は30〜180ppmの範囲である。30ppm未満ではピット開始点の減少に伴い、高い静電容量が得られない。また、従来から使用されている箔材と純度が変らず、コスト高となる。50ppm以上とするのがさらに好ましい。Si含有量が180ppmを超えると、本発明のように組織を制御しても高い静電容量を得ることができない。120ppm以下とするのがさらに好ましい。   Si: A preferable content is in the range of 30 to 180 ppm. If it is less than 30 ppm, a high electrostatic capacity cannot be obtained as the pit start point decreases. In addition, the purity does not change from the foil material conventionally used, and the cost is increased. More preferably, it is 50 ppm or more. When the Si content exceeds 180 ppm, a high capacitance cannot be obtained even if the structure is controlled as in the present invention. More preferably, it is 120 ppm or less.

本発明において、アルミニウム箔のAl純度は99.93%以上とするのが好ましい。純度が99.93%未満では不純物が多く、高い静電容量が得られない。Al純度は99.96%以上であることがさらに好ましい。   In the present invention, the aluminum purity of the aluminum foil is preferably 99.93% or more. If the purity is less than 99.93%, there are many impurities, and a high capacitance cannot be obtained. The Al purity is more preferably 99.96% or more.

Si、Fe以外の元素として、Cuを0.020%以下、Mn、Mg、Crをそれぞれ0.01%以下、Zn、Ti、Ga、Vをそれぞれ0.02%以下、その他不可避不純物をそれぞれ0.01%以下の範囲で含有しても本発明の効果に影響することはない。   As elements other than Si and Fe, Cu is 0.020% or less, Mn, Mg, Cr is 0.01% or less, Zn, Ti, Ga, V is 0.02% or less, and other inevitable impurities are 0%. Even if contained in the range of 0.01% or less, the effect of the present invention is not affected.

本発明のアルミニウム箔においては、箔中に存在する金属間化合物のうち、サイズとして、長径が0.1〜1μmの金属間化合物のFe含有量の合計が13〜30ppmであり、金属間化合物として存在するFeの含有量が、箔のFe含有量の50%以上であることが高い静電容量を得るために必要な要件である。   In the aluminum foil of the present invention, among the intermetallic compounds present in the foil, the total Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm is 13 to 30 ppm as the size. It is a requirement necessary to obtain a high capacitance that the Fe content present is 50% or more of the Fe content of the foil.

長径が0.1〜1μmの金属間化合物のFe含有量が30ppmを超えると、交流エッチング時に、ピット開始点ならびにエッチング層内部の欠陥が過多となるため、表面の欠落と内部の空洞が生じ、過剰溶解に伴う静電容量の低下が起こり易くなる。長径が0.1〜1μmの金属間化合物のFe含有量が13ppm未満では、ピット発生数の減少と深さ方向へのピット伝播性の低下により、静電容量が低下する。長径が0.1〜1μmの金属間化合物のFe含有量は、17〜30ppmの範囲とするのがより好ましい。   When the Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm exceeds 30 ppm, the pit start point and the defects inside the etching layer become excessive at the time of AC etching. Capacitance reduction due to excessive dissolution tends to occur. When the Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm is less than 13 ppm, the capacitance decreases due to a decrease in the number of pits generated and a decrease in pit propagation in the depth direction. The Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm is more preferably in the range of 17 to 30 ppm.

金属間化合物として存在するFeの含有量は、箔全体のFe含有量の50%以上である。金属間化合物として存在するFeの含有量が箔のFe含有量の50%未満では、固溶したFeに起因するエッチング層の溶解により、高い静電容量が得られなくなる。本発明のアルミニウム箔のFeの含有量が70ppm以上の場合には、金属間化合物として存在するFeの含有量は、箔全体のFe含有量の60%以上であることが望ましい。   The content of Fe present as an intermetallic compound is 50% or more of the Fe content of the entire foil. When the content of Fe present as an intermetallic compound is less than 50% of the Fe content of the foil, a high capacitance cannot be obtained due to dissolution of the etching layer caused by the solid solution of Fe. When the content of Fe in the aluminum foil of the present invention is 70 ppm or more, the content of Fe existing as an intermetallic compound is desirably 60% or more of the Fe content of the entire foil.

なお、金属間化合物として存在するFe含有量とは、熱フェノール溶解後にポアサイズ0.1μmのメンブランフィルターで捕集された残渣のFe含有量を言う。   In addition, Fe content which exists as an intermetallic compound means Fe content of the residue collected with the membrane filter of the pore size 0.1 micrometer after hot phenol melt | dissolution.

本発明の電解コンデンサ電極用アルミニウム箔は、また、引張り強度が60MPa以上130MPa以下であることが好ましい。引張り強度が60MPa未満では、箔の軟化に伴う金属アルミニウム素地の再結晶が進行し過ぎるため、亜結晶粒界ないし結晶粒界を通じた深さ方向へのピットの伝播性が低下し高い静電容量が得られない。引張り強度が130MPaを超えると、圧延方向へ延ばされた金属アルミニウム素地の結晶粒の影響を受け、エッチング層が層状に剥離を起こすようになるため静電容量が低下する。   The aluminum foil for electrolytic capacitor electrodes of the present invention preferably has a tensile strength of 60 MPa to 130 MPa. If the tensile strength is less than 60 MPa, the recrystallization of the metal aluminum substrate due to the softening of the foil proceeds too much, so that the propagation property of pits in the depth direction through the subgrain boundary or the grain boundary is reduced and the capacitance is high. Cannot be obtained. When the tensile strength exceeds 130 MPa, the etching layer is peeled off in layers due to the influence of the crystal grains of the metal aluminum substrate extended in the rolling direction, so that the capacitance decreases.

本発明のアルミニウム箔は、前記の組成を有するアルミニウムをDC鋳造により造塊し、得られた鋳塊を均熱化処理、熱間圧延、冷間圧延、最終焼鈍の工程を経て製造される。均熱化処理の工程がなくても差し支えない。本発明の特性をそなえたアルミニウム箔とするためには、成分組成を前記のとおり調整するとともに、鋳塊のDC鋳造において、鋳塊の水冷表面から10mm内部の冷却速度を3〜10℃/sに制御する。熱間圧延開始温度は450〜550℃の範囲とするのが好ましい。   The aluminum foil of the present invention is produced by ingoting aluminum having the above composition by DC casting, and subjecting the obtained ingot to steps of soaking, hot rolling, cold rolling, and final annealing. There may be no soaking process. In order to obtain an aluminum foil having the characteristics of the present invention, the component composition is adjusted as described above, and in the DC casting of the ingot, the cooling rate within 10 mm from the water-cooled surface of the ingot is 3 to 10 ° C./s. To control. The hot rolling start temperature is preferably in the range of 450 to 550 ° C.

図1は、鋳造された鋳塊1の縦方向(長さ方向)断面を示す。水冷表面2から中心部4へ向かって斜め上方に伸びる鋳造組織(マクロ組織)3の角度θと鋳造速度vから、凝固界面進行速度をv×cosθで求めた場合、本発明のアルミニウム箔を得るためには、凝固界面進行速度が30〜50mm/分の範囲となるよう冷却するのが好ましい。凝固界面進行速度が30mm/分未満では、比較的サイズの大きな金属間化合物を多く晶出させることができず、凝固界面進行速度が50mm/分を越えると、大半が比較的サイズの大きな金属間化合物として晶出するため、結果としてアルミニウム箔の金属間化合物を本発明の範囲に制御することが困難となる。   FIG. 1 shows a longitudinal (lengthwise) section of a cast ingot 1. When the solidification interface progress velocity is determined by v × cos θ from the angle θ of the cast structure (macro structure) 3 extending obliquely upward from the water-cooled surface 2 toward the central portion 4 and the casting speed v, the aluminum foil of the present invention is obtained. For this purpose, it is preferable to cool so that the solidification interface traveling speed is in the range of 30 to 50 mm / min. When the solidification interface progress rate is less than 30 mm / min, a large amount of relatively large intermetallic compounds cannot be crystallized. When the solidification interface progression rate exceeds 50 mm / min, most of the intermetallic compounds are relatively large in size. Since it crystallizes out as a compound, as a result, it becomes difficult to control the intermetallic compound of the aluminum foil within the scope of the present invention.

以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.

実施例1
表1に示す組成を有するアルミニウムを溶解、DC鋳造により造塊した。この時、凝固界面進行速度を変化させることにより鋳塊中で晶出する金属間化合物量を変化させた。なお、試験材9、10、11は同じ鋳塊(Cu:0.0037%、Mn:0.0006%、Mg:0.0002%、Cr:0.0003%、Zn:0.0011%、Ti:0.0001%、Ga:0.0024%を含有)を用いた試験材である。
Example 1
Aluminum having the composition shown in Table 1 was melted and agglomerated by DC casting. At this time, the amount of the intermetallic compound crystallized in the ingot was changed by changing the solidification interface progress rate. The test materials 9, 10, and 11 are the same ingot (Cu: 0.0037%, Mn: 0.0006%, Mg: 0.0002%, Cr: 0.0003%, Zn: 0.0011%, Ti : 0.0001%, Ga: 0.0024% contained).

ついで、表1に示す条件で、均質化処理(処理温度×処理時間)を行って再固溶の状態を制御し、続いて、熱間圧延を行い、熱間圧延開始温度により析出の状態を制御し、さらに、圧下率97%以上の冷間圧延を行うことにより厚さ100μmの箔材とした。   Next, under the conditions shown in Table 1, homogenization treatment (treatment temperature x treatment time) is performed to control the re-solution state, followed by hot rolling, and the precipitation state is determined by the hot rolling start temperature. The foil material was 100 μm thick by controlling and further performing cold rolling with a rolling reduction of 97% or more.

得られたアルミニウム箔を、表1に示す条件で、大気中あるいは窒素ガス雰囲気での最終焼鈍を行い、析出した金属間化合物中のFe含有量を調整した。   The obtained aluminum foil was subjected to final annealing in the air or in a nitrogen gas atmosphere under the conditions shown in Table 1 to adjust the Fe content in the deposited intermetallic compound.

金属間化合物として存在するFe含有量を測定するための熱フェノール法は以下のとおり行った。
熱フェノール法:沸騰させたフェノール100mlに試料を1〜5gの範囲で完全に溶解させ、フェノール固化防止のため、ベンジルアルコールを50ml添加した。さらに、全体で200mlとなるようベンジルアルコールを加え、約85℃まで冷却してから孔径0.1μmのメンブランフィルターを用いて吸引濾過した。得られた残渣をX線回折測定すると同時に、フィルターの残渣を塩酸に溶解させ、Fe含有量を原子吸光法にて定量した。この場合、原子吸光法に代えてICP発光分光分析を行ってもよい。次いで、同様の試料をメンブランフィルターのみ孔径1μmのものを用いて同様にFe含有量を定量し、その差より長径が0.1〜1μmの金属間化合物のFe含有量を求めた。
The hot phenol method for measuring the Fe content present as an intermetallic compound was performed as follows.
Hot phenol method: The sample was completely dissolved in 100 ml of boiling phenol in the range of 1 to 5 g, and 50 ml of benzyl alcohol was added to prevent phenol solidification. Further, benzyl alcohol was added to a total volume of 200 ml, and after cooling to about 85 ° C., suction filtration was performed using a membrane filter having a pore size of 0.1 μm. The obtained residue was subjected to X-ray diffraction measurement, and at the same time, the filter residue was dissolved in hydrochloric acid, and the Fe content was quantified by atomic absorption spectrometry. In this case, ICP emission spectroscopic analysis may be performed instead of the atomic absorption method. Subsequently, the Fe content of the same sample was similarly determined using only a membrane filter having a pore size of 1 μm, and the Fe content of an intermetallic compound having a major axis of 0.1 to 1 μm was determined from the difference.

最終焼鈍後のアルミニウム箔について、以下の方法に従って、引張り強度を測定し、交流電解により交流エッチングを行った後、静電容量を測定した。
交流エッチング:塩酸1.5mol/dm、リン酸0.09mol/dmおよび硝酸0.07mol/dmの混合溶液を用い、32℃、25Hz正弦波交流により電流密度200mA/cmで450s間電解した。静電容量の測定は、20V化成後にLCRメータを用いて、120Hzの直列等価回路で実施した。
引張り強度の測定:JIS5号試験片(JISZ2201)を作成し、JISZ2241に準じて引張り強度を求めた。
With respect to the aluminum foil after the final annealing, the tensile strength was measured according to the following method, and after performing AC etching by AC electrolysis, the capacitance was measured.
AC etching hydrochloric 1.5 mol / dm 3, a mixed solution of phosphoric acid 0.09 mol / dm 3 and nitric acid 0.07mol / dm 3, 32 ℃, 450s between a current density 200 mA / cm 2 by 25Hz sinusoidal alternating Electrolyzed. The capacitance was measured with a 120 Hz series equivalent circuit using an LCR meter after 20V conversion.
Measurement of tensile strength: JIS No. 5 test piece (JISZ2201) was prepared, and the tensile strength was determined according to JISZ2241.

長径が0.1〜1μmの金属間化合物のFe含有量、アルミニウム箔中のFe含有量に対する金属間化合物として存在するFeの含有量の比率、引張り強度、静電容量の測定結果を表1に示す。   Table 1 shows the Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm, the ratio of the Fe content present as the intermetallic compound to the Fe content in the aluminum foil, the tensile strength, and the capacitance. Show.

Figure 2010024502
Figure 2010024502

表1にみられるように、本発明に従う試験材1〜11はいずれも、高い静電容量をそなえ、60〜130MPaの範囲の適切な引張り強度を有していた。すなわち、静電容量は、試験材1を100%とした場合、試験材2〜11は100%を超える静電容量をそなえていた。   As can be seen in Table 1, all of the test materials 1 to 11 according to the present invention had a high capacitance and an appropriate tensile strength in the range of 60 to 130 MPa. That is, when the test material 1 was 100%, the test materials 2 to 11 had a capacitance exceeding 100%.

比較例1
表2に示す組成を有するアルミニウムを溶解、DC鋳造により造塊した。この時、凝固界面進行速度を変化させることにより鋳塊中で晶出する金属間化合物量を変化させた。ついで、表2に示す条件で、均質化処理(処理温度×処理時間)、熱間圧延を行い、さらに、冷間圧延を行うことにより厚さ100μmの箔材とした。
Comparative Example 1
Aluminum having the composition shown in Table 2 was melted and agglomerated by DC casting. At this time, the amount of the intermetallic compound crystallized in the ingot was changed by changing the solidification interface progress rate. Then, under the conditions shown in Table 2, homogenization treatment (treatment temperature × treatment time), hot rolling was performed, and further cold rolling was performed to obtain a foil material having a thickness of 100 μm.

得られたアルミニウム箔を、表2に示す条件で、大気中あるいは窒素ガス雰囲気で最終焼鈍した。金属間化合物中のFe含有量の測定、引張り強度の測定は、実施例1と同様にして行い、交流電解、の測定についても実施例1と同じ方法で行った。測定結果を表2に示す。静電容量は試験材1を100%とした場合の相対値として表示した。なお、表2において、本発明の条件を外れたものには下線を付した。   The obtained aluminum foil was finally annealed in the air or in a nitrogen gas atmosphere under the conditions shown in Table 2. The measurement of the Fe content in the intermetallic compound and the measurement of the tensile strength were performed in the same manner as in Example 1, and the measurement of AC electrolysis was also performed in the same manner as in Example 1. The measurement results are shown in Table 2. The capacitance was displayed as a relative value when the test material 1 was 100%. In Table 2, those outside the conditions of the present invention are underlined.

Figure 2010024502
Figure 2010024502

表2に示すように、試験材12はSi量、Fe量が多く、Al純度が低いため、また、試験材13はSi量、Fe量が多いため、いずれも静電容量が劣っていた。試験材14は、長径が0.1〜1μmの金属間化合物のFe含有量が多くなっているため静電容量が劣っていた。試験材15は長径が0.1〜1μmの金属間化合物のFe含有量が少ないため、ピット発生数の減少と深さ方向へのピット伝播性の低下により、静電容量が劣っていた。試験材16はSi量、Fe量が少ない高純度材のためコスト高となった。   As shown in Table 2, the test material 12 had a large amount of Si and Fe, and the Al purity was low, and because the test material 13 had a large amount of Si and Fe, both had poor capacitance. The test material 14 was inferior in capacitance because the Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm was increased. Since the test material 15 had a small Fe content in the intermetallic compound having a major axis of 0.1 to 1 μm, the capacitance was inferior due to a decrease in the number of pits generated and a decrease in pit propagation in the depth direction. Since the test material 16 was a high purity material with a small amount of Si and Fe, the cost was high.

鋳造された鋳塊の縦方向(長さ方向)断面図である。It is longitudinal direction (length direction) sectional drawing of the cast ingot.

符号の説明Explanation of symbols

1 鋳塊
2 水冷表面
3 鋳造組織
4 中心部
1 Ingot 2 Water-cooled surface 3 Cast structure 4 Center

Claims (2)

Fe:30〜180ppm(質量ppm、以下同じ)、Si:30〜180ppmを含有し、Al純度99.93%(質量%、以下同じ)以上の組成を有するアルミニウム箔であって、該箔中に存在する金属間化合物のうち、長径が0.1〜1μmの金属間化合物のFe含有量の合計が13〜30ppmであり、金属間化合物として存在するFeの含有量が、該箔のFe含有量の50%以上であることを特徴とする電解コンデンサ電極用アルミニウム箔。   An aluminum foil containing Fe: 30 to 180 ppm (mass ppm, hereinafter the same), Si: 30 to 180 ppm and having an Al purity of 99.93% (mass%, hereinafter the same) or more, Among the intermetallic compounds present, the total Fe content of the intermetallic compound having a major axis of 0.1 to 1 μm is 13 to 30 ppm, and the Fe content present as the intermetallic compound is the Fe content of the foil. 50% or more of the aluminum foil for electrolytic capacitor electrodes. 引張り強度が60MPa以上130MPa以下であることを特徴とする請求項1記載の電解コンデンサ電極用アルミニウム箔。   The aluminum foil for electrolytic capacitor electrodes according to claim 1, wherein the tensile strength is 60 MPa or more and 130 MPa or less.
JP2008188143A 2008-07-22 2008-07-22 Aluminum foil for electrolytic capacitor electrode Pending JP2010024502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188143A JP2010024502A (en) 2008-07-22 2008-07-22 Aluminum foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188143A JP2010024502A (en) 2008-07-22 2008-07-22 Aluminum foil for electrolytic capacitor electrode

Publications (1)

Publication Number Publication Date
JP2010024502A true JP2010024502A (en) 2010-02-04

Family

ID=41730594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188143A Pending JP2010024502A (en) 2008-07-22 2008-07-22 Aluminum foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP2010024502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11626349B2 (en) 2013-03-15 2023-04-11 Celgard, Llc Multilayer hybrid battery separators for lithium ion secondary batteries and methods of making same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149835A (en) * 2002-10-29 2004-05-27 Nippon Light Metal Co Ltd Soft aluminum foil for medium/low voltage electrolytic capacitor to be subjected to ac etching
JP2007039771A (en) * 2005-08-05 2007-02-15 Showa Denko Kk Aluminum alloy material for electrolytic capacitor, manufacturing method of the same, anode material for electrolytic capacitor, manufacturing method of electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149835A (en) * 2002-10-29 2004-05-27 Nippon Light Metal Co Ltd Soft aluminum foil for medium/low voltage electrolytic capacitor to be subjected to ac etching
JP2007039771A (en) * 2005-08-05 2007-02-15 Showa Denko Kk Aluminum alloy material for electrolytic capacitor, manufacturing method of the same, anode material for electrolytic capacitor, manufacturing method of electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11626349B2 (en) 2013-03-15 2023-04-11 Celgard, Llc Multilayer hybrid battery separators for lithium ion secondary batteries and methods of making same

Similar Documents

Publication Publication Date Title
JP5833987B2 (en) Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
JP5539985B2 (en) Aluminum penetration foil
JP2009062595A (en) Aluminum foil material
JP3480210B2 (en) Aluminum alloy for electrolytic capacitor anode
JP5019371B2 (en) Aluminum foil material for electrolytic capacitor electrodes
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP5934129B2 (en) Aluminum alloy foil for electrolytic capacitor and manufacturing method thereof
JP5328129B2 (en) Aluminum alloy foil for electrolytic capacitors
JP2010024502A (en) Aluminum foil for electrolytic capacitor electrode
JP4874039B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and alloy foil used therefor
JP2004319794A (en) Aluminum material for electrolytic capacitor electrode, its manufacturing method and electrolytic capacitor
JP5396156B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode
JP2007067052A (en) Aluminum foil for electrolytic capacitor
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
JP4582627B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP3920301B2 (en) Aluminum foil for electrolytic capacitors
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor
JP2006222201A (en) Alminium foil for electrode of electrolytic capacitor
JP2011006747A (en) Aluminum foil for electrolytic capacitor
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2002124438A (en) Aluminum alloy foil for electrolytic capacitor cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A521 Written amendment

Effective date: 20120606

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Effective date: 20130408

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130620

A711 Notification of change in applicant

Effective date: 20131023

Free format text: JAPANESE INTERMEDIATE CODE: A712

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140304